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Abstract

High communication bandwidth in standard technologies is more expensive to realize than a
high rate of arithmetic or logic operations. The effective utilization of communication resources is
crucial for good overall performance in highly concurrent systems. In this paper we address two
different communication problems in Boolean n-cube configured multiprocessors: 1) broadcasting,
i.e., distribution of common data from a single source to all other nodes, and 2) sending personalized
data from a single source to all other nodes. The well known spanning tree algorithm obtained by
bit-wise complementation of leading zeroes (referred to as the SBT algorithm for Spanning Binomsial
Tree) is compared with an algorithm using multiple spanning binomial trees (MSBT). The MSBT
algorithm offers a potential speed-up over the SBT algorithm by a factor of log, N. We also present
a balanced spanning tree algorithm (BST) that offers a lower complexity than the SBT algorithm
for Case 2. The potential improvement is by a factor of -;-logg N. The analysis takes into account
the size of the data sets, the communication bandwidth, and the overhead in communication. We
also provide some experimental data for the Intel iPSC/d7.

1. Introduction

Broadcasting of data from a single source to all other nodes in a multiprocessor system is an
important operation. It is used in many parallel algorithms, for instance, in matrix multiplication,
the solution of irreducible linear systems, and forming transitive closure. Examples of a variety
of algorithms using specific forms of communication are contained in [6, 10, 11]. The reverse
operation, reduction, occurs, for example, in computing inner products, solving linear recurrences,
[13], and parallel prefix computation. A different situation occurs if the source node distributes
personalized information to all other nodes. In this case no replication of information takes place
during distribution (or reduction in the reverse operation). The collection of data to a single
node and distribution of personalized messages to all other nodes is a useful operation for the
solution of tridiagonal systems under certain combinations of start-up times for communication,
communication bandwidth, and problem sizes [12]. Matrix transposition is another example of
personalized communication in that every node sends different data to every other node [11].

Data communication in Boolean cubes has received significant interest recently due to the
success of the Caltech Cosmic Cube project [19] and the availability of Boolean cube configured
concurrent processors from Intel Scientific Computers, NCUBE, Ametek, Floating-Point Systems
and Thinking Machines Corp. [7]. The embedding of complete binary trees is treated in [21, 11,
17, 3, 2]. Wu also discusses the embedding of k-ary trees, and Bhatt the embedding of arbitrary
binary trees. Efficient routing using randomization for arbitrary permutations has been suggested
by Valiant [20] . Broadcasting of data from a single source to all other nodes is studied in [17]. We
propose a lower bound algorithm that offers a speed-up of a factor of log N! over the algorithm
in [17]. We also present lower bound algorithms for personalized communication. We give routing

Ylog N = log, N throughout this paper.



algorithms, and analyze the complexity in detail. The analysis is compared with experimental data.

A Boolean n-cube has N = 2" nodes, diameter log N, (l°g'.N ) nodes at distance i from a given
node, and log N disjoint paths between any pair of nodes. The paths are either of the same length
as the Hamming distance between the end points of the paths, or the Hamming distance plus two
[18]. The fanout of every node is log N, and the total number of communication links is 1 N log N.
Any spanning tree can be used to broadcast data from a single source to all other nodw.% A node
replicates the data as many times as correspond to the out-degree of the node in the spanning
tree. In broadcasting one element (or packet), the minimum number of routing steps is log N.
Any spanning tree with height log N can achieve this lower bound, if each node can send out data
through all the links connected to it during one step. In case each node can send or receive data
through only one link during one step, then only the class of spanning binomial trees can attain the
lower bound, since after each broadcasting step the number of nodes that own the desired data is
at most twice that of the previous step. The log N lower bound is attained only if the number of
nodes that own the desired data doubles at each step. This is exactly the definition of a binomial
tree. A O-level binomial tree has only 1 node. An n-level binomial tree is constructed out of two
(n — 1)-level binomial trees by adding one edge between the roots of the two trees, and by making
either root the new root, [1, 4]. It follows from this recursive construction that:

1. An n-level binomial tree has (':) nodes at level 7.

2. The n-level binomial tree is composed of n subtrees® each of which is a binomial tree of
0,1,...,n — 1 levels respectively. The k-level subtree has 2¥ nodes.

3. An n-level binomial tree can be obtained from a k-level binomial tree, k < n, by replacing each
node of the k-level binomial tree by an (n — k)-level binomial tree. The child nodes of a node
in the k-level tree become children of the root of the replacing (n — k)-level binomial tree.

Since an n-level binomial tree can be embedded in an n-cube as a spanning tree, we call it a
Spanning Binomial Tree (SBT). Note that the number of nodes at each level 7 of the binomial tree
is equal to the number of nodes at distance 7 from a node in an n-cube.

In broadcasting M elements using a packet size of B elements, and by pipelining the com-
munication from the root towards the leaves along any log N height spanning tree, the number of
routing steps becomes [%] + log N — 1, which is not optimal. Since each node has a fanout of
log V, a lower bound for the number of routing steps is fm%lw] +log N — 1. In order to achieve
this lower bound, the data set has to be split into log N subsets, each of which is communicated
over a distinct communications link from the source node. It follows that the nodes adjacent to the
source node must be roots of subtrees spanning all but one node of the cube (the source node). The
depth of the subtrees is log N, and a tight lower bound for the number of routing steps, assuming
concurrent bi-directional communication, is [BTMgﬁ] + log N.

