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Abstract. Sets of tridiagonal systems occur in many applications. Fast Poisson solvers and
Alternate Direction Methods make use of tridiagonal system solvers. Network based multi-
processors provide a cost effective alternative to traditional supercomputer architectures. We
investigate the complexity of concurrent algorithms for the solution of multiple tridiagonal sys-
tems on Boolean cube configured multiprocessors with distributed memory. Variations of odd-
even cyclic reduction, parallel cyclic reduction, and algorithms making use of data transposition
with or without substructuring and local elimination, or pipelined elimination are considered. A
simple performance model is used for algorithm comparison, and the validity of the model is ver-
ified on an Intel iPSC/1. For many combinations of machine and system parameters. pipelined
elimination. or equation transposition with or without substructuring is optimum. We present
hybrid algorithms that at any stage choose the best algorithm among the considered ones for
the remainder of the problem.

It is shown that the optimum partitioning of a set of independent tridiagonal systems among
a set of processors yields the embarrassingly parallel case. If the systems originate from a lattice
and solutions are computed in alternating directions. then to first order the aspect ratio of a
computational lattice shall be the same as that of the lattice forming the base for the equations.

Our experiments demonstrate the importance of combining in the communication svstem
for architectures with a relatively high communications start-up time.

Key words. tridiagonal systems, Boolean cubes, pipelined Gaussian elimination, transposi-
tion, substructuring, balanced cyclic redcution
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1 Introduction

Tridiagonal systems of equations occur in many methods used for the solution of partial differ-
ential equations. In the Alternating Direction Method (ADM), tridiagonal matrices arise from
one-directional central difference approximations of partial derivatives. In so called fast Poisson
solvers an FFT in one dimension decouples the system into a number of independent tridiag-
onal systems. Tridiagonal systems are also used as preconditioners for the conjugate gradient
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method.

In parallel architectures with distributed memory, the communication is a critical issue with
respect to performance, in particular, if the number of processors approaches the number of
unknowns [24,22,23,3,10,20]. The communication time for a given computation on a given
architecture depends on the data allocation to the distributed memory, the choice of numerical
algorithm, and the communication algorithms. These issues are the focal points of this work.
The target architectures have processors interconnected as a Boolean n-cube, which has N =
2" nodes. Onme- and multi-dimensional lattices can be embedded in Boolean cubes with one
array node per cube node preserving adjacency by a binary-reflected Gray code [21.17]. This
embedding uses all cube nodes when the lattice sides are powers of two. For other side lengths
other embeddings may be more effective [6,2]. In our analysis the time for the communication
of one byte between a pair of processors is denoted t., the time for the communication overhead
(start-up) is denoted 7, the time for an arithmetic operation t,, and the maximum packet size
imposed by a limited buffer size B,,,. Moreover, we assume that communication can take place
only on one port per processor at a time, one-port communication. The time for the solution of
the systems of equations is denoted Toiy(P,Q; N,to,t.. 7, Bp), where alg identifies the algorithm,
the first argument is the size (P) of a tridiagonal system and the second the number of svstems
(Q). The third parameter is the number of Boolean cube processors to which the P X Q equations
are allocated. When necessary, other parameters may be added or omitted.

For the solution of a single tridiagonal system we consider:

® Substructuring followed by odd-even cyclic reduction, CR, [1] for the reduced system. as
described in [17,12].

e Substructuring followed by parallel cyclic reduction, PCR [8].

o The gathering of the equations to 2"~ processors by i steps of a data transposition algo-
rithm such that each processor holds 7’;’72‘ equations, followed by two-way elimination. and
a final phase in which the results are distributed to the set of processors originally holding
the equations; algorithm TGET(7) for i-step data gathering by Transposition, Gaussian
elimination, and i-step data scattering by Transposition. With substructuring algorithm
TGET(¢) becomes algorithm SS/TGET(3).

o The broadcasting of equations from every node to every other node within i-dimensional
subcubes such that the system is evenly distributed across 2"—* processors and there
are 2 copies of the same system. No distribution of the solution is needed between the
(n—1)-dimensional subcubes. With substructuring, algorithm BCGE(:) becomes algorithm
SS/BCGE(1).

* A set of hybrid algorithms obtained by combining substructuring, odd-even cyclic reduc-
tion, and the TGET(7) algorithm.

The first transpose operation in TGET(¢) is a gather operation, and the second a scatter
operation. We refer to both as transpose operations since each gather, or scatter, operation
is equivalent to a vector transpose. Furthermore, in the case of multiple tridiagonal svstems
the multiple gather, or scatter, operations are transpose operations. In the TGET(¢) algorithm
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only two processors are used for the elimination. The purpose of the transpose operation is
to reduce the number of communication start-ups compared to a direct two-way elimination.
The reduction is accomplished by using a transpose algorithm that requires 7 steps in moving
the equations to an (n — i)-cube. With one-port communication a doubling algorithm such
as a spanning binomial tree algorithm is optimal [16]. The data transfer time increases for
every step of the transpose algorithm, and is proportional to ﬁ(? — 1) for P equations and a
spanning binomial tree algorithm. In the case of concurrent communication on all ports of every
processor. n-port communication, the data transfer time can be reduced by a factor of 7 by using
communication according to balanced trees [16,7]. Depending upon the ratio of the data transfer
time to the start-up time there may exist a non-trivial, optimum value of i. '

Cyclic reduction algorithms make use of many processors for the elimination, and vields a
lower. parallel. arithmetic complexity for N > 16 (see Table 1). But the lower bound for the
number of start-ups for a vector transposition is approximately half of the minimum number
of start-ups for odd-even cyclic reduction with communications restricted to one send or one
receive operation at a time. A lower bound of n start-ups for the transposition is shown in [14].
Though the number of start-ups for cyclic reduction is higher in the case of unlimited buffer
sizes, it has a lower data transfer time than the transpose algorithm. and possibly also fewer
start-ups in the case of buffers of limited size. These different characteristics give rise to some
interesting optimization problems that we investigate in the context of hybrid algorithms.

For the solution of multiple tridiagonal systems we consider:

o Pipelined two-way Gaussian elimination.

o Gathering of equations and separation of systems into subcubes by equation transposition.
solution of systems by pipelined two-way Gaussian elimination, and scattering of the solu-
tion. This algorithm is the multiple systems version of algorithms TGET(¢). With initial
substructuring, it becomes SS/TGET(3).

e Substructuring followed by Balanced Cyclic Reduction [13] for the reduced system solver.
SS/BCR.

e Combinations of the above three algorithms.

We have verified our analytical complexity models on a medium scale, parallel architecture:
the Intel iPSC/1. A binary-reflected Gray code was used for the data mapping. The Intel iPSC/1
effectively only supports one send or one receive operation per processor at a time, and most of
our complexity estimates are specialized to this case. Because of the high copying time on the
Intel iPSC/1 there exists a packet size B, < B, above which it is beneficial to send data directly
rather than combining several packets into one, in order to minimize the number of start-ups
[14]. For the system software available at the time of the experiments B, = 256 ~ 7/t., bytes.
where the time for copying one byte is tcp- The copy time is sufficiently large to affect the choice
of algorithm. The start-up time for communication is also significant on the Intel iPSC/1. and
we demonstrate the effectiveness of message combining in order to reduce the communications
overhead.




