Yale University
Department of Computer Science

Efficient Breadth-First Expansion
on the Connection Machine
or: Parallel Processing of L-Systems

Ron Y. Pinter and Shlomit S. Pinter

YALEU/DCS/TR-719
July 1989

Efficient Breadth-First Expansion
on the Connection Machine
or: Parallel Processing of L-Systems

Ron Y. Pinterh?

Shlomit S. Pinters*

Dept. of Computer Science
Yale University
New Haven, CT 06520

July 1989

Abstract

We present efficient algorithms for a breadth-first expansion kernel on the Con-
nection Machine®. We use the formalism of L-systems to model the highly
dynamic nature of such computations, especially with regard to the spatial dis-
tribution of the data (unlike numeric or other regular computations). We claim
that an L-system, being defined as a set of production rules that are to be pro-
cessed in breadth-first order, indeed captures the inherent parallelism present in
this computational structure.

Our algorithms vary in complexity as we move on from simple (deterministic,
context-free, flat) L-systems to more elaborate ones. They make intensive use
of the data parallel operations that are offered by the target machine, especially
the scan operator which is realized by a parallel-prefix implementation. The
algorithms are presented here using a new, simple abstract programming model
of the machine, but they have also been programmed and executed on the CM-2
at Yale; preliminary timing results are given herein.

Keywords: algorithms, breadth-first expansion, data parallel programming.

1On sabbatical leave from the IBM Israel Scientific Clenter.

2Work supported in part by ONR grant number N00014-89-J-1906.

®0n sabbatical leave from the Dept. of Electrical Engineering, Technion — Israel Institute of Technology.
*Work supported in part by NSF grant number DCR-8405478.

$Connection Machine is a trademark of Thinking Machines Corporation.

1 Introduction

The process of breadth-first expansion (BFE) represents a commonly occurring schedule of
computations arising in many different situations, such as searching a large solution space,
and-parallelism in executing Prolog programs, event-driven simulation of discrete processes
(e.g. synchronous circuits), simulation of biological growth [7], generation of graphics im-
ages (e.g. Fractals), and more. We have observed that L-systems [6] are particularly
suitable for modelling the basic phenomenon which characterizes this computational pro-
cess, namely the generation of frontiers (or layers) of events that are scheduled for handling.
This formulations allowed us to study the potential parallelism that is inherent to this pro-
cess and come up with a number of algorithms that can drive a BFE engine effectively on
machines that strongly support data parallelism, such as the Connection Machine.

An L-system is a grammar, comprising a number of production rules over a finite alphabet
of symbols. Unlike grammars in the Chomsky hierarchy (see, for example, [3]), the firing
rule for a derivation is a parallel one, as follows: all symbols in the current word are replaced
simultaneously, each with the right-hand-side of some rule (as defined by the grammar and
its type). Thus, the semantics of this process is already defined in terms of a parallel
computation; the main difficulty in realizing this computational structure is the continuous
expansion and contraction of data.

L-systems encapsulate the gist of the problem, and allow us to concentrate on these spatial
irregularities rather than dealing with other, irrelevant (to this issue) details. Specifically,
the result of each single production may occupy much more space than the current sym-
bol, and this expansion is compounded in subsequent steps (which may also involve some
shrinkage). We address the question of how to handle this evolution by an efficient al-
gorithm that can be hosted on the target machine architecture, particularly utilizing the
special operations that offer massive data parallelism, such as parallel prefix [1, 5].

Using a dynamic data structure (such as a linked list), as is commonly done in a sequential
implementation, is not good enough since the general storage allocation schemes proposed in
(2] for the Connection Machine are too inefficient. Fortunately, L-systems (and the problems
they model) have enough structure to allow a fast, space efficient family of algorithms that
do take advantage of the data parallelism.

The basic algorithm that we present in this paper deals with deterministic, context-free,
and flat (i.e. non-bracketed) L-systems. It shows how to overcome the data expansion
(and contraction) problem, and the same essential idea is then used in the more compli-
cated algorithms. Then we show how to deal with bracketing, which involves maintaining
adjacencies between symbols (or events). The most complex variant includes, in addition,
context recognition and resolving non-determinism.