In sending personalized information from a single source to all other nodes, no replication of
information takes place and the total number of packets that the source must send is [&B{M]
for M elements per destination node. The number of routing steps for the Spanning Binomial
Tree algorithm (SBT) is log N if the maximum packet size is sufficiently large (NM/2); even so,
the communication bandwidth is poorly utilized since the transfer time is at least proportional to
NM/2. In the SBT, half of the nodes belong to one subtree, one quarter to another subtree, etc.

A Balanced Spanning Tree (BST) is defined in that each subtree has approximately lo—fng nodes.

The data transfer on any link is limited to approximately %M . The BST algorithm potentially
offers a speed-up of log N over the SBT algorithm in sending personalized information from a single
source to all other nodes. In fact, lower bound algorithms for broadcasting from every node to every

2In particular, a Hamiltonian Path is also a spanning tree.
3In this paper “subtree” refers to “subtree of the root” unless stated otherwise.
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other node and sending personalized data from every node to every other node on a Boolean cube
can be attained by using N BST’s rooted at each node concurrently. See [8] for details.

In section 2 we introduce the notation and some definitions used throughout the paper. Sec-
tion 3 considers broadcasting from a single source to all other nodes, and section 4, personalized
communication from a single source to all other nodes. Experimental results on the Intel {PSC/d7
are presented in section 5.

2. Notation and Definitions

In the following, N denotes the number of nodes in the Boolean n-cube and n = log, N the
dimension of the cube. Nodes in the cube are assigned binary addresses such that adjacent nodes
differ in precisely one bit. Address bits are numbered from 0 through n — 1 with the lowest order
bit being bit 0. Node ¢ is the node that has a binary address equal to 1, i.e., 1 = (ap-1an-2...a0).
Let @ be the bit-wise exclusive-or operation. The j** port of a node 7 connects to the node k that
differs from 1 in the j* bit, i.e., ¢ & k = (00...01,0...0). There is a port for each address bit, and
ports are numbered from O through n — 1. Let |i| denote the number of bits with value one in the
binary number ¢; hence |¢ @ j| denotes the Hamming distance between the binary numbers ¢ and j.

Let ¢ = (ap-1an-2...ap). Define R to be the right rotation function, i.e.,

R(l) = (aoan_lan-g . .al)

and R = R’"! o R to mean a right rotation of j steps. The rotation of a graph with binary
node addresses is accomplished by applying the same rotation function to all its addresses. This
is similarly the case for the translation of a graph. Clearly, adjacency is preserved under rotation
and translation. The period of a binary number ¢, P;, is the least j such that ¢ = Rj(i). For
example, the period of (011011) is 3. A binary number is cyclic if its period is less than its length;
otherwise it is non-cyclic. A relative address of nodc ¢ in a spanning tree rooted at node sis i®s. A
cyclic node is a node with cyclic relative address.* If one binary number can be derived by rotating
another binary number, then they are in the same generator set G (or necklace [14]). For example,
(001001), (010010) and (100100) are in the same generator set. The number of elements in the
generator set G; of 7 is P;. '

In the graph model of the Boolean cube there is a node (vertex) for each node (processor with
local memory) of the cube, and a pair of directed edges for each pair of nodes that differ in precisely
one bit. The directed edges between a pair of nodes form a communication link. A source node, or
a root node, is a node that only has edges directed away from it. A sink node, or a leaf node, only
has edges directed to it. Nodes that are neither source (root) nor sink (leaf) nodes are internal
nodes. The root of a tree is at level 0 and traversing the edge away from the root increases the
level by one. The height of a tree is equal to the label of the last level. The MSBT and BST are
constructed out of n subtrees labelled O through n — 1 (from left to right in the Figures of this
paper).

The communication is assumed to be packet switched. M denotes the number of elements to
be received by a node, t. the transfer time for an element, and 7 the start-up time for the com-
munication of a packet of maximum B elements. With concurrent bi-directional communication
we assume that a pair of adjacent nodes can exchange a pair of messages during the same commu-
nication step, or cycle. In a port-oriented routing algorithm, all information to be communicated
over a port is sent before any communication is performed on any other port. In packet-oriented
communication, a piece of information corresponding to a packet is communicated on all ports
before a second packet is sent on any port.

4 A cyclic node is defined in terms of a spanning tree.
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Figure 1: A spanning tree in a 4-cube

3. Broadcasting

In this section, we will describe and compare routing algorithms for broadcasting based on a
Spanning Binomial Tree (SBT) and Multiple Spanning Binomial Trees (MSBT). We first define the
SBT and MSBT topologies, then state the communication complexity of the routing algorithms for
the two topologies, assuming communication on only one port at a time (which, effectively, is the
case with the Intel 7PSC), and on all log N ports concurrently.