2 Solving a Single Tridiagonal System on an n-Cube

We assume that the equations are assigned to processors by dividing the system into blocks.
or by applying incomplete nested dissection [4] and suitably associating separator nodes with
adjacent partitions. The partitioned tridiagonal system of equations has the following form:
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The horizontal lines indicate the partitioning/ substructuring. For each partition we apply Gauss-
Jordan elimination as described in [12,25]. One communication is needed for the first and the
last equations in each partition. By a suitable allocation of matrix coefficients to processors it

is not necessary to transfer an entire equation, and some element transfers [18] can be saved.
The execution time is approximately

Tss(P.1; N, tg, t.,7) = 17 ([%} - 1) ta+2(16t.+ 1)+ 2(4t. + 7), B > 16, (1)

where it is assumed that a processor can perform one send or one receive operation at a time,
that the system is real, and that floating-point numbers are represented by 4 bytes (single-
precision). The form of the system after the substructured elimination is shown below. Note
that the elimination of the last block is done in reversed order such that the reduced system
formed by the last equation of each block, but the last, is of order 2" — 1.
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2.1 Cyclic Reduction (CR)

Odd-even cyclic reduction requires 17 operations per unknown, the same as substructured Gaus-
sian elimination. Substructuring is always preferable with odd-even cyclic reduction, since only
four communications are needed for the substructuring with one send or one receive at a time.

In [12,13] an ezchange algorithm, and an in-place algorithm are proposed for the solution
of tridiagonal systems distributed with one equation per processor in a Boolean n-cube. In the
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Figure 1: One forward elimination step of CR-1 and CR-2 algorithms on a 3-cube.

ezchange algorithm the active set of equations are recursively moved into an easily identified
subcube of one less dimension for each elimination step. Communication is needed for both
the elimination step (Figure 1-(a)) and the reallocation to the subcubes (Figure 1-(b)). The
reallocation can be performed with only one communication, such that with communication
restricted to one send or receive operation at a time, 3(n — 1) communications suffice for the
elimination and the reallocation. The same number of communications is required in the back
substitution phase. We refer to this algorithm as SS/CR-1. Note that in Figure 1-(a), the
processor holding equation 3(%) needs to store the equation received from the preceding processor
(2(9)) to avoid using O(n) memory per processor. The number of communications per step can
be reduced from three to two at the expense of O(n) memory per processor, instead of constant
memory. By performing a partial elimination (Figure 1-(c)), then moving the equation subject
to elimination to the processor for the next elimination step, and completing the elimination
there (Figure 1-(d)), one communication is saved. A total of 4(n — 1) communications are
needed. This algorithm is called SS/CR-2. For the in-place algorithm, SS/CR-IR, we simply
use the routing software of the Intel iPSC.

The time to solve a single tridiagonal system of P = 2" — 1 real equations on an n-cube by
the SS/CR-2 algorithm [12,13] is given by

Tcpr-2(N = 1,1; N, t5,t.,7) = (logN — 2)(16t, + 2(16 + 4)t. + 2 x 27) (2)
+ (144 3)t. +2(16 + 4)tc + 2 x 27, B > 16.

For P > N substructuring is applied and the estimated time is given by

TSS/CR-?(Pa 1; N-.ta-,tc',T) = TSS(Pa 1; N, g, 1., T) + TCR-2(*N - 1,1; N, ta,t., 7). (3)

In Equation (2) we assume that the division normally carried out in the back substitution
phase is performed concurrently for all equations after the elimination phase. With real coef-
ficients. one right hand side, and one processor per equation, a time of 3t, is required. The
arithmetic complexity can be reduced to 11 [13] sequential operations per step (instead of 16)
without an increase in the communication complexity by dividing the arithmetic operations for
the elimination and backsubstitution phases among pairs of processors. A further reduction to
9 operations is possible at the expense of additional communication. For complex coefficients
the number of arithmetic operations per step is 82, 47, and 43, respectively [11]. The techniques
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for lower parallel arithmetic complexity are not applicable to the case of multiple tridiagonal
systems. The complexity estimates in this paper apply to algorithms using 16 arithmetic oper-
ations in sequence for each equation, and a compatible communication scheme. The predicted
and measured times agree well for the Intel iPSC/1 [15].

2.2 Parallel Cyclic Reduction (PCR)

Parallel Cyclic Reduction [8] performs an elimination on every equation in every step. With one
equation per processor all processors are active throughout the computation, which completes
in n steps. After each step the problem is transformed such that the number of equations per
tridiagonal system is halved, and the number of systems doubled.

x x x x x x
X x x x x x x
X x x x x x x x
X X x x x x x x
X X x = x x x =1 x x
X X x x x x x x
X x x x x x x
x x x x x x

No backsubstitution is needed. The total arithmetic complexity of the PCR algorithm is
12n2", the parallel complexity 12n. Substructuring is always preferable. The total number of
messages is 2n2" — 2n + 1, and the number of parallel communications in sequence 4n (two
exchanges) with one send or one receive operation at a time. During step j, 0 < j < n. the
ith row of the reduced system exchanges its data with the (i — 27)th and the (i + 29)th rows
(ifi—=22>0,andi+2 < P - 1). With a binary-reflected Gray code encoding ¢ and 7 + 2/
are at most a distance two apart in the cube [12]. In implementing the SS/PCR algorithm on
a Boolean cube, we can:

1. Perform an exchange operation after each step of PCR to move each subset of equa-
tions into the same subcube, such that communications for the next step remains nearest-
neighbor for each subset, with no interference between communication for different subsets.
This is algorithm SS/PCR-1.

- 2. Combine exchange communications with communications for elimination, as in the SS/CR-
2 algorithm, and arrive at a SS/PCR-2 algorithm.

3. Decompose and combine the two distance-two sends and receives into three exchanges.
i.e., six “nearest-neighbor” sends or receives. This is algorithm SS/PCR-3.

4. Use a static allocation and the routing logic, SS/PCR-IR.

In SS/PCR-1, 6n — 2 start-ups are required. In the SS/PCR-2 algorithm the number of
start-ups is reduced to 4n by splitting the elimination on the row into two parts; one equation
is received and the associated elimination performed, then the partially modified row is sent
to the “after-exchanged” processor, and the elimination completed using the row in the new
processor. The allocation of equations to processors is changed. The solution variables are




allocated according to binary code encoding of the indices. To move the solution of the reduced
system back to the corresponding partition a binary code to Gray code conversion is required.
Such a conversion requires 2n — 2 start-ups [9]. The total number of start-ups is 8n — 4 for
SS/PCR-1 and 6n — 2 for SS/PCR-2. In the SS/PCR-3 algorithm, the distance-two sends or
receives are decomposed into two “nearest-neighbor” corhmunications performed concurrently
for all nodes such that there is no edge conflict [9]. Moreover, since the data sent to both
distance-two neighbors in each SS/PCR step are the same, and the two paths to the distance-
two neighbors can be arranged such that they share the first edge, the number of start-ups can
be reduced from 8n — 4 to 6n — 2, i.e., the same as for the SS/PCR-2 algorithm. Note that the
SS/PCR-3 algorithm is an in-place algorithm and therefore does not require the binary code to
Gray code conversion at the end. In the SS/PCR-IR algorithm the communication time depends
entirely on the routing logic. A routing discipline, like the one used in the Intel iPSC, that routes
the dimensions that need to be routed in increasing order yields a conflict-free routing for the
SS/PCR-IR algorithm [12].

For the analysis we use the following estimated time for PCR-2 (and PCR-3)
Tpcr-23(N,1; N 1o, 1., 7) = log N(12t, + 6 x 16, + 67)—2(16t. + 1), B, >16, (4)
and for the substructured version

TSS/PCR-?B(-P, 1; AT, ta,tc, T) = TSS(P# 1; Na ta, e, T) + TPCR-2,3(1V) 1; Na ta, tc, T)' (5)

The predicted times for algorithms PCR-3 and PCR-IR are significantly lower than the
measured times, and also significantly higher than the measured times for the odd-even cyclic
reduction algorithms [15]. We attribute the difference between the measured and predicted times
for the PCR algorithms to synchronization delays. The PCR algorithm is not of interest for
multiple systems per processor due to its higher arithmetic complexity compared to odd-even
cyclic reduction.

