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We present a procedure for the design of high order quadrature rules for the numerical
evaluation of singular and hypersingular integrals; such integrals are frequently encountered
in solution of integral equations of potential theory in two dimensions. Unlike integrals of
both smooth and weakly singular functions, hypersingular integrals are pseudo-differential
operators, being limits of certain integrals; as a result, standard quadrature formulae fail
for hypersingular integrals. On the other hand, such expressions are often encountered
in mathematical physics (see, for example, [11]), and it is desirable to have simple and
efficient “quadrature” formulae for them. The algorithm we present constructs high-order
“quadratures” for the evaluation of hypersingular integrals. The additional advantage of the
scheme is the fact that each of the quadratures it produces can be used simultaneously for the
efficient evaluation of hypersingular integrals, Hilbert transforms, and integrals involving
both smooth and logarithmically singular functions; this results in significantly simplified
implementations. The performance of the procedure is illustrated with several numerical
examples.
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1 Introduction

Numerical integration is one of most frequently encountered computational procedures.
When smooth functions are to be integrated, classical techniques tend to be adequate,
especially in one and two dimensions; one of most efficient general-purpose tools consists of
various versions of nested Gaussian quadrature rules (see, for example, [20, 18, 3, 6]). In
cases where extremely efficient special-purpose quadratures are warranted, Gaussian (and
more recently, Generalized Gaussian) quadratures are the approach of choice.

When singular functions are to be integrated, the situation tends to be less satisfactory.
Special-purpose Gaussian quadratures can be easily constructed for functions of the form

f(z) = s(z) - ¢(), (1)

where s is a fixed singular function, and ¢ is smooth. On the other hand, such situations
are relatively rare; much more frequently, one is confronted with integrands of the form

f(z) = 5(z) - $(z) + ¥(2) (2)

where s is a fixed singular function, and ¢ and v are two distinct smooth functions (often,
several different singularities are involved). Here, Gaussian quadratures can not be used
directly, and during the last several years, Generalized Gaussian quadratures have been
developed as a tool (in part) for dealing with such situations.

The situation is further complicated when (as frequently happens in potential theory)
the “integrals” to be evaluated are not, strictly speaking, integrals, but involve expressions
of the form

I g(t)
[l 3)
1 ¢(z)
/_ e (8)
I g(z)
[_ oo o (5)

etc., understood in the appropriate finite part sense (in the engineering literature, (4) is
often referred to as the “hypersingular” integral). Normally, “integrals” (3) — (5) (and sim-
ilar objects) are treated via special-purpose techniques (product integration, interpolatory
quadratures, etc.). A drawback of this approach is the need to separate singularities of
different types, so that each can be treated via an appropriate procedure. For example, in
(2), one would need to have access to each of the functions ¢, 1 individually, as opposed to
being able to evaluate the functions in toto (the latter situation is frequently encountered
in practice).

In this paper, we design a collection of algorithms for the construction of high-order
“quadratures” for the evaluation of hypersingular integrals. The additional advantage of
the scheme is the fact that each of the quadratures it produces can be used simultaneously for




the efficient evaluation of hypersingular integrals, Hilbert transforms, and integrals involving
both smooth and logarithmically singular functions; this results in significantly simplified
implementations.

Remark 1.1 Unlike the quadratures for functions of the form (2), the quadratures con-
structed in this paper are not convergent in the classical sense. Instead, they produce a
prescribed accuracy for a prescribed set of functions, such as Legendre polynomials, of all
orders no greater than some natural number n, Legendre polynomials multiplied by log-
arithms, etc. Due to the triangle inequality, it is easy to estimate the precision produced
when such quadratures are applied to linear combinations of Legendre polynomials, Legendre
polynomials multiplied by logarithms, etc. Finally, we observe that if the chosen accuracy is
sufficiently small (such as the machine precision), the behavior of the resulting quadratures
is indistinguishable from rapid convergence (as can be seen from, for ezample, Figures 2 -
3 in this paper).

Remark 1.2 During the last two decades, numerical techniques have been developed in the
computational potential theory (especially, for the Helmholtz equation and related problems
involving time-domain Mazwell’s equations) that replace classical integral equations with
combined integro-pseudo-differential equations. The reasons for these recent developments
are involved, and have to do with so-called “spurious resonances” (see, for ezample, /4,
15, 16, 19]). Without getting into the analytical details, we observe that the interest in the
numerical solution of such integro-pseudo-differential equations is growing rapidly, and one
of principal motivations behind this work is the design of appropriate rapidly convergent
discretization schemes.

The paper is organized as follows: In Section 2, the necessary mathematical and nu-
merical preliminaries are introduced. In Section 3, we develop numerical quadratures for
integrands that are algebraic combinations of smooth functions and functions with singu-
larities of the form log |z|, -};, —z-lz In Section 4, we describe a numerical procedure for the
construction of the quadratures from Section 3.2. Section 5 contains numerical examples
of some of the quadratures developed in this paper. Finally, in Section 6 we briefly dis-
cuss extensions of results of this paper to singularities other than log|z|, %, ;17, and to
two-dimensional singular and hypersingular integrals.

2 Mathematical and Numerical Preliminaries

In this section, we summarize several results from classical and numerical analysis to be
used in the remainder of this paper. Detailed references are given in the text.
2.1 Principal Value Integrals

Integrals of the form

b p(z)
A m dzx ) (6)
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where y € (a,b), do not exist in the classical sense, and are often referred to as singular
wntegrals.

Definition 2.1 Suppose that ¢ is ¢ function [a,b] = R, y € (a,b), and the limit

y—€ b
lim ( / o) dz + -M dx) (7
e—0 \ /o -y y+e T —Y
ezists and is finite. Then we will denote the limit (7) by
b
p.v. / S[)—(xldx, (8)
a T—Y

and refer to it as a principal value integral.

Theorem 2.1 Suppose that the function ¢ : [a,b] — R is continuously differentiable in a
neighborhood of y € (a,b). Then the principal value integral (8) exists.

2.2 Finite Part Integrals

In this paper, we will be dealing with integrals of the form
. b
p(z)
—=dz, 9
| &5 ©)

where y € (a,b), which are divergent in the classical sense. This type of integrals are often
referred to as hypersingular or strongly singular.

Definition 2.2 Suppose that ¢ is a function [a,b] = R, y € (a,b), and the limit

, = _o(a) b _o(=) 20(y)
o / dz - 10
fl‘*‘)(a @92 e @—y2 T e (10

exists and is finite. Then we will denote the limit (10) by
) ,
o(z)

fp. / dz | 11
P ) TP -

and refer to it as a finite part integral (see, for example, [9]).

The following obvious theorem provides sufficient conditions for the existence of the
finite part integral (10), and establishes a connection between finite part and principal
value integrals.

