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Abstract

The Design of an Operating System
for
Modern Programming Languages

by
James F. Philbin
Yale University
1993

This dissertation describes an operating system, called Sting, that provides an efficient
foundation for the implementation of modern programming languages. Modern lan-
guages can be distinguished from traditional ones by their support for concurrency,
various synchronization models, anonymous first class procedures, objects, automatic
storage management, and topology mapping. Significant efficiencies can be achieved

by integrating support for these mechanisms into the operating system.

The fundamental concurrency constructs of Sting are virtual machines, virtual proces-
sors, and threads. Each is a first class object. Sting threads are extremely lightweight
and the implementation provides significantly more locality of reference than previous
systems have. First class virtual processors in combination with threads allow pro-
grammers and language designers to build virtual topologies that can be used to

enhance the efficiency and portability of parallel algorithms.

Sting separates control mechanisms from policy mechanisms. Policy management is
completely customizable. Each virtual machine or virtual processor can have a distinct
policy manager, allowing many different scheduling policies to co-exist on the same

machine. Several other significant innovations are discussed in the dissertation.
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Chapter 1

Introduction

This thesis describes an operating system, called Sfing, designed to support the
requirements of modern programming languages effectively. Sting serves as a coordi-
nation substrate that permits the expression of a wide range of concurrency structures
within the context of various computation languageé. In addition to traditional operat-
ing system concerns, Sting defines a general-purpose parallel programming model on
top of which a broad spectrum of specialized coordination languages, found in modern

programming languages, can be efficiently realized.

The design of an operating system should take into account current and probable
future trends in computer architecture. One of the most important trends in computer
architecture is the growing availability of general-purpose multi-processors. This has
led to increased interest in building efficient and expressive software platforms for
concurrent programming. Most efforts to incorporate concurrency into modern pro-
gramming languages involve either the addition of special-purpose primitives (e.g.
parallel let operations, futures, events, etc.) or the use of operating system facilities.

Both of these approaches have problems.

Special purpose primitives are typically implemented using a dedicated runtime sys-
tem sensitive to the particular semantics of the primitives. While reasonably efficient,
these systems have nonetheless proven difficult to use as a substrate or foundation for
a concurrent programming environment. This is because (a) the high-level semantics
of the concurrency primitives they support lead to inefficient implementations of other
concurrency paradigms; (b) the inaccessibility of the language’s runtime structures
make it cumbersome for applications to tailor the implementation to their particular
requirements; and, (c) the reliance on operating system services for process manage-

ment and control found in many of these languages incurs high overhead in the pres-
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ence of fine-grained, interactive, or realtime concurrency.

There are two general approaches to 1mplement1ng high-level parallel languages This
thesis will characterize these as the top-down approach (from the language designer’s

perspective) and the bottom-up approach (from the operating system perspective).

The top-down approach implements a high-level parallel language by building a dedi-
cated (user-level) virtual machine. The machine’s main role is as an efficient substrate
that implements the specific high-level concurrency primitives found in the coordina-
tion sub-language. Given a coordination language L supporting concurrency primitive
P, s virtual machine (L,y,) handles all implementation issues related to P; this often
requires that the machine manage process scheduling, storage management, synchro-
nization, etc. Because L, is tailored only towards efficient implementation of P, how-
ever, it is often unsuitable for implementing significantly different concurrency
primitives. Thus, to build a dialect of L with concurrency primitive P usually requires
either building a new virtual machine or expressing the semantics of P*using P. Both
approaches have their obvious drawbacks: the first is costly to implement given the
complexity of implementing a new virtual machine; the second is inefficient given the

high-level semantics of P and L,,’s restricted functionality.

Rather than building a dedicated virtual machine for implementing concurrency, the
bottom-up approach to language implementation uses existing operating system ser-
vices [B1a90] [TRG+87]. Process creation and scheduling are implemented by creat-
ing either heavy- or lightweight OS-managed threads of control; synchronization is
handled using low-level OS-managed structures. These implementations are generally
more portable and extensible than systems built around a dedicated runtime system,
but they necessarily sacrifice efficiency [ABLL91] since every kernel call requires a
context switch between the application and the operating system. Moreover, generic
OS facilities perform little or no optimization at either compile time or runtime since

they are usually insensitive to the semantics of the concurrency operators of interest.

The top-down approach is generally motivated by the goal of efficiency. It relies on the
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specialized virtual machine (runtime system) because its abstractions can be imple-
mented more efficiently there than the operating system. The bottom-up approach is
motivated by the twin goals of ease of implementation and portability. It trades these

for efficiency.

Sting combines the best of both approaches, providing an efficient substrate which is
portable and allows easy language implementation, while at the same time introducing
new optimizations and new functionality. In contrast to other parallel languages, the
basic concurrency objects in Sting (threads and virtual processors) are streamlined
data structures with no complex synchronization or value transmission requirements.
Unlike parallel languages that rely on operating system services for managing concur-
rency, Sting implements all concurrency management in terms of user space objects
and procedures, permitting users to optimize the runtime behaviors of their applica-

tions without requiring knowledge of underlying kernel services.

1.1 Important Features of Modern Languages

The growing interest in parallel computing has led to the creation of a number of par-
allel programming languages that define explicit high-level program and data struc-
tures for expressing concurrency. These languages typically support (with varying
degrees of efficiency) concurrency structures that realize dynamic lightweight process
creation [Hal85] [Hor89], high-level synchronization primitives [Rep91] [Sar90], dis-
tributed data structures [Car89a], and speculative concurrency [Cla86] [Osb90]. In
effect, these high-level parallel languages consist of two sub-languages -- a coordina-
tion language responsible for managing and synchronizing the activities of a collection
of processes, and a computation language responsible for manipulating data objects

local to a given process [CG90].
Modern programming languages can be broadly divided into four classes:
Expression oriented - Common Lisp, Scheme, Multi-Lisp

Object oriented -Actors, SmallTalk, C++, T, Dylan, Self.



4 Chapter 1: Introduction

Functional - ML, Haskell, Miranda, ID.
Logic programming - Prolog, Concurrent Prolog, Janus.

While Sting also supports more traditional programming languages such as Fortran,
Cobol, C, Pascal, and Ada, it is expressly designed to efficiently support the operating
system requirements of modern programing languages. These form a superset of the

requirements of traditional programming languages.

There are several important features that distinguish modern languages from tradi-

tional ones. The features most relevant to operating system design are as follows:

Concurrency - At least some of the languages in each of the four classes
described above provide a notion of concurrency. These include Ada tasks,
Multi-Lisp futures, Linda’s tuple spaces, and Concurrent Prolog’s terms.
Two developments in the recent past, computer networks and paralle]l com-
puters,! have made concurrency one of the fundamental issues in program-
ming language design. Both of these developments have allowed several
processors to join simultaneously in the same computation. Providing
expressive and efficient mechanisms for coordinating these concurrent
computations will continue to be one of the primary goals of programming

language designers.

Multiple Synchronization Models - Paralle] or asynchronous programming lan-
guages use many synchronization protocols. A modern operating environ-
ment should as far as possible provide the primitives to support these

various protocols.

Anonymous First Class Procedures - Many modern languages support anony-
mous procedures. These procedures are first class in the sense that they can
be passed as arguments to and returned from other procedures. They can

also be stored in data structures like any other value in the language. First

1. In fact networks can be regarded as parallel computers.
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class procedures provide many novel methods for communicating and

coordinating concurrent computations.

Objects - The concept of object found in object oriented languages allows the
programmer to build rich hierarchies of customizable types. These can lead
to clearer, more portable, and more readily customizable operating system

interfaces.

Evaluation Order - Modemn languages have different evaluation orders.
Some languages such as Haskell and Miranda use lazy evaluation, where
the value of an expression is not computed until it is needed. Other modern
languages such Multi-Lisp and Actors allow eager evaluation, where the
value of an expression is computed simultaneously with the value of other
expressions. Some languages, such as Parlog [CG85], use a variant of this
called speculative evaluation, that begins evaluating several expressions
simultaneously. The first expression to complete evaluation terminates the
evaluation of the other expressions. Finally, many modern languages use

traditional sequential evaluation.

Automatic Storage Management - Most modern languages support some form
of automatic storage management, because automatic storage management
allows more expressive programs, while at the same time reducing the pro-
grams complexity. Dynamic allocation and reclamation of storage leads to
programs with fewer errors and more locality of reference compared to

those using explicit storage management.

Topology Mapping - While not yet supported in many programming languages,
the ability to control the mapping of processes to processors so as to reduce
the communication overhead of a program will become more important as
the size of multi-processor computer systems continues to grow and the

topologies become more complex.

5
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Exceptions - Many modern languages also support exception handling and the
ability to dynamically unwind the side effects of a computation when an
exceptional situation occurs. Exceptions are particularly useful for error
handling. However, the semantics of exceptions vary widely from language
to language. It is important that exceptions which occur during operating
system calls can be delivered to a language while honoring the semantics

of that language’s exception mechanism.

Until now most operating systems have not taken advantage of these developments,
and no operating systems has taken advantage of all of them. The principle reason for
this is that operating system design and language design have been regarded as inde-
pendent disciplines. Furthermore, operating systems have been typically designed to

support only the requirements of traditional programming languages.

Sting shpports these various requirements efficiently. It does so in a new architectural
framework that is more general and more efficient than others currently available. It
also offers the programmer an increased level of expressiveness and control, and an
extraordinary level of customizability. Even though Sting is designed to support mod-
em programming languages, it can support traditional programming languages just as

efficiently.

1.2 Design Goals and Philosophy

Sting defines a small set of simple, general, orthogonal, and powerful primitives that
can be combined to express a broad range of concurrency paradigms efficiently. These
primitives are both semantically simple and combine well. In addition to this general
philosophy, there were several important goals that guided the design. These are out-

lined below:

Generality - The basic concurrency management objects in Sting are
extremely lightweight threads of control and virtual processors (VPs). Both

are first class. Unlike high-level concurrency structures, Sting is unencum-
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bered by complex synchronization or communication protocols. Sting’s
threads and VPs are efficient primitives that can be used to express more
abstract concurrency paradigms. Virtual processors serve as an abstraction
of a physical computing device, and can be used to build abstract machine
topologies that support the requirements of the application being imple-
mented. VPs can also be tailored to implement specialized process migra-
tion and scheduling protocols. Threads and VPs can be manipulated in the
same way as any other value in the language. First-class threads and VPs
permit users to experiment with a variety of different execution regimes -

from fully delayed to completely eager evaluation.

Efficiency - Because threads are fully integrated into the base language, and not
provided as part of a library package [Coo88], it is straightforward to opti-

mize their implementation and use.

Thread operations are performed by a thread manager. The semantics of
threads and the design of the thread manager minimize the cost of thread
creation, and put a premium on storage locality. Thus, the execution con-
text for a newly terminated thread (e.g. its stack and heaps) can be recy-
cled and used immediately by other newly-created threads, storage
allocation is delayed until the thread can actually execute, and different
threads can share the same stack and heap if data dependencies warrant.
This last optimization, which we refer to as thread absorption, is a novel
design feature. The storage management decisions in Sting lead to better

cache and page utilization.

Programmability - Beyond simply providing mechanisms for managing con-
currency, Sting also handles inter-process exceptions, process migration,
preemption, non-blocking /O, per-thread asynchronous storage manage-
ment, and maintains extensive thread genealogy information. In addition, it
provides an infra-structure for implementing multiple address spaces, and

long-lived persistent objects. As a result, Sting is an expressive operating
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system substrate that can be used as a platform upon which an advanced

programming environment for parallel computing can be built.

Customizability - Sting separates thread policy decisions from thread imple-
mentation ones. Although all threads conform to the same basic structure,
implementations of different parallel languages built on top of Sting can
define their own scheduling, migration, and load-balancing policies with-
out requiring modification to the thread manager or to the provided inter-
face. Process migration and scheduling concerns typically handled
internally by a runtime library or an operating system in other high-level

parallel languages can be customized by applications on a per-VP basis.

Unlike other systems that implement application-dependent scheduling poli-
cies, (e.g. Hydra [Wul81)), Sting does not incur a performance penalty for
this flexibility; scheduling policy decisions are implemented entirely in

user space and thus do not require a trap into a low-level system kernel.

Sting was conceived and designed not only as an efficient operating system for MIMD
parallel computers, but also as a platform for exploring and comparing different mod-
els of parallel programming. Toward this end the various components of the systems
were designed to record as much information as possible about the behavior of pro-
grams. We believe that this goal of analizability has often been sacrificed for the sake
of efficiency, a design choice that is both unfortunate and unnecessary. Sting is
designed to maintain as much information as the user desires without sacrificing effi-

ciency.

1.3 Problems with Current Operating Systems

Current operating systems present several problems when used as a foundation for a
parallel language. These problems relate to the implementation and functionality of
threads, the customizability of operating systems policies, the mapping between

threads and processors, the interaction between user space and kernel space, and the
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memory model supported by the operating system.

The sections that follow discuss the specifics of these problems and give an overview

of Sting’s solution to them.

1.3.1 Thread Implementation

Current operating systems can be divided into two groups: those that provide heavy-
weight processes and those that provide lightweight threads. A heavyweight process
combines one locus of control with a single address space. Traditional operating sys-
tems such as Unix and VMS have used this model of process. These processes are
heavyweight because creating one involves creating a new address space map, even if
more than one of these processes is sharing all or part of the same virtual address
space. The cost of creating a new address space map for each thread is expensive in

both time and space, thus the term heavyweight.

In the last ten years, two less expensive types of processes have evolved. Both are
identified by the term lightweight thread. Modern operating systems such as TOPAZ
[Bir89], Mach [BGJ*92], and Chorus [RAA¥92] have allowed more than one process
(usually called a thread) to share the same address space map, thus significantly reduc-
ing the cost, in both time and space, of process (thread) creation. For clarity, these pro-
cesses are referred as (lightweight) kernel threads. Kernel threads, while less
expensive than heavyweight processes, are still at least an order of magnitude more

expensive than a procedure call.

Languages like ML and Modula2+, as well as runtime libraries such as C Threads
and Posix threads [Soc90], have introduced a second type of lightweight thread, called
a user space thread, or simple user thread. User threads are less expensive to create
and destroy then kernel threads because they have no address space map associated
with them and the creation/destruction of a thread does not require crossing the protec-
tion boundary into the kernel, an expensive operation. Unlike kernel threads, user

threads do not require kernel data structures (e.g. control blocks and stacks).
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User threads, however, have several problems. They are implemented on top of kernel
threads, but the kernel of the operating system has no knowledge of them. So, for
example, when a user space thread blocks in the kernel (e.g. while making a $ystem
call or page fault) all the user threads which share the kernel thread also block, even
though many of them might be able to do useful work. Another problem is that when
no user threads are available to run in some address space, there is generally no way to
communicate this information to the kernel, even though some other address space

might have threads which are ready to run.

The cost of thread creation and destruction is important to both language designers and
application programmers because it determines the granularity of parallelism available
to a program. The cheaper the cost of thread creation, the finer the granularity of paral-
lelism that the language or system can support. Sting improves on the thread designs
mentioned above by providing extremely lightweight threads that are known to the

kernel.

Sting threads are created in user space, but they are lighter weight than those of other
thread systems, because the creation of the thread is decoupled from the creation of the
execution context of the thread. This decoupling has several beneficial effects: First, it
reduces the cost of thread creation (see Section 2.7 on page 33). Second, it reduces the
storage requirements of the system while at the same time increasing locality of refer-
ence (see Section 3.3.2 on page 57). Finally, it allows Sting to perform a new dynamic
optimization called thread absorption, that has the dual benefits of reducing the cost of
thread evaluation while both reducing storage requirements and increasing locality

even more (see Section 3.3.3 on page 59).

Another problem with existing thread systems is that they usually provide a limited
number of synchronization constructs. These generally include mutexes and condition
variables, and sometimes monitors [Hoa74]. However, the synchronization model is
usually built into the thread system and thus it is often difficult, and almost always
inefficient, to implement synchronization models not supported by the thread system.

Sting solves this problem by making synchronization completely orthogonal to thread
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creation and scheduling. Thus, Sting’s threads can be coordinated using any synchro-
nization model the language implementer (or user) desires. This coordination can be
achieved efficiently since there is no extra overhead incurred by implemehting the syn-
chronization model in terms of the model supported by the thread system. Details of

thread synchronization are discussed in Section 3.4 on page 68.

The combination of inexpensive Sting threads and the fact that various synchroniza-
tion models can be built efficiently using them, provides the language designer or the
programmer with enormous flexibility in designing and implementing various models
of parallel computation. Furthermore, because Sting’s threads are so lightweight, the
user or language designer can easily encapsulate them in other objects to implement

additional functionality.

Existing operating systems do not provide adequate facilities for debugging and per-
formance evaluation. In contrast, Sting provides extensive facilities for both. These
are described in Section 2.11 on page 41. These facilities make Sting an excellent

vehicle for testing new ideas in either language or system design.

1.3.2 Operating System Customization

The various thread systems mentioned above do not allow the customization of sched-
uling or load balancing policies. Unless scheduling policies can be customized, an
operating system must be targeted to one kind of operating environment, e.g. real time,
interactive, or batch. An operating system which can be customized for various envi-
ronments offers many advantages. The two most important are: (1) the programmer
doesn’t need to learn another operating system interface every time he builds programs
for a different operating environment, and (2) programs become portable across differ-
ent types of operating environments. For example, a program designed for a real time
environment could be implemented and debugged in an interactive environment and

then painlessly moved to the real time system.

The ability to customize thread migration and load balancing strategy, on an applica-

tion by application basis, allows the implementer to use a strategy which is appropriate
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for both the application being developed and the architecture on which the application
is running. Unlike other systems, Sting allows the complete customization of schedul-
ing, load balancing, and thread migration decisions. Customization is explained in

detail in Section 4.7 on page 97 and Section 5.8 on page 131.

Current thread systems do not typically allow the user to run a thread on a particular
processor. This functionality is particularly important when communication costs
inside a parallel machine are non-uniform. This is the case in systems with topologies
such as hypercubes or meshes, as well as systems like the BBN Butterfly. Sting intro-
duces the novel concept of a first class virtual processor and allows a thread to be
mapped onto any virtual processor. As a result, the programmer can map threads onto

processors to optimize inter-thread communication costs.

First class processors provide the Sting programmer with another important feature
not found in other operating systems. They allow users to build virtual topologies and
map them onto physical topologies. This gives programmers two advantages. (1) It
allows them to express an algorithm in terms of the topology of the problem domain
and yet map it automatically and efficiently onto a particular physical topology. (2) It
also allows the user to port an application built on one physical topology onto another
physical topology by simply implementing a new virtual topology, without changing
any other part of the program. Section 4.8 on page 109 describes virtual topologies.

1.3.3 Interaction between User Space and Kernel Space

All operating systems implement some sort of kernel threads or processes. These ker-
nel threads require large data structures in the kernel, principally a control block and
stack for each thread. Whenever a kernel call is made explicitly, because of a system
call, or implicitly because of an exception such as a page fault several expensive oper-
ations must occur. The protection mode on the processor must be changed, which
might involve switching page tables. The thread switches to a kernel stack and begins
running on that stack. This entails a loss of locality because the kernel stack is unlikely

to be loaded into the caches.
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Sting avoids these problems and their associated costs. Sting has no kernel threads
and thus, non of the kernel data structures associated with them. Sting handles all sys-
tem calls and exceptions by using the user space execution context (stack, etc.) bf the
thread that niakes the system call or generates the exception. This saves storage and

increases locality.

Sting maps the entire kernel into each virtual address space at the same location. Part
of the kernel is mapped with read only access and part is mapped with no access in
user mode. This means that many traditional system calls can now be made by simple
procedure calls or, with compiler integration, with as little as a single instruction over-
head. Sting also reduces the cost of system calls and exceptions because the protection
boundary can be crossed with only one instruction to change the protection on the ker-
nel pages with no cache flush being necessary. Further, since the Sting compiler saves'
only live registers before making a kernel call, it is unnecessary to save a thread’s con-
text on entering the kernel. Finally, since the kernel runs using the user space stack of
the Sting thread no switch to a kernel stack is necessary. As a result, crossing the ker-
nel protection boundary is no more expensive than making a procedure call. Details of

this functionality can be found in Section 5.7.1 on page 130.

In most operating systems, when a thread blocks in the kernel no other threads in that
address space can run because the kernel is not aware of the user space thread and the
kernel cannot communicate this information to the user space scheduler. The reverse
problem also arises when the user space scheduler has no work to do, i.e. no threads
are ready to run, the scheduler cannot inform the kernel. This means that the kernel

thread spins until its quantum expires.

Because Sfing’s threads are known to the kernel, the kernel can easily communicate
with the address space and vice versa. Thus, when a thread blocks in the kernel, the
kernel informs the user space scheduler of this event and another thread can be run.
Likewise, when the address space has no thread available to run, it can communicate
that fact to the kernel. User space/kernel space communijcation is described in

Section 5.7.1 on page 130.
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1.3.4 Memory Management

Multiple instruction multiple data (MIMD) parallel machines and operating systems
fall into two broad classes: those which support shared memory and those which sup-
port message passing. The shared memory model has significant benefits for the pro-
grammer. The principal benefit is that shared memory is a simpler cognitive model.
Shared memory systems are also easier to debug. Sting is based on a memory model
called Distributed Shared Virtual Memory. This allows Sting to run on MIMD
machines with disjoint memories. Sting threads are designed to run efficiently on dis-
tributed shared memory. Section 5.5.1 on page 124 discusses distributed shared virtual

memory.

Another important trend in computer architecture, especially in micro-processor
design, is the reliance on locality of reference to improve performance. This reliance is
apparent in two trends in the design of the memory hierarchy. First, the number of lev-
els in the hierarchy have increased. Microprocessors routinely have on chip primary
instruction and data caches with provisions for off chip secondary caches. On some
machines main memory is divided into local and global memory. This division is
likely to be standard on future machines, with a further subdivision into a hierarchy
where some of the memory is completely local to a particular processor, some of the
memory is only accessible to a locally close group of processors, and some memory
fully global. Finally, the backing store stage of the memory hierarchy which previ-
ously included only disks and tapes, now includes disk caches and even more complex
RAID! subsystem. Each of these stages exploits the data locality that exists in almost

all programs.

The second trend in memory design is the increase in size of every level of the mem-
ory hierarchy, from the number of registers in the processor, to the size of the caches,
main memory, and disk subsystems. This when combined with the growing complex-
ity of memory hierarchies, magnifies the importance of locality of reference for

achieving high performance even further.

1. Redundant Array of Inexpensive Disks.
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As locality of reference becomes increasingly important, it is crucial that operating
systems be designed not only to exploit, but also to increase the locality of reference in
programs. This observation is true for single processor systems, and has even greater

significance for multi-processor systems.
The Sting design increases locality in several important ways:

® delaying thread execution context allocation (see Section3.3.2 on
page 57),

providing each thread with it’s own local stack and heaps (see
Section 3.5.3 on page 75 and Section 3.5.4 on page 77),

allocating not only frames on the stack, but any objects whose lifetimes
do not exceed the dynamic extent of a procedure call (see Section 3.5.3
on page 75),

allocating shared heaps on the basis of thread groups and environments
(see Section 3.5.5 on page 78).