2.3 Equation Transposition and Gaussian Elimination.

Conventional Gaussian elimination only requires 8 operations per unknown, but substructured
elimination requires 17 operations per unknown. Two-way elimination allows two processors
to be used for the same tridiagonal system (almost) without an increase in total arithmetic
complexity. With respect to arithmetic complexity substructuring shall be used if N > 177. Note
that the start-up time of TGET(n — 2) is the same as that of TGET(n — 1) in the event of
one start-up per communication (unbounded buffers). When the equations are gathered by a
doubling algorithm, such as a spanning binomial tree algorithm [5], the number of communication
start-ups is reduced compared to a direct two-way elimination for a sufficiently large buffer size.
After gathering the equations by an i-step transpose algorithm the equations are allocated in an
(n — 7)-dimensional subcube with }%2‘ equations per processor, if no substructuring was applied
injtially; otherwise there are 2' equations per processor. After the i steps of equation gathering
the set of equations can either be solved by two-way elimination, or by substructuring followed
by the solution of a system with 27— — 1 equations distributed with one equation per processor
in an (n — %)-cube.




The time for ¢ steps of equation gathering and i steps of scattering of the solution from an
(n — t)-cube to an n-cube is

i-1 : ;
. 16P x 2]  [4Px P
T,bt(P, 1; N, t., T, Bm,t) = JZ_-(:) ([W] + [—BTN——]) T+ 20N(2 - l)tc. (6)

We refer to the algorithm that performs “i steps of gathering, two-way elimination for the
solution of the systems of equations, and i-steps of scattering of the solutions” as a TGET(i)
algorithm. However, for an optimum combination of substructuring and Gaussian elimination
the choice of continuing the gathering of equations, or solving the system by two-way elimination.
or performing a substructuring operation should be reevaluated for each step. We consider such
algorithms in the section about hybrid algorithms. Let Ty6E(P,1; N,t,,t.,7) be the time for
two-way Gaussian elimination performed on P equations distributed across N > 1 processors.
Then,

T26E(P,1; N, ta,te, 7) = (4P = 2)t, + N7 + (8N + 8)t.. (

-~
~

In this expression it is assumed that both processors involved in the elimination of the
“middle” 2 x 2 system solve for one variable after an exchange of the coupling equations. It is
possible to save two element transfers at the expense of an increased arithmetic complexity of
two operations by having one processor send one equation to the other, which upon the solution
of a 2 x 2 system returns one of the solution variables.

For P> N =4, T2GE(P9 1:4,1,,t., T) < Tss(P, 1§4»ta»tc»7‘) + T2GE(4, 1;4,1,,t:, 7). Hence.
with P equations spread across four processors, substructuring should never be applied. Two-
way Gaussian elimination has a processor efficiency of 50% with 8 floating-point operations per
equation. whereas substructuring has 100% efficiency, but requires 17 floating-point operations
per equation. Furthermore, two-way Gaussian elimination has the same communication time

regardless of the number of equations per processor. Substructuring needs an additional time
of 47 + 40t,.

The gathering of equations to a subset of processors, all-to-one personalized communication
[16] in subcubes, can either be carried out by a send operation using the general router of the
Intel iPSC/1, or by a user coded spanning binomial tree algorithm with combining (which is
optimal for one-port communication [5]). The router also uses a binomial tree routing, but does
not perform message combining. For the scatter operation, one-to-all personalized communica-
tion, there is the additional possibility of a one-to-all broadcasting of the entire solution vector.
More data than necessary is communicated, no splitting of packets are required, and many ar-
chitectures have efficient implementations of data broadcast. In order to evaluate the different
algorithms for gathering and scattering equations on the Intel iPSC/1 we implemented:

e All-to-one personalized communication using the router (no combining) followed by router
broadcast.

e All-to-one personalized communication with combining and one-to-all personalized com-
munication with splitting, both based on the spanning binomial tree routing (16].
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Figure 2: Measured values of T1GET(n)(N,1; N, 14,1, T) using routing with combining (-cc). the
routing logic of the Intel iPSC/1 (no combining), and broadcasting (-sb), and combining and
broadcasting (-cb).

® All-to-one personalized communication with combining followed by router broadcast.

We implemented three different communication algorithms for the SS/ TGET(n) algorithm.
The measured times compare as shown in Figure 2. The substructuring part is the same for all
alternatives and is not included. We refer to the three communication algorithms with the postfix
-sb, -cc, and -cb. The measured times for the SS/TGET(n)-sb algorithm increase exponentially
due to the lack of message combining. The implementation using combining and broadcasting
is more efficient than the implementation using combining for both phases of the transposition.
The latter is about 10% slower than the former. The arithmetic times are less than 50% of the
total times for cubes of less than 5 dimensions. Since the number of communications in the
case of an unlimited buffer size increases linearly with the number of dimensions of the cube.
but the data volume and arithmetic time increases exponentially, the time for data transfer and
arithmetic will eventually dominate the total time as the number of cube dimensions increases.
With a limited package size, the number of start-ups will eventually also increase exponentially
in the number of cube dimensions.

2.4 Broadcasting and Concurrent Two-way Gaussian Elimination.

In the TGET(:) algorithm, only one (n — i)-dimensional subcube is active. It is possible to
avoid distributing the results of the two-way elimination to the processors storing the equations.
if all processors send their equation(s) to every other processor, all-to-all broadcasting [16]. If
the broadcasting from every processor is restricted to an i-cube, then the original problem is
transformed into solving 2! identical systems in 2 independent (n—1)-cubes. In each subcube it is
sufficient to solve for 2"~ variables. No communication of the components of the solution vector
between subcubes is necessary. (If i = n then backsubstitution can be avoided entirely by making
the forward elimination terminate at the appropriate equation.) The algorithm can be used with
or without a substructuring phase, called SS/BCGE(i) and BCGE(7), respectively. With one




send or one receive operation at a time, the communication complexity of the broadcasting phase
of the BCGE(:) algorithm is twice that of the gathering of equations in algorithm TGET(:).
The parallel arithmetic complexity of algorithm BCGE(4) is the same as that of TGET(¢). The
estimated execution times without any intermediate substructuring and two-way elimination for
the equations are

P . .
TBCGE(:')(P' 1: N,t,,t., 7, B, i) = (3237—(2' -1+ on—i+3 + 8) t. B,, > 12 (8)

i=1 ]
Z 16P x 27 ;
2 ( { N,;m ] + 271—1—1) T+ (4P - 2)t,.

Jj=0
Tss/pcGE(i)(P.1i N ta te, 7, Bm, i) = Tss(P,1; N, tg, 1., 7) + TecGE)(N,1; N, to,te, 7, Bppi). (9)

The measured times are somewhat lower than the predicted times [15] for algorithm BCGE(n—
1) assuming one send or receive operation at a time. A 20% overlap between send and receive
operations explains the difference between the predicted and measured times. Such an overlap
has been observed also in other experiments. Note that if the communication time for one ex-
change operation is twice that of one send or one receive operation, then algorithm BCGE({) is
always inferior to algorithm TGET(z). However, if send and receive operations can be performed
concurrently, then the BCGE(%) algorithm is of lower complexity than the TGET(7) algorithm.

The BCGE(3) algorithm is of sequential complexity O(2'P). With multiple tridiagonal sys-
tems distributed with one equation per processor, and each processor having one equation of

every system, the arithmetic complexity of algorithm BCGE(7) makes it clearly inferior to algo-
rithm TGET(z).