3.1. Spanning Binomial Trees

The familiar spanning tree rooted at node 0 of a Boolean n-cube contains the edges that
connect a node ¢ with the subset of its neighbors having addresses obtained by complementing
any bit of leading zeroes of the binary encoding of 1, [5, 11, 15, 17, 18]. For an arbitrary source
node s the spanning tree is simply translated by a bit-wise exclusive-or operation on all addresses
with the address of the source node; i.e., ¢ = ¢ @ s is formed. Complementation of those bits of i
that correspond to the leading zeroes of ¢ defines the edges of the translated spanning tree. More
precisely, let s = (sp_180-2...50), ¢ = (@n-10n-2...a0), and ¢ = (cn-16n-2...c0), where ¢, = 8, D ap,.
Let ¢y = 1 and ¢y = 0,Vm > k with k = —1 for ¢ = 0, i.e., k is the highest order bit of ¢ that
is 1. Let children(i,s) be the set of child nodes of node ¢ in the SBT rooted at node s and
Mspr(i®s)={k+1,...,n—1}. Then,

childrenspr(i,s) ={(an-1an-2 .. T .. .ao0)},
Vm e MSBT(i <) s)
In implementing the routing algorithm for the SBT topology it is also convenient to introduce

the inverse function, i.e., a function that for each node defines its parent. Let parent(i,s) be the
parent of node 7 in the spanning tree rooted at node s. Then

parentspr(i,s) = { ¢, =85

(@n-1Gn-2...Tk...a0), 1 #s.
It is easy to verify that the parent and children functions are consistent. Figure 1 shows a

spanning tree generated by the children (or parent) function for the root located at node 0 in a
4-cube.




3.2. Multiple Spanning Binomial Trees

The Multiple Spanning Binomial Trees (MSBT) graph can be viewed as being composed of
log N SBT’s with one tree rooted at each of the nodes adjacent to the source node. The SBT’s are
rotated such that the source node of the MSBT graph is in the smallest subtree of each SBT. The
MSBT graph is then obtained by reversing the edges from the roots of the SBT’s to the source node.
After the edge reversal each SBT becomes an ERSBT (Edge Reversed Spanning Binomial Tree).
The MSBT graph is not a tree. The diameter of the MSBT graph is log N + 1, since the source node
is adjacent to all the roots of the SBT’s used in the definition of the MSBT graph, and each SBT is
of height log N. The total number of edges in the log N SBT’s is (N — 1) log N, which is log NV less
than the total number of directed edges in the cube. Hence, if the log N SBT’s are edge-disjoint,
then all edges are used, except the edges directed from the roots of the SBT’s towards the source
node. The SBT’s used for the construction of the MSBT graph can be obtained by translation and
rotation of the SBT defined before. We refer to the SBT rooted at node (00...01;0...0) as the
7' SBT of the MSBT graph. The j'* ERSBT is obtained from the 7** SBT by reversing the edge
directed to node O (the source).

Let ¢ = (@n-1Gn-2...a0) and k be such that ax = 1, and am = 0,Vm € MurrsBT(i,7) where
Murspr(i,7) = {(k+ 1) mod n, (k+ 2) mod n,...,(j — 1) mod n}. Hence, k is the first bit to the
right of bit j, cyclically, which is equal to one, if k # j. For the special case of i = 0 we define
k = —1. For the 5" ERSBT of the MSBT graph with source node 0, the set of child nodes, and
the parent node, of node 7 are defined as follows:

(G,,._la,,_.g...aj...ao), itk = —-1;
{(a,,_la,,_g...am...ao)},
Vm e Myspr(i,5) U5}, ifa;j =1,k #5;
{(a,,_lan-g...am...ao)},
Vm € Mumspr(i,7), ifa; =1, k = j;
6, if a; = 0,k # —1.
6, if k= —1;
paT67ltMSBT(i,j,0) = { (a,,,_la,,..g..,&'j...ao), if a; = O,k ;é -1
(a,,_la,,_g...ﬁk...ag), ifaj =1.

childrenprspr(i,7,0) =

All nodes with bit j equal to zero are leaf nodes of the j*» ERSBT, except node 0. Conversly,
all nodes with a; = I are internal nodes of the j'» ERSBT. Figure 2 shows an MSBT graph with
source node O in a 3-cube.

It can be shown that the log N directed ERSBT’s are edge-disjoint and the height of the MSBT
graph is minimal among all possible configurations of log N edge-disjoint spanning trees[8].

For an arbitrary source node s an MSBT graph is defined by translating the MSBT graph
rooted at node 0. The only difference in the definition of the parent and children functions is
that k is determined from ¢ = i @& s. Hence, for a source node s, k is such that ¢z = 1, and
em = 0,Ym € MarspT(1 @ s,7). For the special case of c =0, k = —1.
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Figure 2: Three edge-disjoint directed spanning trees in a
3-cube.

(a,,_la,,_g...a‘j...ao), ifk=-1;
{(a,,_lan_g...am...ao)},
Vm e Mmspr(i @ s,7) U{5}, ifej=1,k+#j;

childrenMSBT(i,j, s) = {(an—lan-—2-~am ...ao) }’

Vm € Mamspr(i @ s,5), ife;=1,k=7;
é, ifej=0,k#-1.
o, ifk=-1;
parentrrspr(i,7,8) =1 (n-10n-2...Tj...a0), if c; =0,k # —1;

(@n-1Gn-2...Tk...a0), ifc; = 1.