Unlike other operating systems, Sting is designed to support automatic storage alloca-
tion and reclamation (garbage collection). Most garbage collection algorithms can
benefit from efficient access to page tabes. Sting’s page tables are mapped into user

space and can therefore be accessed extremely quickly.

Each evaluating thread has an execution context associated with it. The execution con-
text is composed of a thread control block, a stack, a private heap, and a shared heap.
Sting allocates all data that is private to the thread, i.e. not shared with any other
thread, in either the stack or the private heap. This has several advantages. Stacks and
private heaps can be located in local non-coherent memory, thus reducing the memory
contention bottleneck associated with shared memory machines (see Section 3.5.3 on
page 75 and Section 3.5.4 on page 77). In addition, the thread’s private heap can be gar-
bage collected independently of any other thread. This significant innovation is

described in Section 3.5.4 on page 77.
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1.3.5 Compiler Integration

In general, conventional operating systems do not provide integration between the
compiler and the operating system. As a result, many significant compile time c;ptirm'-
zations are lost. In éontrast Sting is designed to take advantage of compiler integra-
tion. At present, several of these have been implemented, including minimal register
saves on synchronous context switches, and minimal cost saving of the current contin-

uation during context switch (see Section 4.6 on page 91).

Sting’s stack are designed so that a compiler can allocate objects other then activation
frames in them. This has the significant advantage of improving locality and decreas-
ing the cost of garbage collection. Section 3.5.3 on page 75 discusses these and other

optimizations that improve locality of reference.

1.4 Overview of Sting

The Sting operating system architecture is composed of several layers of abstraction,
see Figure 1-a on page 17. The lowest layer is the abstract physical machine
(Section 5.4 on page 122), which is composed of abstract physical processors
(Section 5.7 on page 129). It corresponds to the micro-kernel in newer operating sys-
tems. Each abstract physical processor is composed of a virtual processor controller
(Section 5.8.1 on page 131) and a virtual processor policy manager (Section 5.8.2 on
page 132). The virtual processor controller handles all interactions with the virtual
machine, while the virtual processor policy manager makes policy decisions for the
virtual processor controller. The virtual processor policy manager is completely cus-

tomizable.
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Figure 1-a : The Sting Architecture

The second layer consists of virtual machines and virtual processors (VPs). A virtual
machine is composed of virtual processors and a virtual address space. Virtual
machines are mapped onto physical machines, and each virtual processor is mapped
onto a physical processor. Virtual machines and virtual processors are first class
objects in Sting and they provide the user with an unusual level of expressivity. Each

virtual processor is composed of a thread controller (Section 4.5 on page 91) and a
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thread policy manager (Section 4.7 on page 97). These are analogous to the virtual
processor controller and policy manager. The thread controller handles all interactions
with the virtual processor, including thread state transitions and exceptions. The thread
policy manager makes all policy decisions for the thread controller. It is completely
user customizable, allowing applications to make scheduling and load balancing deci-

sions which are appropriate for a particular application.

The highest layer of abstraction defines threads (Chapter 2). Threads are extremely
lightweight processes which are run on virtual processors. As mentioned above

threads are first class, allowing them to express almost any kind of parallel construct.

For clarity, it should be mentioned that each of the above layers is a software system.
Thus, when we speak of a “abstract physical machine,” we are referring to the soft-

ware layer that controls the actual physical hardware.

The rest of this thesis will describe these layers of abstraction in detail; however, it
does not discuss the details of the file System, network interaction, or other I/O devices.
Instead, it focuses on the most innovative aspects of the Sfing architecture: control

flow, storage management, and policy making in the operating system.

The various components of Sting have significant interaction. Each component relies
on the functionality of the other components. This makes it somewhat difficult to dis-
Cuss one aspect of the system without referring to other aspects not yet explained. To
minimize this problem, this thesis introduces the most familiar concepts (threads) first,
and then proceeds to less familiar ones. The rest of the thesis is structured as follows:
Chapter 2 discusses threads and their implementation. Chapter 3 describes execution
contexts and their relation to threads. Chapter 4 explains virtual machines and virtual
processors and in Chapter 5 abstract physical machines and abstract physical proces-
sors are discussed. Chapter 6 gives performance details for the various benchmarks we

have run. Finally, our conclusions and future research are described in Chapter 7.



Chapter 2
Threads

Threads are the locus of control in Sting and all code is executed in the context of
some thread. Sting’s threads are extremely lightweight. They can be created with very
little overhead, and more than one thread can be created in the same virtual address
space. Sting’s threads are first class, i.e. they can be passed to and returned from pro-
cedures and stored in data structures. Sting’s threads also have values. The value of a
thread is the value of the expression it evaluates. Because Sting’s threads are first class
and have values they can be used in ways that threads in other thread systems, such as
Mesa or C Threads, cannot. In particular, they can be used to build dynamic data struc-
tures. This functionality is important for languages such as Linda and Multi-Lisp. Fur-
thermore, since Sting’s threads evaluate lazily, normally, or eagerly, these dynamic
data structures can be used for both speculative and infinite computation, a require-
ment for both functional and logic languages. Decisions about the evaluation strategy

are made by the programmer using Sting.!

Sting threads are extremely lightweight not only because they reside in user space, but
also because they are much lighter in weight than those in most other lightweight
thread systems. Because the thread itself is a very small data structure, on the order of

ten words of memory, which contains among other things:

1. We will use the term programmer throughout this thesis to denote either someone building an
application directly on top of Sting or a language designer using Sting as the substrate for
some parallel language.

19



20 Chapter 2: Threads

®  the closure of the expression which the thread is to evaluate,

® the dynamic state in which the thread was created, i.e. the dynamic ‘

bindings, exception bindings, and dynamic windings which are extant
when the thread is created. These are discussed in detail below.

® the priority and quantum of the thread, and

® the genealogy of the thread.

The thread data structure can be small because the execution context! of the thread is
not allocated until the thread begins evaluating. Threads can be preemptible or non-

preemptible as the programmer desires. They can also be used as co-routines.

2.1 Comparison with Other Thread Systems

System designers have designed and implemented many different lightweight thread
systems over the years. One of the earliest thread systems was incorporated into the
language Mesa [LR80], developed at Xerox PARC. Mesa incorporated multiple
threads of execution, called processes, in the same address space using a fork/join style
of parallelism. The Mesa design was innovative and its ideas have influenced the

design of most contemporary thread systems.

Mesa’s processes were lightweight. Creating and destroying threads was inexpensive
compared with other multiprocessing systems of the time. The low cost of process
management resulted from the fact that all the processes reside in the same address
space with no protection mechanism, and from the low storage overhead associated

with processes. The implementation used cactus stacks [BW73] [Ste77]. Unfortu-
| nately this memory model suffers from poor locality of reference and is not suitable

for today’s cached memory architectures.

Mesa threads are first class values in the language, meaning that they can be passed to

or returned from procedures and stored in data structures. The value computed by a

1. See Chapter 3.
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Mesa thread can be accessed using the JOIN statement, but the thread can only be
joined once. With the exception of the JOIN statement, Mesa separates parallelism

from synchronization.

While the Mesa thread system was well integrated into the language, the Mesa mem-
ory model did not support threads as well as it might have. For example, the lack of
garbage collection engendered the need for a DETACH statement, which informed the
system that the value of the thread would never be used, and that the resources devoted
to the thread could be recycled as soon as the thread finished execution. Lack of gar-
bage collection also raised the possibility of dangling references. Since threads are
recycled, a reference to a thread which has terminated could cause the entire system to

crash.

Despite these shortcomings, Mesa made several important contributions to the design
of thread systems. These include the integration of both compiler support and excep-
tion handling into the thread system. Finally, Mesa was designed as a single user, sin-
gle address space system, thus there is no protection mechanism associated with
~ processes. This was a significant departure from the “heavyweight” kernel processes
of other operating systems. Mesa also obscured the difference between the operating
systemn and the programming language, thus allowing the Mesa programmer to rely on

the semantics of the language across different operating environments.

Mesa was followed by systems such as Mach [TRG*87]], TOPAZ [BGHL87], and
Synthesis [MP89] which implemented lightweight threads in the kernel of the operat-
ing system. The threads of these systems are “lightweight” in so far as they shared the
same (user) address space, but the thread handling mechanisms are located in the ker-
nel in order to provide protection from stray writes to memory. These kernel threads
are more expensive than Mesa threads. Their thread data structure storage require-
ments are much higher, partly because they have both user space and kernel space data
structures associated with them, but also because neither Mach or Topaz devote suffi-
cient attention to implementing structures such as the control stack inexpensively. In

addition, in these and other kernel thread systems, most thread operations cross the
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protection boundary between user and kernel space. One final weakness in kernel
thread systems is that threads are not first class values. Instead, they are represented by

non-unique identifiers such as an integer.

Modula-2+ threads [RLW85], C Threads [CD88]], and POSIX threads [Soc90], are
other important thread systems. Since they are similar we will discuss only C Threads
here. C Threads has three different implementations: one implementation uses co-rou-
tines. One uses heavyweight Unix kernel processes that communicate through over-
lapping address spaces. And finally, one implementation relies on Mach threads. Here
we will focus on the implementation that uses Mach threads since it is the most effi-

cient of the three.

C Threads relies on a conception of threads that is very similar to that of Mesa. The
model supported is fork/join. Both systems share similar problems, i.e. threads can’t
be joined multiple times and thus can not be used to denote values in data structures
which might be éccessed more than once, and threads which are never Jjoined must be
detached. Furthermore, C Threads recycle Mach kernel threads, because of the
expense of creating kernel threads. The use of kernel threads makes thread creation

and destruction extremely costly.

Despite these shortcomings, C Threads did introduce the ability to associate data with
a thread and to access that data in a thread relative manner. Although significant, this
functionality was not integral to the design or function of the system. Instead, it
appears that Cooper and Draves added this feature to overcome the problem of non-
unique thread identifiers. Sting’s first class threads allow the user to form any desired

associations between threads and other data using the normal facilities of the language.

Psyche [MSLM91] is the parallel operating system most closely related to Sting.
Designed and implemented at approximately the same time, Psyche and Sting, share a
similar goal, namely to support multi-model parallel programming efficiently. Psyche
differs from our work in that it builds a kernel interface designed to support many dif-

ferent thread models, but does not define a fundamental thread model of its own, rather
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it specifies a mechanism (software interrupts) for communicating with the kernel. The
Psyche research is more closely related to our work on virtual machines and physical

machines which is discussed in subsequent chapters.

In contrast to Psyche, our approach has been to define the fundamental constructs
needed to build the various models of parallelism, to implement them efficiently, and
then to allow the language designer to build different models out of these constructs.
Sting’s threads are one of these fundamental constructs. We believe that this is a more
efficient method of supporting multiple models of parallelism. However, Sting does
not prohibit a language designer from implementing any desired thread abstraction

using virtual machines.

2.2 Sting Innovations

Sting is a language independent substrate for implementing parallel systems and lan-
guages. Sting’s threads are innovative in several ways. Perhaps the most important
innovation is that the thread data structure is disjoint from it’s execution context. This
allows threads to be extremely small and inexpensive to create. The separation of the
thread data structure from the execution context data structure facilitates a new type of
optimization on threads called Thread Absorption. This separation also allows Sting
to support both lazy and eager evaluation strategies efficiently, as explained below.
Another innovation is that threads have values and those values can be used multiple

times, thus allowing threads to be used as distributed data structures.

Unlike any of the above mentioned operating systems, threads are garbage collected
and unlike any of the various parallel languages, discussed above, each thread can be

garbage collected independently.

The Sting thread system supports dynamic winding, dynamic binding, and exception
bindings. The primitives for dynamic winding and exception binding can be used to
build various models of exception handling, but Sting also provides a default excep-

tion handling model for programmers.
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Another innovative aspect of Sting is its support for thread groups which provide the
user with a new method of organizing parallel computations. Thread groups also sup-
port the gathering of informatjon about a thread’s genealogy, its performance, and
other information used for debugging. These various features will be discussed in

more detail throughout the rest of this chapter and the next.

2.3 Thread Operations

Figure 2-a on page 25 lists the various operations that can be performed on threads.
Designed as building blocks with very simple semantics, these operations allow lan-
guage designers to design thread systems with more complicated semantics, although

Sting threads have proven quite useful in their own right.

Figure 2-a separates the Sting operations according to functionality. The semantics of
these primitives are reasonably obvious. Their functionality will be defined briefly

below, but not in detail. The interested reader should see [Phi93] for details.

Thread operations include those that create threads, execute them, and determine their
value(s). Other operations block, suspend, terminate, or synchronize threads. Finally,

there are operations for referencing the current thread and the current virtua] processor.

Significantly, Sting is designed so that control flow is completely orthogonal to syn-
chronization.! This is important for two reasons: first it allows threads to be used with
many different synchronization constructs. Second, it affords designers broad latitude

in choosing synchronization constraints on threads that they deem appropriate.

1. Figure 2-a includes, under the heading of thread synchronization, several procedures provided by
Stlng that support different models of synchronization. These procedures are not integral to the
design but are provided for programmer convenience.
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Thread Creation

= thread

(fork-thread expression . vp priority quantum)

(delay-thread expression . vp priority quantum) = thread
Thread Execution and Value

(thread-run thread . vp priority quantum) = no-value

(thread-value thread) = value(s)
Thread Relative Operations

(current-thread) = thread

(current-virtual-processor) = Vvp

(yield-processor) = no-value
Thread Blocking and Suspension

(thread-block thread blocker) = no-value

(thread-suspend thread wakup-time) = no-value

(thread-resume thread . vp priority quantum) = no-value
Thread Termination

(thread-determine thread . values) = no-value
Thread Synchronization

(thread-wait thread) = no-value

(wait-for-one . threads) = thread

(wait-for-all . threads) = no-value
Thread Migration

(thread-migrate thread vp) = no-value

Figure 2-a : Thread Operations

Thread Creation - The thread creation special forms create a thread to evalu-

ate expression. vp designates the virtual processor on which to evaluate the

thread; priority specifies the priority assigned to the thread; and quantum

specifies the time quantum allotted to the thread. However, the thread pol-

icy manager may regard the vp argument as a hint. It is free to schedule the

thread on some other virtual processor. fork-thread creates a thread and

immediately schedules it to run on some virtual processor. delay-thread
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creates a delayed thread, which will not be evaluated until either its value

(thread-value) or effect (thread-wait) is demanded.

Thread Execution and Value - thread-run is a procedure which schedules a
non-running (delayed, blocked, or suspended) thread on some processor.
vp, priority, and quantum are hints for the thread policy manager and are

handled in a manner similar to thread creation.

thread-value returns the value(s) of the expression evaluated by thread. If the thread
had not finished evaluating, i.e. is undetermined, then the caller is blocked until the

thread completes and its value is available.

Thread Relative Operations - There are three thread relative operations. cur-
rent-thread returns the current thread, i.e. the thread that is its caller. cur-
rent-virtual-processor returns the virtual processor on which the calling
thread is running. current-virtual-processor can be used for virtual proces-
sor relative addressing in virtual topologies (see Chapter 4). yield-proces-
sor causes the current thread to relinquish the virtual processor to another
thread that is ready to run. The current thread goes to the ready state and
will be rerun when the thread policy manager decides that it is the thread

with the highest priority.

Thread Blocking and Suspension - thread-block and thread-suspend move
thread from the running or ready state to the blocked or suspended state
respectively. thread-resume schedules a blocked or suspended thread to run
on some virtual processor. As with fork-thread vp, priority, and quantum

are hints to the thread policy manager.

Thread Termination - thread-determine causes thread to become determined
with values as its value. If thread is in the delayed or scheduled state then
its value is set to values and its state is set to determined without ever eval-
uating the thunk associated with the thread. If thread has begun evaluating

then it is signalled to call its exit handler with values as its arguments. The
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exit handler unwinds thread (see Section 2.9.3) and then sets it value to

values and it state to determined.

Thread Synchronization - There are three thread synchronization procedures.
thread-wait causes its caller to block until its argument, thread, is deter-
mined. wait-for-one and wait-for-all cause the caller to block until one or all,

respectively, of threads become determined.

Thread Migration - Normally, the thread policy manager decides when to
migrate a thread from one virtual processor, based on load balancing or
other criteria. thread-migrate allows the explicit migration of thread from

its current virtual processor to another virtual processor.

27
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24 A Simple Example

To illustrate how a user might program with threads, consider the program shown in

Figure 2-b that defines a Sieve of Eratosthenes prime finder implementation.

(define (filter op n input)
(letloop ((x  (hd input))
(output (make-stream))
(last? true))
(cond ((zero? (mod x n))
(loop (rest input) output last?)) (last?
(op (lambda ()
(filter op x output)))
(loop (rest input) (attach x output) false))
(else
(loop (rest input) (attach x output) last?)))))

(define (sieve op n)
(let ((input (make-integer-stream n)))
(op (lambda ()
(filter op 2 input)))))

Figure 2-b : Concurrent Sieve of Eratosthenes

This implementation relies on a user-defined synchronizing stream abstraction that
provides a blocking operation on stream access (hd) and an atomic operation for
appending to the end of a stream (attach). Note that the definition makes no reference

to any particular concurrency paradigm; such issues are abstracted by its op argument.

We can define various implementations of a prime number finder that exhibit different

degrees of asynchronous behavior. For example,

(let ((filter-list (1list)))
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(sieve (lambda (thunk)
(set filter-list
(cons (fork-thread (thunk))
filter-list)))

n))

defines an implementation in which filters are generated lazily; once demanded, a filter
repeatedly removes elements off its input stream, and generates potential primes onto
its output stream. To initiate a new filter scheduled on a virtual processor (VP) using a

round-robin thread placement discipline, we might write:

(thread~-run (car filter-list) (next-vp))

(next-vp) returns the next VP, in the round robin order, on which the expression is
evaluated. next-vp is a virtual topology expression (see Chapter 4). A virtual
machine’s public state includes a vector containing its virtual processors. It is easy to

build virtual topology expressions using this vector.
By slightly rewriting the above call to sieve, we can express a more lazy implementa-
tion:
(let ((filter-list (list)))
(sieve (lambda (thunk)
(let ((thread (fork~thread
(begin (map thread-run filter-list)
(thunk)))))
(set filter-list (cons filter-list thread)))
(map thread-block filter-list))

n))
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In this definition, a filter that encounters a potential prime p, creates a lazy thread L and
requests all other filters in the chain to block. When L’s value is demanded, it unblocks
all the elements in the chain, and proceeds to filter all multiples of p on its input
stream. This implementation throttles the extension of the sieve and the consumption

of input based on demand.
We can also define an eager version of the sieve as follows:

(sieve (lambda (thunk) (fork-thread (thunk))) n)

Evaluating this application schedules a new thread responsible for filtering all multi-

ples of a prime.

This simple exercise highlights some interesting points about the system. First, Sting
treats thread operations as ordinary procedures, and manipulates the dbjects referenced
by them just as any other Scheme object; if two filters attached via a common stream
are terminated, the storage occupied by the stream may be reclaimed. Sting imposes
no a priori synchronization protocol on thread access - application programmers or
language designers are expected to build abstractions that regulate the coordination of

threads.

The threads created by filter may be determined (i.e. terminated) in one of two ways.
The top-level call to sieve may be structured so that it has an explicit handle on these
threads; the filter-list data structure used to create a lazy sieve is such an example. One

can then evaluate:

(map thread-determine filter-list)

to terminate all threads found in the sieve. Sting also provides thread groups as a
means of gaining control over a related collection of threads. A thread group is closed
over debugging and thread operations that may be applied en masse to all of its mem-

bers. Every thread is a member of some thread group. Thread groups provide opera-
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tions analogous to ordinary thread operations (e.g. termination, suspension, etc.) as
well as operations for debugging and monitoring (e.g. resetting, listing all threads in a
given group, listing all groups, profiling genealogy information, etc.) Tﬁus, when the
thread T, the caller of sieve, is terminated, a user can request that all of 7°s children

(which are defined to be part of 7’s group) be terminated thus:

(terminate-thread-group (thread-group 7))

Second, lazy or delayed threads are distinguished from scheduled ones. A lazy thread
defines a thread object closed over a thunk and dynamic state (but which is not sched-
uled on any virtual processor). A scheduled thread is represented by the same data
structure, but is scheduled to run on some VP and will eventually be assignéd an exe-
cution context (see Chapter 2). Applications can choose the degree of laziness (or
eagerness) desired. Only the thread controller (see Chapter 4) can initiate a thread tran-
sition to the evaluating state - the interface does not permit applications to insist that
any specific thread immediately run on some virtual processor. Thread policy manag-
ers (see Chapter 4) may be fair or unfair. Sting imposes no constraints on thread policy

managers in this regard.

2.5 Thread Data Structure

Sting threads are implemented by a small data structure, which has several features
that distinguish it from other thread systems. This section gives a brief overview of the

thread data structure and discusses the reasons for the various fields in it.
The thread data structure consists of the following fields:

Mutex - Since the thread data structure can be accessed by other threads, a

mutex controls all access to it.

States - During the course of its lifetime, a thread can be in any one of the fol-
lowing states: delayed, scheduled, evaluating, absorbed, determined. (For a

further discussion of these states see Section 2.8.)
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Flags - Each thread has several flags that control different aspects of its
behavior. For example, the flags determine whether a thread can absorb
other threads, and whether the thread maintains information about geneal-

ogy, debugging, or performance.

Thunk - Each thread evaluates a nullary procedure. This procedure is associ-

ated with the thread when it is created.

Execution Context - When a thread begins evaluating, Sting allocates an
execution context for it. Execution contexts include a thread control

block, a stack, a private heap, and a shared heap.

Values - When a thread completes evaluation it has a value (or values). The
value(s) of the thread is the value(s) of the thunk that the thread evaluates.

Waiters - When a thread is evaluating, other threads may be blocked waiting
for its value. Each thread can be associated with a set of the threads that are

waiting for its completion.
Group - Every thread is associated with some thread group.

Dynamics - Each thread has associated with it a set of dynamic windings,

dynamic bindings, and exception bindings.
Virtual Processor - A thread is always associated with a virtual processor.

Priority and Quantum - Each thread has both a priority and a quantum.
These fields are used by the thread policy manager to determine the

thread’s relative scheduling order.

Meta Information - Various kinds of meta information may be associated
with each thread. This information may relate to several different aspects
of the thread’s evaluation including: data that helps in debugging errors or

in analyzing performance. Information about the threads genealogy may
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also be recorded. Flags control the nature and scope of meta information

recorded in each thread.