Theorem 2.2 Suppose that the function ¢ : [a,b] — R is twice continuously differentiable
in a neighborhood of y € (a,b). Then the finite part integral (11) exists, and

b (@) . d b p(x)
fp/a mdﬂ?— @pv ; x—_—ydz (12)




2.3 Legendre Polynomials and Legendre Expansions

For any natural number n, the Legendre differential equation is

d*u du

2

—z2). 22 _9.. 22 1)-u=0. 13
(1 a:)dx2 xd$+n(n+)u 0 (13)
One solution of the Legendre differential equation (13) is the Legendre polynomial P, (z) :
[—1,1] = R, defined by the three-term recursion formula

Pan(e) = 2l o Bafa) - 2 Paa(a), (19

with
P(z) = 1, (15)
P(z) = z. (16)
As is well-known, the Legendre polynomials have an explicit expression given by the formula
Pale) = ot (a? — 1), (17)

Furthermore, they are orthogonal with respect to the inner product

1
(f.9) = [ 1(e)g(@)da. (18)
Suppose that z1,Z9,...,zN denote the zeros of the N-th Legendre polynomial Py : [-1,1]
— IR. Then we will refer to the points Z;,%5,...,Zy on the interval [a, b], defined by the
formula b +b
~ —a a
Ti=—5— Tt ——, (19)

forall:=1,2,...,N, as the N Legendre nodes on [a, b].
For any sufficiently smooth function ¢ : [-1,1] = IR we will be denoting by ay,, the n-th
Legendre coefficient of ¢, defined by the formula,

2n+1 [1
an =" [ 4(0) Pao) e, (20)
so that for all z € [—1,1]
(o0}
0(@) = Y an Palc) (21)
n=0

The series (21) is referred to as the Legendre expansion of ¢. Given any natural number
N, for computational purposes we will be approximating the Legendre expansion (21) by
its truncated series of degree N — 1

N-1
o(z) =~ Z an Py(z) . (22)

n=0




The following lemma states that the truncated Legendre expansion of degree N — 1 (22)
converges rapidly for sufficiently smooth functions, and is proved, for example, in [7].

Lemma 2.3 Suppose that ¢ : [-1,1] — R is k times continuously differentiable and that
> ne00n Pn(z) denotes its Legendre expansion. Then, for any point z € [-1,1],

o). )

The following theorem relates the coefficients in a Legendre expansion to the coefficients
in the Legendre expansion of its derivative and integral, respectively. Its proof follows from
a combination of results in [21, 1, 7, 8].

CR

p(z) — Z an P (z)

n=0

Theorem 2.4 Given a natural number N, suppose that the polynomial p : [-1,1] > R is
defined by the formula

N-1
p(z) = Z an Py(z). | (24)
n=0
Then,
N-2
P(@) = buPalz), (25)
n=0

with the coefficients by, given by the formula

(=2

bn=(2n+1) Z a%+1-n, n=0,...,N -2, (26)

k=n
and with [&“-21‘;3] denoting the integer part of H—"éﬁ'—‘q’ Furthermore,
z N
/ P dy =3 en Paa), (27)
- n=0

with the coefficients ¢, given by the formulae

N
oo = Y (-1)"e, (28)
n=1
an—1 an-+1
= - =1,...,N -
en 2m-0+1 2m+D+1° " V=2, (29)
_ aN—2
N-l = N1 (30)
_ aN-—-1
N = SN-D+1 (31)




Remark 2.5 It is well-know that if ¢ : [-1,1] = R is k times continuously differentiable
and that 302 o an Py(z) denotes its Legendre expansion, then

N-2
- X B 2—0<N: 1) , (32)

and

z N
[ ewdy=3 caPafa)

| i), =0 (). 5

where the coefficients b, and c, are defined by (26), (28) - (31), respectively.

2.4 Legendre Functions of the Second Kind

The Legendre polynomial P, (see (17)) is a solution of the Legendre differential equation
(13). The other solution is the Legendre function of the second kind @, : € \ [-1,1] = C,
defined by the three-term recursion formula

Quis(6) = 252 2 Qul) -~ Qo) (34

with
Qoz) = 5 log(31), (3)
Q) = Zoog(EED) -1 (36)

Clearly, Qn(2) has a branch cut in the complex z-plane on the real axis from —1 to 1. In
agreement with standard practice, on the branch cut we define Q,, : [-1,1] = R by the
formula

Qnl@) = 3 Jim (Qu(z+ih) + Qula — i) (37)

The following theorem is known as Neumann’s integral representation (see, for example,

[8])-

Theorem 2.6 Suppose that P, : [-1,1] — R denotes the n-th Legendre polynomial, and
Qn : [-1,1] = R the n-th Legendre function of the second kind deﬁned by formula (387).
Then, for any point y € (—1,1)

1
p.-v. /_1 5—"_(%2- dz =2Qn(y) - (38)

The following theorem follows immediately from Neumann’s integral representation (38)
and provides two formulae that will be subsequently used in this paper.




Theorem 2.7 Suppose that P, : [-1,1] — R denotes the n-th Legendre polynomial, and
Py : [=1,1] = R its primitive function defined by the formula

Ew=£&mw. (39)

Furthermore, suppose that Qn : [-1,1] — IR denotes the n-th Legendre function of the
second kind defined by (37). Then, for any point y € (—1,1)

/ - log (y z) ) P,(z)dz = log ((y— 1)2) + p.v. /11 %;)—dx, (40)
f.p./_ll(—:j—j%dx = p.v /1 P’x) il_ﬂ, (41)

1T—Y y+1

2.5 Chebyshev Systems

Definition 2.3 A set of continuous functions ¢1,...,pN is referred to as a Chebyshev
system on the interval [a,b] if the determinant

e1(z1) -+ pi(zN)
: : (42)
on(z1) - on(zN)
is nonzero for any set of points x1,...,TN such thata <z, < z3 < ... < zn < b.

Definition 2.4 Given a set of real numbers z; < zp < ... < TN, suppose that my, mo, ...,
mpy denotes the natural numbers defined by the formulae

my = 07 (43)
0, forj>1andz; #z;_1,
m; = Jj— forg>landzj=z;1=...=1z;, (44)
k, fori>k+1 and:cj=:z:j_1=...=:1:j_k7$:zj_k..1.
A set of continuously differentiable functions ¢y, ..., oy is referred to as an extended Cheby-

shev system on the interval [a,b] if the determinant

areim) - Sz
: ' : ) (45)
Tren(z) o Ron(aw)
in which di;(ycpi (zj) = pi(zj), is nonzero for any set of points x1,...,zx such thata < z; <

o< ...<zny <b.




Remark 2.8 Obviously, an extended Chebyshev system also forms a Chebyshev system.
The additional constraint is that the points z1,o,...,zxN at which the functions are evalu-
ated may be identical. In that case, for each duplicated point, the first corresponding column
contains the function values, the second column contains the first derivatives of the func-
tions, the third column contains the second derivatives of the functions, and so forth.

In the following examples several important cases of Chebyshev and extended Chebyshev
systems are presented (additional examples can be found in [10)).

Example 2.1 The monomials 1,z,2%,...,2" form an estended Chebyshev system on any
interval [a,b] C (—00,00). '

Example 2.2 The ezponentials e™*1% e=22% e=2Z form an extended Chebyshev sys-
tem for any A1, A2,..., A > 0 on the interval [0, c0).
Example 2.3 The functions 1, cos(z), sin(z), cos(2z), sin(2z), ..., cos(nz), sin(nz)

form a Chebyshev system on the interval [0,2 7).

2.6 Quadrature Formulae

A quadrature rule on the interval [—1,1] is an expression of the form

N
In(p) =Y wn-o(zn), (46)
n=1

where the points z, € [—1,1] and the coefficients w, € IR are referred to as the nodes
and the weights of the quadrature, respectively. The quadrature rule I N(p) serves as an
approximation to integrals of the form

1

10) = [ wl@)- plo)dz, (47)

where ¢ : [-1,1] — R is a sufficiently smooth function and w : [-1,1] — IR is some fixed

weight function. Since we will permit the function w to be strongly singular, the integral

(47) has to be evaluated in the appropriate sense. In particular, for w(z) we will consider,
inter alia, the singular functions

% log ((y — 2)?), (48)
1
ooyt (49)
1
w=or 0

where y € (—1,1). For the latter two functions, the integral (47) is interpreted as a principal
value integral (see (7)) and finite part integral (see (10)), respectively.
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Definition 2.5 A quadrature formula (46) for the integral (47) is said to be of the degree
M > 1, if it integrates all polynomials up to degree M ezactly.