2.5 Hybrid Algorithms

The parallel arithmetic complexity of algorithm TGET(:) is higher than that of the CR algo-
rithms, while the former requires less start-ups than the latter algorithm in the case of unbounded
communication buffers. The data transfer times for the CR algorithms are lower than the data
transfer time for algorithm TGET(i). These characteristics motivate the consideration of hybrid
algorithms. Let Tiiq( P, 1; N, to,tc, T, B,,) be the total time required to solve a single system of
P equations in an N processor cube for given to, t., 7 and Bp,. Assume that P is a power of
two, P> N > 4 and B,, > 16. Then, T;4(P,1; N, tastey Ty Bp) <

( Toge(P.1:4,t,.t0,7), fN =4,
min{Ty6e(N,1; N, t4,tc,T),

Tot(N 1 Nyteom, Br) + Teria(N, 1; ¥ o, 10,7, Bpy),
{ Ter(tarter™) + Toria( ¥, 15 ¥ 10, te, 7, B)), ifP=N,
min{Tce(P,1; N, t,,t.,T),

Tobt(P,1; Nyte, ™, Bm) + Tiria( P, 1; X tg e 7, By),

Tss(P.1; N, ta,te,7) + Toria(N, 1; N, 10, 16,7, Bp)},  otherwise,
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where Tyge(P,1; N,t,,t.,7) = (4P - 2)t, + N7+ (8N + 8)t.,

P
TSS(Ps 1; Nv ta, te, T) = 17(F - l)ta +4r + 40tc,
16P 4P 20P
- N - —1
Tspt(P,1; N,t., 7, By) <[Bm1\'] + [Ble>T+ N o and
16t, + 47 + 401..

Tcr(ta e, T)

Toot(P.1: N.t.. 7. B,) is the time for gathering of 7’;’; equations per processor in N processors
to %{; equations per processor in % processors, and scattering %{i components of the solution
vector in each of % processors to i components of the solution vector in each of N processors.
Ter(ta.te.7) = Tep-2(N,1; N, to,t.,7) — TCR-g(%, 1; %,ta,tc,r) is the time for one-step cyclic
reduction using algorithm CR-2. Note that in an N processor cube, only n — 1 steps is required
for SS/CR algorithm to solve for a single system as seen from equations (2) and (3). Since
the “one-step saving” does not generalize to the multiple systems case, we ignore the possible
one-step saving for CR algorithm. For the solution of P equations on N = 4 Pprocessors two-
way Gaussian elimination yields the lowest complexity of the algorithms we consider. Hence.
Tiria(P, 154,18, 7, By,) = ToGe(P,1;4,t,,t.,7). For N equations on N > 4 processors we
consider:

e Two-way Gaussian elimination,

o One-step gathering of equations followed by the solution of a system of N equations evenlv
N

distributed over 5 processors,
o One-step cyclic reduction followed by the solution of a system of —;— equations on % pro-
Cessors.

For the solution of P > N equations on N > 4 processors we consider:

e Two-way Gaussian elimination,

® One-step gathering of equations followed by the solution of a system of P equations on %
processors,

e Substructuring followed by the solution of a system of N equations on N processors.

Note that partial substructuring, i.e., reduction to more than one equation per processor, is
in general not preferable with respect to performance. The “total” and “partial” substructurings
require the same number of communication start-ups, and the only disadvantage of substruc-
turing compared to the TGET(:) algorithm is the start-up time for N > 4. (The time for
arithmetic operations for substructuring and for the TGET(n - 1) algorithm compares as 17{\3
to 4P, approximately.)

Figure 3 shows the calling sequencies. The label on an edge of the graph is the expression for
the time required to traverse that edge, with the arguments for the number of systems (which is
one) and the parameters t,,t., T and B,, omitted. The argument of Ty, and Tss in the figure is

%. The direct solution of P equations on N Processors is not represented in the figure. The cvclic
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Figure 3: The calling sequencies.

reduction (or parallel cyclic reduction) algorithm is represented by the edges on the diagonal.
For each node on the diagonal there is one equation per processor. Applying the TGET(:)
algorithm implies a vertical motion to level fr = 2'. Substructuring implies a horizontal motion
to the node on the diagonal. Figures 4 and 5 show the optimal calling sequencies (among the
considered algorithms) for various ratios of ¢, /t. and 7/t., and B,, (with the maximum required
buffer size specified). The “o” sign denotes the two-way Gaussian elimination algorithm in the
figures.

2.6 Summary of Algorithms for the Solution of Single Tridiagonal Systems

Table 1 summarizes the complexities of the individual algorithms. Memory requirements are
expressed in units of 4 elements of 4 bytes each (real systems, single precision). Some measured
and predicted times for the solution of a single tridiagonal system on an Intel iPSC/1 are
given in Figure 6. The measured values of the machine parameters are approximately: t, =
30 psec, t. = 10 usec and 7 = 2 msec. The predicted execution times agree within 20% with
the measurements, except for the PCR algorithm. The measured times for this algorithm are
considerably higher than the predicted times. For the Intel iPSC/1 the predicted (and by far
the measured) times for the PCR algorithm are always higher than those of any of the CR
algorithms described here. With respect to performance, odd-even cyclic reduction is always
preferable to parallel cyclic reduction on the Intel iPSC /1.

The complexity of algorithm SS/TGET(n — 2) is always lower than that of algorithm
SS/TGET(n — 1), if N > 4. If one exchange operation takes the same time as one send or
receive operation, then algorithm SS/BCGE(:) is always of lower complexity than algorithm
SS/TGET(i). With respect to arithmetic time, the break-even point between the algorithms
TGET(7) and SS/TGET(:) (for i < n)is at N = 14—7, independent of P; substructuring should
always be performed, except for N = 2 or 4. With respect to data transfer time, algorithm
SS/TGET(n - 2) is of lower complexity than algorithm TGET(n—-2),if P> N > 16. If N = 8
the break-even point is P = 24. For N = 4 algorithm TGET(n—2) is always of lower complexity
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Figure 4: The optimal calling sequencies are shown for to/tc =10, 7/t. = 1000 and (a) B,, = 16
bytes, (b) B, = 32 bytes and (c¢) B,, > 256 bytes, respectively. In (d), the optimal calling
sequencies for ¢, /t. = 1, 7/t. = 1000 and B,, > 1024 bytes are shown.

than algorithm SS/TGET(n — 2). With respect to start-up time, an algorithm with substruc-
turing requires four more start-ups than the corresponding algorithm without substructuring.
assuming unlimited buffer size. However, for limited buffer size. the start-up time asymptotically
becomes proportional to the data transfer time.

For the hybrid algorithms we conclude:
e With increasing maximum buffer size the boundary between the regions for gathering and

substructuring moves in a direction implying more steps of gathering instead of substruc-
turing. For a very small buffer size cyclic reduction should be used.

e Increasing the significance of the arithmetic time implies a growing region for substructur-
ing. and cyclic reduction.

o Increasing the data transfer time implies a growing region for substructuring, and cvclic
reduction.
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Figure 5: The optimal calling sequencies for t,/t. = 0.01, 7/tc =1 and B,, > 16 bytes.

For complex systems the number of real arithmetic operations increases faster than the data
volume. Hence. the communication contributes a smaller fraction to the total execution time
for a complex system than a real system. See (15] for measured and predicted execution times
on the Intel iPSC/1. :

3 Multiple Tridiagonal Systems

With complete freedom of distributing the systems of equations the obvious choice is to allocate
all equations of a single system to the same processor. Then, the systems can be solved locally by
Gaussian elimination. No communication is required and the number of arithmetic operations
is the minimum of the methods considered here. The solution is trivially parallel.

If the tridiagonal systems arise in connection with the solution of some form of partial differ-
ential equation in two or more dimensions, then other considerations may guide the allocation
of lattice points to processors. With a one-dimensional partitioning of the lattice all tridiago-
nal systems may be allocated identically over the entire cube. This allocation of equations is
assumed in this section. We will consider two-dimensional partitionings in the next section.

It follows from our analysis (and experiments) of single system solvers that parallel cyclic
reduction and broadcasting followed by Gaussian elimination are not of interest for the multiple
systems case. Repeated application of odd-even cyclic reduction for each system results in poor
load balance. since the processor holding the middle equation is active in all reduction stages.
Balanced Cyclic Reduction (BCR) [13] balances the load by performing the reduction such that
for a set of N systems the reduction process converges to a unique processor for each system.