3.3. Communication Complexity of SBT- and MSBT-based Broadcasting

3.3.1. Spanning Binomial Trees

With the communication restricted to one port at a time the data is first sent to the node
that is the root of the largest subtree. Since the binomial tree is composed of two (n — 1)-level
binomial trees, the broadcasting operation is now reduced to the broadcasting of data in two same-
sized, disjoint, subtrees of the cube. The process is repeated log N times and the complexity is
T= [%] (7+ Bt.)log N. Clearly Bop; = M and Tpip = log N(1 + Mt,). The data transfer time is
independent of the packet size, but the number of start-ups decreases.

With a capability of concurrent communication on all ports, pipelining can be employed exten-
sively. The propagation time to the node farthest away from the source is at least log N(7 + Bt,).
When this node has received all packets the broadcasting is terminated. Hence, T = (f%] +

log N — 1)(7 + Bt.), Bopr = \/U(%ﬁ’ and Tpin = (VMt. + \/7(log N — 1))2. The commu-
nication complexity estimates for the SBT are also given in [17] and are included here for easy
reference.

3.3.2. Multiple Spanning Binomial Trees
We consider the cases with communication restricted to one send or one receive operation at a
time, one send and one receive operation concurrently, and concurrent communication on all ports.

6



The minimum number of routing steps to broadcast log N packets is 2log N with communication
restricted to one send and one receive operation at a time. To realize this lower bound it is required
that a routing algorithm be found that allows concurrent communication within all subtrees without
violating the constraint on concurrent communication. We describe such a routing algorithm in
terms of labelling the MSBT graph with the least label being 0. A valid labelling for the restriction
of one receive and one send operation concurrently (per node) and allowing pipelining every log N
cycles, requires that the following three conditions be satisfied:

1. For any node of each subtree the least label on the output edges is greater than the label on
the input edge.

2. For any cube node the labels on its input edges are distinct modulo log N. (If there is more
than one packet per subtree then the root can send out a new packet to every subtree every
log N cycles.)

3. For any cube node the labels on the output edges are distinct modulo log V.

Let 1 = (@n-1an-2...a0) and f(¢,7) be the label of the input edge of node i in the j*# subtree for

an MSBT graph with source node s. Let c=i@® s, ¢k =1 and ¢y = 0,Vm € Myspr(t @ s,7). If
¢ =0 then k = —1. Define

o, if k= -1,
o _ ) i+n, ifei=0,k# -1,
F59) = 9%, if ¢; = 1,k > j;
k+n, ifc;=1k<y.

It can be proved that function f satisfies these three conditions[8]. From the labelling scheme,
the largest label of all the input edges is 2n— 1, i.e., broadcasting the first log NV packets (one packet
per subtree) can be done in 2log N steps. The MSBT graph allows M elements to be broadcast in
[%—] + log N routing steps under the constraint of one receive operation concurrent with one send
operation. This is a strict lower bound for % > 1(8]. Figure 3 shows an MSBT graph for a 3-cube
labelled by the function f defined above.

000
0 f 2
001 01 100
1 2 2/ \3 3 4
011 101 110 11 101 110
NN N T
111 , 11 S ARt b . )
3 010 100 , 100 001 5I 001 o010
. ' .
110 101 011

Figure 3: Routing in a MSBT graph with communication on
one port at a time.

For communication restricted to one send or one receive operation per node, we can transform
each previously defined cycle into two cycles. Notice that in the previous routing algorithm, all
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Algorithm lsorr lsandr all ports
HP N-1 N-1 N-1
SBT log N log N log N

TCBT 2log N — 2 2logN -2 log N
MSBT 3logN -1 2log N log N +1
Table 1: Propagation delays.
Algorithm lsorr lsandr all ports
HP 2 1 1
SBT log N log N 1
TCBT 3 2 1
MSBT 2 1 1/log N

Table 2: Number of cycles per distinct packet.

the communication links are used in only one direction during the first n routing steps, and in the
last routing step. Hence the MSBT graph allows M elements to be broadcast in 2[ %] +logN -1
routing steps under the constraint of at most one receive or one send operation during each step.
This is a strict lower bound for 4 > 1[8].

With a maximum packet size of B and one receive operation concurrent with a send operation
the communication complexity for MSBT-based broadcasting is T = (] %] +log N)(7+ Bt.), which

is minimized for Boy = ‘/K%;TW‘ Tmin = (VMt, + \/7log N )2. Restricting the communication

to one send or one receive operation at a time, T = (2[4£] + log N — 1)(7 + Bt.) and Tpin =
(V2Mt. + /7(log N — 1))2.

For the case in which communication on all ports can take place concurrently the communi-
cation complexity is T = ([FT%T] + log N)(7 + Bt.). With optimal packet size B,y = ﬁ\ / A—fc—’—,

Tmin = (\/ 1of% + V/Tlog V)2,

3.4. Comparison and Conclusion

In the following, we also compare the MSBT algorithm with the one based on a Two-rooted
Complete Binary Tree (TCBT) [2, 3] or a Hamiltonian Path (HP) as a broadcasting tree respec-
tively. Table 1 shows the propagation delay of various algorithms. Interestingly, broadcasting
through a Hamiltonian Path on a hypercube may be faster than broadcasting based on the SBT or
even the TCBT, depending on the values of M, t., 7 and N. With communication on all the ports
concurrently, the MSBT-based algorithm can send out log N distinct packets every cycle while
the SBT- and TCBT-based algorithms can only send out one distinct packet every cycle. Table 2
compares the number of cycles per distinct packet for various algorithms. Some variations exist,
such as using two Hamiltonian paths with opposite directions sending distinct data, or using one
Hamiltonian path such that the source node is at the center of the path. However, these variations
only affect (either increase or decrease) delays, and the number of cycles per packet, by at most a
factor of two.

