In Search of a Simple Visual Vocabulary
Elisabeth Freeman and David Gelernter

YALEU/DCS/TR-10743
May, 1995

YALE UNIVERSITY
- DEPARTMENT OF COMPUTER SCIENCE

TO APPEAR (EDITED) IN: IEEE SYMPOSIUM ON VISUAL LANGUAGES, SEPTEMBER, 1995 : 1

In Search of a Simple Visual Vocabulary

Elisabeth Freeman, David Gelernter
Yale University

Abstract— Visual languages are more complez than we would
like. We introduce o small but powerful visual vocabulary for a vi-
sual programming environment that is simple, yet expressive enough
to represent the structure of programs and program ezecutions. This
vocabulary is not based on any ezisting textual language. It was de-
signed for the purpose of visually representing and understanding
programs and their ezecutions.

I. INTRODUCTION

ISUAL languages are designed to make programming

simpler by representing programming concepts visu-
ally. However, many researchers in the field concede that
visual languages are still more complex than we would like.
When the large collection of constructs that we use in tex-
tual programming is translated to a large collection of vi-
sual constructs for a visual language, textual complexity is
merely replaced with visual complexity. Additional com-
plexity arises when there is no clear relationship between
visual symbols and the concepts they represent.

Many visual languages have been inspired by the pic-
tures programmers draw when they are sketching outlines
of their programs, flowcharts, or data dependencies. Such
languages tend accordingly to visualize programs in 2D. 3D
is a more convenient drawing mode for software than pro-
grammers, and by extending the visual space to 3D, we can
reduce some of the complexity that results from the lim-
itations of 2D space; we can take advantage of the extra
dimension in representing concepts and program structure.

Few programming environments have addressed the
problem of how to represent a program and its execution in
an integrated way. Often, there is no relationship between
the representation of a program and its execution: either
the program execution is not represented at all and we are
only shown the results, or the system uses two different
visual vocabularies for source and execution. The result
in the latter case is unneeded complexity in debugging. A
visual vocabulary that can represent both programs and
executions can make it simpler to understand program be-
havior and allow debugging in the same environment in
which the program was created.

The question of what constitutes a good visual vocab-
ulary for a visual programming environment is still open.
We propose a visual vocabulary that is simple and small,
but expressive enough to represent the structure of pro-
grams and program executions. This visual vocabulary is
not based on any existing textual language; it was designed
from scratch for the purpose of visually representing and
understanding programs and their executions. The task of
constructing a visual program in this environment is un-
derstood, not in terms of the specification of expressions
to be evaluated, but in terms of arranging program ele-
ments spatially. The programmer specifies which elements

are adjacent, which are grouped together and which are
distinct, which share one lifetime and which occupy adja-
cent lifetimes. By executing a program we take a structure
in space and turn it into a structure in space-time. The
visual constructs we propose provide a way of building and
understanding both the program and its execution in an
integrated, visual environment.

In the remainder of this paper, we introduce MAP, a vi-
sual programming environment based on the ISM model[3],
and discuss its visual constructs for building programs.

II. MAP

MAP programs are built using regions. Regions are con-
tainers for basic values (like integers and strings) or expres-
sions, or they can be empty. Regions can be assembled in
two ways; into a space-map or a time-map. By assembling
regions into a space-map we specify that they are spatially
distinct and share a lifetime. By assembling regions into
a time-map we specify that they are distinct in time, but
share one living space. The way in which we assemble re-
gions determines their spatial arrangement, their execution
semantics and the lifetime during which they are active.

Figure 1 shows the three dimensional structure of maps.
Maps are defined spatially on the horizontal (x) axis, tem-
porally on the vertical (y) axis, and with depth on the z
axis for nested structures. Space-maps are collections of
regions juxtaposed on the horizontal axis; time-maps are
collections of regions juxtaposed on the vertical axis (see
figure 2). All the regions in one map are considered to be
on the same level. Maps can be nested: a region can recur-
sively contain an entire map. If a region contains another
map, the regions of the nested map are one level down from
the regions of the enclosing map (see figure 3). Regions can
be accessed by name or position; for example in figure 4,
the third region of the space-map values can be referred to
as values[2] or values.c.