In order to present our algorithms, we have developed a simple programming model for the
Connection Machine which abstracts away many of the irrelevant details. We believe that
this new model is, at least for the purpose of expressing and developing algorithms of the
kind presented here, better than current existing models in the way it supports the rather
different way of thinking which is required compared to sequential programming. It can be

used rather conveniently without compromising the quality of the resulting code and the
way it takes advantage of the CM architectural features.

We first define L-systems and some related terminology, and then present our programming
model for the CM in Section 2. Section 3 describes the basic algorithm for deterministic,
context free, and flat L-systems. In Section 4 we explain how to deal with bracketing,
context, and non-determinism, followed by analysis and results in Section 5. We conclude
with a discussion on how this research can apply to other machines and computational
models.

2 Preliminaries

An L-system is a set of rewriting rules (or productions). Each rule is a pair of words over
a given alphabet X, which are customarily separated by an arrow (—); the two words are
called the left hand side (or predecessor) and right hand side (or successor) of the rule,
respectively. The L-system is applied to a word over £* as follows: at every round, each
single character in the word is replaced (independently) by the right hand side of one of the
rules that apply toit. If no such rule is found, the symbol® is left intact; if more than one left
hand side matches the application conditions, then one rule is picked non-deterministically.
The system is applied to an initial (non-empty) word, called an aziom, but there is nothing
special about the axiom in terms of the semantics of the system.

The simplest case is that of 0L-systems (or context-free systems), in which every left hand
side is a single character, and then a rule applies if its left hand side is equal to the symbol
in the word. For example, consider the following DOL-system (D for deterministic, since
each character appears as a left hand side exactly once) over the alphabet {a,b,¢c,d}:

a — be
b — da
c — b
d —

Starting from the axiom a, the words that are generated by subsequent applications of the
system are be, dab, abeda, bedababe, and so on. Notice that the rules are applied to all
symbols simultaneously, and the new word is the result of concatenating the appropriate
right hand sides in a row.

Context can be used to select the rule that applies to a given symbol. To denote context,
the left hand side is written in the form o < ¢ > f, where o is the letter to be replaced
and o and § are strings (over £*) that must be present to the immediate left and right
of o in the current word. Notice, that unlike context-sensitive languages of the Chomsky
hierarchy, only the single symbol is being replaced (when the context is found), not the
whole left hand side. In general, a (k,[)-system is one in which the longest left context is
of length k, and the right one — of maximal length .

!Notice that we use the terms character and symbol interchangeably; usually, symbol refers to the occur-
rence of a character in a word that is being processed.

One further feature of L-systems is bracketing, which facilitates a deviation from the linear
structure implied by words. Brackets (denoted by [and]) can appear on the right hand
side of any rule, and they may be arbitrarily nested in words, thus allowing the dynamic
creation of tree-like structures. Brackets delineate the context of rules, namely the (right
and left) context of each symbol is determined by symbols that appear to its right and left
at the same nesting level (regardless of the length of intervening symbols at lower levels).

We now turn to the target machine. The Connection Machine (both the idealized version
described in [2] and the working models as documented in [8]) has a distributed memory,
SIMD architecture. Data entities are organized in zectors, or p-vars; each such value is
best thought of as a (one dimensional) vector whose elements reside one per processor, with
the processor id being the index of the element. Instructions are either scalar, i.e. they
apply to every element independently (e.g. add one to every entry, subtract the 7th element
of a from the corresponding element of b), or they apply to the xector as one entity, e.g.
perform a parallel prefix add (or scan-add) on a.

In addition, xector elements can be copied (or sent) to other xectors. Sometimes, the ele-
ments are to be arranged in the same order, and then the copy operations can be performed
locally in each processor (that is — element by element, in parallel), but often a different
ordering of elements is desired, e.g. each processor wishes to send its value to the processor
whose id is 1 more than its own. To support this latter type of copying, which includes
not only permutations but also any random send-receive pattern, a routing network is used
whose internal behavior is beyond the control of the programmer. One can only give it hints,
saying whether there are no collisions (i.e. fan-in or fan-out of elements), and whether there
are few or “many” such collisions to be expected.

An important notion is that of processor selection. At any given point in time, only a desig-
nated subset of processors is marked selected, meaning that the current instruction applies
only to the processors in this set. Processors can be selected and de-selected dynamically
based on their addresses, values of xector entries that they hold, or any other dynamically
expressible condition. For certain operations (such as a scan) the processor array can also
be broken into segments, by means of setting up boundaries, which delineate the effect of the
operation and make it appear as if it were applied to each segment separately (in parallel).