The complexity estimates are summarized in Table 3. A potential for concurrent communica-
tion on all ports reduces the number of sequential start-ups and the bandwidth requirement by a
factor of approximately log NV for an arbitrary packet size in both SBT- and MSBT-based broad-
casting. TCBT-based broadcasting does not fully utilize the bandwidth of a cube. The reduction
in communication complexity for concurrent communication on all ports is a factor of 2 or 3. Op-
timizing the packet size for each situation brings the number of start-ups to O(log N), irrespective

8




Algorithm T Bopt Tonin

HP,1sorr 2[%]1+ N - 3)(r + Btc) 'mz%f)t—c (V2Mt, + /(N = 3)1)?
HP,1s& r (%) + N - 3)(= + Btc) VT (VMZ + /(N = 3)7)?
SBT, 1 port [%]log N(r + Bt.) M log N(Mt, + 1)

SBT, log N ports ([%] + log N — 1)(7 + Bt,) \/‘(‘EE%!.{TTC (vVMt, + \/r(log N - 1))?
TCBT, 1 sor r (3[%] + 2log N - 5)(r + Bt,) oo | (V3ME + /7(21og N - 5))?
TCBT, 1s& r 2([3] + log N - 2)(r + Bt,) \/n—;,!_—z,,- 2(\/Mt, + \/T(log N — 2))?

TCBT, log N ports ([%] + log N = 1)(r + Bt.) \/Ulo}g%; (vMt; + \/r(log N - 1))?
MSBT, 1sor r (2[%] + log N — 1)(r + Bt,) \/m%\’%ﬁ (v2Mt, + \/t(log N — 1))2
MSBT,1s& r ([%] + log N)(r + Bt,) iy (VM + /T Iog N)?

MSBT, log N ports ([ﬁg—N] + log N)(r + Bt,.) TEgIT At{-l (\/i%iﬁ + /7log N)?

Table 3: Communication complexity based on various graphs.

Communication Algorithm one %— > log N B = By, B = By,
Assumption packet Tlog N > Mt, Tlog N <« Mt,
1 send or recv SBT/MSBT T llogN 1 jlogN
1 send or recv TCBT/MSBT 2110‘:;—% 1.5 2 1.5
1 send and recv SBT/MSBT ]J;’LN]:_I- log N 1 log N
1 send and recv TCBT/MSBT S 2 2 2
all ports SBT,TCBT/MSBT kT logN 1 log N

Table 4: Communication complexity compared to the MSBT

routing.

of whether communication on one port or log N ports at a time is possible.

The MSBT-based broadcasting always offers a reduction in the bandwidth requirement for
individual communication links by a factor of approximately log NV over SBT-based broadcasting.
With communication on all ports concurrently, the MSBT-based broadcasting has a communication
complexity that is lower than that of TCBT-based broadcasting by a factor of log N. Even with
communication only on one port at a time, MSBT-based broadcasting still is faster than TCBT-

based broadcasting by a factor of 1.5 or 2. The communication complexities of broadcasting based
on the SBT and the TCBT are compared with that based on the MSBT in Table 4.5

4. Personalized Communication

In personalized communication no replication of information takes place during distribution,
nor is there any reduction during the reverse operation. In broadcasting, the bandwidth require-
ment grows with the distance ¢ from the source node precisely as the number of nodes grow. In
personalized communication the bandwidth requirement instead decreases in proportion to the
number of nodes less than or equal to distance z from the source. The root is the “bottleneck”
in personalized communication. In this section we define a pruning strategy for the MSBT graph

5 Notice that the entry for the last column and the last row in the table is based on the assumption that B = Bopt, 7 log? N €«
Mt..




that generates a balanced spanning tree (BST) of height log N. If concurrent communication on
all log N ports (of the root) is possible, then a lower bound for the transmission time is 10—13VWM te,
and a lower bound for the number of start-ups is log N. The BST makes possible personalized
communication in a time corresponding to this lower bound.

4.1. A Balanced Spanning Tree

In the SBT topology a node 7 belongs to the j** subtree iff a;j =1,ar =0, k < j. In the
MSBT graph a node is an internal node of the j** ERSBT if a;j = 1. Bit 5 can be considered as a
base for the j'* subtree. For the BST we define the base as follows:

Let J; = {j1,2,---,Jm}, Where ji < j2 < ...jm, R%({) = R'(i), wu,v € J;, and R*(i) <
R(i), wed, lgJ. |J= n/P; where P; is the period of i. Then base(i) = j; and node ¢
is assigned to subtree ji, i.e., the value of the base equals the minimum number of right rotations
such that the rotated number has a minimum value among all the rotated values.® For example,
base((011010)) = 3 and base((110110)) = 1. The period of (011010) is 6 and the period of (110110)
is 3. For ease of notation we omit the subscript on j in the following. For the definition of the
parent and children functions we first find the position k of the first bit cyclically to the right of
bit j that is equal to 1, i.e., ax = 1, and am = 0,Ym € Mupspr(i,5), (k = 7, if every bit but Jis
0). For i =0, k = —1. Then '

@, if 1 =0;
(@n-1@y-2...8k...ap), otherwise.