These fields are packed into a data structure consisting of ten memory words. In con-
trast, other thread systems do not separate the thread data structure from its execution
context. This separation provides the foundation for several important innovations.
Sting’s thread data structure contains all the necessary information to evaluate the
thread, but no more. The small size of a thread allows the user to create a potentially
infinite number of threads in a virtual machine. The number of possible threads is only

limited by the capacity of the virtual address space, and its backing store.

2.6 Threads have Values

In most thread systems, a thread can only communicate the value of its computation
through side effects. This requires synchronization, a significant disadvantage. Since
Sting’s threads can be used to represent values, it is easy to use them to build distrib-

uted data structures! which require no synchronization.

A thread may have more than one value and thus can be readily integrated into lan-
guages such as Common Lisp, Scheme, ML, and Haskell which support multiple val-
ues. Further, because threads have values and they are small data structures they can
easily implement any evaluation order from fully lazy to fully eager. Lazy evaluation
delays the evaluation of an expression E until the value of E is demanded, i.e. refer-
enced, by some other expression. Eager evaluation is the opposite of lazy evaluation.
With eager evaluation the value of an expression is computed before it is needed. In

fact, it may never be needed.

2.7 Thread Creation
Sting creates threads by using the fork-thread special form. For example,

(fork-thread expression virtual-processor) = thread

1. Examples of these include Tuple Spaces, Paralations, and Futures.
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creates and schedules a thread which will evaluate expression on virtual-processor.
The thread is returned as the value of the fork-thread expression. fork-thread is actually
syntax for the create-thread form. The above expression is syntactically transformed

into:

(create-thread (lambda () expression) vp) = thread

Sting stores the nullary-procedure created by (lambda () expression) in the
thunk field of the thread data structure. The thread group for a new thread is the same
as that of its parent (i.e. the thread that created it) unless the thread is created as a result

of creating a new thread group.

When a thread is created Sting captures and stores its dynamic context in the thread
data structure. The dynamic context is composed of the dynamic windings, dynamic
bindings and the exception bindings in effect in the parent thread at the time of cre-
ation. Thus, even though a thread may be evaluated long after it has been created it
will be evaluated in the proper dynamic context, i.e. the one in which it was created.

We believe that Sting is the only thread system which offers this functionality.

Finally, every thread is created with an explicit or default notion of its current virtual
processor, priority, and quantum. The thread policy manager uses these three quanti-
ties to control thread scheduling and migration strategies, as discussed in more detail

in Chapter 4.

2.8 Thread States

In the course of its lifetime, a thread can enter several states:

Delayed - When first created, a thread is in the delayed state. A delayed thread
will not evaluate its thunk until its value is demanded either explicitly, by
scheduling the thread to execute, or implicitly, by dereferencing the value
of the delayed thread.
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Scheduled - A scheduled thread is one which has been scheduled to run, on

some virtual processor, but which has not yet begun evaluating.

Evaluating - An evaluating thread has started executing the thunk associated

with it, but has not yet determined its value.

Absorbed - An absorbed thread is one that is being evaluated in the execution
context of another thread. Thread absorption is an optimization introduced

by Sting. It is discussed in detail in Chapter 3.

Determined - A determined thread is one that has completed the evaluation of

its thunk, and has stored the resulting values in the thread data structure.

(Delayed )—» Scheduled

/

Figure 2-c : Thread States

Figure 2-c is a state transition diagram for threads. When created all threads are in the

delayed state. Thus, the most primitive thread creation operation is
(delay-thread expression . virtual-processor) = thread

delay-thread takes an expression and an optional virtual processor argument. It creates

a thread in the delayed state and returns that thread as its value. A thread in the delayed
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state can be forcibly determined, e.g.
(thread-determine thread value)

This transition, from delayed to determined, occurs without ever executing the thunk
associated with the thread. The value of a thread determined in this manner is the val-

ue(s) passed to the thread-determine procedure.

2.9 Thread Dynamics

Unlike threads in most other thread systems, each Sting thread has associated with it a
dynamic binding environment, a dynamic exception environment, and a set of dynam-
ically nested windings [HL]. As a result Sting threads can be used in such languages
as Common Lisp and Scheme which support dynamic (or fluid) bindings. Languages
such as modula-2 and -3, Common Lisp, and ML which provide exception handling

facilities can also be implemented using Sting.

2.9.1 Dynamic Binding Environment

Every thread has a dynamic binding environment associated with it. When a thread is
created a new dynamic binding environment is created which is inferior to the
dynamic binding environment of its parent at the moment of thread creation. This

dynamic environment exists for the life of the thread.

The dynamic binding environment is implemented in Sting using a technique known
as deep binding. The dynamic binding environment is implemented by a tree that cor-
responds to the tree of threads on a virtual machine. Whenever a thread is created a
new branch of the tree is created for that thread. Within a thread the dynamic binding
appears as a sta.lck1 of bindings, i.e. identifier/value pairs. Each binding has a dynamic
scope. It is removed from the environment when the evaluation exits its scope. The
value of a dynamic binding is found by traversing the dynamic environment from the

current leaf back toward the root until a binding for the appropriate identifier is found.

1. This stack is currently implemented as a list, but more efficient implementations are possible.
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2.9.2 Exception Binding Environment

Exception handlers are bound to identifiers in the exception binding environment. The
exception environment is a dynamic environment similar to the dynamic binding envi-
ronment and it is also implemented using a deep binding strategy. The exception envi-
ronment is a dynamic environment because we wish to allow users to dynamically
bind the handlers for specific exceptions. When a thread is created, Sting creates a
~ new exception environment inferior to the current exception environment and associ-

ates the thread with the new environment.

For example, if procedure P might signal exception E when called, then P’s caller
might wish to define a handler for E in its (the caller’s) dynamic environment. This is
so because if A and B both call P, but A wants to handle the exception E, if it occurs,
using procedure H; and B wants to handle the exception E using H; then the two dif-
ferent handlers must be associated with the exception in a dynamic fashion. Dynamic

binding is the obvious way to do this.

Exceptions are procedures. A exception is signalled by simply calling the exception

with the appropriate arguments.
(exception argl arg2...)

When invoked, the exception searches for the current handler for the exception in the
exception binding environment and then invokes the handler with the same arguments
passed to the exception. Thus, all handlers for an exception must have the same signa-

ture.

Many different exception handling mechanisms can be used with Sting. Sting does
not implement any particular exception handling discipline, rather it provides the
building blocks for whatever style exception handling mechanism a particular lan-

guage requires.
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2.9.3 Dynamic Windings

In any program where it is possible to use side effects, it is desirable to restore objects
to a consistent state when control leaves the current dynamic context for whatever rea-
son (including a throw to a catch point). In particular, this is important when commu-
nicating with objects external to a program which have state, such as file systems, or
input/output devices. For example, an exception handler for an end-of-file exception
may decide to throw out of the current dynamic context to some previous dynamic

context. If this occurs then it might be important to ensure that the file is closed.

Sting provides a dynamic-wind primitive which allows the user to define dynamic

winders and unwinders for returning (throwing) into and out of a continuation.
(dynamic-wind before during after)

The dynamic-wind form takes three arguments which are thunks. It evalﬁates the
before, during, and after thunks in that order. Sting guarantees that whenever control
flows into during the before expression will be executed. It also guarantees that
whenever control flows out of during the after expression will be executed. This is

true even if control flows into or out of during more than once or because of a throw.

2.10 Thread Groups

Sting allows the user to aggregate threads that cooperate on a particular computation
or sub-computation. These aggregates, called thread groups1 improve performance
and enhance debugging. When a thread group is created by a call to fork-thread-group
(see Figure 2-e ) the root thread of the group is created at the same time. Sting associ-
ates any threads that are descendents of the root thread of a group with the same group.
When created a thread is thus placed in the same group as its parent, unless the thread
is created as the root thread of a new group. As with virtual processors and threads,

thread groups are first class, with the concomitant benefits.

1. Thread groups were used in Mul-T but did not contain the functionality that they do in Sting.
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Sting organizes thread groups in a genealogy tree just as it does threads. The root of
the thread genealogy tree is the root thread group of the virtual machine on which itis
running. The root thread of the root thread group is the root thread for its virtual
machine. When Sting creates a virtual machine, it also creates both the root thread
group and the root thread of that virtual machine. Figure 2-d shows an example thread
group structure. The circles represent threads and the rectangles denote thread groups.
The circles (threads) contained in a rectangle (thread-groups) are the threads in the
group represented by that rectangle. The edges between the circles show the genealogy
of the threads.

Root Thread Group
O<O\O Root Thread
/
J o o "
Thread Gro Thread Group 2 ad Group 3
o i\ AN
g © L

Figure 2-d : Thread Group Hierarchy

Sting allocates a new shared heap! to each thread group that is created. Every thread
in the group uses the shared heap to allocate data that will be shared by other threads in
the group. When a thread group terminates, Sting garbage collects all the live threads

1. Shared heaps and garbage collection are discussed in Chapter 3.
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in the group as well as the shared heap.

Thread groups can be blocked, suspended, or terminated in a manner smnlar to -
threads. When any of these operations are performed on a thread group all the threads
in the group make the requested transition if possible. Threads not in a group G can
wait on the completion of G. Figure 2-e shows the interface to thread groups. The
reader interested in the details of the interface should see [Phi93].

The operations on thread groups are not quite as straightforward as those on threads.
When a request is made to block or suspend a thread group all threads in that group are
blocked or suspended, but the threads maintain their own state, so that when the thread

group is resumed, only those threads that are ready or running will actually be

resumed.

(fork-thread-group expression .
vp) = thread-group

(thread-group-block thread-group
blocker)= no-value

(thread-group-suspend thread-group
wakeup)= no-value

(thread-group-resume thread-
group)= no-value

(thread-group-terminate thread-group)
= no-value

(thread-group-wait thread-group)
=> no-value

Figure 2- : Thread Group Operations

Thread groups are an important tool for controlling memory sharing in a hierarchical
memory architecture. Since objects shared by a thread group are contained in the
group’s shared heap, they are grouped “close”! to each other in memory and thus have
better locality. When using a machine with a hierarchical memory structure, it is

advantageous to map threads in the same group onto processors that are “close” in the

1. By “close” we mean that take a similar amount of time to access the same address in memory.
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hierarchy. For example, if a parallel machine is created out of shared memory multi-
processors, then performance will probably be much better if the threads in a group are
scheduled on the same shared memory multi-processor, assuming that the number of

processors is similar to the number of threads.

Data parallel programming constructs can also benefit from using thread groups
because of the locality of the shared heap associated with the group. First class tuple
spaces [Jag91] are an example of such a data parallel construct. If the active tuples in a
tuple space as well as the threads which share access to the tuple space are organized
into a thread group, then the tuples will be localized in the thread group’s shared heap.
As a result, both access to tuples and garbage collection of the tuple space will be

much faster.

Thread groups can also act as a locus of scheduling. For example, the thread policy
managf:r1 could implement a strategy where no thread in a group is scheduled to run

unless all threads in the group are scheduled to run.

Thread groups are also useful for debugging. When a thread in a group encounters an
error, the error handler can suspend all threads in that group and invoke the debugger.
The debugger can then be used to inspect the state of the thread that encountered the
error, or any other thread in the group. Sting’s default error handler exhibits this
behavior. With Sting the user can also signal a thread group to suspend execution and

then inspect any or all threads in the group.

It should be noted that the use of thread groups in the Sting system is an optional orga-

nizing tool that has proven useful in practice, but is not mandatory.

2.11 Thread Meta Information

Each thread has a set of flags associated with it that the system uses to determine

whether certain information should be gathered in the course of evaluating the thread.

1. See chapter 4.
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Currently the system gathers three kinds of meta information: genealogy, performance,

and debugging.

The ability to gather this sort of information must be an integral part of the design of a
system supporting parallelism, not an afterthought. Many modern programming lan-
guage environments have been built without sufficient attention to tools for under-
standing both the behavior and performance of the various constructs in the language.
This is particularly true for parallel programming environments. Meta information

allows the various tools for debugging and analysis to be constructed.

2.11.1 Thread Genealogy

Each thread has its own genealogy, i.e. each thread can know it’s ancestors, and its
descendents and their relative ages. The genealogy tree is constructed so that the oldest
or initial thread is the root of the tree and each succeeding generation is ordered from
oldest to youngest in that tree. Figure 2-f shows a thread genealogy tree. Each thread T
in the tree is labeled with a generation number from O to i, with zero being the oldest
generation, and a relative age in that generation from 0 to j, with O being the oldest

member of that generation.
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p Youngest
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Figure 2-f : Thread Genealogy

Thread genealogy is useful for both debugging and algorithm analysis. It allows a
thread encountering an error to examine not only it’s parent and siblings, but also, the
organizational structure of the entire computation at the approximate point the error
occurred. A serious discussion of debugging parallel applications is beyond the scope
of this thesis, but we believe the need for genealogy information is a fundamental pre-

requisite for debugging paraliel applications.

The second important use of genealogy information is in algorithm analysis. Geneal-

ogy can be used for this in two ways. First, it lets the designer examine the asynchro-
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nous and communication structures of an algorithm. This can be done on the fly as the
computation is occurring or as a post-mortem analysis after the computation has com-
pleted by using a visualization tool which displays the dynamics of the genealogy

structure as the computation evolves.

Genealogy also aids algorithm analysis buy allowing the user to evaluate the perfor-
mance of an algorithm on a thread by thread basis. This is done by using performance
information (see below) in conjunction with genealogy information. Since threads are
small data structures it is possible to retain the entire thread tree for post-mortem anal-

ysis.

Sting allows the user to keep thread genealogy in one of two ways; either the geneal-
ogy contains all the threads both living or dead, called complete genealogy, or the
genealogy contains only live threads, called living genealogy. The type of genealogy
maintained, if any, depends on the setting of genealogy flags in the thread data struc-

ture.

2.11.2 Performance Information

The performance information gathered by a thread includes traditional measurements
such as creation time, completion time, time spent in user mode and system mode,
spent time waiting in user mode and kernel mode, number of page faults, and number
of /O blocks. In addition, Sting allows the user to gather other information not nor-
mally recorded, including: maximum stack size, amount of private heap and shared
heap storage allocation, the number of private garbage collections that a thread has
incurred, and the number of shared heap garbage collections that a group has incurred.
Performance data can also be consolidated at the thread group, virtual processor, and

virtual machine level.
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2.11.3 Debugging Information

Most of the above information is sufficient in combination with a typical debuggér to
debug multi-threaded applications. There are, however, three other useful pieces of

information that can be recorded by a thread.

First, whenever a thread blocks, it can record the object on which it is blocked. This
may be another thread, a mutex, a condition variable, or some user defined synchroni-
zation object. This information helps not only to debug synchronization problems, but

can also help locate deadlocks when they exist.

Second, it is possible to log the history of a thread’s state changes along with time
stamps. This information is useful for building an animated graphical representation of

a computation, either on the fly as the computation takes place, or post mortem.

2.12 Thread Migration

Sting allows threads to migrate from processor to processor, but the system is
designed to help minimize and amortize the cost of migration. There are two features

of Sting that reduce this cost.

The first results from the small size of the thread data structure. It is much cheaper to
migrate threads which are either in the delayed or scheduled state, because they do not
yet have execution contexts and only the minimal amount of data must be moved to

another machine.

The second aspect of the design that promotes economical thread migration relies on
the shared virtual me:mory1 to lazily copy pages or cache lines from one processor to
another. This enables the rest of the system to migrate a thread from one processor to
another simply by removing a reference to it from the ready queue on one processor
and inserting it into the ready queue on another processor. When the thread is resumed

on the new processor the data required by the thread, e.g. it’s TCB, stack, etc., is

1. See Section 3.5, Section 4.3, and Section 5.5.1.
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faulted over to the new processor as needed. In most applications the data associated
with a thread is private to it and migrating the data from one processor to another will .

not increase memory contention.

2.13 Thread Termination

Threads terminate or complete either because the thunk which the thread evaluates has
returned, or because the user invokes the thread’s exit handler, a dynamically enclos-
ing continuation. Figure 2-g shows a simplified version of the procedure in which
each thread’s thunk is wrapped. All threads start evaluation by invoking this proce-

dure.

1: (define (start-thread thread)

2: (let ((z (no-value)))

3: (catch exit

4: (dynamic-wind

5: (lambda ())

6: (lambda ()

7: (set-exit-handler! thread exit)

8: (set! z ((thread.thunk thread))))
;7 Thread termination

9: (lambda ()

10: (set-thread-value! thread z)

11: (wake-up-waiters thread)

12: (thread-state->dead))))})

Figure 2-g : Thread Startup and Termination

The first thing the start-thread procedure does is ensure that the termination code is
executed, even if the exit handler for the thread is invoked. This is done by creating a
temporary variable Z to hold the value of the thread (line 2), and then wrapping the
evaluation of the thread’s thunk in an dynamic-wind form (line 3). The before argu-

ment (line 4) to the dynamic wind is a procedure that returns no value, because the
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thread has no state associated with it which needs to be rewound if it is entered again.1

In the during argument (lines 5 - 8) a downward only (dynamic) continuation is cre-
ated using catch and stored as the exit handler of the thread (line 7). In line 8, the real
work of the thread is performed by evaluating the thunk associated with the thread.

The after argument (line 9 - 12) ensures that the thread competes properly. It does this
by first storing the value computed by the thunk in the thread and then setting the
thread state to determined (line 10). Sting then resumes all threads waiting for the
value of this thread (line 11), recycles the execution context,2 and then calls the thread

controller to run a new thread (line 12).

This wrapper procedure around the thread’s thunk controls the evaluation environment
of the thread’s thunk. Language designers can use wrappers to augment the semantics
of thread start-up and completion without necessitating any change in the thread sys-

tem.

2.14 Thread Performance

Table 2-a, “Thread Performance,” on page 48 shows performance numbers for threads
in our implementation of Sting. The performance measurements were made on a Sili-

con Graphics Personal Iris with one 25 megahertz MIPS R3000 processor.

1. See the discussion of dynamic winding in Section 2.9.3 on page 38.
2. See Chapter 3.
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fest Time in pseconds
1: Thread Creation 8.9
2: Scheduling a Thread 18.9
3: Synchronous Context Switch 3.7
4: Thread Fork and Value 44.9
5: Thread Absorption 7.7
6: Thread Block and Resume 279
7: Speculative Fork (2 threads) 68.9
8: Barrier Synchronization (2 threads) 144.8

Table 2-a: Thread Performance

Sting is currently written in the T dialect of Scheme and is compiled using the Orbit
Compiler [KKR*86]. Orbit was designed for CISC architecture machines and does not
generate particularly good code for RISC machines. In addition, Orbit does not per-
form many optimizations, such as inter-procedural analysis, which would enhance the

speed of all the test programs.

The first performance number is the time to create a thread and capture it’s dynamic
context.! The second benchmark above is the time it takes a user to schedule a delayed
thread to run on a simple lifo scheduler. The third test shows the cost of doing a con-
text switch, i.e. (yield-processor) . The fourth benchmark shows the time needed

to execute the form
(thread-value (fork-thread 0))

This time represents all the overhead associated with the use of threads. It includes the
cost of creating, scheduling, evaluating (including context switch in and out), and

cleaning up the resources associated with a new thread.

The fifth test is exactly the same as the fourth test except that the thread is evaluated

1. While this time is competitive with other thread systems, it currently takes more than twice the
number of instruction necessary to create the thread. This is because T performs storage alloca-
tion by using a subroutine with approximately 20 instructions. The next version of the system
will use a storage allocator which takes 2 or 3 instructions to allocate a piece of storage.
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using thread absorption,! i.e. is evaluated in the execution context of the thread
demanding its value. It shows that thread absorption is significantly faster than actu-
ally allocating the execution context for the thread. Test six shows the cost of blocking

and resuming a running thread.

Finally, tests seven and eight show the costs of two types of synchronization. In test
seven, two threads are forked but when one thread completes the other thread is termi-
nated and the value of the completing thread is returned. In test eight, two null threads

are forked and the caller waits until both threads have completed.

While the above numbers are not directly comparable with those published for other
thread systems which do not run on SGI hardware, they are however very competitive
and we believe that when compiled by a more sophisticated compiler than Orbit, most

of the above timings would be improved by 100%.

1. Thread absorption is discussed in detail in Chapter 3.
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Chapter 3

Thread Evaluation and
Execution Context

3.1 Introduction

A thread, when either delayed or scheduled, is a small data structure, as explaihed ear-
lier, but when a thread begins evaluation Sting allocates an execution context for it. A
thread’s execution context is composed of a thread control block (TCB), a stack, a
local heap, and a shared heap, which is inherited from its thread group. Delaying the
allocation of the execution context until a thread begins executing provides Sting with
several advantages in terms of storage utilization and data locality. These in turn lead
to significant improvements in efficiency. While threads are first class, execution con-
texts are not. Execution contexts are internal to Sting and are invisible to the user. This
allows them to be reused when a thread completes, and also leads to other opportuni-
ties for optimization. The various components of the thread execution context are dis-

cussed throughout the rest of this chapter.

The thread control block is a record which contains information relevant to the current
state of the evaluating thread. In many respects, it is analogous to a process control
block in traditional operating systems, It contains information about the state of an
evaluating thread and space to save the thread’s VP state on a context switch. It also

contains references to the stack, the private heap, and the shared heap.

A thread uses its stack in the traditional manner, for allocating objects, including pro-

51
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cedure call frames. Stack allocated objects are only accessible to the associated thread
and their lifetime is known not to exceed the lifetime of the procedure which created
them. The stack is different from those in traditional languages such as C, Fortran, or
Pascal, in that it contains not only parameters and local variables, but can also contain
data created dynamically that only exist for the dynamic extent of the procedure call.

The compiler determines whether or not an object can be allocated on the stack.

Objects that are only accessible to the thread that created them and whose lifetimes
may exceed! the lifetime of the procedure that created them are allocated in the private
heap. Objects in the private heap can never be referenced by any thread other than the
one that created them. The fact that both the stack and private heap cannot contain
shared data allows them to be allocated in physical memory that is local to the physical
processor. Accessing such data is fast, because there is no contention for it and it is
trivially coherent. This is particularly important on disjoint, or partially disjoint mem-

ory systems.

The shared heap is associated with all the threads in a thread group. Shared objects, i.e.
those known to be accessible to threads other than the one which created them, are
allocated in the shared heap (see Section 3.5.5). Thus the memory coherence problem
which occurs on all shared memory multi-processors only applies to shared heaps. Pri-
vate heaps and stacks can be implemented in memory that is not coherent with respect
to the rest of the processors because no other processor will access it. Both the private
and shared heaps are actually a series of heaps organized and garbage collected in a
generational manner. Since a thread’s private heap is inaccessible to other threads, i.e.
cannot contain objects which are referenced from other threads, they can be garbage
collected independently without stopping the evaluation of other threads in the system.
The Sting garbage collector is quite novel. It is discussed in Sections 3.5.4 and 3.5.5

below.