Normally, the degree of a quadrature formula (46) can not exceed 2N — 1 (see, for exam-
ple, [20]). Quadrature rules (46) of degree 2N — 1 are commonly referred to as Gaussian
quadrature rules. The following theorem is well-known and can be found in most elementary
textbooks on numerical analysis (see, for example, [20]).

Theorem 2.9 (Gaussian quadrature) Suppose that w(z) = 1 for all z € [-1,1]. Then
there ezists a unique quadrature rule (46) which has the degree 2N — 1. Furthermore, the
nodes x1,%2,...,TN are the zeros of the N-th Legendre polynomial Py(z) (see, (17)), and

the weights wy,ws, ..., wy are all positive and given by the formula
1 N — o \2
wn=/ H(‘” xj)dx, n=1,2,. N. (51)
J#n

2.7 Generalized Gaussian Quadrature

Numerical quadratures are normally constructed such that the quadrature rule (46) is ez-
actly equal to the integral (47) for some set of functions. Classical N-point Gaussian quadra-
tures (see, Theorem 2.9) integrate polynomials of order 2N — 1 exactly. In [14], the notion
of Gaussian quadrature was generalized as follows.

Definition 2.6 Suppose that w : [-1,1] — R is a non-negative integrable function. A
quadrature rule (46) will be referred to as Gaussian with the respect to a set of 2N functions
P1, P2, -+ pan : [=1,1] = R and a weight function w, if it consists of N weights and
nodes, and integrates the functions w o ¢; on [—1,1] ezactly for all i = 1,2, ... ,2N. The
weights and the nodes of a Gaussian quadrature will be referred to as Gaussian weights and
nodes, respectively. ‘

The following theorem states that the Gaussian quadrature with respect to a set of functions
$1,$2,-..,p2N exists and is unique if the set ¢1,¢2,...,¢pon forms a Chebyshev system
(see Definition 2.3). It is proved (in a slightly different form) in [10, 13].

Theorem 2.10 Suppose that the functions @1, @3, ..., wan : [=1,1] = R form a Cheby-
shev system (see Definition 2.3) on the interval [—1,1], and that the weight function w :
[-1,1] = R is non-negative and integrable. Then there exists a unique Gaussian quadrature
with respect to the set o1, @2, ..., won and the weight function w. Furthermore, the weights
of this quadrature are all positive.

From Definition 2.6 it immediately follows that the Gaussian quadrature with respect
to the functions 1, ¢2, ..., pan : [-1,1] = IR and the weight function w : [-1,1] —» R is




defined by the system of equations

N 1
;wn"ﬁl(fcn) = /-l'LU($)'(,01(:B)d:E,

N 1
:L——;l'wn . 902($n) = 4/—1 'w(IL‘) . (,02(.’1,‘) dx,

N 1
Y wn-pw(en) = [ (@) pan(e)ds. (52)
n=1 -
We denote the left hand sides of these equations by fi1, fo,..., fan; each of the f;’s being
a function [-1,1]" x RY — R of the nodes z1,zs,...,z5 and weights wy, ws, ..., wy,
respectively. Their partial derivatives are given by the formulae
F:
S = pilan), (53)
of;
a_x': = Wp (p;(xn) ’ (54)
so that the Jacobian of the system (52) takes the form
J(:vl,...,:z;N,wl,...,wN) =
pi1(z1) - oilzn)  wigi(z) - wn@i(zw)
: g : Z - : (85)
pan(z1) -+ pan(zN) wiphy(z1) - wn Phy(zN)

In practice, the system (52) is solved via Newton’s method (see, for example, [5]). The
following theorem states that when the functions to be integrated constitute an extended
Chebyshev system, Newton’s method for this system is always quadratically convergent,
provided the starting point for the iteration is within a sufficiently small neighborhood of
the solution. A proof can be found in, for example, [5].

Theorem 2.11 Suppose that the functions ¢1,p2,...,pon form an extended Chebyshev
system (see Definition 2.4). Suppose further that the Gaussian quadrature nodes and weights

for these functions are denoted by Z1,%3,...,Zn and @1, @, ..., Dy, respectively. Then the
determinant of the Jacobian matriz (55) is nonzero at the point (Z1,...,ZN,@1,...,BN),
i.e. .

|J(Z1,...,ZN,D1,...,0N8) #0. (56)
Furthermore, the nodes Z1,Z3,...,ZN and the weights @y, Dz, ..., Dy depend continuously

on the weight function w.

Remark 2.12 In order for Newton’s method to converge, the starting point must be within
a sufficiently small neighborhood of the solution. In [5] the continuation method (sometimes
also referred to as the homotopy method) is used to generate such starting points.
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2.8 Singular Value Decomposition of a Set of Functions

The following theorem generalizes the standard singular value decomposition of a matrix
to a set of functions. A proof can be found (in a more general form), for example, in [17].

Theorem 2.13 Suppose that the functions o1, @2, ..., N : [a,b] = R are square inte-
grable. Then for some integer M there exist an orthonormal set of functions ui,us, ..., Uy :
[a,0] = R, an N x M matriz V = [v;;] with orthonormal columns, and a set of real numbers
812822 ...28p >0, such that

i) = Z ui(z) 85 vij (57)

for all z € [a,b] and alln=1,2,...,N.

By analogy to the well-known singular value decomposition of matrices, we will refer to the
factorization (57) as the singular value decomposition of the set of functions o1, o, ...,
©N, the functions uy,us,...,up as the singular functions, the columns of the matrix V as
singular vectors, and the numbers s; > s > ... > sy as the singular values, respectively.

The following theorem from [5] states that the accuracy of a quadrature formula with
positive weights for the functions ¢1, @2, ..., N is determined by its accuracy for the sin-
gular functions u;, corresponding to non-trivial singular values.

Theorem 2.14 Suppose that under the conditions of Theorem 2.13 there exist a positive
real number € and an integer 1 < My < M, such that

M €2
Y osi< T (58)
i=Mop+1
Suppose further that the L-point quadrature rule with nodes 1, T3,...,z1 and weights
w1, Wy, ..., WL integrates the functions u; ezactly on the interval [a,b), i.e.
L b
> wj - ui(zy) =/ u;(z) dz (59)
=1 e
for alli=1,2,..., My, and that the weights wy,ws,...,wr are all positive. Then for each

i=1,2,...,N,

L b

>y iley) - [ pile)do
a

=1

<e-|leill2- (60)

3 Analytical Apparatus

The principal purpose of this paper is to construct quadrature formulae for functions f :
[-1,1] = R of the form

£(2) = (@) + ¥(z) -logla| + 12 4 2. (6)
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where ©,,7,6 : [-1,1] = IR are smooth. In Section 3.1, we construct separate quadrature
formulae for each of the functions of the form

ole), B loglel, 12 42 (62)

in Section 3.2, we present a scheme were each quadrature it produces can be used simulta-
neously for the efficient numerical integration of functions of the form (61).
Obviously, integrals of the form

1 n() , 6)

[ (v(a) + () - oglly - al) + e e L (63)
with y outside the interval of integration [—1,1] and the functions ¢,1,n,6 smooth, can
be evaluated with standard Gaussian quadrature formulae. However, when y is sufficiently
close to the interval of integration [—1,1], the number of Gaussian nodes needed to achieve
acceptable accuracy is often very high. Therefore, more specialized quadratures are desirable
in this case; Section 3.3 is devoted to the design of generalized Gaussian quadratures for
this environment.