{(an-18n-2...Tm...a0) },Ym € {0,1,...,n — 1}, ifi=0;
ch’ildrenBST(i,O) =14 {gm = (a,,_lan_g...am...ao)},
Vm € Maspr(i,7) and base(gm) = base(?), if i # 0.

The parentpst function preserves the base, since for any node ¢ with base j, ax is the highest
order bit of R’(i). Complementing this bit cannot change the base. It is also readily seen that the
parentpst and childrenggt functions are consistent. '

Figure 4 shows the spanning tree generated by the algorithm above for the root located at
node O in a 5-cube.

For an arbitrary source node s we translate the BST rooted at node 0 to node s by performing
for each node the bit-wise exclusive-or function of its address and the address of the source node.
The base of a node is determined from ¢ = i@ s, and the children and parent functions are readily
modified. '

Let Jis = {j1,52-- s Jm}, Where j1 < j2 < ...jm, R¥(c) = R(c), wu,v € Ji,s, and R¥%(c) <
Rl(c), ue Jis, | & Jis. Then base(c) = j;. Then k is defined by ¢t = 1 and ¢, = 0,Vm €
MMSBT(i@S,j) with k= —-1if ¢=0.

parentpst(1,0) = {

@, if c=0;
(@n-1an-2...8k...ap), otherwise.
{(an-1an-2...8m...a0)},Ym € {0,1,...,n — 1}, ifc=0;
{gm = (an-10n-2...8m...a0) },

Ym € Muyspr(i @ s,7)

and base(gm @ s) = base(i @ s), ifc#0.

Lemma 4.1. The number of nodes in a subtree is of order O(F]gv—,—\,-).

parentpst(i,s) = {

childrenpsr(i,s) =

Proof. With A cyclic nodes there are at least (N — A)/log N nodes in a subtree. Denoting the
number of generator sets for cyclic nodes by B it follows that the maximum number of nodes in

8 The notion of base is similar to the idea of distinguished node used in [14] in that base = O distinguishes a node from a
generator set (necklace).
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00001 00010 00100 01000 10000
00011 00110 01100 11009 1000
00101 01010 10100 01001 10010
0011 0111Q 1110Q 11001 1001
01011 10110 01101 11010 10101
01111
11110 11101 11011 10111
11111
Base 0 1 2 3 4

Figure 4: A balanced spanning tree in a 5-cube.

a subtree is (N — A)/log N + B — 1. To derive bounds on A we use the complex plane diagram
used by Hoey and Leiserson [9] in studying the shuffle-exchange network. Leighton[14] shows that
B =0O(VN)

Full necklaces, i.e., non-cyclic nodes, are mapped to circles. Degenerate necklaces, i.e., cyclic
nodes, are mapped to the origin. In the context of the shuffle-exchange graph each node that is
mapped to the origin of the complex plane is adjacent (via an exchange edge) to a node at position
(1,0) or (—1,0). Hence, for every full necklace of log N nodes there are at most 2 cyclic nodes.
Node 0 is adjacent to a node of a full necklace, and so is node N — 1 (for log N > 2). It follows
that an upper bound on A is 2];7_:—110‘—";1{;, and the number of nodes in a subtree is at least #\EZ—N
The relative difference in the number of nodes in the maximum and minimum subtrees approaches
0 for N — oo.

Table 5 gives the sizes of the maximum subtrees generated according to the definition of the
BST for up to 20-dimensional cubes. The relative difference approaches 0 rapidly. The last column
contains the ratio of BST(max) to (N — 1)/log N.

Some properties of the BST are listed below. For detailed proofs see [8].

1. The height of one subtree is log V, and the height of all other subtrees is log N — 1.
2. The maximum fanout of any node at level ¢ in a BST is [lgs_él—_t] for 1< i< logN.

3. Let ¢(i,7) be the number of nodes at distance j from node ¢ in the subtree rooted at node 2.
Then, é(i,7) > ¢(k,j) where node k is a child of node 1.7

4. Excluding node ¢ @ s = (11...1), all the subtrees of the BST are isomorphic if log IV is a prime
number.
5. Subtrees P to log N — 1 contain no cyclic nodes with period P.

6. Any cyclic node is a leaf node of the BST.

7This property is required in deriving the communication complexity for the BST routing.
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n BST(max) (N-1)/log N | ratio
2 2 1.50 1.33
3 3 2.33 1.29
4 5 3.75 1.33
5 7 6.20 1.13
6 13 10.50 1.24
7 19 18.14 1.05
8 35 31.88 1.10
9 59 56.78 1.04
10 107 102.30 1.05
11 187 186.09 1.00
12 351 341.25 1.03
13 631 630.08 1.00
14 1181 1170.21 1.01
15 2191 2184.47 1.00
16 4115 4095.94 1.00
17 7711 7710.06 1.00
18 14601 14563.50 1.00
19 27595 27594.05 1.00
20 52487 52428.75 1.00

Table 5: A Comparison of maximum subtree sizes of the
Balanced Spanning Tree and values of (N — 1)/log V.