1. That is, the compiler cannot determine that the object’s lifetime does not exceed the lifetime of
the creating procedure.
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3.2 Comparison with Other Systems

There have been many different approaches to handling the memory requirements for
implementing control state in various parallel languages and thread systems. These
include: the stack and data segments of languages like C and Pascal, the cactus stacks
of Mesa, spaghetti stacks in Interlisp, the similar macaroni stacks of Steele, and finally
heap allocated control state in implementations such as ML/NJ [App90] and Mul-T
[KHMS89]. There are various restrictions and costs associated with these techniques for
implementing control state. The Sting approach reduces the cost of implementing con-
trol state while at the same time removing some of the restrictions associated with the

above mentioned strategies.

Similarly, there have been many different approaches to handling the memory require-
ments for data, other than that used for implementing control state, in a program.
These include: the static allocation of local and common areas in Fortran, data seg-
ments in languages like C and Pascal where allocation is static (compile time) or
dynamic (malloc and free), and heaps in languages which support automatic storage

management including garbage collection.

Reducing the absolute number of execution contexts created during the evaluation of a
parallel program is a related problem to reducing the cost of a program’s memory
requirements. This is often referred to as constraining the amount concurrency found
in a program. Several different methods of constraining concurrency have been pro-
posed. These include a master/slave strategy such as used in WorkCrews [VR88], and
load based inlining and lazy task creation as implemented in Mul-T [MKH90]. Sting
introduces a new method of constraining concurrency called thread absorption. We
compare thread absorption with these other approaches in the appropriate sections

below.

3.3 Thread Control Blocks (TCBs)

When a thread begins evaluation a TCB is allocated for it either from the TCB pool
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associated with each virtual processor, or if that pool is empty from the global pool of
TCB’s. The TCB data structure has a size on the order of 100 words of storage. In order
to improve locality the TCB is allocated at the base of the stack. Thus the base of the

stack and the TCB are allocated on the same page in memory.
The TCB data structure contains the following fields:

State - During the course of evaluating the thread the TCB can enter several
different states. We refer to these as thread evaluation sub-states, or simply
TCB states.

Exit Handler - Each evaluating thread has an exit handler which is used to
unwind the stack and deallocate resources associated with the thread. The

exit handler is discussed in Section 2.13 on page 46.

Next Waiter - If this thread is waiting for some other thread to terminate, this
field is used to record that fact. The set of threads waiting for a thread to
complete evaluation is implemented as a list anchored in the thread-waiters
slot of the thread being waited on and threaded through the TCB next-

waiter field.

Blocker- Whenever a thread blocks (or suspends) the object on which the
thread blocked is recorded in this field. This information is never used by

the thread system, but it is supplied for debugging purposes.

Wakeup Time - This field is used to record the time at which a suspended

thread should be resumed.

Saved VP State Block - This is space in the TCB for storing the entire state
of the VP when the thread is releasing control of the processor for whatever
reason. Context switching and the use of the saved VP state block is dis-

cussed in Chapter 4.

Local Stack - An area of memory used for storing objects created during the

execution of the thread that are private to the thread, i.e. they are never ref-
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erenced by any other thread, and whose lifetimes do not exceed the

dynamic extent of the procedure which created them.

Local Heap - An area of memory used for storing objects that are private to
the thread, and whose lifetimes may exceed the dynamic extent of the pro-

cedure which created them.

Shared Heap - An area of memory used for storing objects created by the
thread which are shared with other threads.

The use of these fields will be discusses in more detail throughout the rest of this chap-

ter.

3.3.1 TCB States

Once a thread begins evaluating, it may enter several possible sub-states. These states
are associated with the thread control block. An evaluating thread’s TCB can be in any

of the following states:

® initialized - The TCB has been initialized but is not currently associated

with any thread, rather it is contained in the pool of initialized TCB’s
associated with each virtual processor or in the global TCB pool.

ready - The thread is ready to be run, but is not currently running on
any virtual processor.

running - The thread is currently executing on some virtual processor.

blocked - The thread is blocked, i.e. not able to run, waiting for some

unspecified event to occur.

®  suspended - The thread has been suspended either indefinitely or for
some specified time. -
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d terminating - The thread has begun terminating it’s execution, either
because it has finished it’s computation or because it has been
requested to terminate it’s computation prematurely.

Figure 3-a shows a state transition diagram for both threads and TCB’s. The TCB
states can be regarded as thread evaluation sub-states.

Thread Evaluation States

@

( Delayed ) —( Scheduled! w

Evaluatmg

TCB States ¢

Initialized

Ready

Blocked ?—> Suspended

Termznatzn

Figure 3-a: State Transition for Thread Evaluation Sub-States.
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When a thread has finished evaluating, i.e. has become determined, its TCB is re-ini-
tialized and its entire execution context is returned to the pool of execution contexts
associated with the thread’s virtual processor. This pool is arranged in a LIFO order so
that when a new context is allocated it is the one most recently used, and thus is likely

to be already loaded into the caches and main memory of the system.

Evaluation sub-state transitions!

are accomplished more quickly than in other operat-
ing systems, because there is no need to lock either the thread or the TCB on a sub-
state transition. This is possible because only the thread itself changes its TCB state.
Or, said another way, it is the thread itself which calls the thread controller when it
wants to change its state and the thread controller’s procedures run in the execution

context of the thread which calls them.

3.3.2 Advantages of Delaying Execution Context Allocation

Sting does not assign an execution context to a thread until it begins evaluation.
Delaying the allocation of the execution context until thread evaluation time results in

several advantages in storage conservation and locality of reference.

Since execution contexts are internal to the Sting system, i.e. a user program can never
gain access to them. Execution contexts can be recycled for use by other, as yet un-
evaluated, threads when a thread completes executing. Execution contexts that have
been created but which are not currently associated with an evaluating thread are

pooled, in a lifo manner, on the various virtual processors.

Sting allocates an execution context to a scheduled thread when it begins evaluating
on a virtual processor. The allocation strategy is designed to improve data locality. The

execution context is allocated in one of four ways:

® If the thread executing on the virtual processor just prior to beginning
the evaluation of a new thread has completed execution, its execution

1. Evaluation sub-state transitions are similar to thread state transitions in other thread system,
because these systems assume that a thread is always in an “evaluating” state.
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context is available for immediate re-allocation. Further, its execution
context is the best candidate for allocation because it has the most
locality relative to the virtual processor, i.e. the physical memory and -
physical caches associated with the virtual processor are most likely to
contain the execution context that has been most recently used.

®  If the thread executing prior to starting a new thread has not finished its
execution, Sting allocates an execution context from a lifo pool of exe-
cution contexts associated with the virtual processor it is about to run
on. The execution context allocated is again the one with the most
locality, since it is the most recently used of the execution contexts
available.

If the pool of execution contexts associated with the virtual Pprocessor is
empty, then the execution context is allocated out of the global pool of
execution contexts which, like the VP local pools, is organized as a lifo
queue, giving it the best chance for memory residence.

Finally, if the global pool of execution contexts is empty Sting creates
a new execution context and allocates it to the thread. Since this execu-
tion context has never been used before, it has no locality. It should be
pointed out, however, that this is the case which occurs least often.

The local pools of execution contexts on each VP interact with the global pool of exe-
cution contexts in the same manner as those of Anderson, et. al. [ALL89]. There is a
parameter Pp,,, associated with each virtual machine that is the maximum number of
execution contexts in a VP pool. If a VP pool overflows, i.e. has more than Pax €xe-
cution contexts returned to it, it returns half of the execution contexts in the local pool
to the global pool. If a VP pool underflows, i.e. has no execution contexts in it when
one is allocated, then the VP acquires one half of Pp,, execution contexts from the
global pool. This strategy keeps the number of execution contexts in each VP’s local

pool relatively balanced while at the same time avoiding contention on the global pool.

Delaying execution context allocation also minimizes the number of execution con-
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texts in use at any one time, since the number in use corresponds to the number of
threads that are currently being evaluated, not to the number of threads that have been

created.

Delaying execution context allocation has the additional advantage of reducing the
cost of thread migration from one virtual processor to another. It is much cheaper to
migrate a thread that has not yet begun evaluating, and therefore has no execution con-
text, because only the thread data structure, which is small, is moved. In order to
migrate an evaluating thread, all of the objects in the execution context must also be
migrated. This can be done eagerly, by copying the context from one VP to another, or
lazily, by “faulting” the cache lines and pages associated with the execution context to

the new VP as they are referenced. !

The final advantage of delaying execution context allocation is that it allows Sting to

perform an optimization called thread absorption.

3.3.3 Thread Absorption

Thread absorption? is a novel optimization introduced by Sting that has the effect of
improving locality of reference and reducing the storage required for the evaluation of
threads. Thread absorption can occur when one thread must wait for the completion of
another thread which is not yet evaluating. Waiting for completion occurs most often
because one thread demands the value of another thread. This optimization is espe-

cially important in fine grained and data parallel programming models.

For example, thread absorption can occur when a thread, T;, requests the value of
another thread, T,. If T, is not determined then T; blocks until the value of T,
becomes available. However, in the case where T, has not yet begun evaluating, it is

possible for T, to evaluate T, using its own execution context. When thread T) is eval-

1. Lazy migration is only possible because Sting is base on a shared virtual memory.

2. Thread absorption was called thread stealing in earlier papers on Sting. Thread Absorption is a
more descriptive term and it is not easily confused with the term stealing as used in lazy task cre-
ation.
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uated using the execution context of T; we say that T; bas absorbed T,. Thread
absorption does not slow down the evaluation of T; since by definition T has to block
until T is finished evaluating. In fact, it speeds up the evaluation of Ty because Ty’s

execution context is not switched out with the attendant loss of locality.

Thread absorption results in reduced storage requirements since it avoids the alloca-
tion of an execution context by using the same one to evaluate two different threads.
More importantly, it results in improved locality of reference for two reasons. First, the
execution context of T) is already loaded in the physical memory and caches of the
processor, so evaluating T in T;’s context will cause fewer cache and page faults.
Second, the value computed by T, will already be in the cache when T; resumes eval-

uating.

T,

- Data Dependency
-

Figure 3-b : Before Thread Absorption

It is easiest to explain thread absorption by using an example. Figure 3-b shows a

thread, T, which is evaluating and is about to wait for the completion of another
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thread, T,, either because it has demanded it’s value, (thread-value T,), Or is
merely synchronizing with it, (thread-wait T,). T, has not yet begun evaluating,
i.e. it is either in the delayed or scheduled state. This allows us to evaluate T, using

Ty’s execution context. Thread absorption relies on two conditions:

® T, cannot proceed until T, completes and thus its execution context

will be inactive until that time, and

T, does not yet have an execution context because it has not yet begun
evaluating.

Figure 3-c is similar to Figure 3-b except the T has dynamically absorbed T, and T,

is now running using T;’s execution context.

Execution

Figure 3-c : Thread T; has Absorbed T,



62 Chapter 3: Thread Evaluation and Execution Context

The thread absorption has been accomplished by making T;’s execution context refer
to T2 and then starting T, by simply making a procedure call. Figure 3-d shows the
states of Ty and T, after T, has finished evaluating and T; has resumed.

T,

Figure 3-d : Absorbed Thread has been Determined

In order to look at the mechanics and simplicity of thread absorption, we show exam-

ple Scheme code for it in Figure 3-¢ .



3.3 Thread Control Blocks (TCBs) 63

1: (define (thread-absorb thread)
2: (let ((absorber (current-thread)))

;; setup absorbed thread
3: (thread-state->absorbed thread)
4: (set-thread.vp! thread (current-vp))
5: (set-thread.tcb! thread {(current-tcb))
6: (set-tcb.thread! (current-tcb) thread)

;; evaluate the absorbed thread
7: (let ((val (thread-start thread)))

;; finished evaluating thread

8: (set-thread.vp! thread (current-vp))
9: (set-tcb.thread (current-tcb) absorber)
10: val)))

Figure 3-e : Code for Thread Absorption

The thread-absorb procedure is called by the absorber, i.e. the thread, in our example
T, that is about to block on an unevaluated thread, in our example T;. In line 2 the
current thread is saved so that we can resume it when the absorbed thread completes.
In lines 3 to 6 the thread and TCB data structures are changed to make the execution
context belong to the absorbed thread. This is done by changing the absorbed thread’s
state to absorbed (3), associating the current virtual processor with the absorbed thread
(4), and giving the TCB and thus the execution context to the absorbed thread (5 and
6).

The absorbed thread is evaluated by simply calling the start-thread (see Figure 2-f)
procedure with the absorbed thread as its argument. The last thing that start-thread
does before it returns is a garbage collection of the private heap. This is usually a
opportune time to do a garbage collection because all the local objects created by the
absorbed thread (in its stack and private heap) will be dead (unreachable) except for
the value of the absorbed thread.

When the absorbed thread completes it simply returns its value to the thread-absorb

procedure. We should note that the absorbed thread executes in the dynamic context
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that was extent when the thread was created, and thus the dynamic windings and bind-
ings are those appropriate to the absorbed thread. This occurs because the dynamic
context of the absorbed thread was captured when the thread was created, and in was
stored in the thread’s data structure. Thus we can change the dynamic context at no

cost when we absorb a thread.

After the absorbed thread completes and control returns to the thread-absorb proce-
dure the current virtual processor is stored in the absorber’s thread data structure (8),
because the execution context might have migrated to a different processor while it
was evaluating the absorbed thread. Then the execution context is returned to the
absorber (9). This takes only one instruction since the absorber’s thread.teb field still
refers to the execution context. And finally the value of the absorbed thread is returned

to the absorber which resumes execution automatically.

Thread absorption is particularly useful for languages which support lazy evaluation.
This is because delayed threads can be used to implement lazy values. When the lazy
value is accessed using thread-value the delayed thread will automatically be

absorbed.

Furthermore, the overhead of allocating a dynamic context and evaluating a thread in
that context is as least 4 to 5 times more expensive then the overhead of thread absorp-

tion (see Table 2-a).

3.3.4 Limiting Concurrency: Related Work

There are two other optimizations which are similar to thread absorption, load based
inlining1 and lazy task creation. These strategies have only been used in the context of
Multi-Lisp, but they can be applied to other parallel languages. We should note that it
would not be possible to apply these optimizations to other thread systems such as
Mach, Topaz, or C Threads because they allocate the execution context at the time of

thread creation.

1. The use of the term inlining is an unfortunate one, because it confuses the notion of textual substi-
tution, as when a compiler inlines a procedure, and the notion of avoiding the creation of a thread.
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3.3.4.1Load Based Inlining versus Thread Absorption

Load based inlining is a technique that was tried in both Multi-lisp and Mul-T. The
idea is that when the load on a processor reaches some threshold the calls to (£future
exp), which are equivalent to (fork-thread exp) will be inlined by simply call-

ing the future’s thunk as a procedure, rather than creating a thread.

However, load based inlining has several drawbacks as noted by [MKHO0]. It requires
programmer involvement. First to decide where load based inlining should be applied
and secondly the programmer must decide at what load threshold inlining should

occur.

Load based inlining also suffers from the fact that when an inlining decision is made it
is irrevocable, and thus there is no way to change the decision and “un-inline” a thread
if some processor becomes available. This might result in starvation or deadlock. The
cause of this is that once the load passes the threshold every succeeding thread cre-
ation is inlined until one of the inlined threads blocks. Many of these threads might be
able to run if they weren’t inlined. Consequently, one or more processors may have no
work to do because there are no executable threads on the system, i.e. threads which
are not blocked and which have not been inlined, but there maybe many threads that

could be executed if they weren’t inaccessible as a result of having been inlined.

Thread absorption does not suffer from this problem. While thread absorption deci-
sions cannot be revoked, they do not cause starvation. This is because no thread is
absorbed unless the absorber is about to block and thus there will never be any

absorbed thread which could run if it hadn’t been absorbed.
As [Moh91] points out

“Perhaps the most serious problem with load-based inlining is that, for
some programs, irrevocable inlining is not a correct optimization. Irre-
vocable inlining can lead to deadlock because it imposes a specific
sequential evaluation order on tasks whose data dependencies might
require a different evaluation order.” (italics theirs)
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Again, thread absorption does not suffer from this problem. The only time a thread is
absorbed is when the absorbing thread can not proceed. Thus no deadlock can occur

because of incorrect order of evaluation.

There are also conditions under which load based inlining creates too many task
[PW89] [Wee89]. This is because load based inlining with distributed task queues is
unable to achieve oldest-first scheduling. Thread absorption does not suffer from this

problem because the absorbing thread is never runnable.

3.3.4.2Lazy Task Creation versus Thread Absorption

Lazy task creation [MKHO91] solves many of the problems associated with load based
inlining. Lazy task creation works by always inlining the evaluation of every thread,
but doing so in such a way that the decision to inline the thread can be revoked if some
processor becomes idle. This is done by having each processor maintain a fifo queue
of inlined threads evaluating on that processor. If a processor becomes idle it removes
the oldest thread from the inlined thread queue of some other processor and begins
executing it. Threads are never created until there is a reason to create them, i.e. a pro-

cessor becomes available to evaluate them, hence the term lazy task creation.

Because lazy task creation allows revoking the decision to inline a thread it removes
many of the problems associated with load based inlining: no programmer interven-
tion is necessary, processor starvation does not occur, avoidable deadlocks do not
occur since no sequential order of thread evaluation is imposed, and too many tasks
are not created because tasks are only created when they are actually needed to

improve the parallelism of the system.

Lazy task creation works very well with programs, such as divide and congquer ones,
that have bushy call trees, but it does not work well for other kinds of programs, such
as data parallel programs which are not organized in a bushy tree fashion., e.g. pro-
grams using tuple spaces [CG891[CG90][Jag91], or programs which iterate over a lin-
ear data structure. Load Based inlining does not work well on these kinds of programs

either. Sting’s threads, however, are useful for both types of programs.
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The primary advantage of lazy task creation is that the average cost of thread creation

is extremely low for bushy call tree types of programs. But there are several disadvan-

tages associated with it.

The scheduling order for the tasks created lazily is determined by the
technique, and it is not possible for the programmer to use some sched-
uling discipline more suitable to the program.

The average cost of thread creation is very low, but Multi-lisp threads
do not support dynamic contexts, or the gathering of meta information
on a per thread basis. Properly supporting dynamic contexts as Sting
does would more than double the cost of lazy task creation.

Several of the capabilities available in Sting can not be implemented if
lazy task creation is used. It is not possible to map a thread to particular
processor, nor is it possible to schedule threads according to priority,

quantum, or some other criterion.

Lazy task creation, as implemented in Mul-T, relies on having one glo-
bal heap per processor. The are two problems with this. First it results
in less locality when a task is stolen then if the thread had its own heap,
and second, since thread stacks and heaps can not be private to the
thread, they can not take advantage of machines which have both local
and shared memory. Sting’s threads do not have these problems.

In order to garbage collect a system using lazy task creation, as imple-
mented in Mul-T, all threads on the system must be stopped. The gar-
bage collector can be parallel, but no threads can execute while
garbage collection is taking place.

Lazy task creation may not be as effective as Sting in load balancing.
This is because when a thread is migrated it is the oldest thread on a
processor, and migrating it may involve significant data movement.
Certainly, it costs more than to migrate an unevaluated Sting thread.
Further, lazy task creation dictates the load balancing policy, which
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may not be the most appropriate for a given program. Sting on the
other hand allows the programmer to customize the load balancing
strategy based on the needs of the program.

It should be pointed out that load based inlining, lazy task creation, and thread absorp-
tion all fail in the presence of speculative computation. This is because while there
may be a terminating solution all processors may be running non-terminating threads.
For both load based inlining and thread absorption one non terminating thread is
enough to cause the program to not terminate, whereas with lazy task creation it take N
non-terminating threads, where N is the number of processors on the system, and each
processor is running a non-terminating thread. It is important to note that thread
absorption can be selectively tumed off in a Sting system and when it is turned off
Sting handles speculative computation correctly. In particular, wait-for-N discussed in
the next section handles speculative concurrency correctly even in the face of non-ter-

minating threads, assuming of course, that the thread policy manager is fair.

3.4 Thread Waiting and Thread Barriers

Sting supports any of the various synchronization constructs: mutexes, condition vari-
ables, monitors, etc. These constructs are all independent of the implementation of
threads. Given a some form of atomic lock, the simplest being a binary mutex, any
synchronization construct desired can be created using simple data structures and the

following three procedures which Sting provides:

(current-thread),

(thread-block-thread thread blocker),

(thread-resume thread).
But one type of synchronization, barrier synchronization, provided by Sting is built
into the thread system because it relies on the implementation of threads. Two types of
barrier synchronization are supported. The simpler of the two corresponds to join

points in other thread systems.

(thread-wait thread)
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waits for thread to terminate. The more interesting type of barrier synchromzatlon

involves synchronlzatlon of multiple threads at one barrier. The construct

(wait-for-N count thread; thread,; ...)

blocks the current thread until at least count threads in the list have completed. Using
the wait-for-N construct it is easy to implement and-parallel and or-parallel con-
structs. Sting provides two other barrier synchronization forms which are imple-

mented in terms of wait-for-N. These are:

(wait-for-one thread,; thread, ...)
(wait-for-all thread,; thread, ...)

As mentioned above all of these forms work for speculative computation even in the

face of non-terminating threads.

3.5 Memory and Object Management in Sting

As explained in Chapter 1 Sting is designed to support object oriented, functional,
logic programming, and fully polymorphic languages, as well as automatic storage
allocation and reclamation in the context of these languages. In order to explain how
Sting manages memory we must first explain how objects are represented and how the

virtual address space associated with each virtual machine is organized.

3.5.1 Object Representation in Memory

The fundamental memory structure in Sfing is called an extent, see Figure 3-f . A
memory extent is a contiguous set of memory locations that begin with a descriptor.
The rest of the locations associated with the extent contain the data for the object that

it represents.
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Figure 3-f : The Layout of a Memory Extent

The descriptor contains information about the type of the object, its size, and the num-
ber and location of references (pointers) contained in the object. This information is
encoded in one or two words of memory depending on the type of the object. The
descriptor serves two purposes. It is used for dynamic (runtime) type checking when
type information cannot be determined at compile time, e.g. for polymorphic lan-
guages, and it supplies the garbage collector with the information needed to copy the
extent and trace through its references. Sting’s memory extents, and their descriptors,
are very similar to those found in the various Scheme, Smalltalk, Common Lisp, ML,

and Haskell implementations.

3.5.2 Areas and Extent Allocation

Sting’s virtual machines each define a separate virtual address space (see Section 4.3).
The virtual address space is divided into areas. An area is a contiguous region of
memory which is used to store extents. Every memory extent is contained within some
area. They do not span areas. Sting’s areas are similar to those of [Bis77], but the

mechanisms used to manage them are significantly different. Figure 3-g shows vari-
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ous areas mapped onto the virtual address space as well as the internal structure of an

arca.