. . s 1 1
3.1 Quadrature Formulae for Individual Singularities log |z|, el
T
The following theorem is one of principal analytical tools used in this paper.
Theorem 3.1 Suppose that z1,z2,...,zN and wy,ws,...,wy denote the N nodes and

weights of the Gaussian quadrature on the interval [—1,1], respectively (see, Theorem 2.9).
Suppose further that P;(x) denotes the j-th Legendre polynomial (see, (17)), and that w(z)-
Pj(z) is integrable on [—1,1] for all j =0,1,...,N — 1. Then the quadrature rule

N

1
/1 w(z) - p(z)dz =~ Z W, - ©(Zn) (64)
- n=1
with the weights W, defined by the formula
5 N=l/9i41 1
R ( 21 p(e)- (/_1w(z)Pj(w)da:)) (65)

=0
has the degree N — 1.

Proof. Suppose that ¢ : [-1,1] — IR is a polynomial of order N —1 given by its Legendre
series (21) so that

N-1
o(z)= Y o; Py(a). (66)
j=0

12




Substituting (66) into (47), we obtain

19)= [ wiz)-pla)ds =

-1

(Za]P(:z:>dx

[, ve
- szj (/_ P()da:). (67)

The coefficients a; are given by (20). Evaluating the integral (20) via N-point Gaussian
quadrature (see Theorem 2.9), we obtain the identity

. . N .
0= 250 [ o@) Py ar = XL S @) - By(a), (68)

n=1

forall j =0,1,...,N — 1. Finally, substituting (68) into (67) we obtain

/_ 11 w(z) - o(z) d Z o(zn) z—l (2—7-;—1 Pj(zn) - ( / 11 w(z) Pj(z) dx)) , (69)

_0 -
from which (64) and (65) immediately follow. O

Remark 3.2 If the function ¢ is k times continuously differentiable, it immediately follows
from the Cauchy-Schwartz inequality and (23) in Lemma 2.3 that

)/ d:z—an o(2n) _0<%). (70)

The following theorem extends Theorem 3.1 to the case when the function w: [-1,1] = R
is defined by one of the formulae (48) — (50). The latter two functions are not integrable
in the classical sense, and the integral (47) is interpreted as a principal value integral (see
(7)) and finite part integral (see (10)), respectively. The theorem follows immediately from
the combination of Theorems 2.4, 2.7, 3.1.

Theorem 3.3 Suppose that z1,z9,...,zNn and wi,ws,...,wy denote the N nodes and
weights of the Gaussian quadrature on the interval [—1,1] (see, Theorem 2.9). Suppose
further that ¢ : [~1,1] = IR is a sufficiently smooth function, and Pj(z), Q;(z) denote
the j-th Legendre polynomial and Legendre function of the second kind (see, (17), (87)),

respectively. Finally, suppose that the coefficients wy 1, w12, ... yWIN, W2,1,W2.2,-..,W2 N,
w31, W3,2,...,W3 N, are defined by the formulae
N-1
Win = Wp- z (2.7 + 1) : Pj(mn) : Qj(y) s (71)
=0
N-2
W2,n = Wp- <(P0(zn) “Pl(xn)) : + ( -1 (zn) — j+1(xn)) 'Rj(y)

p—

.
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+Py—s(2n) - Ryv—1(y) + Py_1(cn) -RN<y>), (72)

_.L_]

w3 ( Z > (2541 (4k+3-2n) - Qj(y) - Prks1-n(en)
7=0  k=j
1 (-1)7 )
(— - 73
g O e ) , | (73)
foralln=1,2,...,N, with [NE=3] denoting the integer part of —-L, and the mappings

R;:(-1,1) =R deﬁned by the formula

1
R;(y) = Q;(y) + 7 -log (v - 1?). (74)
Then, for any point y € (—1,1), the quadrature rules

L p(z)

p-v. Y-z dr ~ nX_:l'wl n-o(Zn), (75)
N
[ 3108 (W= 2?) -ota) e ~ 3 wnn plon) (76)
1 N
f.p. /_1 (y(p_(x:z)z dr ~ ;wg’n co(zg) , (77)

have the degree N — 1, N —2, and N — 1, respectively.

3.2 Quadrature Formulae for Functions of the Form ¢(z) + v¢(z) - log|z|

T T
L1 | 0a)
T T
Theorem 3.3 provides a tool for the numerical integration of functions of the form
P(z) - log|z], - (78)
), (79)
z
0(z
o) -

However, integrands are frequently encountered of the form

(w) O(z)

f(z) = p(z) + 9(z) - log|z| + ——= + —5~ (81)

where the functions ¢,1),7,0 are known to be smooth but are not available individually.
Specifically, in the numerical solution of scattering problems, one is frequently confronted
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with the need to evaluate integrals of the form
1
£p. / K(z,y) - o(z)de =
-1

= ip. [ (Kiz,9) + Kola,y) log(ls - yl) + F222 | Ko

y—z  (y—1)?

where o : [-1,1] = R and K)(z,y), K2(z,y), K3(z,y), Ka(z,y) : [-1,1] x [-1,1] = R are
smooth functions, and y € (—1,1). Normally, the functions K1, Ko, K3, K4 are not available
separately, so that only the kernel K in toto can be evaluated. In such cases, a single
quadrature rule integrating functions of the composite form (81) is clearly preferable. Even
when each of the functions ¢, ¥, 7, 8 is available separately, the numerical implementation
is simplified when a single quadrature formula can be used.

Given a real number y € (—1,1), we denote by 11, s, ..., %snm the functions [-1,1] - R
defined by the formulae

) -o(z)dz, (82)

P_(z), fori=1,...,M,

P_p1(z) -log(ly —z|), fori=M+1,...,2M,
1
¢,(a:) = P,;_QM_l(iII) . v —7 s for i = 2M + 1, ,3M, (83)
1
P;_spr—1(x) - fori=3M+1,...,4M.

(y—z)?’

In a minor generalization of the standard terminology, we define the generalized moments
m1(y), ma(y),. .., mam(y) by the formulae

( 1
/ P,_(z)dz, fori=1,...,M,
-1

1 ’
/ Pioyir(z) - log(ly — ) dz, fori=M+1,...,2M,
1

mi(y) =4 7 /1 Pionr_ l(m)d (84)

T, fori=2M+1,...,3M,
1
p/ "3M 1("” dz, fori=3M+1,...,4M.
Now, suppose that z1,zs,...,zy denotes the N Legendre nodes on [—1,1] (see (19)).
Then we define the weights w;,ws, ..., wy of the quadrature formula
1 N
[ f@)dan Y v fan) (85)
- n=1

as the solution of the system of the 4M linear algebraic equations
N.
Z Wn - P1(Tn) = mi(y) ,
n=1
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N
Y wn-ta(zn) = ma(y), (86)
n=1

N

> wn - Yanm(za) = man(y).

n=1
Obviously, the matrix of the system (86) might be square, or it might be over- or under-
determined, depending on the values of the parameters M, N. On the other hand, given
a solution wi,ws, ..., w, of (86), we can be sure that the quadrature formula (85) will
integrate exactly all functions f of the form (81), as long as the functions ¢, 1, 1, 6 are
polynomials of order not greater than M — 1. Due to Theorem A.6 in Appendix A be-
low, for sufficiently large IV, there always exist multiple solutions of (86), and a solution
Wi, Wy, ..., W, can be found such that

N N
Y T<C- Yy v, (87)
n=1 n=1 .
where wy, ws, ..., wy are the weights of the N-point Gaussian quadrature and C is a positive
real constant. In practice, least squares are used to find wq, ws, . . . , w, satisfying the bound

(87) (see Section 4 below). Denoting the N x 4M matrix of system (86) by A and its
right-hand side by b, we rewrite (86) in the form

Aw=b. (88)
3.3 Generalized Gaussian Quadrature Formulae for Functions of the Form
T 0(z
o(z) + ¥(z) -logla| +12 1 %)

In Section 3.2 we described the quadrature formula (85) for integrals of the form (82) where
the point of evaluation y is inside the interval of integration. While standard numerical
quadratures (eg. Newton-Cotes or Gaussian quadratures) can be used for integrals of the
form (82) when the point of evaluation y is outside and sufficiently far away from the interval
of integration, more specialized quadratures are desirable when vy is outside but close to the
interval of integration.