The MAP visual vocabulary consists only of space-maps
and time-maps. These two constructs serve as the basic
building blocks for all program structures, from data struc-
tures such as arrays and records through local naming envi-
ronments such as blocks and functions to entire programs.

In figure 5, a record named myplan with three elements
is created with space-maps. The C code for a record that
corresponds to this structure is also shown. The first ele-
ment is an array, named spysubjects, and the other two are
basic values, named starttime and endtime. The record,
myplan, and the array, spysubjects, are both constructed
using space-maps with several regions. The only difference
between these constructs is that the record has a hetero-
geneous structure, while the array is homogeneous. In tra-
ditional languages a distinction is made between these two

2 TO APPEAR (EDITED) IN: IEEE SYMPOSIUM ON VISUAL LANGUAGES, SEPTEMBER, 1995

kinds of data structures, but in MAP they are two facets
of one structure. By simplifying the basic building blocks
and their visual representations, we simplify the resulting
program.

Figure 6 shows how a compound statement corresponds
to a time-map. The sequence of expressions that are to be
evaluated are defined with a sequence of time-map regions.

Local naming environments such as blocks and functions
are also built using maps. A function is a template space-
map that can be invoked more than once. Figure 7 shows
the function ezecuteplan defined in C and in MAP. The
function takes one argument, spyplan, defines local vari-
ables audio and video and executes a sequence of expres-
sions in the time-map runplan.

The next example, in figure 8, shows an entire MAP pro-
gram. The program spy consists of the data structure and
function we defined above, and has a top-level time-map
with several regions that contain the sequence of expres-
sions to be evaluated. Note that, like the other data struc-
tures we have discussed, a MAP program is simply a space-
map. We identify this map as the program space-map in
the rest of the paper. As a space-map, a program is a first-
class structure and can be manipulated just like any other
data structure in the language. We can pass programs,
like records, arrays, and functions, to other functions or
programs.

III. EvALUATION OF MAP PROGRAMS

Recall from the definition of space-maps that the regions
in a space-map, while spatially distinct, share one lifetime.
This means that when we evaluate a space-map, all of
its regions (and any evaluatable expressions they contain)
are evaluated concurrently. The evaluation of that space-
map yields another space-map with the same shape: a new
space-map that looks just like the old one, except each re-
gion in the result space-map contains the value yielded by
the corresponding region in the source space-map.

In practice, the semantics of evaluation could be real-
ized either synchronously or asynchronously. In the cur-
rent implementation, each region is evaluated for one step
in a synchronous sweep from left to right over the program
space-map. A step is defined as the evaluation of one ex-
pression, but could also be defined in other ways, such as
a time quantum, for example. After each region has evalu-
ated for one step, a new program space-map is created so
that each region of the program space-map is updated with
the results of the evaluation of the previous step. The eval-
uation continues with successive synchronous sweeps until
o more evaluation can take place in any region.

A space-map is evaluated using the following rules: a ba-
sic value yields itself; a simple expression yields its value; an
empty region remains empty until it is a assigned a value,
and any region referring to an empty region blocks until it
is no longer empty. MAP uses static scoping, so a template
space-map evaluates to itself, except that all free variables
have been replaced with references to the named regions.
(As a result, the behavior of closures in MAP is differ-
ent from the behavior of closures in statically scoped Lisp;

MAP provides other ways to achieve the same results.) A
time-map is evaluated sequentially; as each expression is
evaluated (with possible side effects to other regions in the
program) it disappears, leaving behind only a value (since
all program statements in MAP are expressions), then the
next time-map region is evaluated.

An example in figure 9 shows the concurrent evaluation
of a MAP program with several regions containing expres-
sions and a time-map. Note that the region 2[1] is intially
empty and is filled in with a value as a result of evaluating
the first time-map region.

The sequence of program space-maps that is created as
a MAP program is evaluated represents the execution of
the program, and is called the program history. The next
section describes in more detail how the program history
is created and visualized, and how we can use the program
history for debugging and understanding of program exe-
cution.