Areas are used for organizing data which exhibit strong locality, i.e. objects which
tend to be used at approximately the same time during the course of a computation.
Said another way, Sting uses areas to organize objects which exhibit temporal locality
so that they also exhibit spacial locality. This organization diminishes the cost of mem-
ory accesses in a hierarchical memory system, since objects which are used at a similar
time have a greater chance of being brought into the memory hierarchy at the same
time, because they are on the same cache line or page. Sting’s areas are used to build
stacks, private heaps, shared heaps, pools, and possibly other objects. Each area type
has different constraints on object allocation and reclamation. We discuss the con-

straints as they relate to each type of area in the sections that follow.
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Figure 3-g : Virtual Address Space and Areas

Each area has a header which describes the storage allocation and reclamation strategy
for it, and includes fields for the various kinds of information needed to implement the

strategy. An area header contains the following fields:

Mutex - Each area has a mutex associated with it. The mutex is used to syn-

chronize access to shared areas. Private areas such as stacks and private
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heaps are inaccessible to other threads and need no locking during alloca-

tion or reclamation.

Type and Flags - There are several different types of areas including: stack,
stack block, private heap, shared heap, pool, and root area. The flags give
information such as whether an area is garbage collectable, or whether the

area’s frontier is cached in a register.
Base - The address of the first location in the area after the area’s header.

Frontier -The address of the boundary between the last extent allocated and
the empty part of the area. The area frontier is the boundary between that
part of an area where objects have been allocated and the part that is empty.

Limit - The address of the last location in the area that can be allocated.

Older and Younger - These two fields are used to store generation informa-

tion in the case of heaps, or stack chains in the case of stacks.

Root - The root object in the area. This is the root of garbage collection for the

area.

Pool - Heaps can contain pools of objects which are allocated and reused. This

field refers to such a pool if it exists.

Incoming Reference Set - The set of locations outside this area which con-

tain references into it.

Outgoing Reference Set - The set of locations in this area which contain

references to locations outside it.

The uses of these fields are discusses in detail throughout the rest of this chapter. It is
important to note, however, that the actual memory cost of each area is only the
amount of memory that has been allocated in it. Thus the part of an area that is empty
(see Figure 3-g ) has no physical memory associated with it!, either in the caches,

including the page frame cache, or on backing store. This is because no reference to a
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memory location can exist until an object is created in it. The important consequence
of this is that the memory requirements of a program or thread are independent of the

number of areas that it uses.

All extents are allocated in the same manner independently of the type of area in
which they are allocated. The overhead for allocating an extent in a thread’s stack or
private heap is two instructions. The overhead for allocating an object in a shared heap
is five instructions. Both of these overheads are significantly less then the cost of
explicit storage allocation, e.g. an ALLOC and FREE in Unix. This of course does not
count the cost of garbage collection which we have attempted to minimize as dis-

cussed below.

Many languages which support garbage collection use a technique called polling to
handle interrupts. This technique checks a flag at regular intervals to see if an interrupt
has occurred. It only checks the flag when storage is in a consistent state. For example,
the compiler for such a language might generate the instructions which check for inter-
rupts at every procedure return point and at the back edges of all loops. This technique
has two drawbacks. First, it increases both the amount of code generated and executed
and thus increases the time to execute a program. Second, an interrupt has to wait an
. arbitrary, though bounded, amount of time before it is handled. This may be acceptable
in interactive systems, but is certainly not suitable for real time systems. Sting is
 desi gned for both real time and interactive use, and thus, polling for interrupts is not an

acceptable solution.

Storage allocation in Sting is faster because threads do not have to worry about being
interrupted during storage allocation. Separate areas allow Sting interrupt handlers to
have there own stack and private heap. This avoids the problem of interrupts during

allocation altogether, and thus, simplifies object allocation.

1. This is not strictly correct. The amount of memory allocated in an area could exceed the actual
amount of data created that area by at most one word less than the page size of the system.
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3.5.3 Thread Stacks

Stacks have been used in traditional languages such as Fortran, C, Pascal, or Mesa, to
efficiently record the control state of a program by pushing and poping procedure acti-
vation frames. However, many modern programming languages such as Scheme, ML,
and Haskell support the use of first class continuations. One of the many reasons for
this is that first class continuations can be used to implement thread systems [Wan80]
[HFM84] [CM90]. Several implementations [Mul-T, ML, Scheme 48] which support
first class continuations have decided to implement the control state using a linked list
of activation frames which are allocated along with all other objects in the heap, fore-
going the use of a stack. This is because it leads to a simple and elegant implementa-

tion of first class continuations [ App90].

The problem with allocating activation frames in the heap is that it leads to exceed-
ingly poor cache performance on hierarchical memory machines [TA92], because
stacks exhibit significantly more locality then heaps. Another problem associated with
this technique is that it results in the allocation of more storage than that required by a

stack, and thereby incurs additional storage allocation and garbage collection costs.

Further, allocating all objects, including activation records, in the heap also increases
the cost of garbage collection because it does not take advantage of the zero cost of
collecting stack allocated objects. This cost is zero because the dead objects in the
stack are collected (deallocated) as a result of poping the activation frame. And incur
no additional overhead from that required to pop the activation frame if it is consed in

the heap.

It is also true that many algorithms, particularly recursive ones, can allocate the major-
ity of their objects on the stack, because their lifetime does not exceed the dynamic
extent of their creator. Allocating objects on a stack can thus significantly reducing the

cost of garbage collection for these algorithms.

For all of these reasons Sfing threads record control state using stacks. Further, as

many objects as possible, in addition to activation frames, are allocated on the stack.
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Thread stacks are implemented as areas.

In order to allocation an object on a thread’s stack the compiler must ensure that the
lifetime of that objects does not exceed the dynamic extent of the procedure whic.:h cre-
ates the object. This is because when the procedure returns all the objects created by it
are reclaimed by simply decrementing the frame pointer. Thus, the overhead for gar-
bage collecting a stack allocated object is at most two instructions, but since many
objects may be claimed at once, the cost of collecting a stack object is on average less

than one instruction.

Another constraint on stack allocated objects is that any references they contain can

only refer to other objects:

® thatare in the same dynamic extent,
® thatareina previous dynamic extent, or
®  that are in some heap.

Objects which are in the same dynamic extent can refer to each other because they all

1 on exiting the dynamic extent, and therefore all references

die at the same time,
between them will be deallocated simultaneously. A stack allocated object can also
refer to any object which is in a previous dynamic extent. This is because stack refer-
ences to objects in previous dynamic extents are guaranteed to be reclaimed before
objects to which they refer. Finally stack allocated objects can refer to objects in heaps
because the thread associated with the stack is suspended while the heap is garbage
collected and the stacks that contain these references are traced by the garbage collec-

tor.

The minimum size of a stack area in Sting is one kilobyte. This means that many fine

grained threads can be evaluating concurrently. However, the default stack size is 64

1. A compiler can convert references between objects in the same dynamic extent to offsets using an
optimization similar to environment collapsing. This optimization decreases storage overhead
while increasing data locality.
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kilobytes. Users can modify the default stack size as well as control the initial stack
size of any thread. Allowing initial stack sizes to be small conserves the address space,
not the amount of memory aétually used, since as we have pointed out above backing
store is only allocated when the memory is actually used. The amount of backing store
associated with a stack corresponds to the maximum depth the stack reached during

the evaluation of its thread.

Stack chains are another aspect of Sting which improves locality and reduces storage
requirements. A stack may be composed of several stack blocks chained together.
Each stack block is a contiguous set of locations. Stack chains are made efficient by
making the continuation at the top of a stack block be a procedure which simply sets
the stack pointer to point at the base of the next stack block. The continuation at the
base of each new stack block is a procedure which when called simply returns into the

previous stack block.

3.5.4 Thread Private Heaps

Thread private heaps are used to allocate objects whose lifetimes might exceed the
lifetime of the procedure that created them. We say might exceed because it is not
always possible for the compiler to determine the lifetime of an object in higher order,
or fully polymorphic programming languages such as Scheme or ML. Furthermore, it
may not be possible to determine the lifetimes of some objects in languages which

allow calls to unknown procedures.

References contained in a private heap can refer to other objects in the same private
heap, or objects in shared heaps, but they cannot refer to objects in the stack. Refer-
ences in the stack may refer to objects in the private heap, but references in the shared
heap may not. No other thread can access objects which are contained in a thread’s
stack or private heap. Thus, both thread stacks and private heaps can be implemented
in local memory on the processor without any concern for synchronization or memory

coherency.

Thread private heaps are actually a series of heaps organized in a generational manner.
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Storage allocation is always done in the youngest generation in a manner similar to
other generational collectors. As objects age they are moved to older generations.

Readers interested in generational collection should see [Ung84] and [App90].

All garbage collection of the private heap is done by the thread itself. In most thread
systems that support garbage collection all threads in the system must be suspended
during a garbage collection. In contrast, Sting’s threads garbage collect their private
heaps independently and asynchronously with respect to other threads. Thus, other
threads can continue their computation while any particular thread collects its private
heap this can lead to better load balancing and higher throughput. A second advantage
of this garbage collection strategy is that the cost of garbage collection is charged to
the thread that allocates the storage, rather that to all threads in the systems, which is

the case with the more traditional collectors mentioned above.

3.5.5 Thread Group Shared Heaps

Each thread group has a shared heap associated with it. The shared heap is allocated
when the thread group is created. The shared heap like the private heap is actually a

series of heaps organized in a generational manner.

References in shared heaps may only refer to other objects in shared heaps. This is
because any object which is referenced from a shared object is also a shared object
and, therefore must reside in a shared heap. This constraint on shared heaps is
enforced by ensuring that whenever a reference is stored in a shared heap either the
object referred to is in a shared heap, and by induction any objects it refers to are in a
shared heap, or if the object referred to is in a private heap it is garbage collected into
the shared heap. That is, the graph of objects reachable from the referenced object is
copied into the shared heap and any references to the object from the stack or private

heap refer to the new location of the shared object in the standard way.

Thus the reference discipline observed between the three areas associated with a

thread are as follows:
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The stack can contain references to objects in its thread’s previous
dynamic extents, its private heap, or in a shared heap.

The private heap can contain references to objects in itself or in some
shared heap, but not to objects in the stack. And, '

The shared heap can only contain references to objects in itself or other
shared heaps.

Like private heaps shared heaps are organized in a generational manner, but garbage
collection of shared heaps is more complicated than that for private heaps because
many different threads can be accessing objects contained in the shared heap. In order
to garbage collect a shared heap all threads in the thread group associated with the
heap are suspended. In addition, all threads in groups inferior to the group associated
with the shared heap are suspended. This is because any of these threads can access
data in the shared heap. However, other threads in the system, i.e. those not inferior to
the group associated with the heap being collected, continue execution independent of

the garbage collection.

Each shared heap has a set of incoming references associated with it. These sets are
maintained by checking for stores of references that cross area boundaries. After the
threads associated with the shared heap have been suspended the garbage collector
uses the set of incoming references as the roots for the garbage collection. Any objects
reachable from the incoming reference set are copied to the new heap. When the gar-

bage collection is complete the threads associated with the shared heap are resumed.

There are several other attributes of memory areas that are beyond the scope of this
dissertation. For example, an area may act as a pool for the explicit allocation and de-
allocation of objects in the traditional manner of C, C++, Pascal, or Modula 2. As
another example, area pools might be extremely useful in exploiting the locality inher-
ent in large data bases. Finally, in Sting there is also an area, called the root area
which can only be garbage collected when the entire virtual address space is garbage

collected. The importance of the root area is that references into it can be assumed to
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be valid when garbage collecting either thread private heaps or shared heaps.



Chapter 4

Virtual Machines and
Virtual Processors

A virtual machine is an abstraction that is mapped onto all or part of a physical

machine. A virtual machine is composed of:

®  avirtual address space;

® e or more virtual Processors;

®  avirtual topology;

® aroot environment; and

® . root thread.

Virtual machines create and destroy virtual processors. Each virtual machine has at
least one virtual processor, called the root virtual processor, and one thread called the
root thread, but it may have any number of virtual processors and threads. The virtual
machine defines both the mapping of virtual processors to physical processors, and the
virtual topology, i.e. the inter-connection graph of the virtual processors, which may or

may not correspond to the physical topology.

The virtual machine manages its virtual address space, which is shared by all virtual
processors and threads in the virtual machine. The virtual machine’s address space

contains the root environment, which is the root of the graph of live objects contained

81
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in the address space. Throughout this dissertation the term address space is used syn-
onymously with virtual address space. The term physical address space will always be

used when referring to the hardware address space in a physical machine.

Figure 4-a : A Virtual Machine with a 2D Mesh Topology

As with other operating system kernels, the physical memory is hidden from all virtual
machines. Virtual machines only have access to their virtual memory. This allows
physical memory to be configured in many different ways. For example, the physical
machine could have a physically shared or physically disjoint memory without appar-
ent difference in the virtual memory. In any case, the virtual memory abstraction is
always that of a shared virtual memory [LH86][Li88], i.e. every address in a virtual

address space is accessible from any virtual processor in the machine.

Finally, the virtual machine is persistent. It may be suspended and then resumed at
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some later time. When resumed, the virtual machine will be in exactly the same state

as when suspended.

4.1 Comparison with Other Systems

A virtual machine loosely corresponds to a Unix kernel process, a Mach task, or a
Topaz address space [BGHL87]. Each of these entities define an address space and a
thread, but in these other systems the thread is a kernel thread, and therefore, heavy-
weight. Furthermore, these systems have no concept of customizable virtual processor,

and no virtual topologies.

Schedular activations [ABLL91] address one of the problems that Sting’s virtual
machines are intended to solve, i.e. user space threads blocking in the kernel and
informing the kernel when no thread is available to run in a kernel process or task, but

again they do not have customizable virtual processors or virtual topologies.

Psyche [MSLM91] is the operating system whose goals are most closely aligned with
ours. Psyche endeavors to provide an efficient foundation for any thread paradigm or

any parallel language. Marsh, et al explain the reason for this:

“Users want, and different runtime environments define, threads of var-
ious kinds, many of which may be incompatible with the kernels notion
of process. Some environments expect one thread to run at a time, as in
the co-routine like scheduling of Distributed Processes {Han78] and
Lynx [Sco91]. Some want to build cactus stacks, with dynamic alloca-
tion of activation records as in Mesa [LR80]. Some want to use custom-
ized scheduling policies, such as priority-based scheduling.... Some
want to have processes interact using communication or synchroniza-
tion mechanisms that are difficult to implement with kernel-provided
operations. Some simply want to create a very large number of threads,
more than the kernel can support.”

These are the same reasons that drove the Sting design. However, Psyche and Sting

are very different approaches to solving this problem.
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“Psyche kernel processes are used to implement the virtual processors! that execute
user level threads.” [MSLM91] In many respects Psyche’s virtual processors are simi-
lar to kernel threads in other multi-processor operating systems such as Mach and °
Topaz (Taos), but they are different from these in that Psyche provides user customiz-
ability by defining data structures which the kernel and user code can share. These data
structures contain software interrupt handlers that are user provided procedures that
are called when situations occur in the kernel which might effect the operation of the
virtual processor. For example, when a user thread blocks in the kemnel, the kernel calls
the software interrupt handler for this condition. The handler may decide to block the
virtual processor, run another thread, or do whatever else is appropriate for the particu-
lar thread system being implemented. Software interrupts allow the kemnel to notify the
virtual processor whenever an event which might be of interest to it occurs in the ker-

nel.

Given Psyche’s virtual processors it is possible to implement many different thread
semantics and many different scheduling policies, and thus, Psyche is fully customiz-
able. However, Psyche does not separate control and policy mechanisms in the virtual
processor and thus each thread package must implement both of these mechanisms.
Sting provides efficient control mechanisms for threads, while allowing the virtual
machine to be customized by implementing only a policy manager with a small well
defined interface. In Psyche, user threads are distinct from kernel threads. In Sﬁng,
lightweight threads are integrated into the kernel design so that no kernel threads are

necessary.

We believe the Sting approach provides a significant increase in programmer effi-
ciency, while at the same time providing an increase in program efficiency compared

to that of more traditional operating systems.

1. While the Sting and Psyche designers arrived at this term independently, the term denotes a sim-
ilar and very useful concept.
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4.2 Operations on Virtual Machines

Sting provides the traditional operations on virtual machines that are normally associ-
ated with kernel processes. Virtual Machines can be created, destroyed, blocked, sus-
pended, and resumed. In addition, any thread can know on which virtual machine it is

running.

When a virtual machine is created, its root virtual processor, its root thread, and the
root thread group are also created. The root thread evaluates a thunk which is an argu-

ment to the create-virtual machine operation.

Figure 4-b shows the operations which can be performed on virtual machines. The
semantics of these operations are sufficiently obvious that we will not discuss them

further here.

(create-virtual-machine thunk priority quantum) -> vm
(block-virtual-machine vm blocker) -> no-value
(suspend-virtual-machine vm wakeup-time) -> no-value
(resume-virtual-machine vm) -> no-value
(destroy-virtual-machine vm status) -> no-value
(current-virtual-machine) => vm

Figure 4-b : Operations on Virtual Machines

4.3 Virtual Address Space

The virtual address space associated with the virtual machine is similar to traditional
ones except that is shared or distributed across all the processors in the system. There

are an increasing number of parallel processors which implement shared virtual mem-
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ory, e.g. Dash [Hen91], Kendall Square One [Bel92][Rot92], and the work of Kai Li
on the Intel Hypercube [Li89].

The shared virtual memory may be implemenfed on top of a physically shareci mem-
ory machine, such as Sequent Symetry or the SGI PowerSeries, or it may be imple-
mented on a disjoint memory machine such as the Intel Hypercube or the Ncube, or on
a hybrid machine, where part of the memory is shared and part of it is local, such as
the IBM RP3 or the RS6000 Multi-processor.

One virtual address space may be fully or partially mapped into another address space.
The unit of address mapping is the area (see Section 3.5.2). Thus an area in one virtual
machine can be mapped into the address space of another virtual machine. In the limit,
two virtual machines can shared the same address space. Shared virtual memory is dis-

cussed further in Section 5.5.1.

4.4 \Virtual Processors

A Virtual Processor (VP) is an abstraction of a hardware processor. As such, it is
responsible for the creation, destruction, scheduling, and migration of lightweight
threads. It also handles interrupts (hardware and software) and virtual processor con-
troller up calls, i.e. software interrupts generated by the abstract physical machine, for

example, when a thread blocks in the abstract physical machine.

Each VP is associated with both a virtual machine and an abstract physical processor
(see Section 5.7). A physical processor may run VPs associated with many different
virtual machines. More than one VP from the same virtual machine can also run on the

same physical processor.

Sting VP’s are first class objects. This means they can be passed to and returned from
procedure calls, and can be stored in data structures. Being first class, VP’s provides

Sting with several capabilities that other operating systems lack:

® theusercan explicitly map a thread to a particular virtual processor;
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®  the user can build abstract topologies using VP self-relative addressing;
and,

® the policies of any VP can be easily customized.

Control and policy are separated in the virtual processor, just as they are in the abstract
physical processor (see Section 5.7). Each virtual processor is composed of two soft-
ware components: the thread controller and the thread policy manager. Figure 4-c

shows the relationship between the virtual machine, the virtual processor, and user
code. The thread policy manager is completely contained within the virtual processor.
User code and threads interact with the thread controller and the thread controller calls

the thread policy manager to make policy decisions for it.

User Code

Figure 4-c : Separation of Control and Policy in the Virtual Processor
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4.4.1 \Virtual Machine and Virtual Processor States

Both virtual machines and virtual processors can change their state in a manner similar
to that of evaluating threads. Figure 4-d show the various states that virtual machines
and virtual processors can be in. It also show the valid transitions from one state to

another.

Qnitialized )
C Ready )
Suspended 4-—( Running)—-» Blocked

<D

Figure 4-d : Virtual Machine and Virtual Processor State Transitions

When a virtual machine enters a state all the virtual processors enter the same state.
Thus, if a virtual machine is suspended all threads and processors in that virtual
machine are suspended. Likewise when a virtual processor is suspended or blocked all
threads ready or running on that processor are suspended or blocked. Virtual machine

and virtual processor states are described in more detail in Section 5.6.2.
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4.42 Operations on Virtual Processors

The virtual machine is responsible for the creation, destruction, and control of virtual
processors. Virtual processors can be created, destroyed, blocked, suspended, and

resumed. In addition, any thread can know on which virtual processor it is running.

When a virtual processor is blocked or suspended all its threads are blocked or sus-
pended. When a virtual processor is resumed its threads that are ready to run are
resumed. Finally, when a virtual processor is destroyed its threads are either migrated
to other virtual processors or they are terminated in an orderly manner by signalling

their termination exception handlers.

(create-virtual-processor pp) -> Vp

(block-virtual-processor vp blocker) -> no-value
(suspend-virtual-processor vp . wakeup-time) -> no-value
(resume-virtual-processor vp) - -> no-value
(destroy-virtual-processor-and-threads vp) -> no-value
(exit-virtual-processor-and-migrate-threads vp) -> no-valué

(current-virtual-processor) > Vp

Figure 4-e : Operations on Virtual Processors

Figure 4-¢ shows the operations which can be performed on virtual processors. The
reader will note the similarity to operations on virtual machines. This is because a vir-
tual machine can be regarded as a collection of virtual processors. The semantics of

these operations are sufficiently obvious that they will not be discussed further here.
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4.4.3 Virtual Processor Meta Information

Each virtual processor can record performance and debugging information. This infor-

mation includes:

the number of threads created,

the number of threads created in the delayed state and not initially
scheduled,

the number of threads scheduled,

the number of threads absorbed by other threads,

the number of thread blocks, suspends, and resumes,
the number of threads terminated,

the number of ;hreads determined,

the number of threads migrated from and to a VP,

the number of thread-wait’s and resumptions that have occurred on
a VP,

the number of blocks, resumptions, and terminations at thread barriers,
the number of garbage collections that have occurred on the VP,
the number of TCB’s created, allocated, and that were dead and reused,

the number of stack overflows and underflows that occurred as well as
the number of stack blocks created, allocated, and released,

the number of mutexes created, acquired, and released, and

the idle time, user time, system time, page faults, etc. that are usually
recorded in a kernel thread.
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Statistics gathering can be turned on and off under user control.

4.5 Thread Controller

The thread controller handles the virtual processor’s interaction with other system
components such as physical processors and threads. While several types of interac-
tion between the physical processor and the virtual processor occur, two are particu-
larly important for threads and virtual processors to execute efficiently. The first
occurs when a thread makes a system call which causes it to block in the kernel of the
physical processor. In this case, the physical processor notifies the virtual processor

that the current thread has blocked and that another thread should be scheduled.

The second type of interaction occurs when the virtual processor has no work to do,
i.e. no thread to execute. In this case, rather than spin waiting for more work to arrive,
the virtual processor notifies the physical processor that it has no work, thus allowing

the physical processor to run another virtual processor.

The lack of support for these two types of interactions in traditional operating systems
introduces significant inefficiencies in other lightweight thread systems that have been
implemented. There have been two main approaches to solving this problem, that of
Anderson, et al [ABLL91] and that of Marsh, et al [MSLM91]. Sting’s approach is
closer to that of [MSLM91], but with significant differences, which are discussed

below.