We consider three methods for solving multiple tridiagonal systems in this section: pipelined
Gaussian elimination. combinations of transposition of systems of equations and substructuring,
and balanced cyclic reduction. We also determine the optimum combination of these three
algorithms as a function of machine parameters, the number of systems, and the size of each
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[ Algorithm | Arithmetic | Byte transfers | Min start-ups | Memory |

TGET(n) 8P -7 20P(1- %) 2n P
TGET(i) 4P -2 20£(2° =) +2" 348 | 2n4 27— 2(n—)) £
BCGE(i) 4P -2 3252 - 1)+ 27348 | 2n 42" _ 2(n—i) Eo
SS/CR-1 17[£7 + 16n - 32 60n — 40 6n—4 £
SS/CR-2 | 17[£] +16n - 32 40n 4n £ +logXN
SS/PCR-2,3 | 17[£] +12n - 17 96n + 8 6n+2 £
SS/TGET(n) | 17[&] + 8N — 24 20N + 20 2n +4 E+N
SS/TGET() | 171 +4N =19 | 20(2° = 1)+ 2"~*+3 4 48 | 2n 4+ 2"~ — 2(n — i) + 4 £+2
SS/BCGE(i) | 17[£] +4N — 19 | 32(2 = 1)+2"""+3 4 48 | 2n+ 2"~ — 2(n — i) + 4 £+

Table 1: Complexity comparison of algorithms for single tridiagonal system.

system.

3.1 Pipelined Gaussian Elimination

In the case of two-way pipelined Gaussian elimination a processor performs forward elimination
on one system, sends the last equation of that system to the next processor, then continues
with the first equation it has of the next system, etc. The two middle processors solve for the
appropriate variables, and the backsubstitution proceeds in a fashion similar to the forward
elimination. The number of communication start-ups can be reduced by communicating the
data for several equations at once, causing a reduction in the arithmetic efficiency of the pipe
of processors. (However, blocking of equations may increase the utilization of each processor. if
the functional units of a processor are internally pipelined.)

Let ToGE-p(P,Q; N,t4,t.,7, B, 1) be the time for pipelined two-way elimination with 2
systems per packet. Then, the complexity of a pipelined two-way elimination with one system
per packet is

T2GE'p(P9 Q: va ta,ste, 7o Bm9 O) = (10)
{%(CH %7-— 1)+3Q—5}ta+ {4(Q+—J;--2)+2 [%—Q]}T-&-(SGQ+16N— 64)t..

for @ > 1. During the forward phase, the number of floating-point operations is % per system
per processor (the first and the last processors have 5 less operations). During the backward
phase. the number of floating-point operations is %{3 per system per processor. The two middle
processors have 3 more operations per system due to the fact that 6 operations are required to
solve the two by two system of the two middle processors. The first term in the expression for
the number of start-ups contains a factor of four: a factor of two is due to forward and backward
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Figure 6: Measured times (on the left) and predicted times (on the right) of the CR-2. PCR-3.
TGET(n —1)-cc and BCGE(n — 1) algorithms on the Intel iPSC/1 for matrices of real elements.
P=N(P=N-1for CR-2).

elimination, and another factor of two is due to the sending and receiving of data during the
pipelining. Four start-ups are subtracted totally for the first and the last step of the pipelining.
for both forward and backward phases. It is assumed that B,, > 12. The second term in
the expression for the number of start-ups accounts for the exchange of the 3Q floating-point
numbers between the two middle processors. It is assumed that the exchange is done for all the
Q systems together. The number of element transfers are

2-4(3+1)(Q+%——1—1)+2-4-3Q.

For 2! systems per packet, 0 < i < log, @, the complexity estimate is

. 8P . N .
Tac-5(P,Q; N, tastoy 7, Byi) = {F(Q+2'(?-—l))+3Q—5-2'}ta (11)

(155 [52]) @+ 500252}

+(56Q + 2'H4N — 2i+6)z

The number of element transfers are

2-4(3+1).2i(§+%7——1-1)+2-4-3Q.

For 2! = Q, the complexity is

T;L’GE‘P(Pv Q: ]V,ta,tc,T, Bm',logQ) = Q(4P - 2)ta + SQ(]V + l)tc (12)
N 120 N 4Q
Hig+o[5] -5}
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Note that the coefficients of 7 and t. in equation (11) does not specialize to the coefficients of 7
and {. in equation (12), because the communication changes from “send and receive” to “send or
receive”. Equation (11) specializes to equation (10) when i = 0. When N = 2 and 2 = Q. both
equations (11) and (12) degenerate to two-way elimination on two processors without pipelining.
The complexity is
12Q
Q4P - 2)ta +2 _B—— T + 24Q1..

m

The optimal value of 2! is ~ ‘/FT%ENTC assuming B,, > 12Q, and

. 8P :
T2GE'P(P~, Qi N, 1., 1., 7, B, ZOPt) = _]'V'Q'ta + 2(N - 3)T + 56Qt. + 8\/QT(Pta +4Nt,).

3.2 Equation Transposition and Substructured Elimination

If all the systems are identically distributed across the entire cube, then a transpose operation
on the data structure results in the trivially parallel case. A transpose operation on the result of
the solution to the equations may be required. This procedure is the multiple systems version of
algorithm TGET(n) (or TGET(n — 1)). The number of arithmetic operations is the same as in
the pipelined case, but there is no inefficiency in the use of arithmetic units. With Q@ mod N = 0.
all processors perform an equal amount of work in the solution process. Two-way elimination
does not offer any reduction in arithmetic complexity, unlike in the single system case.

The transposition of the set of equations gathers the equations of % systems into a single
processor (and different processors for different sets). Each step of the transposition doubles
the number of equations of a system that are present in a processor (and reduces the number
of different systems in a processor by a factor of two). It may be advantageous to perform
substructuring after every few transpose steps to reduce the data volume that needs to be
communicated.

The transposition can be performed through a sequence of exchanges in the different di-
mensions. Such an algorithm is optimal with communication restricted to one port at a time.
With concurrent communication on all ports of every processor, the communication time can
be reduced by a factor that is at most equal to the dimension of the (sub)cube in which the
systems to be gathered are allocated [16]. Since each step for @ mod N = 0 is an exchange step.
the transposition in the multiple systems case requires at least twice the number of start-ups of
the single system case. Additional start-ups may be required for a limited buffer size B,,. since
half of the data set being transposed takes part in every exchange.

The complexity of the initial substructuring is

Tss(P,Q; N.ta 1,7, Bm) = 17Q( [g] — 1)t, + 2(16 + 4)Qt. + 2( [EQ] + [ﬂ] ). (13)

B, B,
and the complexity of one gather and one scatter step of the transpose algorithm is
20QP

To(P.Q; N, t..7,B,) = N i (14)
(] 15551+ 113 551+ (18] w52)) -
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For i steps of the transpose operation starting with P equations followed by substructuring
(assuming @ mod 2* = 0) we have

P 207
Tysu(P.Qi N, to 7, By, i) + Tss(P, Q: za,tc,r,Bm)=2i([8QP]+[2Q ])r+°’—QPtc

2 NB,, NB,, N
P 1 16 4 40QP
+ 17Qﬁ(1 - E)ta +2 ([Z‘BQ ] + [Qig D T+ ———23\, t,
m m

where the first row is the transpose time, and the second row the substructuring time. If the
procedure is repeated recursively, then ]’é = 1 for all applications (since the substructuring
always reduces the number of remaining equations per processor to one per system). except
possibly for the first. In the last application it may also be the case that substructuring is
replaced by (two-way) Gaussian elimination (if N is 1 or 2).

In the above complexity expressions the time for local data movement is ignored. For some
computers, like the Intel iPSC/1 this approximation is very poor [14]. The transpose operation
implies a recursive partitioning of data sets into smaller and smaller blocks. With a high start-
up time for communication it may be desirable to form messages of several blocks to fill a
communication buffer. Accounting for the local data motion time, or many start-ups because of
many messages being smaller than By, can significantly alter the complexity of the algorithm.
With a copy time of ¢, for one byte, the copy time can be accounted for by using the following
expression.