For convenience, one can also store data on the host (which holds and issues the instruction
stream). This facility is reserved for scalars or small structures, and is usually used to keep
initialization data which is loaded into xectors at the beginning of a CM computation. Data
interaction with the host is time consuming and should be avoided if a short elapse time is
desired.

From a programming point of view, one can write C* or *Lisp [8] programs in a style
not unlike APL [4]. Xectors are used as one-dimensional APL arrays, element-by-element
operators are the same as the scalar operators when applied to arrays, parallel prefix oper-
ations are like scans, and sends perform assignments with indexing?. For example, y[p] «— =
means that the elements of xector y at processor id’s denoted by xector p are assigned the

2We could also express selection as reduction with a bit-vector, but processor selection is usually applied
to whole program fragments, not to short expressions, thus we prefer to denote it as a separate construct,
using a keyword

w

appropriate elements of xector z in the same order; = and p had better be of the exact
same length, and the assignment affects only those portions of y which reside in selected
processors. Likewise, y < 2[p] means that the elements of z whose indices are denoted by p
are to be assigned to y (which then has the same length as p). Notice that while repetitions
are allowed in the latter case (meaning that a particular element is broadcast to several
locations), ambiguity arises in the former case; we assume that such conflicts are resolved
at random, 7.e. one of the possible values gets written.

In what follows, we shall use a pseudo-APL notation, using key-words rather than Greek
letters to denote operators. We feel that this language allows us to focus on the algo-
rithmic rather than the low-level issues. When presented along with a set of declarations
for the variables’ types, such program can be compiled into (say) *Lisp code relatively
straightforwardly?.

Finally, there is one additional complication concerning the mapping of xectors to the actual
machine. The way things are set up, all xectors are of the same length, which is the number
of available processors, and length adjustments are all effected through process selection.
Sometimes, however, one would like to have xectors longer than the number of physically
available processors. This is facilitated through the definition of virtual processors, of which
there could be many more than physical ones. In reality, the xectors are folded onto them-
selves, so that each physical processor holds more than one element. The cost of doing so,
both in terms of the additional time necessary to complete an operation as well as the extra
drain on the routing network, is non negligible and must be taken into account even though
it is (in some sense) hidden from the programmer.

3 Executing DOL-systems

We first describe the data structures that we use when processing a DOL-system. The
current word w is stored as a xector, one symbol per processor (consecutively, starting from
the left, using zero indexing), and only the first |w| processors are selected. The symbols
themselves are encoded into the numerals 0,...,|X| — 1. Since each symbol appears only
once on the left hand side of a rule, the rules are ordered by the numeral assigned to their
left hand sides, thus the rule number is equal to the encoding of its left hand side.

We also maintain three additional supporting data structures, whose utility will become
clear when we present the algorithm itself. Each can be implemented as a xector, as an
array on the host, or fully replicated in each processor (in which case an array of xectors is
used), depending on efficiency considerations*. They are:

* lgt — the length of the right hand side of each rule (indexed by rule number),

®We have done this by hand, but an effort at automating the process is well under way, as refelcted by
the companion report, “Efficient Compilation of Array Expressions for the Connection Machine”, by Luis
F. Ortiz and Ron Y. Pinter, YALEU/DCS/TR-720.

*The implementation may change in different variations of the algorithm, and it may even include some
further variations on the three basic alternatives, as discussed in Section 5.

e flat-rhs — a concatenation (into one sequence) of the right hand sides of all rules
(in order), and

e start-rule — the starting position of each right hand side in flat-rhs (again,
indexed by rule number).

These entities can be easily compiled up-front (from the rule base), and their computation
cost (which is minimal anyway) does not affect the running time of the algorithm.

The problem that arises when executing the productions of a DOL-system, is that the length
of the current word keeps changing (mostly growing, unless there are A-rules). Not only
that, but if we want to maintain the above, simple structure for storing words, room needs
to be made for the resulting right hand sides, thereby “pushing” the processors that are
assigned to symbols up and up. The key observation that leads to an efficient algorithm for
the above process is that we can predict precisely where each right hand side is going to be
mapped based solely on the rule number and the information in the current word, without
need to sequentialize the computation by processing one symbol at a time. This is done
by using the scan-add operation, which is considered an efficient operator on the CM, and
then using the result as the target for storing the appropriate right hand sides all at once,
as we shall describe in more detail now.