4.6 Context Switching with Continuations

Sting threads can suspend execution for any number of reasons, but in general these

reasons fall into three categories:

® the thread has blocked waiting for some event to occur;

® the thread has been interrupted by either a software or hardware gener-
ated exception; or
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®  the thread has explicitly yielded its virtual processor to another thread.

In each of these cases, when a thread suspends itself, it saves its current contiquation
in the thread control block associated with it. A continuation can be thought of as the
entire context of a computation at a particular program point. This context includes the
stack and private heap as well as any references to objects in shared heaps. However,
saving the current continuation involves saving only the currently active registers in
the virtual machine. This is because the thread controller knows that the continuation

will only be invoked once, and thus no copying of the stack or private heap is neces-
sary.

When a continuation is invoked it continues the computation from the point at which
the continuation was saved. A suspended thread is resumed simply by invoking its
saved continuation. The idea of using continuations for context switching stems from
the work of Wand [Wan80].

Whenever a running thread needs to make a state transition it calls the thread-state-
transition procedure. A simplified version of this procedure is shown in Figure 4-f . A
running thread can make transitions to the following states: ready, blocked, suspended,

and terminating. Thus all context switching is done using this procedure.

The implementation of the Sting thread controller highlights a number of interesting
issues. The state transition procedure is shown in Figure 4-f . Note that operations on
TCBs found in this procedure are not available to user applications. The procedure
takes one argument - the desired next state for the current thread (i.e. the thread which

has entered the thread controller).

Since the thread controller is written in Sting, all synchronous calls to thread control-
ler procedures are treated as ordinary procedure calls; thus, live registers used by the
procedure running in the current thread are saved automatically in the thread’s TCB.
The procedure first attempts to acquire a new thread to execute from the ready queue
of this VP. The thread policy manager procedure tpm-get-next-thread is used for this
purpose. Note that tpm-get-next-thread enqueues the current thread’s TCB if the TCB
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is in a ready state; this permits the thread to be rerun at some future point.

(define (state-transition next-state)
(let* ((vp (current-vp))
(next (let ({(next (tpm-get-next-thread vp)))
(if (not next)
(vp.root-tcbhb vp)
next))))
(cond ((eqg? next (current-tcb)))
((tcb? next)
(set-tcb.state next tcb-state/running)
(if (eg? next-state tcb-state/dead)
(return-tcb-to-vp-pool vp))
(set-vp.current-tcb vp next)
(set-thread.vp (tcb.thread next) vp)
(save-current-tcb-registers)
(restore-tcb-and-registers))
( (thread? next)
(cond ((thread-stolen? next)
(state~transition next-state))
(else
(setup-new-thread next wvp)))
(save-current-tcb-registers)
{start-new~-thread next)))))))

Figure 4-f : Thread State Transition Procedure

If the queue is empty, the root thread of the current VP is invoked (via the call to
(vp.root-tcb vp)). This procedure may (a) perform housekeeping operations, (b) sim-
ply re-invoke the state transition procedure, or (c) request that the abstract physical
processor switch to a new VP. If the queue is not empty, a new thread (or TCB) is

returned. A new thread is returned only if the thread is not evaluating. The expression

(fork-thread expression vp)

creates a thread (call it 7) and schedules it to run on vp by enqueing T on vp’s ready
queue. It becomes eligible for evaluation when the thread controller removes it from

the queue.



94 Chapter 4: Virtual Machines and Virtual Processors

Once a thread begins evaluation, it is never directly stored in any queue maintained by
a VP. Its TCB is stored instead.! Thus, a TCB returned by pm-get-next-thread is

always associated with an evaluating thread.

The outermost conditional in state-transition performs the actual context switch. If
the current TCB happens to be the TCB returned by pm-get-next-thread, it is simply
rerun - no extra register saves or restores need be performed (other than those needed

to execute the call/return sequence to/from this procedure).

If the object returned by pm-get-next-thread is another TCB (distinct from the current
TCB), all live TCB registers of the current TCB are saved, and the continuation, encap-
sulated in the next TCB is restored. If the current TCB is dead (because it has termi-
nated), it is returned to the current VP’s pool of TCBs. Because restore-tcb-and-
registers is a primop, the compiler treats save-current-tcb-registers as if it were in
tail call position; thus, when the saved thread resumes execution (i.e. assuming its TCB

has not terminated), it simply returns from state-transition.

If the object returned is a thread, a TCB is allocated for it via the call setup-new-
thread provided the thread has not been absorbed (see Section 3.3.3). The current
thread state is saved (via the call save-current-tcb-registers, and the new thread
begins execution via the call to the primop start-new-tcb. This primop sets up a new
continuation encapsulating the evaluation of start-new-thread and commences its

evaluation using tcb as its dynamic context.

Here again, the compiler treats the register save operation as if it were in a tail call
position; thus, when the saved thread resumes execution it simply falls through the
conditional and returns to the caller. The code for start-new-thread is shown in
Figure 4-g 2 This procedure takes a thread as its argument and evaluates the thunk
associated with the thread in such a way so as to ensure proper termination and

cleanup of the thread.

1. The thread associated with a non-terminated TCB is accessible via the thread slot found in that
TCB.

2. Figure 4-g is similar to Figure 2-g, but it provides more details of thread termination.
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1l: (define (start-new-thread thread)

2 (let ((z (no-value)))

3 (catch exit

4: (dynamic-wind

5: (lambda ())

6 (lambda ()

7 (set-exit-handler! thread exit)

8 (set! z ((thread.thunk thread))))
;; Thread termination

9: (lambda ()

10: (set-thread-value! thread z)

11: (thread-gc thread)

12: (wake-up-waiters thread)

13: (re-initialize-tcb (current-tcb))

14: (tcb-state->dead dead))))))

Figure 4-g : Thread Startup

start-new-thread first creates a temporary to hold the value of the thread (line 2).
Next it creates a continuation using the catch expression (line 3). This continuation is
store in the exit handler slot of the thread’s TCB. In line 4, a dynamic wind expression
ensures that if a throw out of the evaluation of the thread’s thunk (line 8) occurs the
thread’s stack will be unwound properly, thereby permitting resources such as locks
held by the thread to be properly released. In addition, it ensures that the cleanup code
for the thread (lines 9 -13) will be executed.

The termination code stores the value of the thread’s thunk as part of the thread state,
garbage collects the thread stack and private heap (line 10), wakes up all threads wait-
ing for this thread’s value (line 11), reinitializes the TCB state (line 12), and finally
makes a tail recursive call to the thread controller transition procedure to choose a new
thread to run. Because the evaluation of the thread’s thunk is wrapped in a dynamic
wind form, it is guaranteed that the termination code will be executed even if a thread

terminates abnormally.

Garbage collection must take place before the thread’s waiters are awakened because
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objects that outlive the thread (including the object(s) returned by the thread’s thunk) }
found on its private heap must be migrated to a shared heap. Failure to do so would

allow other threads to obtain references to the newly terminated thread’s storage.

Preemption is disabled within the thread controller. Disabling preemption guarantees
that the thread controller will not be interrupted as a result of timer expiration. Other
interrupts need not be disabled since data structures maintained by the thread control-
ler are not manipulated by VP interrupt handlers. Each VP has separate areas (imple-
mented as small stacks and heaps) used by interrupts and the garbage collector for

servicing any storage requirements they may have.

It is possible for the compiler to minimize the number of registers saved when a thread
current continuation is saved. In the simplest case, when an explicit, i.e. synchronous,
call to the state transition procedure is made, the compiler knows exactly which regis-
ters are live and saves only those registers. Thus, only the minimal number of registers
is saved when saving the current continuation explicitly. When an implicit, i.e. asyn-
chronous, call to the state transition procedure is made, because of a preemption time-
out, things are more complicated. There are two different optimizations that can be
performed. The first and simpler one is that the compiler can record in the TCB data
structure whether a thread has ever used a floating point register [MP89]. The state
transition procedure checks this flag to see whether the floating point registers need to
be saved, and if not it avoids the cost of saving them. The second approach has the
compiler associate with every procedure closure a word which indicates the number of
live integer and floating point registers used by that procedure. The state transition
procedure then uses this word to save only the registers which are used by the current

procedure when its continuation is saved.

Sting keeps the current continuation in the saved-vp-state-block of the TCB. This
decision was made s0 as to avoid stack overflow during a state transition. However,
the current continuation could be saved on the top of the stack. This later approach has
two advantages: it reduces the size of the TCB and it improves locality because the top

of the stack is more likely to be in the primary cache than the base of the stack. We
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have come to believe that this latter approach is the better one.

4.6.1 Kernel Calls and Continuations

In Sting there are no kernel processes, only lightweight user space threads. When a
thread makes a call into the abstract physical machine, i.e. one that corresponds to a
kernel call in a traditional OS, no kernel process executes the call; rather, the kernel
call executes using the dynamic context (stack, private heap, etc.) associated with the

thread. Kernel processes and kernel stacks are unnecessary.

_If the execution of a thread is blocked in the kernel of the physical machine while
waiting for some event to occur, the thread simply saves its current continuation and
then calls its virtual processor to execute some other thread. When the event on which
the thread is waiting occurs, the thread is resumed by simply invoking its saved contin-
uation. The interface to the thread controller is made available to the abstract physical

machine kernel so that the thread can notify the virtual processor that it has blocked.

Mach 3.0 also uses “continuations” to avoid creating an excessive number of kernel
stacks [DBRD91]. Mach’s “continuations” however are really thunks that rely on the
fact that the thunk has been “hand crafted” to captured enough of the state to continue
the computation. Sting, as mentioned above, has no kernel threads so no kernél stacks
are necessary. Further, since Sting’s continuations capture the entire state of the evalu-

ating thread no hand crafting is necessary.

4.7 Thread Policy Manager

Each virtual processor also contains a thread policy manager. The thread policy man-
ager, which is analogous to the virtual processor policy manager (see Section 5.8.2 on
page 132), makes all policy decisions relating to the scheduling and migration of
threads on virtual processors. The thread controller is a client of the thread policy man-
ager and it is inaccessible to user code. The thread controller calls the thread policy

manager whenever it needs to make a decision concerning:
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® the initial mapping of a thread to a virtual processor;

® which thread a virtual processor should run next when the current

thread releases the virtual processor for some reason; or

® when and which threads to migrate from or to a virtual processor.

The thread controller is conceptually the same on each virtual processor. This is not
the case with policy managers. The policy manager of each virtual processor may be
different. This ability is particularly important for real time applications where each
processor may be controlling a different subsystem with different scheduling require-

ments.

The thread policy manager presents a well-defined interface to the thread controller,
The data structures that the thread policy managers use to make their decisions are
completely private to them. They may be local to a particular thread policy manager or
shared among the various instances of the thread policy manager, or some combination
thereof, but they are never available to any other part of the system. The thread policy
manager can thus be customized to provide different behaviors for different virtual
machines. This allows the user to customize policy decisions depending on the type of
program being run. For example, a computationally intensive program such as a fluid
dynamics simulator, might use a non-preemptible lifo scheduling policy, because each
thread should run as long as possible and because the lifo scheduling order is optimal
for the particular structure of the algorithm being used, while a window manager or

user shell might use a priority based fifo policy for the obvious reasons.

It is also worth noting that each thread has an associated priority and quantum. These
fields are only for the use of the thread policy manager. They allow the implementation
of the full gamut of scheduling strategies from quantum based real time scheduling to

priority based interactive scheduling.
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4.7.1 Thread Policy Manager Interface

The thread policy manager communicates with the thread controller through a small,
simple, and easily implemented interface. Whenever the thread controller needs to
make a policy decision it calls on the thread policy manager to make that decision.A
thread policy manager can be implemented by any module which conforms to the pol-

icy manager interface.

Figure 4-h shows the interface to the thread policy manager. The interface can be
divided into five components: policy manager initialization, initial placement policy,
scheduling policy, guards used by the thread controller to ensure that priority and

quantum data are of the correct type, and migration policy.
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VP Initialization

(tpm-initialize-vp vp) -> no-value
Initial Placement Policy

(tpm-allocate-vp vp thread) => vp

Thread Scheduling Policy

(tpm-dequeue-ready-thread vp) -> thread | #F
(tpm-enqueue-ready-thread vp thread) -> no-value
(tpm-wakeup-suspended-threads vp) -> no-value

Scheduling Data Integrity

(tpm-ensure-priority priority) -> no-value

(tpm-ensure-quantum quantum) -> no-value
Migration Policy

(tpm-vp-idle vp) => no-value

Figure 4-h : Thread Policy Manager Interface

Below we briefly describe the functionality of each of the interface procedures.

tpm-initialize-vp - This procedure is called when a VP is created. It is respon-
sible for initializing any data structures associated with the thread policy

manager on the VP that is its argument.

tpm-allocate-vp - This procedure is called whenever a thread is to be sched-

uled on a VP. While the user may request that a thread be scheduled on a
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particular VP, the thread policy manager has the final say regarding the VP
on which a thread is scheduled.

tpm-dequeue-ready-thread - This procedure returns the next thread which is
ready to run or false if there is no ready thread. This procedure is called
from the state transition procedure when a thread has yielded the processor

for whatever reason.

tpm-enqueue-ready-thread - This procedure is called when a thread becomes
ready to run. It is responsible for enqueuing the thread according to the pri-

ority and quantum associated with the thread.

tpm-wakeup-suspended-threads - This procedure is responsible for moving
any suspended threads into the appropriate ready queue if the real clock

time has passed the requested wakeup time.

tpm-ensure-priority - This procedure ensures that it argument conforms to the

thread policy manager’s notion of a valid priority.

tpm-ensure-quantum - This procedure ensures that it argument conforms to

the thread policy manager’s notion of a valid quantum.

tpm-vp-idle - This procedure is called if there is no thread runnable. It can do

several things:

® It can call the abstract physical processor to inform it that
the VP is idle.

® Jtcan migrate threads from either a global queue or a local
queue associated with some VP.

® It can decide to do housekeeping chores for the thread pol-
icy manager.

We should point out that the classification of the thread policy manager’s interface
procedures is not complete. For example, both tpm-enqueue-ready-thread and tpm-

dequeue-ready-thread could be use to handle load balancing and thread migration on
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the virtual processor. tpm-enqueue-ready-thread could also be used to handle initial
mapping of a new thread to a virtual processor. Thus tpm-allocate-vp and tpm-vp-
idle are redundant procedures, but that are useful because they simplify the implemen-

tation of both the thread controller and the thread policy manager.

4.7.2 Policy Dimensions

As mentioned above, thread policy managers make three types of policy decisions: (1)
which processor to schedule a thread on; (2) which thread to run next on a given pro-
cessor; and (3) when to migrate a thread to another processor and onto which proces-
sor to migrate it. There are many different strategies for making these decisions,
depending on both the application environment and the implementation of a particular

application. Below we discuss various strategies for these three policy dimensions.

4.7.2.1Initial Placement Decisiqns

There are many possible ways to decide on which virtual processor to run a thread.
The two principle criteria that can be used to make this decision are load balancing and
“nearness” in the communications topology, to other threads with which data is
shared. The reasons for load balancing are obvious, although load balancing strategies
are not necessarily so. The reason the nearness matters is that it can significantly
reduce the cost of communication overhead. A third, though less important reason for
mapping a thread to a particular processor is that the processor has a hardware device

connected to it which the thread needs to access efficiently.

Below we describe several different load balancing strategies that we have imple-
mented and several which we have not implemented but which may be appropriate

under certain circumstances.

Parent’s VP - This strategy involves mapping a new thread to the same VP that
its parent was running on when it was created. This strategy does not
attempt to balance the load on the machine initially, rather it relies on some

migration strategy, discussed below, to balance the load on the processor. It
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does take advantage of the locality normally associated with a parent and
its children threads.

Local with Threshold Overflow to Global - This strategy is similar to the
Parent’s VP strategy. The difference is that when the number of ready
threads on a VP reaches a threshold some number, typically half, of the
threads are moved to a global queue. When the local ready queue is empty
the VP requests threads out of the global queue. This strategy exploits
locality just as the Parent’s VP strategy does. It has the further advantage
that the load on an individual processor never goes above a particular
threshold. The disadvantage of this strategy is possible contention on the
global queue.

Topology Mapping - This strategy relies on the programmer to specify the
thread/VP mapping. It has the significant advantage that the programmer
can take advantage of the data sharing and data distribution attributes of a
particular program to improve its efficiency. It has the disadvantage that it
requires more work on the part of the programmer. Any of the other place-
ment strategies can be implemented in such a way so that they honor pro-
grammer specified mappings, but make appropriate decisions when the
programmer doesn’t specify the mapping. We discuss topology mapping in

more detail below.

Random Placement - This strategy involves randomly mapping a new thread
to a VP. It relies on the randomness to create an even distribution of threads
on a processor. This strategy has the disadvantage that it does not take any

advantage of the memory or communications architecture of the machine.

Round Robin - This strategy involves relying on a global counter to distribute
the threads evenly across all VPs. It has the advantage of being simple and
guaranteeing a good distribution. It has the disadvantage that the global

counter must have a lock and thus may become a bottleneck, and like ran-
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dom placement, it does not take any advantage of the memory or communi-

cations architecture of the machine.

Idle VP - While there are many possible load based strategies the idle proc;es-
sor strategy is perhaps the simplest. Whenever a VP is idle it places itself
on the idle VP queue and whenever a new thread is created it is mapped
onto the VP at the head of the queue. If no VP is idle some other strategy is
used map the thread to a VP. The advantage of this strategy is that idle pro-
cessors quickly receive new work that is created. The disadvantage is that
the number of threads per VP may be very unbalanced, and it does not take
any advantage of the memory or communications architecture of the

machine.

Load Based - This strategy relies on each VP maintaining some notion of its
load and inserting itself in global queue ordered from the least loaded to the
greatest loaded VP. When a thread is mapped to a VP it is always mapped
to the least loaded VP. This strategy has obvious advantages, but its disad-
vantages are that the global queue may be a significant bottleneck is the
threads are very lightweight and it does not take any advantage of the

memory or communications architecture of the machine.

There are many more possible initial placement strategies. Some can be devised by
combining elements of those mentioned above. The performance of a program or algo-
rithm can depend crucially on the initial placement strategy used. It is also clear that
for programs where computation costs completely dominate communications costs,
i.e. embarrassingly parallel programs, initial placement decisions are less important,
because they do not need to take advantage of the communications topology; however,
initial placement decisions will still effect load balancing. For fine grained parallel
programs, especially if run on a machine with a complex topology or distributed hier-

archical memory, initial placement decisions are fundamental to good performance.
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4.7.2.2Scheduling

While there are many different strategies for initially mapping a thread to a virtual pro-
cessor, there are many more possible strategies for scheduling those threads once they
are mapped. Rather than discuss these strategies in detail we will discuss various

dimensions along which decisions about the scheduler design must be made.

Local or Global Queues - The first decision the scheduler designer must make
is whether the queue(s) will be global, i.e. associated with the virtual
machine, or local, i.e. associated with each virtual processor, or some com-
bination of the two. Global queues have the advantage of being more fair,
but the disadvantage of being a potential source of contention, and there-

fore a bottleneck.

Number and Class of Queues - Ready threads can divided into three classes

for the purposes of scheduling:

® Those that have been scheduled but never been run and thus have no

execution context.

® Those that have been run before and were last in the running state
before going to the ready state.

®  And those that have been run before and were last in the blocked state
before going to the ready state.

Ready threads of all classes can be scheduled in one queue, but it may be advanta-
geous to separate threads in different classes into different queues. For example, con-
sider an implementation in which the scheduler maintains one queue for threads that
have been scheduled but never run and another queue for threads which have been run.
The policy manager can quickly migrate threads that have never been run to other VPs
without having to migrate the thread’s execution context (because it doesn’t have one).
The scheduler designer may also wish to discriminate between threads that were run-

ning and threads that were blocked, since the former, having been run more recently,
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are likely to have more cache locality than the latter.

Ordering Within a Queue - There are various strategies for ordering threads
within a particular queue. The two simplest are LIFO and FIFO, but since
threads can have both a priority and a quantum associated with them much

more complicated orderings can be created.

Locking Discipline - Another decision the scheduler designer needs to make is
locking discipline required for the queues. If the queues are global and
have multiple readers and writers, they must be locked on every access. If
the queues are local, and have only one reader, i.e. the local VP, and many
writers, they only need to be locked for writing. Finally, it is possible that a
queue could be completely private to a processor and not need a lock. This
is possible if the queue contains only threads that were previously running
on that processor and those threads can never be migrated to another pro-

CESSOor.

Quantum Discipline - The final decision the scheduler designer must make
concerns the amount of time each thread will run before yielding the pro-
cessor, i.e. its quantum. There are several possibilities. The quantum for
each thread may be determined statically by the programmer. This is gener-
ally done when the schedule for the threads is predetermined prior to the
execution of a program. Other possibilities are that the quantum is the same
for all threads; it is the same for all threads at a given priority, but different
for threads at different priorities; or the quantum can vary dynamically

under programmer control or under policy manager control.

These various scheduler dimensions allow the thread policy manager to be designed
for various real time, computationally intensive, and interactive environments.
Another interesting aspect of the thread policy manager is that it is possible to imple-
ment a completely static scheduler for a particular program if an optimal or near opti-
mal schedule is known for the threads.
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4.7.2.3Example Schedulers

To date, several different thread policy managers have been implemented and tested.
Global LIFO - This scheduler has one global queue in a LIFO order.
Global FIFO - This scheduler has one global queue in a FIFO order.

Local LIFO 1 Queue - This scheduler has one local queue per VP that is

ordered in a LIFO manner.

Local FIFO 1 Queue - This scheduler has one local queue per VP that is

ordered in a FIFO manner.

Local LIFO 2 Queue - This scheduler has two local queues per VP. One con-
tains threads that have never been run and the other contains threads that

have been. Both queues are ordered in a LIFO manner.

Local FIFO 2 Queue - This scheduler has three local queues per VP. One con-
tains threads that have never been run, one contains threads that have been
and were running, and the third contains threads that were blocked. All

three queues are ordered in a FIFO manner.

Local LIFO 3 Queue - This scheduler has three local queues per VP. One con-
tains threads that have never been run, one contains threads that have been
and were running, and the third contains threads that were blocked. All

three queues are ordered in a FIFO manner.

Each of these schedulers were implemented with less than 230 lines of code. 160 of
those lines were in a library shared by all the schedulers. Given this library each sched-
ular was implemented with less than 70 lines of code. We think this demonstrates how

easily a thread policy manager can be customized.

These thread policy managers are provided as part of a library of standard thread pol-
icy managers that are delivered with the system. Thus, most Sting users will not find it

necessary to implement a policy manager, rather they will simply load the appropriate
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policy manager for their application from the library. The standard policy mangers
implement not only scheduling decisions, but also initial placement and migrations

decisions.