Given two positive real numbers d and R such that d < R, we will denote by Dprg
the set [-R,—1 — d] U [1 + d, R] (see Figure 1). We define the functions 11, s, ...,
%anm 2 [—1,1] x Dp g — R by the formulae

P_(z), fori=1,...,M,
Pi_yv-1(z) -log(ly—z|), fori=M+1,...,2M,
1
%(x,y) = B—?M—l(x) ' y—a;’ for i =2M + 17-°-’3M7 (89)
1

Pi_sy-1(z) - Ty fri=aMl. 4,
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where P; denotes the j-th Legendre polynomial (17).
Now, suppose that y1, y2, - . ., yx are points in Dg 4. We will denote by iy [—1,1] = R
the 4- K - M functions defined by the formula

i (T) = ¥i(z, y;) (90)

wherei=1,2,...,4M and j = 1,2,..., K. Since it will be convenient to view the functions
7i; as a finite sequence of functions [—1,1] — IR, we introduce the notation

k=4(G-1)M+1, (91)
so that

it = k—-4(G-1)M, (92)

j = Z;;-i-l. (93)

In a mild abuse of notation, we will use n; and 7n;; interchangeably.

Due to Theorem 2.13, there exist orthonormal functions u1,us,...,ur : [-1, 1] - 1R, a
matrix V € R*K-M*L with orthonormal columns, and real numbers s; > s9 > --- > s > 0,
for some integer L < 4- K - M, such that

m(z) =Y ui(z) s vik (94)

forallk=1,2,...,4- K- M.

Remark 3.4 For an arbitrary positive real number €, we will denote by n(e) the number
of coefficients s; in the decomposition (94) such that s; > €. It turns out that for fized d
and R, n(e) is proportional to log(%), and is virtually independent of K. For a fized e,
n(e) is proportional to log(%), and is virtually independent of K. The behavior of n(e) as
a function €, d, R is investigated in detail in [22].

The following theorem is an immediate consequence of Theorems 2.11, 2.14.

Theorem 3.5 Suppose that for a sufficiently large integer number K, Y1, Y2, ---, YK Gre
points in Dpg such that y; # y; for all i # j. Suppose further that the functions M,
n2, -.., NakMm : [—1,1] = R, the real positive numbers $1,82,...,5L, and the functions
U1, u2,...,ur ¢ [=1,1] = R are defined by the formulae (90), (94), respectively. Given a
positwe real number €, we denote by Ly the smallest even integer such that 1 < Ly < L and

L 62

i=Lo+1
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Then there exists a unigue solution (wy,... w%Q,xl, e T %1) of the non-linear system

wnowlen) = [ wia)ds,

-1

Mok

3
Il
-

o) = [ wla)ds,

-1

ek
5

n=1

Wn ULy (zn) = /1 uL,(z)dz, (96)

-1

NES

1

3
i

where all wy,, n=1,2,..., %1, are positive. Furthermore, for each k = 1,2,...,4- K - M,
the !‘zﬂ-point quadrature rule

Lo
2 1
W, - Mk (Zn) = /1771:(1') dr, (97)

n=1

has relative accuracy €; that is

<e-Imll2- (98)

Lo
2 1
an-nk(xn)~/ nk(z) dz
n=1 -1

Remark 3.6 The solution of the system of non-linear equations (96) can be found by New-
ton’s method. For a detailed discussion of a Newton method for non-linear systems arising
in the construction of generalized Gaussian quadratures, the reader is referred to [5].

4 Numerical Algorithm

In Sections 3.1, 3.2 we have described quadratures rules for integrands of the form (78)
= (81). While the numerical evaluation of the weights of the quadratures (75) — (77) in
Section 3.1 via the formulae (72) - (73) is straightforward, the evaluation of the weights
w1, Wy,...,wn of the quadrature (85) is more involved; we summarize the computational
procedure below.

The input to the algorithm is a real number y € (—1,1), a natural number N where N is
the number of Legendre nodes (19) on the interval [-1,1], and a natural number M where
M — 1 is the degree of the quadrature rule. The algorithm will then compute quadrature
weights wy,ws, ..., wy, such that

1

N
> wn - plan) ~ [ w(@)-p(z)ds, (99)
n=1

-1
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where ¢ : [-1,1] = IR is smooth and w : [-1,1] = IR is a linear combination of smooth
functions and functions of the form (48) - (50), respectively. It consists of the following

steps:

1.

Construct the N-point Gaussian nodes z1,z,...,zx and weights wy, ws,... wy on
the interval [—1, 1] (see Theorem 2.9).

Evaluate the Legendre polynomials Py, P, ..., Py—;1 at the nodes z1,%2,...,TN via
the three-term recursion (14).

. Evaluate all the functions 1,2, ...,%4 (see (83)) at the nodes z1,zs,...,zN.

Construct the moments m; (y), m2(y), ..., man(y) (see (84)) exactly, using Gaussian
quadrature for mi, mp, ..., my and quadrature rules (75) — (77) for mas41(y),
mum+2(Y), -, man(y), respectively.

Solve the linear algebraic system (88) in the least squares sense with any standard
routine (available, for example, in LAPACK [2]).

5 Numerical Examples

FORTRAN codes have been written constructing the quadratures described in Sections 3.1,
3.2, 3.3; in this section, their performance is illustrated with several numerical examples.
In all examples below the quadrature nodes and weights are first computed in extended
precision arithmetic (REAL *16) to assure full double precision accuracy. The quadrature

rules

are then used in double precision (REAL *8) to numerically integrate a number of

functions with singularities log |z, £, %.

Example 5.1 In the first example, we use the quadrature rules (75) - (77) to evaluate
integrals of the form (47) for each of the singularities (48) — (50) with the function ¢ :
[-1,1] = IR defined by the formula

¢(z) = sin(2z) + cos(3 ), (100)

so that the actual functions to be integrated are of the form

log(|z — y]) - (sin(2 z) + cos(3 :z)) , (101)
Z/—i_:z; . (sin(2 z) + cos(3 x)) , (102)
(:-g—-l—:r)Q . (sin(2 z) + cos(3 :z)) . (103)

We denote by y1,y2,...,y14 the 14 Legendre nodes on the interval [—1,1] (see (19)). The
integrals of (101) - (103) were evaluated at y1,¥s,...,y14, and the relative errors in the 2
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norm were obtained via the formula

rel X Bobs (y;)?2

SV S ( (AT el

where E%5(y;) and I(y)(y;) denote the absolute error and the exact integral (47) evalu-
ated at the point y;, respectively. The integrals I(¢)(y;) were computed analytically using
MATHEMATICA.

In Figure 2, the relative errors of the integrals of (101) — (103) are presented for N =
6,8,...,26. For comparison, the relative errors of the N-point Gaussian rules (see Theorem
2.9) with N = 6,8,...,26 applied to the function (100) are shown as well.

(104)

Remark 5.1 The weights (see (72) - (73)) of the quadrature rules (75) - (77) used in
Ezample 5.1 above, depend upon the point of evaluation y. Therefore, for the evaluation
of each of the integrals (101) - (103) at each of the points y1,yo,...,Y14, a different set
of quadrature weights is used. As an example, in Table 1 we list the quadrature nodes
Tn and weights w1 n, Won, Wi, of the 14-node version of the quadratures (75) - (77)
for the integration of functions with singularities log(lz — y1]), 1-/-1~1_-5, '(yl—iaf, with y; =
—0.9862838086968123 (the smallest of the 14 Legendre nodes on [—1,1]).