The scan-add operation is defined® as follows: if y = scan-add(z), then y[4] = j-f__%) z[j] (and
y[0] = 0). Recall that when segment boundaries are being used, then the scan is applied to
each segment separately. Now, at each processor, we first look up the length of the right
hand side of the rule that is going to be applied according to the rule number that is already
stored in it (which is equal to the current symbol of w); these lengths are (locally) assigned
to the xector /. Next perform a scan-add on ! which results in each processor obtaining the
sum of the lengths of the right hand sides of all the productions that will be applied to the
symbols that appear to the left of its own symbol. Each entry in this value (stored in p) is
exactly the processor id to which the first (leftmost) character of the symbol’s right hand
side should be assigned (assuming 0 indexing).

Since the right hand sides are of varying lengths, and there is no atomic assignment opera-
tion for strings on the CM, we are not quite done yet. The next step is to prepare address
templates for moving the individual characters in each right hand side to the right place.
We first change the processors selection to include as many processors as the length of the
new word; this length is simply the sum of all elements in /, and it is obtained during the
calculation of the scan-add. Then we use the result of the scan-add to set up boundaries
between the processors, establishing the target region for each production. In each such seg-
ment, we generate (again, in parallel, using one scan-add and one scan-copy operation, the
latter simply propagating a value from left to right) consecutive integers starting from the
appropriate value of start-rule. Finally, these numbers are used to index flat-rhs, and
in one operation we distribute all characters (from flat-rhs) to all the selected processes.
Notice that each processor already contains the appropriate index, so the referencing can
be performed in one step if flat-rhs is replicated, or using one send operation (using the
routing network) in case it is a simple xector.

5We use the version in which the sum does not include the current element.

Now we are ready to present the DOL processing algorithm. We assume all the necessary

supporting data, as well as the current word (be it the initial axiom or a word that has Lo
been derived by a number of steps) and its length, are loaded into the machine. Following
is the pseudo-code for one derivation step; this is the body of the main loop, which should Lo
be iterated indefinitely or a prespecified number of times. Some brief comments appear (in ‘
curly braces) along with the code; we also use the keyword using to denote the usage of
segments. Additional explanations and a clarification on temporary variables appear right Lo
after the code. .

select the first length-of-current-word processors

1 « lgt[w] { 1 now contains the lengths of the right hand sides of the rules that
need to be applied}

p « scan-add(l) { p points to the target address of the right hand sides, as
explained in the text}

length-of-new-word « p[length-of-current-word]+1[length-of-current-word] \

select the first length-of-new-word processors |

sgt-bdry[p] « all-1 { mark segment boundaries at processors corresponding to
the beginning of right hand sides of rules that constitute the new word} i

ths-ind[p] « start-rule[w] { this records rule starting indices in flat-rhs at the
appropriate positions}

rhs-ind « scan-copy(rhs-ind) using boundaries marked in sgt-bdry

ind + scan-add(all-1) using boundaries marked in sgt-bdry

w « flat-rhs[rhs-ind + ind] { this writes the new version of the word using one
operation. The correct address is readily available.}

{ *** at this point, one can insert whatever processing ***}

{ *** that needs to be performed with the generated word ***}

length-of-current-word « length-of-new-word { this up-date is necessary for the
next iteration}

In this code, we have used a number of intermediate variables, whose purpose is as follows:

® length-of-current-word, length-of-new-word — two scalars, whose values are
self explanatory

® sgt-bdry — a Boolean xector, used to divide the processor domain into segments !
each of length corresponding to the right hand side of the rule which will occupy that e
segment (according to the value of w). i

¢ rhs-ind, ind — these two xectors are addressing templates, partitioned into seg-
ments per sgt-bdry, whose sum is the index into flat-ths indicating the character to
be used in the actual production. The first, ths-ind, generates the base index, namely
the starting address for each rule in flat-rhs, whereas the second generates sequences
of successive integers, from 0 up to each corresponding length of a right hand side.