IV. PROGRAM HISTORIES

Traditionally, the syntax of a source program bears no
relationship to the runtime process that is the execution
of that program. This is true for textual languages, and
for most visual languages as well (a notable exception is
Pictorial Janus[7]).

In contrast, the underlying model of MAP allows the
program history to be represented using the same visual
vocabulary as the source program. As discussed earlier,
the process state is captured by forcing the evaluation of a
program to yield a sequence of intermediate space-maps en
route to the final result space-map. Any space-map in the
program history describes the program state at that step
and contains enough information to restart the computa-
tion at that point.

So, we can visualize program executions as a series of
space-maps. But a series of space-maps is itself just a
space-map — a space-map being any arrangement of re-
gions in a space of arbitrary dimension. We can manipulate
this history using the same construction, deconstruction
and evaluation rules that we use for any other data ob-
ject. A program history can be used as data for visualizing
program execution, debugging and communication. It be-
comes simple to write another MAP program that reads a
program’s execution as it evolves, or a program that looks
at a particular data region or named time-map region for
errors, or one that displays some statistics about the pro-
gram’s behavior. Manipulating the program history is no
different from manipulating any other data structure.

Viewing a program’s execution is valuable when pro-
grammers need to correct bugs, improve performance, un-
derstand algorithms, and make updates. In the MAP pro-
gramming environment, viewing and understanding the
program history is no different from understanding the
source program. Having built the source, the program-
mer knows what the shape of the program history is. The
nested structure of programs allows the programmer to vi-
sualize action at the highest abstraction level (“make all
second-level regions opaque”) or any other level. The fact

TO APPEAR (EDITED) IN: IEEE SYMPOSIUM ON VISUAL LANGUAGES, SEPTEMBER, 1995 3

that the program history is a graphical object makes it pos-
sible to rotate it for a better view or zoom in for a closer
look at the action. The graphical object together with color
will simplify certain important kinds of debugging — if we
color some column blue as soon as its value is > z, we can
tell at a glance where things went wrong. Programmers can
watch concurrency taking place, watch access patterns to
data structures, etc. The uniform visual vocabulary sim-
plifies the process of analyzing a program’s behavior and
eliminates the necessity of learning a completely new set of
commands to examine and debug a program execution.

Figure 10 shows an example of a program history. The
three dimensional source program has been projected onto
a plane, in effect squishing the time-maps; time will now
be represented in terms of the steps in the program his-
tory. In this example, we show how color can be used to
highlight a particular value; in this case, video is colored
grey when its value is greater than 100. This example also
shows how maps are used as an abstraction mechanism for
visualization; here we are not interested in seeing the entire
array spysubjects, so the array is only visible as an opaque
region.

Any step of the program history can be selected and
edited. For example, the user might want to select step 12,
change the value of video to 8, and restart the computation
from that point. Regions of the program history can be
selected by name, so that, for example, the region audio
refers to a vector; namely the vector of values over the
entire course of the computation. These values can then
be passed as a space-map to another program for analysis.

The visual representation of the program history, using
the same visual vocabulary as source programs use, illus-
trates the idea of the shape of a computation. The shape
of MAP programs and their executions is determined by
the locality and contiguity of regions. The source pro-
gram structure retains its shape while it executes; thus
the shape of the source program also imposes shape on
the program history. The shape of the program history
in turn determines the shape of the result yielded by the
program. (This “retention of shape” is one property that
distinguishes the model we describe from dataflow, graph
reduction and other models in which the source program
may also be represented as a structure in space.)

Saving intermediate state for visualization and debug-
ging has long posed a problem in the development of de-
bugging systems. A program history is potentially gigantic.
From a practical standpoint, it is important that the user
be allowed to vary the granularity of the program history
depending on how much data he needs, and is willing to
spend the time and storage space to save. In the current
implementation, the synchronous sweep method of evalua-
tion allows recreation of steps, so intermediate steps that
are not initially saved can be regenerated. The step size
can be adjusted so that, instead of only one expression eval-
uation occurring at each step, 10 or 100 expressions can be
evaluated.

It is important to note, however, that while we want a
system that we can run on today’s systems with our current

storage capabilities, we also know that in principle, storage
is cheap and easily expandable. Finding innovative uses
for large amounts of storage is part of the exploration and
development of new systems.