Example 5.2 In this example, we compute the same integrals as in Example 5.1. However,
this time we use the quadrature rule (85) that integrates functions of the combined form
(81). Specifically, the quadrature weights were constructed via the numerical algorithm
described in Section 4 for integrands of the form

M
c d;

a; +b;-lo —-z|)+ +
;(z i log(lu — 2 + o+

) Pima(e), (105)

for each Legendre node yx, £ = 1,2,...,14, on the interval [—1,1] (see (19)). In our
computations, we chose the number of weights N equal to 6 M.
In Figure 3 the relative errors (see (104)) are presented for N = 36,48, ...,144.

Example 5.3 In this example, we use the generalized Gaussian quadrature described in
Section 3.3 to integrate the functions (101) — (103) where y is a point outside but close to
the interval [—1,1]. Specifically, 36 and 42-node versions of the quadrature formula (97)
were constructed for integrands of the form

M

ci d;
a; +b;-lo —-z|)+
;(z i log(ly = al) + o+

) Pma(2), (106)

where y € [-10,—1.0016] U [1.0016, 10]. The 36 and 42-node versions were constructed with
M =11 and M = 21, respectively. In order to test the accuracy of the resulting quadra-
tures, the integrals (101) — (103) were evaluated at 202 equispaced points y1,¥s,. .., %202 €
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[—2.002, —1.002] U [1.002,2.002], defined by the formula

1.002 + 0.01 - (k — 102), for k =102, ...,202. (107)

- { —2.00240.01-(k—1), fork=1,...,101,

In Table 2, the relative errors (see (104)) of the N-point generalized Gaussian quadra-

tures with N = 36,42 applied to the the functions (100), (101) - (103) are presented.

For comparison, the relative errors of the N-point Gaussian rules (see Theorem 2.9) with

N = 36,42, 100,150, . ..,300 applied to the same functions are shown in Table 3. In Tables

4, 5 we list the quadrature nodes z,, and weights w, of the 36 and 42-node versions of the
quadrature (97).

Example 5.4 In this example, we use a compound quadrature formula based on the combi-
nation of the singular quadrature (85), generalized Gaussian quadrature (97), and Gaussian
quadrature (see Theorem 2.9) to evaluate the integral

1,1
y—-z (y—2)

F(y) = f.p. /_ 11 (1 +log(ly — zl) + 7) - (sin(200z) + cos(300z)) dz, (108)

at several points y € (—1,1). Specifically, we subdivide the interval of integration [—1, 1]
into K subintervals I,...,Ix where

2 . 2
Ii:[—l—{—E-(z—l),—l-l--I?-z], (109)
for all ¢ = 1,2,...,K, and then apply a specific quadrature rule on each subinterval to

evaluate (108). The quadrature rule used on subinterval I; is determined by one of the
following criteria:

e if y € I;, then the combined singular quadrature rule (85) is used;
o ify¢I; and y € I;_; U4, then generalized Gaussian quadrature (97) is used;
e ify¢I;and y € I;_; UI;y1, then Gaussian quadrature (see Theorem 2.9) is used.

We denote by o _
Y1 Ys, - Y (110)

the M Legendre nodes (see (19)) on subinterval I;. Furthermore, we denote by y1, v, ...,
ymk the set of all points (110) from all subintervals I;, i = 1,2, ..., K. In other words,

Y = UM(-1)+5 > | (111)

where ¢ = 1,2,...,K and j = 1,...,M. Obviously, by evaluating the integral (108) at
the points y1,¥2,...,ynmk via the procedure described above, we obtain approximations
to F(y1), F(y2),...,F(ymk). We perform the calculations with M = 4,6,10,12,16 and
K = 2,4,8,:..,8192; and in order to compare the accuracy for two different choices of
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K, we interpolate the obtained values with an M order interpolation scheme to the 100
equispaced points ¢1,t2,...,t100 on the interval (—1,1) defined by the formula

2
L= = . 2
t; 1+ TR (112)
forallz =1,...,100.
In Table 6, the relative errors (see (104)) of the scheme described above of degrees
M = 4,6,10,12,16 and the number of subintervals K = 2,4,8,...,8192, applied to the
integral (108) are presented.

The following observations can be made from the examples of this section, and from the
more detailed numerical experiments performed by the authors.

1. The quadrature formulae (85), (97) are not convergent in the classical sense; they are
only convergent to a prescribed precision €. Needless to say, the two are indistinguish-
able, as long as the prescribed precision is less than machine precision.

2. The schemes producing the quadrature formulae (75) — (77), (97) do not lose many
digits compared to machine precision; constructing the quadratures in double precision
arithmetic results in 11 - 12 correct digits; constructing them in extended precision
arithmetic results in full double precision accuracy. Needless to say, the nodes and
weights of the quadrature formulae (75) - (77), (97) can be (and have been) precom-
puted and stored, so that the need for extended precision during the construction of
the quadrature is not a serious limitation.

3. The quadrature formula (85) experiences some loss of precision, not only during the
precomputation of the nodes and weights, but also when the formula is applied to
specific functions of the form (81). A fairly detailed investigation has led us to the
conclusion that the loss of precision is associated with the evaluation of the “hypersin-
gular” function (80), and is unavoidable; the phenomenon is very similar to the loss
of precision associated with numerical differentiation, both in character and severity.

4. When the quadrature formulae of this paper are applied to oscillatory functions (of
the form (108), or similar), they achieve their full precision at 10 — 15 nodes per
wavelength (for the formulae (75) - (77), (97)), and 20 — 45 nodes per wavelength (for
the formula (85)), respectively.

6 Generalizations and Conclusions

A set of quadratures has been constructed for functions f : [-1,1] = R of the form

1) = olz) +9(e) logla] + 12 4 X, (113)
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where ¢,4,7,6 : [-1,1] - R are smooth functions. The term “quadratures” in this
case is somewhat of a misnomer, as functions of the form (113) are not integrable in the
classical sense, and their integrals are to be interpreted in the appropriate “finite part”
sense. One of anticipated applications for such quadratures is the evaluation of integro-
pseudo-differential operators (eg. Hilbert transform and derivative of Hilbert transform)
arising from the solution of integral equations of potential theory in two dimensions (see,
for example, [11, 12]).
The work presented here admits several straightforward extensions:

1. The quadratures in this paper can easily be modified for functions with singularities
other than log|z|, 1, . For example, using Chebyshev polynomials, quadrature
formulae similar to (75) - (77), (85) for functions with singularities of the form

log |z
vrd s
1
——. (115)
1
N g (116)

etc. are easily constructed.

2. A straightforward generalization of the quadratures of this paper in two dimensions
leads to quadrature formulae on the square, integrating functions f : [-1,1]x[-1,1] —
R of the form

b(z1,22) | n(21,22) | 6(21,72) (117)

f(xl7$2) = (10(1:1’1'2) +
(z? + x%)% 3 + z3 (z? + 13)?2

where ¢,1,n,0 : [-1,1] x [-1,1] = R are smooth functions. Quadrature formulae of
this type have been constructed, and the paper reporting them is in preparation.

A Existence of Quadrature Formulae for Functions of the

Form ¢(z) + ¢¥(z) - log|z| +77(;17) + 03(;)

In Section 3.2, we numerically construct quadrature formulae on the interval [-1,1] for
functions of the form

T 0(x
£(2) = (o) + 9(z) log ol + 12 1 92, (118)
The nodes of the quadratures we construct are Gaussian nodes z1,zs,...,zy with a suffi-

ciently large IV, and their weights are determined via a least squares procedure. The purpose
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of this Appendix is to prove that the least squares process of Section 3.2 can be used to
obtain quadratures of arbitrary accuracy. We do so by constructing a procedure that, given
areal € > 0 and a sufficiently large integer IV, produces a set of weights wy, ws, ..., wy such
that, in combination with the Gaussian nodes zi, z3,...,zN evaluates the integral (82) to
precision e.