e all-1 — the constant xector 1, namely a copy of 1 at every processor

To illustrate this algorithm, here is an example of one derivation step using the DOL-system
of Section 2. Let us assume that the current word is bedababe, whose length is 8. It is
encoded as 1 23 0 1 0 1 2 and is stored in processors 0 through 7 which are currently
selected. 1gtis 2211, flat-rhsis 123010, and start-ruleis 0 2 4 5. We now display
the values computed in each row of the algorithm, one by one:

l~21122221
p—0234681012
length-of-new-word « 13

select the first 13 processors
sgt-bdry[p] — 11111111
rhs-ind[p] <~ 24502024
ths-ind «+~ 2245002200224
ind 0100010101010
w«3010123012301
length-of-current-word « 13

4 Handling General L-systems

In this section we show how the algorithm of the previous section, which processes DOL-
systems, can be extended to dealing with L-systems that contain bracketing, context, and
non-determinism. Bracketing by itself (regardless of context determination) is easy to han-
dle: once generated (by the right hand side of some rule), brackets are retained as is (either
implicitly or by adding the productions [— [and] —] to the rule base)®.

Context affects only rule selection. This needs to be done right at the beginning of the
loop-body presented in Section 3, and once we know which rule is to be applied to each
symbol we can use the rest of the algorithm asis. For sake of presentation, we consider (1,1)-
systems, namely grammars in which each left hand side can have up to three characters: a
left context, the symbol to be replaced, and a right context (such systems are often called
2L-systems). The generalization to (k,)-systems is straightforward.

Without bracketing, rule selection amounts to a pattern matching phase. In the current
setting, the best way to parallelize this process is as follows: Send each symbol in w once to
its left neighbour and once to its right neighbour; this can be implemented as two collision
free sends” or by using the CM’s grid (NEWS) operations. Then, at each processor, compare
the three characters to all left hand sides of rules, and if the system is deterministic there will
be at most one match (if there is none then use the default rule). This can be implemented
either by running a fast pattern matcher on all processors simultaneously, which looks for

In case the subword between brackets is eliminated, i.e. it becomes the empty word, the enclosing
brackets can be cancelled using context sensitive rules.

"Since this process involves both a two-fold fan-out as well as a two-fold fan-in, we cannot use just one
send or one receive; these operations require that the mapping is either one-to-many or many-to-one.

the context of each symbol as a pattern in one text comprising all the left hand sides of
rules concatenated together®, or by using some other table look-up method.

When more than one rule can be applied to a given character depending on context?, the
correspondence between character numbers and rule numbers breaks down. This is easily
remedied by keeping another xector alongside with w which records the rule numbers (and
gets updated once per round); whenever w was used to identify a rule rather than a symbol,
it should be replaced by this new xector.

Recall that in a system with bracketing, a neighbour is defined as the closest symbol at
the same level of nesting (both on the right and on the left). Thus, a neighbour is not
necessarily the closest symbol in the string. We employ the following scheme in order to
maintain neighbourhood in a deterministic 2L-system: with each symbol (processor) in
the word, we continuously keep the two processor id’s holding its neighbours, as well as
the neighbours’ symbols (this, by the way, eliminates the need for the two sends mentioned
above and rule selection becomes entirely local). The processor id’s are stored in the xectors
left and right, and the symbols to the left and the right are kept in left-symbol and
right-symbol.

In order to keep maintaining these structures for future rounds, each processor sends the
projected (new) id’s of the prospective neighbouring symbols of the right hand side that
is going to be used in its expansion immediately before the tules are fired. These new
processor id’s are calculated using the values of [and p (as well as the static information
that has been compiled for the rule base), and are temporarily stored in next-left and
next-right. The new symbols are then updated after the firing, using next-left and
next-right, which subsequently replace left and right as well.

To make sure that the neighbourhood information is properly maintained inside each right
hand side (and not just at the borders between them), we form a neighbourhood template
for each rule which tells us who the left and right neighbours of each symbol are relative
to the beginning of the right hand side itself (using 0 indexing). This is what actually
sets the whole structure up when brackets appear on the right hand side of a production.
For example, for a[ca]b the left neighbour pointers are 0 0 0 2 0 0, and the right ones are
503 00 0 (notice we use 0’s both to denote that the information is irrelevant, such as
for the bracketing symbols themselves or when the neighbour is undefined, as well as for
the leftmost and rightmost characters in the right hand side, which are taken care of as
above). The concatenation of these templates is stored in flat-1n and flat-rn (similarly
to flat-rhs) at compile time.