, N oo~ {_. (a1 [ 16PQ 8PQ
Tabt(P’Qv N,t.,T, Bmstcps i) = 2J=Zl (mln (2‘7 [2JNBm T, NB, + Tcp-f (15)
' ) 1 [ 4PQ 8PQ 20:QP
J—1 e 2l
+ min (2 [QjNBm] T, []\’Bm] + T, -b)) + v t.

where T¢p-y = s—,g-o‘tcp and Tpp = Z%thp are the copy times for half of the local array for the
forward and backward phases, respectively. Note that if %};Vi > B, then no extra overhead is
required due to local data motion during transposition. For the Intel iPSC /1 the copy time for
the communications buffer of size 1k bytes is approximately equivalent to 47. Including the copy
time yields an expression of the form (1+2+4+4+---+4)r compared to (1+1+1+1+4---41)r
if the copy time is ignored, assuming 8—1;9 < By,. This difference is large enough to affect the
choice of solution method for multiple tridiagonal systems.

An alternative to the optimized transpose algorithm used for the estimates above is to use
the router. However, on the Intel iPSC/1 matrix transposition by the router software is inferior
by approximately a factor of 5 for large (relative to the packet size) matrices, and by two orders
of magnitude for small matrices, Table 2.

For the arithmetic and communication parameters of the Intel iPSC/1, the complexity esti-
mates of an n — 1 step transpose followed by two-way elimination and the same algorithm with
substructuring preceding the transpose are compared in Figure 7 for up to 5-cubes. Measured
times are given in the same figure. We conclude that substructuring is not advantageous for the
Intel iPSC/1. Note the importance of including the copy time for a good agreement between
measured and predicted times.
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cube Algorithm

P, Q | dim. | optimum | router
1024 4 1.8 sec 8.7 sec
1024 5 1.3 sec 6.9 sec
128 4 0.058 sec | 4.4 sec
128 5 0.075 sec | 9.0 sec

Table 2: Matrix transposition on the Intel iPSC/1 for one-dimensional partitioning.

(SS)/T2GET measured times, P = Q = 128 (SS)/T2GET predicted times. P = Q = 128
T T T T T T T T
+ + —— SS/T2GET * + —— SS/T2GET
4000 ~ x —— T2GET - 54000 x —— T2GET-cp -
g | 2 N o —- T2GET :
£ L - £ L .
k= =
o 2000 - o 2000 -
£ E
; F - E: o =
L
0 5 0 0
Cube dimension Cube dimension

Figure 7: The measured and predicted times for the T2GET and SS/T2GET algorithms.
T2GET-cp includes the copy time.

In the substructured as well as the non-substructured estimates above we assume that all
the data for an equation is moved in the transposition. But, in some instances it is possible to
store the system matrix pre-transposed, and only transpose the right hand side and the solution
vector.

3.3 Balanced Cyclic Reduction

The arithmetic complexity of the substructured elimination is the same as that of cyclic re-
duction. but cyclic reduction reduces the communication requirements. After the substructured
elimination each processor has one equation of each of the Q systems. In the BCR algorithm. the
reduction process for each set of 7?7 systems “converges” to a distinct processor, thereby keeping
the load on the processors balanced. For each step of the reduction phase, the Q svstems are
partitioned into successively smaller subsets by virtue of the equations on which the reduction
is performed. For instance, in the first step the set of equations is partitioned in half: in one
half elimination is performed on even equations, in the other on odd equations. By numbering
equations and systems from 0 and letting the elimination on even equations be performed for
even systems, the lowest order bit in the binary encoding of the equation and system indices
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can be used to control the communication and elimination operations. Another obvious chojce
is to perform the elimination on even equations for the first half of the systems, in which case
the highest order bit in the system index and the lowest order bit in the equation index are used
for the control in the first step. By performing the operation recursively, the control proceeds
toward higher/lower order bits.

The BCR algorithm can be implemented as an ezchange algorithm with exchanges of equa-
tions between adjacent processors between elimination steps in order to keep all equations subject
to further elimination in easily identifiable subcubes for each system. Such an exchange algo-
rithm requires 3 exchanges for each step in the reduction phase, and 3 in the backsubstitution
phase. Hence, with one send or one receive at a time, a total of approximately 12n start-ups
is required, if the buffer size B,, > 8Q bytes for real systems. The scheme is then applied
to both subcubes recursively. Notice that 4 of these 12 communications can be saved, if the
computations at each step are split into two parts — those depending on the preceding and
succeeding row respectively (as described for the CR-2 algorithm). Figure 8-(a) and (b) show
the four communication steps for one step of the BCR algorithm in the forward phase: (c) and
(d) are another alternative of the same complexity.

7OUQl  eQ)[Q] 6(02)[Q] . 7[Q"] 70Q). .. 69Q] TRl 620’
owugﬁ_;_lgaej | Oqudlulmanﬁ

o(o;[Q'J'_H;MlA(_Q) Q] 0(0).[9'] 1(°~5?{Q'"] .

. — | A : ; <~
497 - 5O Q1 | %" - A0 | s L 400[Q] 500 [Q")
— A y 2 ) - -

3(0)[Q] 2(0){Q] 2(0.5)[Q/] 3(0,5)[Qu] 3(0)[Q] 2(0)[Q] 3(°'~")[Q”] 2<°‘5)[Q']

(a) (b) () (d)
BCR algorithm: (a) + (b) Alternative BCR algorithm: (c) + (d)

Figure 8: The four communication steps for one step of BCR algorithm in the forward phase.
Q = Q'U Q" is the set of Q systems. In (a) the left subcube sends its equations of the set Q”
and receives its neighbor’s equations of the set Q'. In (b) equations 1(9[Q’], 3(9[Q’] and 5079
are sent to equations 2(°%)[Q’], 4(°5)[Q’] and 6(°5)[Q’], respectively; the communication in the
right subcube is similar.

- The estimated times for the ezchange version of the BCR and SS/BCR algorithms for Q mod
N =0 are
Q

=} (16)

o 1 2
TocR(N. Qi Ntaste, 7, Br) = 17Q(1 - - )ta + {4(16 + 4)Q(1 - ¥)+216+ )%

AR (R T s (2] [22 ) -

1=1
TSS/BCR(Pw Qa ]Va tav tcv T, Bm) = TSS(Pv Q? JV, ta.v tcs T, Bm) + TBCR(‘[V’ Qs N7 taa tc, T, Bm) (17)
For artitrary Q and P = N, the complexity of one-step BCR is

Tyer(Qitotey7,By) = 17 [2] t, + 4001, (18)

2
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Hence. the complexity of i-steps of BCR for arbitrary Q can be derived by summing the com-
plexity of each step with the first parameter being Q, [Q/2], [[Q/2]/2], etc. An alternative to
the exchange based BCR algorithm is to use an in-place algorithm. For such an algorithm we
choose to use the router of the Intel iPSC/1. The result of implementing the two versions of
BCR is shown in Figure 9. The algorithm using the router requires 50 — 100% more time for
solving the reduced systems on the Intel iPSC/1. The total time for the router based in-place
algorithm is about 30% higher than that of the algorithm using exchanges for each step in the
case of a 5-cube. For a fixed size problem the difference in the total time increases as the number
of cube dimensions increases, since the substructuring part reduces in significance.

Cube dimension Cube dimension

Figure 9: Measured and predicted times of balanced cyclic reduction (BCR) using the ezchange
and the in-place algorithms.

The predicted times for solving the reduced systems is lower than the measured times by
approximately 30 - 70 % for the 4- and 5-cubes mainly due to the synchronization delay. In fact.
an algorithm with each communication step involving all the processors tends to have a more
significant delay for a larger cube. This characteristic is often the reason why the difference
between the measured time and the predicted time increases with the cube size, Figure 9.