V. IMPLEMENTATION

The graphical interface for building MAP programs has
been developed with the three dimensional structure of
maps in mind. MAP programs are constructed using a 3D
editor built with Open InventorT™ . Open Inventor is an
object-oriented tool kit for developing interactive, three di-
mensional graphics applications. The main window, shown
in figure 11, is the work space in which programs are con-
structed. The icons on the top left side of the window are
used for adding space-maps, time-maps and text, naming
regions and executing programs. The other icons are used
for fine tuning navigation and views, and for selecting the
construction mode in which programs are created.

Programs are constructed by adding regions to the work
space. Regions are represented by cubes, so maps with
nested regions are visualized by nesting cubes within cubes.
A basic value, expression, or collection of expressions is
entered into a region as text, and names of regions are
displayed as text in the top left corner of the region. The
name and text of any region can be edited using a 2D
text window that pops up when a region is selected and
the name or text icon is chosen. Figure 12 shows the spy
program with MAP interface.

When we evaluate a program, the program history is
displayed in the work space, so that the user can access
each step to view the intermediate values and results in
any region of the program.

MAP represents a compromise between the advantages
of having visual representations for programming concepts
and the chore of having to use visual representations when
it’s easier just to type. The visual vocabulary is not de-
signed to represent expressions or control structures, but
rather to represent program structure. The goal is not
to eliminate text but to embed it in an integrated visual
framework.

Although teaching programming is one focus of this re-
search, the problem of scaling-up visual programming en-
vironments to accommodate “real programs” is one that
many researchers are investigating([1]) and is addressed in
the development of MAP as well.

MAP includes two techniques to aid in the visualiza-
tion and understanding of large programs. First, as we
discussed earlier, it is possible to suppress the detail of
structures whenever we want, so that only the outermost
structure of a particular module or array is visible. Second,
we use the technique of folding: large horizontal structures
such as arrays (or whole programs) are folded by arranging
groups of regions on the z axis until the width of the struc-
ture is manageable. Folding allows the programmer to see
the size of the structure and access its elements without be-
ing overwhelmed by too many elements on the horizontal
axis.

4 TO APPEAR (EDITED) IN: IEEE SYMPOSIUM ON VISUAL LANGUAGES, SEPTEMBER, 1995

VI. 3D SPACE AND NAVIGATION

3D environments are beginning to be used more often
in the visualization of data([10], [6]), and even for a few
visual programming languages([8]). A benefit of using
3D interfaces is that screen space can be used more ef-
fectively. (Glinert has argued that it is often unnatural
to program, view data structures, and perform other pro-
gramming activities in less than three dimensions[4].) Key
challenges in creating 3D interfaces include developing nav-
igation techniques, overcoming the speed/quality tradeoff,
and understanding human-computer interaction in such en-
vironments[2].

With three dimensions, all three aspects of program
structure can be visualized: nested structure, spatial ar-
rangement of program elements, and temporal arrange-
ment of program elements. The user has more control in
viewing context and detail by selecting which regions and
levels are visible. He can see at a glance the high level
structure of a program: a region containing a large, ho-
mogeneous array looks distinctly different from a region
containing a record or a basic value.

Navigation in this environment is currently restricted to
hierarchical movement in the program or program history
space-map. The user can select and move into any region
on the current level. Moving into a region changes the fo-
cus so that all other regions on the previous level fade (less
information is provided about those regions) and more de-
tail about the current region appears. This functionality
is a result of balancing the speed/quality tradeoff and the
detail and context in the display. Levels of the program
that are far away from the user, and regions that are no
longer in focus, provide less or no detail about their con-
tents, while levels and regions currently in focus display
their contents (either nested space-maps or text).

This technique of zooming is used to provide the capa-
bility to see a far view for an overall picture of a program
or section, and a more detailed view, when the user needs
to see the structure of a region or edit the text in a region.
Zooming is an effective technique for visual browsing and
has been used in other environments ([9],[5], etc).