Thus, the following code needs to be added to the body of the loop, replacing the assignment
to w (which remains intact in there):

next-left[p] < p [left] + (Igt[w(left]] - all-1)
next-left — flat-In[rhs-ind 4 ind] + scan-copy(next-left) using boundaries
marked in sgt-bdry :

8At the expense of using up more processors, the pattern matcher can be sped up considerably, using
CM specific instructions such as scan-and.
®This is not to be confused with non-determinism.

next-right[p] « p [right]
next-right «— flat-rn[rhs-ind + ind] + scan-copy(next-right) using boundaries
marked in sgt-bdry

w « flat-rhs[rhs-ind + ind]

left-symbol «— w[next-left]
right-symbol « w[next-right]
left « next-left

right « next-right

In the above code there are some fence post problems arising from the fact that the leftmost
and rightmost symbols in w do not have a left and right neighbour, respectively. These are
easily dealt with using special values and some scalar operations which are not detailed
here. More importantly, we assume that there are no A-rules, and also that none of the
right hand sides is of the form [a]. Such cases do not occur in most applications we have
seen; nevertheless, in order to treat them, a somewhat more complicated scheme is necessary,
whose time complexity depends on the nesting depth. Also, a slightly different definition
of context is sometimes used (see [7]), which our algorithm does handle (but the details are
too long for this extended abstract).

Finally, the issue of non-determinism. First we have to aggregate in each processor the num-
bers of all rules that could be applied to the symbol it holds. In case the system is context
free, this can be done by preparing the list for each character at compile time (in the same
way we compute 1lgt etc.), and then store the appropriate list at each processor according
to its current symbol. In the context sensitive case, we simply record the prospective rules
during the matching process. In either case, once the lists are there, all we have to do is
make an independent random selection in parallel (as supported on the CM) of which rule
is chosen.

5 Analysis and Results

As we have mentioned in Section 3, there are several ways for realizing the assisting struc-
tures 1gt, flat-rhs, and start-rule. If time is our prime minimization criterion, then
it is best to replicate all three values and maintain each as an array at every processor
(making it into an array of xectors). This way, xector indexed references to these entities
(e.g. lgt[w]) are local, and the algorithm is then dominated by two factors: the two array
assignments using p as their index, and the three scan operations.

First, in reality, the two array assignments are done with one send (*pset) operation on the
CM-2 (using the :notify option); moreover, the send is collision free, so it takes only one
time unit. As for the scans — these operations are advertized as being particularly efficient
on the CM, and the whole point is to use them (rather than other constructs) whenever
possible so as to utilize the machine’s potential parallelism. Scans are implemented as
parallel prefix computations [5], whose time complexity is logarithmic in the number of
processors participating in the operation. This is the case even when segment boundaries
are being used [1]. So, all in all, in this fastest of all realizations, each iteration of the main

algorithm should take time that is logarithmic in the length of the word w being produced;
in practice (on the CM-2), the time is the logarithm of the total number of processors on
the machine (which is a constant).

If the rule base is large, and flat~-rhs does not fit into each processor, it can be implemented
as a xector (residing in, say, the first r processors, where r is the number of elements in
flat-rhs). This makes the assignment to w (as well as those to next-left and next-right,
for the bracketing case) somewhat expensive, and it becomes the critical part of the whole
computation, since it involves massive fan-out. Another feasible alternative — in case the
alphabet is small — is to write one character at a time, using |X| separate one-to-many
sends (the code to do so can be easily generated at “compile” time), thereby somewhat
reducing the routing congestion. Better yet, we could replicate the xector as many times as
it fits, 7.e. storing one copy of it (one element per processor) in the first 7 processors, then
storing a second copy in the following r processors, and so on (up to the total number of
processors available). Then the assignments to w need to be carefully orchestrated so as to
achieve as many disjoint sends as possible so as to reduce fan-out; this can be done either
deterministically or by randomization.

At the extreme, assuming processors with very little memory, all these entities could be
implemented as arrays on the host, and then each array access operation amounts to dis-
tributing the array entries one at a time in a loop (with as many iterations as the length
of the array, but each value is broadcast in one parallel step selecting the appropriate
processors).