4.2. The Complexity of Personalized Communication Based on the SBT and BST Topologies

4.2.1. Spanning Binomial Trees
For SBT-based distribution restricted to communication on one port at a time, the communica-

tion complexity for a maximum packet size of Bis T ~ (N —1)Mt.+7(NM/B+log [£1-1), M<
B < NM/2, which is minimized for B = NM/2 yielding T = (N — 1)Mt, + rlog N. For B < M,
T ~ (NM/B — 1)(Bt. + 7). There exist several algorithms of this complexity. One such algorithm
sends the cumulative data for the largest subtree to the root of this subtree first. Both nodes then

recursively execute the same algorithm in their own (n — 1)-subcube.

Lemma 4.2. In distributing data from the root in a level-by-level order starting from level log N,
the time to complete the distribution is determined by the root, which terminates the distribution -
in a time proportional to the lower bound for a sufficiently large packet size.

Proof. With potential concurrent communication on log N ports, the root can send data for level
log N — ¢ during step ¢, 0 <1 <logN — 1, assuming a sufficiently large packet size. The amount
of data sent from the root during step 7 to the largest subtree is (l°g I,V 'I)M . The amount of data
sent during the same step from the node at level 5 to its largest subtree, which is the largest subtree
at that level, is (°6771"7) M, where 1 < j < log N — 1. Since (°6¥~1) > (08N-1-4) forall 4,5 > 1,
and any other subtree rooted at level j is isomorphic to a subgraph of the h'gilest subtree rooted
at level j, the transfer time is determined by the transfer time of the root. For a sufficiently large
packet size, i.e., B > ('ﬁ,i’z,‘v’:,‘)M ~ 75%37, Toin = -;-NMtc + log Nr.

|

With a potential for concurrent communication on log N ports, a reduction in the transfer time
by a factor of 2 is possible compared to communication on one port at a time. We conclude that
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Algorithm Tonin
SBT, 1 port (N -1)Mt, +logN7
SBT, log N ports N/2Mt, + log N7
TCBT, 1 port < (2N —2log N — 1)Mt. + (2log N — 2)r
TCBT, logN port (SN —1)Mt.+logN7
BST, 1 port < N(1+ 3E$5)Mi. + (2log N — 2)r
BST, log N ports ~ (N —1)/log NMt, + log Nt
Table 6: Communication complexity of personalized commu-
nication.

for SBT-based algorithms the packet size is of greater importance than concurrent communication
on all ports.

4.2.2. Balanced Spanning Trees

With BST-based personalized communication restricted to one port at a time the root can send
data to the subtrees cyclically. With a maximum packet size B > M, data for several nodes can be
merged into one packet. The receiving node has sufficient time to retransmit pieces on all its ports,
should that be required, since a new packet only arrives every log N cycles. The root requires a time

of T ~ N';; M (r+ Bt.)log N, which, if the data to the most remote nodes is transmitted first, is also

the time to completion. For B= M, T = (N-1)(r+Mt.),i.e.,thesame as in the SBT algorithm.
For B > %NM the root of the BST need only perform one communication per subtree, and it
completes the communication in a time of T = 7log N+ (N —1)M¢,. But, unlike the SBT algorithm,
the communication is not terminated when the root is done. The message to the last visited subtree
needs to traverse log N — 2 communication links. The bandwidth requirement of each subtree can
be shown to be ~ %ﬁ [8]. An upper bound on the time for personalized communication

based on the BST with unbounded packet size is T = (2log N — 2)7 + N(1 + 2—lf;)ggl—‘;\,gﬂ)Mtc. The
number of start-ups is almost twice that of the SBT-based personalized communication, and the
total transfer time is higher by a lower order term. The time for personalized communication based
on the BST is minimized for B > %NJ\I.

With a potential for communication on log N ports at a time, the time for personalized

communication based on the BST topology is T =~ %—;‘—)NM(T + Bt;) for- B < M and T ~
Zng[("’g.N)BlﬁéN](r + Bjt.), B; = min(B, [(l°g.N)m%lgW]) for B > M. This complexity es-

i=1 i i

timate is valid if data for nodes at distance 7 are sent during step logN —¢, 1 < ¢ < logN. If
B =M then T ~ T]gE-Wl(T + Mt.). The communication time is minimized for B > @gﬁM by

using a level-by-level algorithm as in lemma 4.2. By property 3. of the BST, it follows that the
amount of data sent from the root to any subtree during step ¢ is no less than the amount of data
sent from any node during the same step. Hence, Ty = 7log N+ ggﬁM tc, the minimum possible.

4.3. Comparison and Conclusion

With communication on one port at a time, if the fixed maximum packet size B < M holds,
then the complexity of SBT- and BST-based personalized communication is the same. For B > M,
the SBT-based routing algorithm yields a lower complexity than the BST-based routing. For a
sufficiently large maximum packet size the SBT-based algorithm has log N start-ups compared to
2log N — 2 start-ups for the BST-based algorithm. The transmission times are comparable, though
the transmission time for the BST routing is higher. Note that, as in broadcasting, the minimum
number of start-ups can be accomplished for sufficiently large maximum packet size.