Remark A.1 The procedure of this Appendiz is quite inefficient, in the sense that it re-
quires a very large number of nodes to obtain acceptable levels of accuracy; its purpose is to
prove that such quadratures exist. The procedure for the actual evaluation of coefficients is
described in Section 3.2, and results in schemes whose precision is satisfactory at moderate
values of N (see Section 5).

The following lemma follows immediately from the definition of the integral, and the fact
that a logarithmic singularity is integrable.

Lemma A.2 Suppose that j > 0 is an integer number, and that P; denotes the j-th Leg-
endre polynomial (see (17)). Then for any positive real number €, there exists an integer
Ny > 1 such that for any N > Ny

1 N
l/ Py(z) -loglz|dz — 3" w; - Py(z:) - log zil| < e, (119)
-1 i=
zi¢l0
with £1,Z3,...,zNx and wi,wy,...,wyN the nodes and the weights of the N-point Gaussian

quadrature (see Theorem 2.9).
The following lemma is an immediate consequence of Lemma A.2.

Lemma A.3 Suppose that P; denotes the j-th Legendre polynomial (see (17)). Then for
any positive real number € and integer M > 0, there ezists an integer Ny > 1 such that for
any N > Ny and each j =0,1,...,M

1 N
[ P@ds= 3w B <e, (120)
-1 i=
Iiiélo
and
1 N
./ Pj(z) - log |z| dz — Z w; - Pj(z;) - log |z;|| < e, (121)
-1 i=
zi#lo
with z1,%9,...,zN§ and wy,ws,...,wy the nodes and the weights of the N-point Gaussian

quadrature (see Theorem 2.9). Furthermore, for any function F : [-1,1] — R of the form

M

F(a) =" (a;+b;-logls]) - Py(2), (122)
j=0
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with aj, b; arbitrary real coefficients,

M
<e-> (lojl+ 1b51) - (123)

=0

l/_ll F(z)dx — i w; - F(z;)

=1

z;7#0

The following lemma provides a formula for the evaluation of the integrals of functions

that are linear combinations of polynomials, and polynomials composed with the singular

function x—lf

Lemma A.4 Suppose that n > 1 is an integer number, and that the function F : [-1,1] —

R is defined by the formula

F(z) = Pafa) + 2202 (124)

with Py, Sy : [=1,1] = R arbitrary polynomials of degree n. Furthermore, suppose that the
function f:[—1,1] = R is defined by the formula

f(z) =22 F(z). (125)
Then
£p. / 11 Fe)dz =Y w;- (F(x,-) - f;g) > ~2£(0), (126)
- =1 B
;70
where wy,wa, ..., w, and z1,Z2,...,T, are the weights and nodes of the n-point Gaussian

quadrature, respectively (see Theorem 2.9).

Proof. Defining the function G : [-1,1] = IR by the formula
!
G(z) = F(z) — 10 _ 70

o a e (127)
we observe that G is a polynomial of order n, and therefore
1 n / :
/ G(z)dz = Z w; - (F(a:,) - f—(g)- - f_(QZ) . (128)
-1 i—1 I‘l xz
.‘ti;ﬁU
Now, observing that
n
w;
— =0, 129
; o (129)
z;#0

(due to the symmetry of the Gaussian nodes and weights about zero), and substituting
(129) into (128), we have

n

/_11 G(z)dz = Z wj - <F(mz) - fig)) . : (130)

=1
z,;7#0
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It immediately follows from (10) that

fp / 10 +f(0 dz = —2 £(0), (131)
and, combining (127), (130), (131), we obtain
£p /1 F(z)ds = / G(z) dz-!-fp/ f0)+f10) dz (132)
» [
= You (F(u)——;ﬁ?l)—zf( ). (133)
21220 '

d

Lemma A.5 Suppose that F : [-1,1] - R and f : [-1,1] = R are two functions defined
by (124) and (125), respectively. Then there exists a positive real Cy such that for any
sufficiently small h,

h2
l £0) = (F(h) + (=) 7‘ <GB (134)
Furthermore, for any real v ¢ {—1,0,1}, there exists a positive real number Cy such that
for any sufficiently small h,

222

g 4
- —h) — — F(— " <o, hE.
70 = (F )+ P(=h) POy = Foam) - 7S < 0ant. a39)
Proof. We start with observing that for any F : [-1,1] - IR defined by (124), there
exist such real numbers a_s,a_1,a9,a1,...,a, that
()— +—+ao+a1w+ 4 an 2", (136)
and due to (125),
a2 = f(0). (137)
It immediately follows from (136) that for small A,
F(h) h2 2 ;21 : L+ ag+a1h+ayh? + O(h3), (138)
F(=h) = ﬁh—} - %—;—-i-ao —arh+ash? +O(h%). (139)
Adding (138) to (139), we obtain
/ 202 2 4
F(h) + F(=h) = =3% +2a0 + 2a2 h? + O(h"), (140)

and (134) immediately follows from the combination of (137) and (140).
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In order to prove (135), we replace h with + - h in (140) above, obtaining

F(yh) + F(=yh) = 5522 + 2a9 + 2a2v2 h% + O(h%) . (141)

2a
7Zh? h2
Subtracting (141) from (140), we have
2a-5(v* = 1)

F(h) + F(=h) - (F(v h) + F(- vh)> R

and (135) immediately follows from the combination of (137) and (142). O
The following theorem now immediately follows from the combination of Lemmas A.3
- A5.

Theorem A.6 Suppose that P; denotes the j-th Legendre polynomial (see (17)). Then
for any positive real number € and integer M > 0, there ezists an integer Ny > 1, real

+2a2 h3(1 — %) + O(h*), (142)

coefficients Wy, Wy, ..., Wy, and a positive constant C such that for any N > Ny and each
=0,1,...,.M
‘/ P;(x) da:—zwz Pj(z;)| <, (143)
210
1 N
| [ Pito)- g alds = 3 - By - loglai| < e (144)
-1 i=
z,;élo
l/ :1;2 d:c— z; wj - 27 | S <k, (145)
2170
and
N N
Y@ <C-Y u, (146)
1=1 i=1
with x1,z2,...,zN and wy,wy,...,wN the nodes and the weights of the N-point Gaussian
quadrature (see Theorem 2.9). Furthermore, for any function F : [—1, 1] = R of the form
M
Ci
F(z) = Z (aj +b; - log |z| + x_]z) - Pj(z), (147)
=0
with aj, bj, c; arbitrary real coeﬁicients,
M
[ F@ie- S 5P| <3 (1l + 1+ o). (148)
i=1 j=0

z;7#0
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Tn Wi,n W2,n W3, n
-.9862838086968123E+00 | 0.6158759029892887E+00 | -.1749507584908717E+00 | -.1130556007318105E+03
-.9284348836635735E+00 | -.3449922634155065E+01 | -.2439832523477966E-+-00 | 0.2343635742304627E+02
-.8272013150697650E+00 | 0.6341017949494823E+00 | -.2035606965679834E+00 | 0.2052970256686051E+4-02
-.6872929048116855E+00 | -.1619416300699971E+01 | -.2159934769461259E+00 | -.1376240462154258E+02
-.5152486363581541E+00 | 0.4959237125495822E+00 | -.1075251867819710E+00 | 0.1455155616946274E+02
-.3191123689278897E+00 | -.1038139679411058E+01 | -.1196358314284132E+00 | -.1125576720477356E+02
-.1080549487073437E+00 | 0.3511876142040904E+00 | 0.1088206509124769E-01 | 0.1005717417020061E+02
0.1080549487073437E+00 | -.6752486832724772E+00 -.1913486054919796 E-01 -.7774959517403008E+01
0.3191123689278897E+00 | 0.2161950693504096E+00 | 0.9038214134065220E-01 | 0.6382331406035814E+01
0.5152486363581541E+00 | -.4027047889340547E~+00 0.4482568706166883E-01 -.4626948764626759E+01
0.6872929048116855E+00 | 0.1014500308386035E+00 | 0.1047670461892695E+00 | 0.3365725647246004E+01
0.8272013150697650E+00 | -.1896412777930365E+00 | 0.5616254115094882E-01 -.2045992407816295E+01
0.9284348836635735E+00 | 0.2050334687326519E-01 0.6074345322744063E-01 | 0.1083005671766590E+01
0.9862838086968123E+00 | -.3560786461470516E-01 0.2130791084865406E-01 -.2941688960408355E+00

Table 1: 14-node quadratures of the form (75) — (77) for y = —0.9862838086968123
(see Example 5.1 and Remark 5.1).