With concurrent communication on all ports of every processor the number of start-ups
can be reduced by a factor of two. Hence, each BCR step in the forward phase requires two
communication steps, Figure 8. This number of start-ups is minimal because in each step the
processors that need to communicate are a distance two apart. However, it is possible to reduce
the data transfer time by a factor of up to four, Figure 8, by pipelining (a) and (b). or by
overlapping the two alternatives ((a) + (b) and (c) + (d)) with each working on half of the
systems. The overlapping algorithm does not cause any increase in the number of start-ups, and
therefore is better than the pipelined algorithm.
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3.4 Hybrid Algorithms

The optimum choice of algorithm depends on machine parameters, the number of equations
per system P, and the number of systems Q. In the balanced cyclic reduction method. and
in the transpose and substructuring method, a problem is recursively changed into a number
of problems on independent. smaller subcubes. The choice of algorithm should be reevaluated
during the recursion process. The recursion can be stopped at any point by pipelined Gaussian
elimination. The optimum method is determined by the following set of equations

Tiria(P,Q; N, t,te, 7, B) <
[ ToE(P,Q: 2,101, 7, Bm), if N =2.
min {T26e(N,Q; N, ta,te, 7, Br),

Toe(N, Qi N.te,7, Bn) + Toria (N, [$] 5 ¥ tarter 7, B
\ Derl@itarte, 7, Br) + Toria (5. [$] i $otarte . B) } . i P= N,
min {Ty6e(P, Q; N, ta,te, 7, Bp),

Tot(P. Qi N.te,7. Bn) + Teria (P, [$] s ¥ o tarter 7, B

Tss(P,Q; N, to,te, 7, Bp) + Tirig(N, Q; N, to, te, 7, Bn.)}, otherwise.

where Tyge(P,Q; N,t,,t., T, B,) = 05:‘?1%:22 Q{Tgcg-p(P, Q; N,ta,t., 7, By, 1)},
Tss(P,Q; N, to,te,7,Bp) = 17Q(§ —1)t, +2 ([%%?—1 + '%%]) T + 40Qt,.
rwinaaonen = 3([SE2] [, meE,
Tyer(Qitastes 7, Bm) = 17 [%] ta+4 ([%f—i—] + [%,Q; ) T+ 40Q1..

It is assumed that Q mod 2 = 0. If this is not true, then Ty, becomes Equation (14) and
Tyer becomes Equation (18). TI36E-p(P,Q; N, ty,t., 7, B, 1) is the time for pipelined two-way
elimination with 2! systems per packet, equation (11). TygE is the time with optimal packet
size 21, ’

Figure 10 shows the general calling sequencies for Q = kN. The label on an edge of the graph
is defined as in Figure 3. The two arguments of T'ss, and T, are 7}6 and Q. The arithmetic time
of Tss. and the data transfer time of Ty. are proportional to the product of its two arguments.
Figure 11-(a) through (c) shows how the calling sequencies depend on the maximum packet size
fort, = 0.7 =1, and ¢, = 0. In the figure pipelined two-way Gaussian elimination with a
block size of Q equations and one equation are represented by “o” and “x” signs, respectively.
When B, is increased to oc, part of the region for substructuring is replaced by transposition.
Figure 11-(d) through (f) gives the optimum calling sequencies if both arithmetic time and data
transfer times are accounted for, and the communications overhead is high. Figure 12 shows the
calling sequencies for a set of parameter values for which the value of B, is irrelevant.

In the figures showing the optimum choice of algorithm assuming t., = 0 the BCR algorithm
is never used, whereas with a large value of tcp, the BCR algorithm may be preferable. as seen
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T(32,32k; 32)

‘5k;4)
5:(2)‘“‘)

T(2.2k:2) T(4,2k;2) T(8,2k;2) T(16,2k;2)  T(32,2k;2)

Figure 10: The general calling sequencies for 32> P > N and Q = kN.

from Figure 11-(e) t;, = 0 and Figure 13 ¢, = 4 (the value for the Intel iPSC/1). As B,
increases, the region for BCR extends to larger N along the P = N diagonal line.

The time for 7 steps of the BCR algorithm is

ETbc,(%;ta,tcmBm)'—' 17Q(1-—%)ta+4§([ 8Q ]+ [ 2Q ])r+80Q(1—-§;)tc, (19)

j=0 3=0 2'Bp, 2B

assuming P = N and Q mod 2° = 0. If the time for local data motion can be ignored then
i-steps of the transpose algorithm followed by substructuring is
i-1

. N N
ZOstt(As '2%; E’taatm T, Bm) + TSS(P’ '2Q'—“; Eata,tcw T, Bm) = (20)
J:

e =g {a(|5,] + [52]) 2 ([o5a]+ [F5 1)+ oo 20

In order to account for the local data motion time the first term in the coefficients for both
7 and ¢, need to be changed according to Equation (15).

Note that for i = 1 Equations (19) and (20) yield the same complexity. For i > 1 Equations
(19) and (20) have the same arithmetic complexity. For i > 1 and B,, > 8Q, the start-up time
of (19) is always higher than that of (20). The ratio is two asymptotically. For a limited buffer
size. the number of start-ups eventually compares as the data transfer times. The data transfer
time of Equation (19) is smaller than that of Equation (20), except if i = 2 and 3. Hence. with
tcp = 0 the complexity of one step of BCR is the same as that of one step transposition followed
by substructuring. The complexity of two steps (three steps) of BCR is always higher than that
of two-step (three-step) transposition followed by substructuring, independent of the maximum
buffer size. With t., = 0, BCR is never preferable over transposition and substructuring with
respect to computational complexity for @ being a multiple of N. The optimum number of
transposition steps for each substructuring depends on the values of t,, 7, t., B, and Q. With
local data motion requiring a significant time the BCR algorithm becomes competitive, especially
for relatively large maximum packet size.
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3.5 Summary of Algorithms for Solution of Multiple Systems.

From the above analysis, and the recursion formulas for optimum choice of solution method we
conclude that for multiple systems:

e Relatively high arithmetic time favors pipelined Gaussian elimination and transposition
without substructuring.

* Relatively high data transfer time favors pipelined Gaussian elimination instead of trans.
position.

® Relatively high communication start-up time favors transposition instead of pipelined
Gaussian elimination.

e The block size for pipelined Gaussian elimination tends toward all equations when the
arithmetic time is insignificant, otherwise the block size tends to be small (one equation)
to maximize the use of the processor pipeline.

¢ A smaller communications buffer tends to favor substructuring instead of transposition.

e For a fixed N, doubling the number of equations almost doubles the arithmetic time
for pipelined Gaussian elimination and leaves the communication time unchanged. With
substructuring the total arithmetic time approximately doubles, but increases relatively
somewhat more than for Gaussian elimination. The communication time is unchanged.
Increasing P for fixed N and Q favors pipelined Gaussian elimination.

¢ Doubling both N and Q for fixed P > 2N keeps the total work per processor constant. The
start-up time and data transfer times for pipelined Gaussian elimination approximately
doubles. For transposition and substructuring the data transfer time also approximately
doubles, but there are only four additional start-ups. Hence, as N increases substructuring
is favored.

e With insignificant time for local data motion the BCR algorithm is never competitive with
the transpose/substructuring algorithm with respect to computational complexity. With
a high cost for local data motion the conclusion may become the opposite because in the
BCR algorithm Q/2 active systems out of Q can be selected to be continuous independent
of the step. Increasing the maximum packet size favors the BCR algorithm more than the
transpose/substructuring algorithm as far as copy time is concerned.

e The communication time of the transpose/substructuring algorithm can be sped up by at
most a factor equal to the dimension of the subcube from which data are gathered (i for
i-step transposition) with concurrent communication on all ports of every processor. A
similar speed-up is not possible for the BCR algorithm, because of communication conflicts.

4 Two-Dimensional Decomposition

In the one-dimensional decomposition for the solution of multiple tridiagonal systems the choice
of algorithm is either trivial (embarrassingly parallel), or the analysis above should guide the
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choice of algorithm. The non-trivial case is of particular interest for two- or higher dimensional
problems, and solution methods such as fast Poisson solvers and the Alternating Direction
Method.