Another factor affecting the performance is the use of virtual processors (VPs). This be-
comes necessary when the length of the derived word, w, exceeds the number of physically
available processors. If we know (or can safely estimate) the size of the longest word that
will be encountered, one could naively allocate as many processors up-front. With the cur-
rent implementation of VPs, this slows matters down considerably even when only a small
number of processors is selected (and they reside one per physical processor). The alterna-
tive is to dynamically allocate VPs as we go, but this incurs a different kind of overhead.
We are still experimenting with this issue, but one observation is that it would have been
nice if one could have explicit control over the association between VPs and actual proces-
sors (without having to resort to embeddings in higher-dimensional grids, as can indeed be
done).

The algorithm of Section 3 was implemented in *Lisp Release 5.0 on a CM-2 with 8K
processors (used with only 4K at a time). We measured 6msec per production (the raw
clock speed being 6.7MHz) with all assisting structures as xectors (not xector arrays) and
without VPs; this went up to about 20msec per production with a fixed VP-ratio of 16.
When all the assisting structures are fully replicated (as xector arrays), these figures go
down to 4msec and 13msec, respectively.

10

6 Conclusions

Both the algorithms that we have described in this paper and the programming model in
which they are presented apply to a variety of physical architectures. The requirements
from the target architecture are essentially three:

e one-dimensional arrays should be easily embeddable,
e simultaneous assignments among processors (3 la send) are efficient, and

e parallel prefix operations with segmentation (& la scan) are supported.

Several networks, such as the hypercube (which has a natural Hamiltonian cycle), satisfy
these requirements, and our algorithms can be easily mapped to them without loss of
efficiency. For other networks, which may display a weakness in one of the above points,
certain adjustments will have to be made in the algorithms, and we plan to pursue this
further.

On the negative side, even the CM did not prove to be as fast as we had expected. For
one, it would be nice if the complexity of the parallel prefix computation would depend on
the number of currently selected processors. Second, the handling of collisions when the
fan-out is large is less than wonderful, as far as we as users can tell. Third, it would be
nice to have a primitive for many-to-many sends (and have the machine find the best way
to realize it on a dynamic basis). We expect that some of these problems will be addressed
by future versions of both the software and the hardware.

Another item of interest for further research is to build applications on top of the breadth-
first-order driver that was developed. Expressing the algorithms in the applications’ do-
mains may take advantage of the L-systems formalism, and our algorithms supply the
computational feasibility for developing such tools. Any situation in which events are being
scheduled in a layered fashion, namely a number of independent tasks are spawned at each
stage, can be handled in essentially the same manner, and the algorithms described herein
would apply (with appropriate adjustments).

All in all, we have presented a comprehensive solution to an interesting and useful class
of problems, which is geared towards the target parallel architecture. As we all know, in
developing these algorithms a radically different way of thinking is required compared to
sequential programming, and we think this work contributes a new angle to this issue.

Acknowledgements. We would like to thank Przemyslaw Prusinkiewicz, of the University
of Regina, Canada, for introducing us to L-systems and for many helpful discussions. We
would also like to thank Michel Jacquemin of Yale University, and Paul Oppenheimer and
Jim Salem of Thinking Machines Corporation, for help in programming the Connection
Machine and for comments on an earlier draft of this paper.

11

References

[1] G. Blelloch. Scans as primitive parallel operations. In International Conference on
Parallel Processing, pages 355-362, 1987.
[2] W. D. Hillis. The Connection Machine. MIT Press, Cambridge, MA, 1985.

[3] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, MA, 1979.

[4] K. Iverson. A Programming Language. John Wiley, New York, 1962.

[5] R. E. Ladner and M. J. Fischer. Parallel prefix computation. JACM, 27(4):831-838,
October 1980.

[6] A. Lindenmayer. Mathematical models for cellular interaction in development, Parts I
and II. Journal of Theoretical Biology, 18:280-315, 1968.

[7] P. W. Prusinkiewicz. Graphical applications of L-systems. In Graphics Interface ’86 —
Vision Interface 86, pages 247-253, May 1986.

[8] Thinking Machines Corporation, Technical Report HA87-4. Connection Machine Model
CM-2 Technical Summary, April 1987.