N 1 (y—=z)"" [log(lze—y|) | y—=2)~"
36 | 0.560E-12 | 0.250E-13 | 0.420E-13 | 0.885E-15
42 | 0.257E-15 | 0.119E-14 | 0.225E-15 | 0.147E-13

Table 2: Relative

(100), (101) - (103) (see Example 5.3).

N 1 (y—z)~" [log(lz—y]) [ (y—2)~"
36 | 0.114E-14 | 0.581E-02 | 0.108B-04 | 0.121E+00
42 | 0.700E-15 | 0.277E-02 | 0.427E-05 | 0.680E-01
100 | 0.775E-15 | 0.192E-05 | 0.112E-08 | 0.114E-03
150 | 0.333E-15 | 0.350E-08 | 0.133E-11 | 0.310E-06
200 | 0.196E-14 | 0.631E-11 | 0.188E-14 | 0.746E-09
250 | 0.262E-14 | 0.106E-13 | 0.551E-15 | 0.167E-11
300 | 0.269E-14 | 0.967E-15 | 0.568E-15 | 0.525E-14

errors of the quadrature formula (97) applied to the integrands

Table 3: Relative errors of the standard Gaussian quadrature (see Theorem 2.9)
applied to the integrands (100), (101) — (103) (see Example 5.3).
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+z,

Wn

0.1065589476527457E+00
0.3113548847160309E+00
0.4932817445063880E+00
0.6431876254991823E+00
0.7584402200373317E+00
0.8418072582807350E+00
0.8991123360358894E+00
0.9369451420922662E+00
0.9611808158857813E+00
0.9763813583671749E+00
0.9857845370872045E+00
0.9915537349540954E+00
0.9950772406715330E+00
0.9972224562334544E+00
0.9985216206191467E-+00
0.9992964931862838E+00
0.9997376213125204E+00
0.9999525789657767E+00

0.2116935969670785E-+00
0.1954154182193890E+00
0.1668941295018453E+00
0.1325004013421312E+00
0.9850855499442945E-01
0.6923612105413195E-01
0.4649700037042145E-01
0.3015693021568984E-01
0.1907410671190122E-01
0.1186194584542522E-01
0.7299783922072470E-02
0.4465717196444791E-02
0.2722792056317777E-02
0.1654307961017307E-02
0.9963611678876147E-03
0.5843631686022078E-03
0.3153728101867406E-03
0.1230964950065995E-03

Table 4: 36-node generalized Gaussian quadrature (97) for functions of the form
(106) with M = 11, and precision 1071° (see Example 5.3).

tz,

Wn

0.7824400816570354E-01
0.2317400514932991E+00
0.3765817141635966E+00
0.5080234535636137E+00
0.6226938088738944E-+00
0.7188418253624399E+00
0.7963343649196293E+00
0.8564163016327517E+00
0.9013001486524265E+00
0.9336896680922276E-+00
0.9563457975135937E+00
0.9717714213532305E+00
0.9820411592483684E-+00
0.9887573995032291E+00
0.9930900683346067E+00
0.9958561171201172E+00
0.9976063686147585E+00
0.9987019026654443E-+00
0.9993734804740140E+00
0.9997640500479557E+00
0.9999571252163234E+00

0.1559838796617961E+00
0.1500543303602524E+00
0.1388302709124357E+00
0.1234870921831402E+00
0.1055618635285824E+00
0.8671614170628514E-01
0.6848351985661966E-01
0.5205731921370713E-01
0.3816842653276627E-01
0.2707608184111357E-01
0.1865610690150748E-01
0.1254153267525754E-01
0.8264234965377917E-02
0.5361830655763248E-02
0.3438177342595994E-02
0.2184437514815405E-02
0.1375256690097983E-02
0.8535706349265051E-03
" 0.5129451502696074E-03
0.2818251084208615E-03
0.1111565642688685E-03

Table 5: 42-node generalized Gaussian quadrature (97) for functions of the form
(106) with M = 21, and precision 1071° (see Example 5.3).
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Figure 2: Relative errors of the quadrature formulae (75) - (77) with N = 6.8, . .. ,26
applied to the integrands (101) - (103) (see Example 5.1). The relative error of the
N-point Gaussian quadratures with N = 6,8,...,26 applied to the function (100)
are presented for comparison.

1 I I 1 1 I I 1 I
S U(x-y) -o--
S Wi S log(fx-y]) -o-- 1
g .............. o \\:;&.\ 1/(X-y)A2 o —
o le-8 e e\\:"*e 7]
> "G, N T
g | %D ﬁ‘\:‘*e S N
s lel2 f R e DD S
& A gt g S f§_ .......
le-16 |
1 1 ] i 1 ! 1 |

36 48 60 72 84 96 108 120 132 144
Number of nodes

Figure 3: Relative errors of the quadrature formula (85) with M = 6,8,...,24 and
N =6-M, applied to the integrands (101) - (103) (see Example 5.2).
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0.976E+00 | 0.105E+01 | 0.904E+01 | 0.372E+01 | 0.799E+01
0.109E+01 | 0.178E+01 | 0.998E+01 | 0.622E+01 | 0.325E+01
8 0.157E+01 | 0.226E+01 | 0.429E4+01 | 0.239E+01 | 0.188E--01
16 | 0.215E+01 | 0.149E+01 | 0.212E+01 | 0.103E+01 | 0.788E+00
32 | 0.131E+01 | 0.103E+01 | 0.219E+00 | 0.483E-01 | 0.184E-02
64 | 0.556E+00 | 0.115E+00 | 0.194E-02 | 0.166E-02 | 0.368E-03
128 | 0.614E-01 | 0.285E-02 | 0.115E-05 | 0.126E-07 | 0.364E-09
256 | 0.442E-02 | 0.498E-04 | 0.133E-08 | 0.270E-09 | 0.693E-09
512 | 0.280E-03 | 0.778E-06 | 0.837E-09 | 0.476E-08 | 0.384E-08
1024 | 0.165E-04 | 0.125E-07 | 0.150E-08 | 0.149E-07 | 0.147E-07
2048 | 0.102E-05 | 0.271E-08 | 0.171E-07 | 0.293E-07 | 0.532E-07
4096 | 0.635E-07 | 0.231E-07 | 0.613E-07 | 0.921E-07 | 0.128E-06
8192 | 0.110E-07 | 0.113E-06 | 0.300E-06 | 0.134E-05 | 0.705E-06

K degree 4 degree 6 degree 10 degree 12 degree 16
2
4

Table 6: Relative errors of the compound quadrature formula of degrees M =
4,6,10,12,16 and the number of subintervals K = 2,4,...,8192 applied to the
integral (108) (see Example 5.4).
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