With concurrent communication on log N ports the number of start-ups and the transmission
time of BST-based routing is lower than that for the SBT by a factor of %log N for a maximum
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packet size B < M. With a sufficiently large packet size all routings yield a minimum of log N
start-ups, but the BST routing has a total transmission time that is lower than that of SBT by
a factor of 1 3 log N. Moreover, it is achieved at a maximum packet size of —T,—M compared

to a maximum packet size of —=—==L———M for the SBT routing. We conclude that if commu-
/27 (log N-1)

nication can be performed on all log'N ports concurrently, the communication complexity of the
BST routing may be lower by a factor of %logN compared to the SBT routing. Table 6 lists the
communication complexity for optimal packet size. The timing for TCBT routing is also included
for easy comparison. See [8] for detailed analysis.

5. Experimental Results

5.1. Single Source Broadcasting Based on the SBT and MSBT

The Intel iPSC has a maximum packet size of 1k bytes. We refer to this packet size as the
internal packet size and the user defined packet size as the ezternal packet size. Figure 5 shows the
measured time to completion of a broadcasting operation based on the SBT topology for cubes of
various dimensions and a number of different external packet sizes. As expected, the communication
time increases almost linearly for external packet sizes below 1k bytes. Figure 6 shows the measured
time of SBT- and MSBT-based broadcastmg for a message of 60k bytes with each packet being 1k
bytes and for cube dimensions ranging from 2 to 6. Figure 7 shows the speed-up of broadcasting
based on the MSBT topology over the SBT topology. The measured speed-up is approximately
log N, as predicted.

SBT (Broadcasting)

Time (in ms)

- " N NS |
10* 10*

Mﬂ"\nn‘:‘-(:ﬂ-ubu\e?-m

Figure 5: Broadcasting using SBT.

5.2. Single Source Personalized Communication

In implementing the SBT routing on the Intel {PSC, the root processes the data in descendmg
order starting with the relative address N — 1. This order implies that data is transmitted over
ports in an order corresponding to the transition sequence in a binary-reflected Gray code[16].
Hence, port O is used every other cycle, port 1 every fourth cycle, etc. Internal nodes retransmit a
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SBT and MSBT (Broadcasting)
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Figure 6: Broadcésting using SBT and MSBT.

Speed—up of MSBT over SBT
1 N T M T

Speed—up

Figure 7: Speedup of MSBT vs SBT.

message on a port chosen from among the ones that correspond to the leading zeroes in its relative
address. The choice is made according to a binary-reflected Gray code on the leading zeroes.

For the implementation of the BST-based algorithm the routing order needs to be determined
for each subtree of the root. Excluding cyclic nodes, the subtrees are isomorphic. The root only
needs to keep one table of length ~ ﬁvw with each entry of size log N bits. The order of the
entries corresponds to the transmission order for each port. The table entry points to the messages
transmitted over port 0. The pointers for the other ports are simply obtained by (right) cyclic
shifts of the table entries. The cyclic nodes can be handled by finding the period P for each cyclic
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table entry, and not transmitting the message corresponding to this table entry for ports with index
Jj=P. '

For each subtree a depth-first or a reversed breadth-first order are viable transmission orders.
With reversed breadth-first order we mean a breadth-first traversal of the subtree starting from the
last level (log N — 1 or log N — 2 depending on subtree). The source node determines the order, and
internal nodes can either route according to the destination address if it is included, or by the use
of tables. If tables are used, then in the case of depth-first communication order it suffices for each
internal node to keep a count for each port. Since the number of ports used in each subtree is at
most liéLN, and the number of nodes in the entire subtree is approximately rfzva a bound on the

table size in each node is log? N bits. A breadth-first communication order can be implemented by
internal nodes keeping a table of how many nodes there are at a given level in each of its subtrees.
The table has at most log? N entries. An upper bound for the number of nodes in a subtree at
any level is l—(;;%q, and the total table size in a node is approximately log® N bits. Hence, without

a more sophisticated encoding the depth-first communication order is more effective with respect
to table space. The measurements presented in Figure 8 are based on an implementation using a
depth first order.

BST and SBT (Personalized Communication)
v = - T - -

250 -

200 —

Time (in ms)
Y
o
o
T

100 -

60 -

Cube Dimension
message size = 1 K bytes per node
Figure 8: personalized Communication using BST and SBT.

With communication on one port at a time the expected time for personalized communication
based on the SBT topology or the BST topology is the same. The observed advantage of the BST-
over the SBT-based communication is due to the fact that the BST can take better advantage of the
overlap between communication on different ports. In the SBT case, the node with relative address
(00...01) is not yet finished retransmitting the last packet received when a new packet arrives. In
the BST a subtree receives a packet once every log N cycles, and full advantage of the 20% overlap
in communications actions is taken.

6. Conclusion

We have shown that the Boolean n-cube topology allows for the embedding of n edge-disjoint
binomial trees, and we presented routing algorithms for broadcasting that have a complexity equal
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to the lower bound both for communication restricted to one port at a time and for concurrent
communication on all n ports of a node. We have also defined a balanced spanning tree for
personalized communication. Each subtree of the balanced spanning tree we have defined has
approximately l‘olg'YT\T nodes. For communication on one port at a time, personalized communication
based on the balanced spanning tree has the same complexity as personalized communication based
on a binomial tree for certain maximum packet sizes, and has at most a factor of 2 higher complexity
in other cases. With concurrent communication on all ports, the routing based on the balanced
spanning tree is superior by a factor of %logN for a variety of combinations of maximum packet
sizes, start-up times, transfer rates, and data sizes.
Experimental results on the Intel :{PSC/d7 confirm the results of the analysis.
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