VII. CoNcLusIONS AND FUTURE WORK

Development of MAP is ongoing. Future work will in-
clude extending the functionality of the 3D editor to allow
full visualization and functionality of program histories, to
include more debugging and analysis features, to improve
and extend the textual portion of the language, and to im-
prove the navigation facilities. MAP program histories can
be used for high-level communication between programs as
well as for visualization of program execution. Future work
includes further development of this functionality, both in
the language and in the graphical user interface. We will
also build a utility to take a program in a conventional
language and turn it into a MAP structure.

(1]

(2]

[3]
(4]

(5]

(6]

Y|

(8]
[

(10]

REFERENCES

Margaret M. Burnett, Maria J. Baker, Carisa Bohus, Paul Carl-
son, Sherry Yang, and Pieter van Zee. Scaling up visual program-
ming languages. In IEEE Computer. IEEE Computer Society,
March 1995.

Elisabeth Freeman and Susanne Hupfer. A model for 3D inter-
action with hierarchical information spaces. Position Paper for
CHI '95 Research Symposium, May 6-7 1995. Denver, Colorado.
David Gelernter and Suresh Jagannathan. Programming Lin-
guistics. MIT, 1990.

Ephraim P. Glinert. Out of flatland: Towards 3-d visual pro-
gramming. In Visual Programming Environments: Applications
and Issues, pages 547-554. IEEE Computer Society Press, 1990.
Michael Gorlick and Alex Quilici. Visual programming-in-the-
large versus visual programming-in-the-small. In JEEE Sympo-
sium on Visual Languages. IEEE Computer Society, October
4-7 1994. St. Louis, Missouri.

S.K. Card J.D. Mackinlay, G.G. Robertson. The perspective
wall: Detail and context smoothly integrated. In Proceedings of
the ACM SIGCHI Conference on Human Factors in Computing
Systems, pages 173-179. ACM, 1991.

Kenneth Kahn and Vijay Saraswat. Complete visualizations of
concurrent programs and their executions. In JEEE Workshop
on Visual Languages. IEEE Computer Society, October 1990.
Marc-Alexander Najork. Programming in 8 dimensions. PhD
thesis, University of Illinois at Urbana-Champaign, 1994.

Ken Perlin and David Fox. Pad: An alternative aproach to the
computer interface. In SIGGRAPH 98 Conference Proceedings.
ACM SIGGRAPH, August 1993. Anaheim, California.

George G. Robertson, Stuart K. Card, and Jock D. Mackin-
lay. Information visualization using 3d interative animation. In
Commaunications of the ACM, volume 36, pages 57-71, April
1993.

TO APPEAR (EDITED) IN: IEEE SYMPOSIUM ON VISUAL LANGUAGES, SEPTEMBER, 1995

Fig. 1. Maps.

Uoo

iaaa

Fig. 3. Nesting.

Fig. 2. Space-map and Time-map.

values |

Fig. 4. Accessing maps by name or value.

TO APPEAR (EDITED) IN: IEEE SYMPOSIUM ON VISUAL LANGUAGES, SEPTEMBER, 1995

struct myplan {

string spysubjects[5]; {
int starttime; a; b; ¢; d;
int endtime; }
} .
a
b
myplan
T /] /A [+

o friima] { | foncim
#3:3[3[3[: d

Fig. 6. Compound statement.
Fig. 5. Record.

TO APPEAR (EDITED) IN: IEEE SYMPOSIUM ON VISUAL LANGUAGES, SEPTEMBER, 1995

int executeplan(int spyplan)

{

int audio;

int video;

runplan:
}

. [executepian] Fig. 8. MAP program.
/ runplan|
7 || [audd vid

I

I(seu z[1] x)

s

-;"l
T 3)T x'9 tes l %l___

Fig. 7. Function.

b
w
— <!
N
N
N
|
[A)

| ’i'testt

Fig. 9. Concurrent evaluation.

TO APPEAR (EDITED) IN: IEEE SYMPOSIUM ON VISUAL LANGUAGES, SEPTEMBER, 1995

m - lexecut
/ L
1l
L_U_J
spysubjects step 12 video > 100

executenlan

Fig. 10. Program history.

Fig. 12. MAP program.

AEHARTARRnseN

Fig. 11. MAP interface.