4.7.2.4Migration Decisions

The final issue in thread policy manager design concerns strategies for thread migra-
tion. Thread can be migrated for various reasons. The most common is to balance the
load on a virtual machine across the various virtual processors. But there are two other
important reasons for migrating a thread from one VP to another. The first is perfor-
mance. It may be much more efficient to move a thread closer to the resources it is
using, whenever possible. The second reason is reliability. If a processor fails a check-

pointed thread can be migrated to another processor and resumed there.

As with the other policy decisions there are many possible strategies for migrating

threads. We discuss a few that relate to load balancing below.

Migration for load balancing usually occurs when a VP is idle. This is because there is
little or no overhead! in having an idle VP search for work to do, since it would not be
doing work otherwise. The strategy does have to be careful to ensure that a VP does

not continue to search for work if new work has arrived in the VP’s ready queue(s).

Random Search - This strategy entails picking a VP at random and grabbing
some number of threads, usually half, from it’s queue(s). This strategy can
be tuned in several way. The thread policy manager may try to migrate
threads that have not yet started evaluation first. In order to reduce the cost
of migration. If there are no threads that have not started evaluation then
the policy manager may choose to migrate threads that are evaluating, or to
look for another processor with threads which have not yet started to evalu-
ate. The advantage of this strategy is that the amortized cost of finding
work is good. The disadvantage is that it may decrease the locality of the

threads in the virtual machine.

1. There is the potential to create more contention for shared resources however.
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Ordered Search - Another strategy is for the thread policy manager to conduct
an ordered search from VP that are close to it own to those which are far-
ther away. This approach has the advantage that it has a better chance of

maintaining the locality of threads.

Load Based - If a queue of processors ordered by their load is being kept to
improve the initial mépping of threads to VPs, then it can be used by an idle
processor to find the most heavily loaded processor and take some, again
usually half, of its threads. Because there are many possible ways of mea-
suring the “load” on a virtual processor, the thread policy manager is
responsible for calculating it in a manner suitable to the policy being

implemented.

There are many other possible strategies for using migration to balance the work on a
machine and improve performance. The appropriate strategy will depend not only on a
particular program, but also on the memory hierarchy and the communications topol-

ogy of the physical machine.

4.8 Virtual Topologies

Virtual topologies are another novel aspect of Sting. The advantage of virtual topolo-
gies is that they allow the building of customized topology abstractions which model
data dependencies or the communications structure of a program and map them onto a
particular physical topology. These abstractions allow the programmer to map threads
to the appropriate virtual processors which, in turn, are mapped to the appropriate
physical processors. Furthermore, they allow the programmer to express the mapping
in terms of the communications structure of the program, using self relative processor
addressing, while completely ignoring the topology of the physical machine. The pro-
grammer can use either global addressing on the virtual machine or VP relative

addressing. In either case expressivity is enhanced.

There are three main advantages to virtual topologies:
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® The programmer can specify the mapping of threads to virtual proces-
sors in terms of the topology of the program or algorithm being imple-
mented.

The virtual topology can be specified in terms of the physical topology
so that it maps virtual processors onto physical processors in an opti-
mal or near optimal manner for supporting either memory efficiency or
communications efficiency.

Programs are portable across different physical topologies without
modification and while maintaining their efficiency. Assuming the vir-
tual topology is similarly efficient on different physical topologies.

Allowing the programmer to specify an algorithm in terms of its topology leads to an
increase in expressivity and cognitive efficiency. For example, a divide and conquer
algorithm can be expressed in terms of a binary tree topology, with expressions (par- _
ent-vp), (left-child-vp), and (right-child-vp) used to schedule threads on the appropri-
ate virtual processor. The virtual topology can map a tree of arbitrary depth onto some
physical topology so that the programmer need not be concerned with boundary condi-
tions on the binary tree. It is much easier to write (and read) program where the thread/
virtual processor mapping is expressed in terms of the structure of the algorithm rather

than the structure of the physical machine on which it is running.

Each physical machine exports a set of procedures for accessing physical processors
based on the physical topology of the machine. These procedures allow the virtual
topology designer to map a virtual processor onto a particular physical processor. The
topology designer is responsible for doing this in an efficient manner given the under-

lying physical topology.

The implementation of a virtual topology is independent of the program that is using
that topology. This makes programs portable across different topologies. The same
program can run, without modification, on different physical topologies by simply cus-

tomizing the virtual topology to the new physical topology. Thus, virtual topologies
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allow parallel algorithm to be portable and optimized for different architecfures.

Virtual topologies are easy to implement in Sting because virtual processors are first
class. Each virtual machine has an associated virtual topology. For example, a virtual
machine might have a mesh topology while the physical machine on which it is run-
ning may have a hypercube topology. In such a case, the virtual topology would define

the mapping of a virtual processor in the mesh to a physical processor in the cube.

The virtual topology is user customizable. Customization is made easy for two rea-

sons: first the programmer can specify the topology using the

(create-virtual-processor pp) -> vp

operation to build data structures (and procedures to access them) containing virtual
processors, because they are first class. Second, the mapping between the physical and
virtual processor is specified when creating the virtual processor. The data structure
which contains the virtual processor can be defined in such a way that an appropriate
global addressing and/or the appropriate self-relative addressing is defined. Self-rela-

tive addressing expressions are defined in terms of the
(current-virtual-processor)
operation.

An example might be useful for demonstrating some of the ideas we have been dis-
cussing. Figure 4-i shows a procedure for mapping a virtual topology representing a

3D mesh onto a physical topology which is a 2D mesh.
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(define (create-3D-mesh depth)
(let* ((pm-width (get-pm-width))
(pm-height (get-pm-height))
(3D-mesh (make-array w h depth)))
(let -*- ((1 0))
(if (< i pm-width)
(let -**- ((3 0))
(if (< j pm-height)
(let -***- ((k 0))
(if (< k depth)
(let ((vp (create-vp (get-pp i j))))
(set-vp-address vp (vector i j k))
(set-aref! 3D-mesh vp)
(=***— (+ k 1)))
(=**~ (+ 3 1))))
=*- (+ 1 1))))
3D-mesh))))

Figure 4-i : 3D to 2D Mapping

The procedure create-3D-mesh creates a three dimensional array of virtual proces-
sors. The array is the height and width of the physical machine with a depth equal to
the depth argument to the procedure. The mapping collapses the three dimensional
array onto the two dimensional array, so that each virtual processor in the depth
dimension is mapped onto the same physical processor. The procedures pm-height,
pm-width, and get-pp are provided by the physical machine kernel. Absolute address-
ing of virtual processors is simply an array reference into the array return by create-

3D-mesh, i.e. (axef 3D-mesh i j k).

The virtual policy designer creates a data structure representing the address of the VP
and stores that address in the vp-address slot of the VP using the set-vp-address
procedure. In our example this is a vector containing the coordinates of the point in the

mesh that the virtual processor occupies.

The reader will notice that create-3D-mesh creates depth times as many virtual pro-

cessors as there are physical processors, which means that depth virtual processors
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will be multiplexed on each physical processor. A more efficient mapping is given in

Figure 4-j .

(define (create-3D-mesh depth)
{(let* ((pm-width (get-pm-width))
(pm-height (get-pm-height)) ,
(3D-mesh (make-array w h depth)))
(let -*- ((i 0})
(if (< i pm-width)
(let -**- ((j 0))
(if (< j pm-height)
(let ((vp (create-vp (get-pp i 3))))
(set-vp-address vp (vector i j))
(let ~***- ((k 0))
(if (< k depth)
(block (set-aref! 3D-mesh vp)
(-***- (+ k 1}))
(=**- (+ 3 1)))))
(=*- (+ 1 1))y
3D-mesh))))

Figure 4-j : Improved 3D to 2D Mapping

In this mapping each element in the depth dimension of the array 3D-mesh contains
the same virtual processor. Thus the number of virtual processors created corresponds
to the number of physical processors in the physical machine. Any threads mapped
onto a processor in the third dimension will be mapped onto the same virtual proces-
sor. This is more efficient and retains the same locality properties as the first version,
while eliminating the overhead of multiplexing depth number of virtual processors on

the same physical processor.

Having created an absolute addressing procedure we can now create relative address-
ing procedures. We could, for example, define relative addressing procedures called
up-vp, down-vp, left-vp, right-vp, front-vp, back-vp. These are nullary procedures
which use (current-virtual-processor) to determined the values of these pro-

cedures. Figure 4-k shows the procedure up-vp.
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(define (up-vp)
(let ((address (vp-address (current-virtual-processor))))
(aref 3D-mesh (vref address 0)
(vref address 1)
(+ (vref address 2) 1))))

Figure 4-k : Virtual Processor Relative Addressing in the UP Direction

up-vp uses the address associated with the virtual processor, i.e. vp-address, when it
was created to access the virtual processor in the 3D mesh which is in the up relation-
ship to itself. The procedure as presented in Figure 4-k does not handle boundary con-

ditions, but this is trivially added. The definitions of the other procedures are similar.

The virtual topology we have presented in the above example is trivial; but it is suffi-
cient to explain the fundamentals of constructing a virtual topology. Mapping a mesh
onto a hypercube, or a binary tree onto an omega net, or any other mapping is done in

the same way. That is, the steps for creating a virtual topology are:

®  First, create a set of virtual processors which are mapped onto the
appropriate physical processor.

®  Then associate an address in the virtual topology with each virtual pro-

CESSOr.

® Next store the virtual processor in a data structure which is used for
absolute addressing in the virtual topology and define the appropriate
access procedures to the data structure.

d Finally, define procedures for addressing relative to the current virtual

Processor.

The idea of mapping computations to specific processors was first explored by Hudak
[Hud86], but his processors where neither first class (he used processor ids) nor vir-

tual. User defined topologies were more difficult to implement because there were no
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procedures to access the physical topology provided by the language.

A significant body of work on mapping one topology onto another optimally or near
optimally exists. The work of Bhatt and Greenberg [Bha85] [Gre91] is particularly rel-
evant to building efficient virtual topologies. Their algorithms and those of others! can
be used in conjunction with Sting to build all kinds of virtual topologies which can be
mapped optimally or near optimally onto different physical topologies.

Until now we have specified that each virtual machine has a virtual topology, but in
fact a virtual machine may have more that one virtual topology mapped onto its physi-
cal processors. Thus complex algorithms that exhibit more than one structural topol-

ogy can use the appropriate virtual topology for different parts of the algorithm.

Finally, we should point out that the user is not required to create the virtual topology.
We expect that an implementation of Sting on a particular physical machine would
provide standard libraries for creating virtual machines with particular topologies. For

example, a procedure such as
(create-virtual-machine-as-3D-mesh main height width depth)

would create a virtual machine with the requested size and topology and execute the

nullary procedure main in it.

1. [Aie90], [Aie91], [Bet88], [Cha88], [Ho87], [Lei85], [Ros81]
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Chapter 5
The Abstract Physical Machine

and
Abstract Physical Processors

5.1 Introduction

As with other recent operating systems,1 Sting is based on a micro-kemnel, called the
Abstract Physical Machine, but while it is similar in concept to other micro-kernel
based operating systems, it introduces several important innovations. These are dis-

cussed below.

The abstract physical machine forms the lowest or kernel level of Sting’s software
hierarchy, and plays three important roles in the Sting architecture. First, it provides a
safe, secure, and efficient foundation which supports the virtual machine model. Sec-
ond, it isolates the rest of the Sting architecture from hardware dependencies. And

third, it controls and coordinates access to the physical hardware of the system.

Unlike most modern operating systems, Sting is designed to work on both single pro-
cessor and MIMD multi-processor hardware platforms. MIMD systems can be catego-
rized by their architecture and their processor inter-connection topology. Sting’s
abstract physical machine implements idealized models of these components, improv-

ing both portability and customizability. However; these two components are not nec-

1. For example Chorus [11], Mach [12], or Psyche [9].
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essarily independent of each other. Inter-processor communication may be through
memory (e.g. in a physically shared memory machine), or an inter-processor commu-
nication network may be used to implement the shared virtual memory model (e.g. in
machines with disjoint memory), or separate networks may be used for memory coher-
ency and inter-processor communication. Sting supports three distinct classes of phys-
ical memory architecture found in MIMD machines, i.e. shared, disjoint, and partially
disjoint (see Section 5.5.1). Sting also supports the various interconnection topologies

used in MIMD machines, as discussed in Section 5.6.

The abstract physical machine resembles other micro-kernel operating systems. It has
four components: processor control, virtual memory, inter-thread communication, and
a device driver interface. Traditional operating system facilities, such as file systems,
name servers, and network management are implemented as virtual machines. User
programs communicate with these subsystems using the abstract physical machine’s

inter-thread communication facility.

PP

PP pp

xxxxx
xxxxx

xxxxx

X
0
0

PP

2588

PP PP

PP

Figure 5-a : The Abstract Virtual Machine
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Figure 5-a is a graphical depiction of the abstract virtual machine. The dark shaded
part represents the physical memory. The abstract physical processors are represerted
as circles labeled PP. The physical pfocessors are connected by the inter-connection

network, which represents any possible topology.

The abstract physical machine is implemented by two distinct components: the
machine independent kernel defines operations not dependent on physical hardware,
and the physical device kernel defines machine dependent operations. The machine
independent kernel is responsible for the interface to the other layers of the Sting
architecture, as well as the interface to the physical device kernel. The physical device

kernel is responsible for implementing portable abstract physical devices.

5.2 Problems with Current Micro-Kernels

Current micro-kemnel designs exhibit several weaknesses, which Sting improves upon.
In current micro-kemels, program code in the micro-kemnel is significantly different,
from that found in user programs. This occurs because many of the facilities available
to user programs are not available at the kernel level. Sting addresses this problem by
implementing the abstract physical machine in the root virtual machine. The root vir-
tual machine has all the facilities that are available to any other program (or sub-
system) running in a virtual machine including, a virtual address space, virtual
processors, and threads. In addition, it has abstract physical processors, device drivers,
and a virtual memory manager. This uniform program model provides the micro-ker-
nel programmer with a significant increase in efficiency, both in programming time

and execution time.

The fact that the abstract physical machine is implemented in a virtual machine has

several other important implications:

® In Sting, unlike other operating systems, there are no heavyweight
threads. All threads are lightweight.
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® There are no kemel threads or stacks for implementing system calls.
All system calls use the execution context of the thread making the sys-
tem call. This is possible because portions of the abstract physical
machine is mapped into every virtual machine in the system.

Asynchronous programming constructs in the abstract physical
machine are implemented using threads as in any other virtual
machine. Threads in the abstract physical machine can be created, ter-
minated, and controlled in the same manner that threads in any virtual
machine can.

When a thread blocks in the kemel it can inform its virtual processor
that it has blocked. The virtual processor can than choose to execute
some other thread. This is true for inter-thread communication as well
as for /O (e.g. page faults).

Exceptions are handled in a uniform manner using standard threads,
thus increasing programming efficiency. Furthermore, device driver

- implementers can use a broader range of programming techniques than
would otherwise be available.

5.3 Sting Micro-Kernel Innovations

In addition to improving on the weaknesses found in other micro-kernels, Sting intro-
duces several significant innovations. The most important is its ability to customize
policies for virtual machine management. Each abstract physical processor is com-
posed of two components: the virtual processor controller, which is responsible for
controlling the state transitions that a virtual processor can make, and the virtual pro-
cessor policy manager, which is responsible for making policy decisions for the con-
troller regarding the scheduling and mapping of virtual processors to abstract physical
processors. Because the policy manager is customizable, Sting can be targeted at dif-
ferent operating environments. The virtual processor controller and policy manager

are discussed in detail below.
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Another Sting innovation is the abstract physical machine’s memory model. This
model is called Persistent Shared Virtual Memory (PSVM). It is similar to the standard
shared (distributed) virtual memory model, with the significant difference that the vir-
tual address space persists across interruptions in system and/or virtual machine shut-

downs.

There are two advantages to this model. First, it is very straightforward to implement
persistent object systems using the PSVM model. Second, the entire Sting system or
any virtual machine can be powered down and resumed without any loss of data. Sting
is also intended to be small enough to be used on personal computers where suspend-

ing and resuming are required functionality.

Another innovative aspect of Sfing is that the abstract physical processor is guaran-
teed to be always running a thread.! Thus, any instruction which runs on a physical
processor is associated with some thread. The immediate consequence of this is that
every exception is handled in the context of some thread. Each thread is in turn associ-
ated with a virtual processor, a virtual machine, an abstract physical processor and an
abstract physical machine. Because of these associations, exceptions can be delivered
to the appropriate handler at any layer of the Sting architecture. Figure 5-b shows the

abstract physical machines position in the hierarchy of the architecture.

1. For example, the APM boots itself in the root thread of the root virtual machine.
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Threads

Figure 5-b : Levels of the Sting architecture

The final innovation also results from the uniformity gained by implementing the
abstract physical machine in the root virtual machine. That is, exception handlers may
use automatic storage allocation and reclamation (garbage collection), increasing both

programmer efficiency and expressivity.

5.4 The Abstract Physical Machine

The abstract physical machine is composed of the following components:

®  some number of abstract physical processors connected in a physical

topology,

® a physical memory architecture implementing a PSVM, and

®  other hardware devices such as clocks, and I/0 controllers.

The abstract physical machine controls and coordinates the interaction of all hardware

clements, including handling hardware device interrupts, and managing the physical
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memory hierarchy. The abstract physical machine is also responsible for providing
safe and secure access to the various hardware components for other parts of the Sting

architecture.

In Sting, many virtual machines may run on the abstract physical machine, but there is

only one physical machine.

5.5 Virtual Machine Creation and Destruction

The abstract physical machine is responsible for creating and destroying virtual
machines. A new virtual machine is created by calling the create_virtual_machine
procedure. In order to create a virtual machine the abstract physical machine does the

following:

® ;t creates a virtual address space, and

®  then maps the abstract physical machine into the virtual address space.

It then creates a root virtual processor in the address space, and (possi-
bly) creates other virtual processors.

Next, it allocates the necessary abstract physical processors and maps
the virtual processors onto them,

then it maps the program to execute into the virtual address space, and
finally,

it schedules the root virtual processor to run on it’s abstract physical

Processor.

Destroying a virtual machine happens as a result of calling the exit-virtual-machine

procedure. When this procedure is called the following actions are taken:

® The thread-terminate-exception is sent to any non-root threads exe-
cuting on any virtual processors in the virtual machine.
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®  When all the non-root threads have terminated the root thread on each
virtual processor, except the root virtual processor, is sent the virtual-
processor-terminate-exception. The virtual processor then
requests that it’s abstract physical processor terminate it.

Any devices which the virtual machine has opened and not closed are
closed.

Any persistent areas in the virtual address space are unmapped, possi-
bly being garbage collected before being unmapped.

i Finally, the root thread of the root virtual processor calls it’s abstract
physical processor, which de-allocates the virtual address space associ-
ated with the virtual machine.

5.5.1 Persistent Shared Virtual Memory

The Sting memory model is based on the concept of shared virtual memory. Sting’s
memory model differs from that of other operating systems in so far as its shared vir-

tual memory is persistent. This is a fundamental innovation of Sting.

Sting is based on shared virtual memory because it provides a parallel programming
model which is simpler and more regular than the message passing model common on
many current MIMD parallel processors. The simplicity and regularity of this model
improves the programmer’s cognitive efficiency. It is easier to think about algorithms
when one can use references freely, without worrying about which processor’s mem-
Ory contains a particular object. Furthermore, message passing models can be imple-
mented efficiently on a shared memory mode. Sting provides innovative message

passing facilities that are discussed below.

The shared virtual memory model is weakly coherent. Although the memory is shared,
it cannot be used for synchronization, and thus specialized constructs must be pro-
vided to synchronize access to shared mutable data. Weak memory coherency is pref-

erable to strong memory coherency because it eliminates the need to synchronize



5.5 Virtual Machine Creation and Destruction 125

memory at every memory access. Instead memory access is only synchronized when
explicitly requested, thus reducing the overall cost of synchronization. We will not go
into the details of shared virtual memory or coherency here; rather, we note that there
has been a signiﬁcant amount of research demonstrating the viability of the shared vir-

tual memory model, and a strong research effort continues in the area.

Because the virtual address space is shared it may be mapped onto more than one pro-
cessor. Thus, although all reads and writes are guaranteed to be to the same memory
location, the ordering on accesses to a location is non-deterministic. In order to ensure
a particular ordering on a location or set of locations, a separate synchronization con-
struct is necessary. There are many different ways to provide this synchronization. For
example, the machine may provide a separate synchronization bus or network, or the

processor may provide load linked and conditional store instructions.

It is the physical device kernel’s responsibility to ensure that the address space is
weakly coherent if the hardware doesn’t. The shared virtual memory abstraction can
be built on top of either a physically shared or a physically disjoint memory or a par-

tially disjoint memory.

As implementations of shared virtual memory improve, it is likely that machines will
be composed of processors which have both local and global memory. Examples of
these types of architecture include the BBN Butterfly, Kendall Square KS1, IBM’s
Multi-processor RS6000 machine and several new commercial systems currently
under development. Sting is designed to take advantage of this distinction between

private and shared physical memory. It does so in two ways:

® 1t define the thread data structure so that it can exploit this distinction.
(see Section 3.5)

® 1t provides a mechanism that assumes all dynamically created data are
initially private and are dynamically moved to the shared memory

when necessary (see Sections 3.5.4 and 3.5.5).
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5.6 Abstract Physical Machine Topology

The topology of the abstract physical machine is the same as the physical hardware. If
hardware processor 0 is a direct neighbor of hardware processor 1, then abstract phys-
ical processor 0 is a direct neighbor of abstract physical processor 1. Any virtual pro-
cessor N running on abstract physical processor 0 is a direct neighbor of virtual
processor M running on abstract physical processor 1. This means that any thread or
virtual processor running on a physical processor can know how many hops it will

take to communicate a message to any other thread or virtual processor.

5.6.1 Inter-Thread Communication

In order to build protected subsystems, e.g. a network name server, it is necessary that
two threads on different virtual machines be able to communicate with each other. To
support this requirement Sting provides an inter-thread communication (ITC) facility.
This facility is similar to inter-process communication facilities found in other micro-

kernels. Threads communicate with each other through ports.

While it is obvious that all threads in the same virtual machine can communicate with
each other using shared virtual memory, it is less obvious that two threads on different
virtual machines can also communicate using shared virtual memory. This can be
accomplished by having the virtual address spaces of the two virtual machines par-
tlally overlap and then using objects in the shared part of the address space for com-
munication. This technique, however, may be inefficient on certain types of physical
architectures where the communication network has either high latency and/or low
bandwidth. For example, on a network of workstations connected together by an ether-

net.

Ports allow threads, whether on the same or different virtual machines, to communi-
cate with each other efficiently. There are two advantages of using ports to communi-

cate between threads on different virtual machines: (1) It is simpler than creating an

1. It is also possible for the address spaces of two virtual machines to fully overlap.
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overlapping address space and building the data structures necessary to communicate.
(2) It is also guaranteed to be at least as efficient as using shared virtual memory, and

possibly more efficient.