4.1 One Directional Solution

The one-dimensional analysis is easily generalized to the two-dimensional case by assuming
that Q/N; systems are distributed to each of N, separate subcubes consisting of N, Processors
each, where N; x Ny = N. The allocation of partitions to processors within each subcube is
made by a binary-reflected Gray code. The time for the solution of the systems of equations is
given by Tiia( P. ,%;Nl.ta,zc,r, B.), where N = Ny x N. It is fairly easy to verifv that the
solution time is minimized if N, is maximized. The one-dimensional partitioning vielding the
“embarrassingly” parallel case is optimum.

4.2 Alternating Direction Methods (ADM)

We consider a grid of P x Q internal points, and embed it in an N; x Ng processor mesh, that in
turn is embedded in a Boolean n-cube by a two-dimensional binary-reflected Gray code. Thus.
each processor is assigned _P}vQ grid points. The two-dimensional Gray code ensures that each
row and column of the processor mesh is itself a subcube, and that adjacency is preserved for
each row and column. One ADM step consists of two half steps, each of which implies a number
of tridiagonal matrix-vector multiplications and the solution of an equal number of tridiagonal
systems. Each of the vectors in the matrix-vector multiplication represents the solution variables
along a row (column) of the computational grid. and the tridiagonal matrix the approximation
of derivatives along the same row (column). Similarly, tridiagonal systems are solved for each
row (column). The second half step is the complement of the first — one forms the matrix
vector products along the grid rows and solves tridiagonal systems along columns.

One ADM step consists of two half steps,

(I - %AtAx)ui+%

I+ %Awy)u*,
I+ -;—AtA,)u”’%.

- %Awy)u‘“

In each half step computations are performed independently on grid rows or columuns, i.e.. on
independent subcubes [18] . The matrix vector product takes a time of Sl—;gta for the arithmetic.

and requires exchanging 7% floating-point numbers with nearest (north and south) neighbors
for one of the half step. This gives a total time of

Q P Q Q [ 4Q ]
Tm P, ;AT ylas e, ’Bm =5 a ¢ ) 21
oyl N, N T ) N, Ngt +16N2t + N, B 4T (21)

for the matrix vector products of one half step. Then -% tridiagonal systems of order P each
are solved on subcubes of N; processors.
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Let Tapm(P,Q; N,ta,tc, 7, By,) be the time for one step of ADM. Then,
TADM(P9Q;N7ta9tC’T’Bm) S (22)

: Q P
ri ] slastes 7y ri rvat) ylas e, sy Bm
051081}\17:2]05]\/ {Tt d(P N2 Nl 1o, T Bm) + Tt d(Q N] Nz a tc . B )

, P
+ Tmpy(P, 2‘; Ny, ta, te, T, Bm) + Tmpy(Q, —; No,to. te, 7,y Bm)}
N2 Nl

For matrix-vector multiplication and pipelined Gaussian elimination with one system per
block, the leading term of the arithmetic complexity is independent of the shape of the processor
array. A lower order term in the arithmetic complexity for the pipelined Gaussian elimination
is optimized for N; = \/?. The number of start-ups for the matrix-vector multiplication as
well as one of the two major terms in the expression for the number of start-ups in the pipelined
Gaussian elimination are minimized at N; = \/—%. Another major term contributing to the
number of start-ups in the pipelined Gaussian elimination algorithm is minimized for N, = V.
The optimum choice of N; for the data transfer time is similar to that of start-up time. For
a transpose algorithm followed by local Gaussian elimination, the complexity is independent of
Ny (for any By,). For the SS/BCR algorithm, the arithmetic time is independent of Ny; the
start-up time is independent of N, for large B,,, and minimized at N; = BQ’X for small B,,:

the data transfer time is minimized at N; = ,/EQ’!. With this value of Ny, g = %;-, i.e., the
aspect ratio of the processor grid is the same as that of the physical grid.

o log N4log P—l - log N4log P—lo
Let Ny = U™ FH8=otR) g [, = orieaiitigfolug

1 be the two (or one) power-of-two
numbers closest to N; = \/@. Let N; be the choice of Ny and N; that yields the smallest
execution time, and let Ny, be the optimal value of N; for Equation (22) with T,,p, ignored
(most of the time is spent on the tridiagonal part). Also let N, = N/Njy and N,,,, = N/Ny,,.
Using N instead of Ny, results in an execution time that is at most 20% higher than optimum
for the set of machine parameters investigated earlier and P = Q. (The time for N1 is the same
as the time for Ny due to symmetricity.) The number of (P, N) pairs for which N, # Ny, isa
small fraction of the considered region of (P, N) pairs.

We also evaluated the non-optimality of N; for 1 < log N <logP =logQ — 4 < 20. In this
case the largest deviation in execution time from the optimal value was 50%. Again, the region
where the simplified choice results in measurable increase in execution time compared to the
optimum choice is small.

The values of log N3,,,, —log Ny, —log Ny +log N, for a few cases are shown in Figure 14. The
closer this number is to zero, the closer Ny s to Nj. The figure also shows the consequencies
of selecting an array aspect ratio as Ny x N, instead of N, opt X N2, by giving the ratio of
T = TN]ow /TN] where TNJO,,, and T}y, are the sum of the times for solving tridiagonal systems
along the two axis with N; = N1 and Ny = Ny, respectively. For Figures 14-(a) and (b).
7 2 0.86 for the considered domain. If B,, in Figures 14-(a) through (d) is reduced to 16, then
N1, = Ny for the considered domain.

Based on our examples, decreasing the maximum packet size, or increasing the data transfer
rate tend to yield Ny, = Ny.
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5 Conclusions

The execution time for multiprocessors with a packet switched communication systems and
nodes without pipelined arithmetic units can be accurately modeled by the start-up time for
a communication. the data transfer time, maximum packet size, and the time for arithmetic
operations. It may also be necessary to account for the local data motion time, as is the case
for the Intel iPSC/1.

For a single tridiagonal system, the analysis as well as the experiments on the Intel iPSC/1
show that odd-even cyclic reduction can be competitive with parallel cyclic reduction with
respect to arithmetic time, and in particular with respect to communication time. Odd-even
cyclic reduction performed considerably better than parallel cyclic reduction on the Intel iPSC/1.
A similar result has also been observed on the AMETEK system S14 [19].

For multiple tridiagonal systems of equations the domain in the parameter space in which
pipelined Gaussian elimination requires less time than the other considered algorithms is in-
creasing at the expense of substructuring with increasing time for an arithmetic operation. The
region for pipelined Gaussian elimination is increasing at the expense of transposition with or
without substructuring with an increased time for the transfer of an element between proces-
sors. A high communication start-up time favors transpose based algorithms instead of pipelined
Gaussian elimination. Reducing the size of the communications buffers favors substructuring
and pipelined Gaussian elimination instead of transposition. The choice between substructuring
and pipelined Gaussian elimination is generally a function of 7’6, except for relatively small P
and N for which pipelined Gaussian elimination is of choice. Increasing the size of individual
systems for a fixed size cube and a fixed number of systems favors pipelined Gaussian elimi-
nation. Increasing the cube size and the number of systems for systems of fixed order favors
substructuring. Balanced cyclic reduction is only of interest with a high cost for local data
motion.

For multiprocessors with the performance characteristics of the Intel iPSC/1 and with at
least 1024 processors (the Intel iPSC/1 is limited to at most 128 processors) pipelined Gaussian
elimination would be the method of choice if fy 2 128, transposition without substructuring
the choice for ﬁ < 4, and substructuring the prefered method otherwise, except for P = N
for multiprocessors with 32 - 4096 processors. In the last case, balanced cyclic reduction is the
preferred method with respect to execution time. For cubes with at most 512 processors the
choice of method is very case dependent, Figure 13.

For Alternating Direction Methods choosing the aspect ratio of the processing array as close
~ as possible to the aspect ratio of the physical domain is optimal for a large range of parameter
- values. and close to optimal for many other values.

Combining in the routing system is important for the performance of several of the algo-
rithms. The required combining is of the merge/split type.
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