These same two advantages are true for inter thread communication in the same virtual
machine, but if the threads are in the same virtual machine, there is a third advantage
that is equally important, namely that threads can send messages containing valid ref-
erences between themselves. This is not possible using a micro-kernel which are not
based on shared virtual memory. The ramifications of this are important. It means that
threads on the same virtual machine can use ports to efficiently communicate full
fledged objects (i.e. full semantic and type information) between themselves. Typical

message passing machines can not do this.

The ability to communicate full fledged objects, not only provides the programmer
with increased expressivity, but it also avoids many of the costs found in typical mes-
sage passing systems, e.g. the marshalling and unmarshalling of data, and the cost of

copying the objects from memory into a message buffer.

The conventional argument against the use of shared virtual memory is that it is too
inefficient. Sting’s ports allow the user to have all the benefits of shared virtual mem-
ory (in particular sharing object and type representations), while avoiding the potential

costs associated with implementing communication in terms of memory.

5.6.2 Virtual Machine States and State Transitions

Each abstract physical machine manages the virtual machines that are mapped onto it.

Figure 5-c ! shows a state transition diagram for virtual machines.

1. Figure 5-c is a copy of Figure 4-d on page 88. It is reproduced here for the readers convenience.
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Figure 5-c : Virtual Machine and Virtual Processor State Transitions

Virtual machines can enter any of the following states:
Initialized - The virtual machine has been created, but it has never been run.

ready - The virtual machine is ready to run, but none of its virtual processors

are currently running on any physical processor.

running - The virtual machine is running, which means that at least some of its

virtual processors are running on physical processors.

blocked - The virtual machine is blocked waiting for some event. All virtual

processors and the threads associated with them are also blocked.

terminating - The virtual machine is in the process of terminating itself. This

includes disposing of all threads and virtual processors associated with it.
dead - The virtual machine has been terminated and it can no longer be run.

A running virtual machine can be blocked waiting for some event, in which case all of
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its virtual processors and threads are also blocked. When the virtual machine is
resumed, each virtual processor is scheduled to run on the physical processor associ-
ated with it. Virtual machines can also be suspended. If, when the virtual machine is
suspended, a time quantum 7 is specified the virtual machine is resumed automatically

after T time' has passed.

5.7 Abstract Physical Processors

" Abstract physical processors multiplex virtual processors mapped onto them. Just as
Sting uses abstract physical machines to hide architectural details of a hardware
machine architecture, it uses abstract physical processors to hide the architectural
details of a hardware processor architecture. In both cases, the abstractions provide

portability.

The number of abstract physical processors in the abstract physical machine has a one
to one correspondence with the actual number of hardware processors in the machine.

Each abstract physical processor handles:

®  the local portion of the physical memory architecture,
® exceptions, both synchronous and asynchronous, and
® its interconnection with the other processors

in the abstract physical machine. These aspects of the abstract physical processor are

covered in the following three sections.

An important aspect of Sting is that each hardware processor is always associated
with a current abstract physical processor, a current virtual processor, and a current
thread. Thus, all instructions executed on a hardware processor are executed in the

context of an abstract physical processor, a virtual processor, and a thread.

1. The time quantum can be specified to be real time or virtual time.
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5.7.1 Access from/to Virtual Processors

Virtual processors are multiplexed on physical processors in the same manner that pro-
cesses are multiplexed on a processor in more traditional operating systems The
abstract physical processor divides the instruction cycles of the hardware processor
among the virtual processors mapped onto it. Abstract physical processors context
switch virtual processors either because of preemption or because of an explicit

request to do so by the virtual processor it is currently running.

Figure 5-d : Virtual Processor Architecture

The physical processor abstraction is divided into two separate components, the vir-
tual processor controller and the virtual processor policy manager (see Figure 5-d ).
Each physical processor has its own VP controller and VP policy manager. The VP
controller defines the various mechanisms associated with the VP abstraction, while
the VP policy manager makes any policy decisions required by the VP controller. This
separation of control from policy enables the customization of physical machine poli-

cies without changing the code that implements the abstract architecture. The separa-
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tion of control from policy in abstract physical processors is similar to the separation
of control from policy in virtual processors. There are two principle differences
between them. First, the control and policy management of virtual processors have dif-
ferent requirements than the control and management of thread. Second, the virtual
processor policy manager can only be customized by a particular implementation of

Sting, whereas the thread policy manager can be customized by any user.

5.8 Virtual Processor Management

When a virtual machine wishes to schedule a virtual processor on a physical processor
it calls the virtual processor controller on that physical processor. Likewise, when a
virtual machine wishes to remove a virtual processor from an abstract physical proces-

sor it calls the virtual processor controller on that physical processor.

5.8.1 Virtual Processor Controller

Each abstract physical processor’s VP controller manages the virtual processors which
are mapped onto it. The VP controller manages all virtual processor state changes.
Virtual Processor states are similar to virtual machines states (see Figure 5-c ). The

virtual processor states are as follows:

® ready - The VP is not currently running on any physical processor, but
is ready to run.

running - The VP is currently running on a physical processor.
®  plocked - The VP is blocked waiting for some event.

terminating - The VP is in the process of terminating itself. This
includes disposing of all threads associated with the VP, by either
migrating them or terminating them.

® Jead - The VP has been terminated and can no longer be executed on
any physical processor.
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The VP Controller performs context switches between VPs. When a VP context switch
occurs, the current VP state and the state of the thread running on the VP are saved and

another VP is run.

5.8.2 Virtual Processor Policy Manager

Each physical processor also contains a VP policy manager that makes all policy deci-
sions relating to the scheduling and migration of virtual processors on physical proces-
sors. The VP controller is a client of the VP policy manager, i.e. the VP controller

calls the VP policy manager to make decisions about the following:

® which abstract physical processor to associate with a VP when the VP

is created;

which VP to run next when the current VP releases the physical pro-
cessor for some reason; or

when and which VP to migrate from/to another abstract physical pro-
CESSOr.

While the VP controller is conceptually the same on each physical processor, each VP

policy manager may be different.

The VP policy manager presents a well-defined interface to the VP controller. The
data structures which the VP policy manager uses to make its decisions are completely
private to it. These data structures may be local to a particular VP policy manager or
shared among the various instances of the VP policy manager, or some combination
thereof, but no other component of the system has access to them. The VP policy man-
ager can be customized to provide different behaviors to different instances of Sting.
This functionality allows it to be customized for different operating system envuon-
ments as diverse as real time, interactive, or computationally intensive systems. As
mentioned above, this customization cannot be done dynamically, rather it must be
done by linking in a new virtual processor policy manager when a particular version of

Sting is built.
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5.9 Exceptions and Continuations

One of the most important functions of the abstract physical machine is handling any
exceptional conditions that might occur at the hardware level. Hardware exceptions
are extraordinary or non-normal conditions which occur in the course of executing a
program. They are classified as either synchronous or asynchronous. Synchronous
exceptions are those that result from the attempt to execute an instruction (e.g. TLB
miss, invalid instruction, or memory access violation). They are synchronous with
respect to the instruction stream the processor is executing. Asynchronous exceptions,
also known as interrupts, are those that are caused by some condition that is not related
to the instruction stream. In general, asynchronous exceptions are caused by device
interrupts (e.g. count down timer expiration, or a dynamic memory transfer comple-
tion notification), but they are also occasionally caused by some internal error in the

processor (e.g. a parity error on an internal bus).

All exceptions have an associated type. Each type has a handler that performs some
action to deal with the exceptional condition raised. Exception handlers are procedures
that execute within a thread; they take as arguments the data associated with a particu-
lar instance of the exception type. Particular exception types are not discussed here,
since the exceptional circumstances Sting encounters are similar to those found on
other operating system. Rather, the discussion will concentrate on the general mecha-

nisms Sting uses to deal with exceptions.

As mentioned above, every physical processor has a current thread, and every instruc-
tion executed on a processor is executed in the context of that thread. Similarly, every
exception, whether synchronous or asynchronous, also occurs in the context of some
instruction, i.e. the instruction being executed at the time the exception occurs. Thus,
an exception raised on processor P is handled using the execution context of P’s cur-
rent thread. Unlike other operating systems which use special exception stacks in the
micro-kernel to handle exceptions, Sting uses the execution context of the current

thread to dispatch the exception to the appropriate handler.
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When an exception occurs, an exception dispatcher is invoked implicitly in the context
of the current thread. Before this is done the current thread is interrupted, and its cur-
rent continuation is saved. The exception dispatcher is then invoked using the execu-
tion context of the current thread. The dispatcher in turn directs the exception to the
intended thread. Since the interrupted thread has access, directly or indirectly, to every
other component of the Sting architecture, the exception dispatcher can direct the

exception to any thread it desires, including the current thread.
Exceptions are always dispatched to threads. Dispatching the exception involves:

o finding the thread responsible for handling the exception, i.e. the target
of the exception;

®  then if the target is running, interrupting it and saving its current con-
tinuation, and finally,

o pushing a continuation composed of the exception handler and its argu-
ments onto the target thread’s stack.

After dispatching the exception, the exception-dispatcher has several choices about

what to do next.

® tcan resume the current thread, i.e. the one the dispatcher is running
in, by simply returning into it.

® It can resume the thread receiving the exception.
® It can call the current thread controller to run another thread.

The dispatcher makes these choices based on the priority of the exception and the pri-

ority of the thread receiving the exception.

When the thread receiving the exception is resumed it will handle the exception by
executing the pushed exception continuation. Using continuations to handle excep-
tions is one of the novel aspects of Sting. An exception continuation can be thought of

as a procedure of no arguments, e.g.
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(lambda () (handler argl arg2 ...),

that is a closure containing the handler for the exception type and the data, i.e. argu-
ments, associated with the particular instance of the exception. This representation of

exceptions is elegant in several ways:

g Handling an exception simply involves calling it, since it is a thunk.

® The exception is handled in the execution context of the thread receiv-

ing it.

The exception once dispatched becomes the current continuation of the
receiving thread and it is executed automatically when the thread is
resumed.

The exception is not handled until the receiving thread resumes execu-
tion, Determining when this happens depends on both the exception’s
priority and the receiving thread’s priority.

When the exception handler finishes, the thread handling the exception continues exe-
cuting where it was interrupted (if the exception handler simply returns), i.e. it returns
into the continuation that was saved prior to pushing the exception continuation. How-
ever, the exception handler need not invoke the saved continuation. It may decide to

continue the execution of the thread in some dynamically enclosing continuation.

1: (define (exception-dispatcher type . args)

2 (save-current-continuation)

3 (let ((target handler (get-target&handler type args)))
4 (cond ((eqg? target (current-thread))

5: (apply handler args))

6: (else

7: (signal target handler args)

8 (case ((exception-priority type))

9 ( (continue) (return))

0 ( (irmmediate) (switch-to~-thread resume target))
1 ( (reschedule) (thread->ready resume)))))))

Figure 5-e : Pseudo Code for the Sting Exception Dispatcher
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Figure 5-¢ shows pseudo-code for the Sting exception dispatcher. In line 2, the cur-
rent continuation is saved on the stack of the current thread. The continuation can be
saved on the stack because it cannot escape and it will only be called once. On line 3!
the dispatcher finds the thread for which the exception is intended and the handler for
the exception type. Line 4 checks to see if the target of the exception is the current
thread and if so (line 5) does not push the exception continuation. Rather, the dis-
patcher simply applies the handler to its arguments. This is valid since the dispatcher is

already running in the context of the exception target, i.e. the current thread.

If the target of the exception is not the current thread, the dispatcher sends the excep-
tion to the target thread (line 7). Sending a thread a signal is equivalent to interrupting
the thread and pushing a continuation containing the signal handler and its arguments
onto the thread’s stack, and resuming the thread which causes the signal handler to be

executed.

After signaling the target thread, the handler decides which thread to run next on the
processor (line 8). It may be one of: itself (line 9), the target thread (line 10), or the
thread with the highest priority (line 11). If the target thread is not running on the cur-
rent virtual processor, and it is the thread being resumed on the physical processor,
then a virtual processor context switch must also occur. This is done in switch-to-target
on line 10. For a more detailed discussion of thread execution contexts, and continua-

tions, see Chapter 3.

5.9.1 Synchronous Exceptions

Synchronous exceptions are generated when a physical processor recognizes some
exceptional circumstance caused by the execution of an instruction. Some of these are
error conditions such as invalid memory reference or invalid instruction, some are
potential error conditions, such as integer or floating point overflow, others are internal
control conditions, such as cache miss or page fault, and finally, some are program

requested exceptions such as system call or break instructions.

1. A multiple valued let.
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All synchronous exceptions are caused and handled by the current thread running on
the processor. This is because the instruction causing the exception is part of the cur-
rent thread, and it is targeted to that thread, i.e. all synchronous exceptions are always
targeted to the current thread. Synchronous exceptions appear to the rest of the system
as a nullary procedure invoked by the current thread. Furthermore, it will appear as
though the exception handler has been invoked by the instruction which caused the

exception. The code in line 4 of Figure 5-¢ could be modified to

((or (synchronous? type) (eq? target (current-thread)))

Thus, taking advantage of the fact that all synchronous exceptions are handled by the

current thread.

The handler for a particular synchronous exception has four options:

i Signal an error.

®  perform some auxiliary operation which resolves the exception and

then resumes the thread by calling its current continuation. The thread
is resumed implicitly by simply returning from the exception handler
and continuing the instruction which caused the exception.

Performing some auxiliary operation which resolves the exception and
then calling some continuation other than the current continuation, this
is equivalent to returning from the handler into a different part of the
instruction stream which caused the exception.

Passing the exception to a dynamically enclosing exception handler
which in turn has the same four options.

The exception handler can use any of the Sting system facilities while handling the
exception. All asynchronous exceptions are interruptible, unless interrupts have been

explicitly disabled by the handler.

As with software exceptions, any synchronous exception handlers may be dynamicaily

bound to a new handler. In order to find the appropriate handler for an asynchronous
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exception the dispatcher searches the dynamic exception environment for the nearest

dynamically enclosing handler.

5.9.1.1Asynchronous Exceptions

An asynchronous exception or “interrupt” occurs when some hardware device in the
system signals a hardware processor that an external event has occurred that needs its
attention. For example, an 1/O controller might signal a processor that there is data
available for it. Asynchronous exceptions are “asynchronous” with respect to the cur-
rent instruction stream. They are significantly different from synchronous exceptions
in that they can relate to any thread in the system not just the current thread. Some
examples of asynchronous exceptions are data ready on some device, DMA transfer

complete, or countdown timer expiration.

Each hardware device connected to the physical processor has a set of asynchronous
exception types which it can generate. Each asynchronous exception type can have a
thread associated with it; exceptions of that type, when raised, are directed to that
thread. Each abstract physical processor and each virtual processor in Sting has asso-
ciated with it an exception thread. Exceptions can be targeted not only to threads, but
also to physical processors and virtual processors. Exceptions that are directed to an
abstract physical processor or a virtual processor are handled by the exception thread
associated with that processor. When an interrupt occurs, all interrupts at a lower pri-
ority are disabled until the exception handler either completes or enables them explic-

itly.

Exception handlers have a large number of options available to them for processing
the exception. Some of these options are particularly important for building device

drivers which handle interrupts. Examples of these options are:

®  The handler can process the exception immediately, deferring all other

interrupts at the same or lower priority.

i Multiple exceptions of the same type can be handled by the same
thread. The thread can be interrupted with new exceptions during the
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course of handling a previous one. This can be done by having the han-
dler put the data associated with the exception on a queue. The queue
can be ordered using any appropriate priority scheme. If a new excep-
tion arrives for the thread while it is handling a previous one the new
exception is queued and the thread continues handling the previous
exception. When it completes handling the exception, the thread
checks the queue for any other exceptions waiting to be handled. The
waiting exceptions are handled in the order of their priority. Thus,
exceptions of the same type can be prioritized according to any order-
ing the device driver implementer desires.

Another technique is for the exception handler to create a new thread to
process each exception. This technique is particularly important if the
handler for a particular exception type blocks while processing. Creat-
ing a new thread to process the exception allows the exception handler
thread to continue handling other exceptions.

There is another important distinction between Sting’s exception handling facilities
and those found in other operating systems. Since threads that handle exceptions are
no different from other threads in the system (i.e. they have there own local and shared
heaps) and since exception handlers are ordinary procedures, Sting exception handlers
can allocate storage dynamically. Exception generated data will be automatically
recovered by the garbage collector in the same way that any other storage in the sys-
tem is recovered. This uniformity between the exception handling mechanism and the
rest of Sting allows the device driver implementer programming expressivity and effi-
ciency not available in other systems, while at the same time opening up new imple-

mentation possibilities.

5.10 Physical Device Kernel

The physical device kernel allows Sting to be easily portable across different hard-
ware platforms. The idea of isolating hardware dependencies in an operating system is

not new, and modern operating systems generally employ this idea. But Sting is inno-
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vative in the way it implements various aspects of this interface, (1) most notably its
use of continuations, (2) in the uniform use of threads in both kernel and user space,

and (3) allowing device drivers to be directly callable in user space.

The physical device kernel implements an abstraction of three different components of

the hardware:
® the physical memory architecture,

® the physical topology, and

i any other physical devices which are attached to the Ssystem.

The physical device kernel supports the various hardware architectures mentioned
above by defining abstractions of the physical hardware. The interface from the
abstract physical machine to the physical device kernel is the same on any architecture
implementing Sting. Thus, the physical device kernel abstraction maps the same oper-
aﬁng system architecture onto different hardware architectures. On multi-processors, it

also hides the distinction between physically shared and physically disjoint memory.

5.10.1 Physical Memory Architectures

The physical device kernel is responsible for managing its portion of the physical
memory. Shared memory machines can be divided into two classes, those with uni-
form memory access (UMA) and those with non-uniform memory access (NUMA). In
UMA systems all memory locations can be accessed in approximately the same amount
of time. In NUMA machines some portion of memory is physically closer to a given
processor then the rest of memory and can therefore be accessed more quickly than
non-local memory. Examples of UMA machines include the Encore Multimax, the
Sequent Symetry, and the SGI PowerSeries, as well as many other commercial sys-
tems. Examples of NUMA machines include the BBN Butterfly, the Stanford DASH,
and the IBM RP3, These shared memory systems ensure memory consistency using a

variety of protocols.
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Examples of disjoint memory machines include the Intel Hypercube, the nCube, and
Masspar computers. In these systems, each processor has its own local memory. Com-
munication between processors is done using explicit message passing. The local
memory is always consistent with respect to its processor, and thus there is no memory
consistency problem with respect to the physical memory architecture. Some work has
been done on implementing shared virtual memory on these systems using software
and compiler technology, but to date it requires explicit declaration in the programs to

support shared variables.

The third class of memory architecture is called partially disjoint. In these systems
each processor is connected to a local as well as to a shared physical memory. The
advantage of this type of architecture is that only the shared memory needs consis-
tency support. Local memory does not require it. The real advantage of these systems
is that all data which is either local to a particular thread, including but not limited to
stacks, or which is immutable (i.e read only data) can be stored in the processor’s local
memory. Only data which is both shared and mutable needs to be stored in the physi-
cally shared memory. The premise underlying this type of architecture relies on the
well established fact that the amount of shared mutable data is a small portion of
almost all programs and therefore the bandwidth requirements on the network that
interconnects the shared memory are an order of magnitude less that on a fully shared
memory machine. Partially disjoint memory is likely to become the memory architec-
ture of choice in the future, and Sting is designed to take advantage of this type of

architecture.

5.10.2 Parallel Computers Composed of Networks of Workstations

Another goal of Sting is aimed at supporting an important type of parallel computer
which is not mentioned in the above discussion, namely parallel computers built out of
networks of workstations (and other parallel machines). These systems are referred to
as network parallel processors (NPP) or Hypercomputers. These architectures cur-

rently have disjoint physical memories, but in the future we expect these networks to



142  Chapter 5: The Abstract Physical Machine and Abstract Physical Proces-

have partially disjoint physical memories, or even shared physical memories.

An important difference between parallel machines built out of networks and the stan-
dard MIMD machines mentioned above is that NPP systems can add and remove phys-
ical processors to and from the system dynamically. Additionally, decisions
concerning when a processor is donated or withdrawn to/from the abstract physical
machine is made by the hardware machine which is adding/removing the processor(s)
to/from the abstract physical machine. The abstract physical machine can dynamically

add a physical processor to the system using the following two strategies:

® I any of the existing abstract physical processors is running more than
one virtual processor, one or more of them along with their associated
threads are migrated to the new abstract physical processor. The virtual
processors migrated are determined by the virtual machine policy man-
ager discussed in Section 5.8.2.

If no existing abstract physical processor has more than one virtual pro-
cessor then the existing virtual machines are notified of the existence of
a new abstract physical processor by the abstract physical machine and
any virtual machine can at its discretion request that the abstract physi-
cal machine add a new virtual processor to it.

Likewise, when an abstract physical processor is dynamically removed from its abstract
physical machine, any of the virtual machines that have a virtual processor mapped
onto that abstract physical processor, are notified that it is being removed from the sys-

tem. The virtual machine then has at least three options:

® it can migrate the virtual processor, with its associated threads, to
another abstract physical processor,

® jtcan migrate the threads associated with the virtual processor to other
virtual processors and then remove that virtual processor from the vir-
tual machine, or
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® it can terminate all the threads on the virtual processor and then remove

the virtual machine.

Just as Network Parallel Machines can have any of the physical memory architectures
described above, they can also have any of the physical inter-connection topologies
mentioned above. When a new physical processor is added to (or removed from) the
abstract physical machine the appropriate information is added to or removed from the
abstract physical machine. The topology mechanisms, which are described below,
work on both traditional MIMD and Network Paralle] Machines. Finally, any network
of inter-connected parallel machines can have more than one abstract physical

machine running on it. This capability permits effective partitioning of the network.

5.11 Abstract Physical Machine Topology

Sting is designed to support any possible physical interconnection topologies. There
have been a large number of different topologies used in various parallel processors.
These include buses, hierarchical buses, 2D and 3D meshes, hypercubes, omega nets,
and fat trees. An important aspect of Sting is that each abstract physical machine
knows all processor locations in its physical topology. This information is made avail-
able to virtual machines, allowing them to implement virtual topologies that are trans-
parently mapped onto the actual physical topology of the hardware. For a further

discussion of virtual topologies in Sting see Section 4.8.
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Chapter 6

Results

Sting has been implemented on an eight processor Silicon Graphics PowerSeries 480.
The machine is composed of eight 75mhz MIPS R3000 processors communicating
through a shared memory system with snoopy caches. Synchronization is supported at
the hardware level using a synchronization bus which is mapped into a region of the
physical memory. Synchronization is achieved by loading (locking) and storing

(unlocking) into addresses in that region of memory.

Sting has been implemented on top of Unix. While most of the data structures of the
abstract physical machine are implemented in the current system, we have relied on

Unix to provide I/O handling, including paging.

The Sting system has been implemented using the language T [RAS82], a dialect of
Scheme [CR91] and an enhanced version of the ORBIT compiler [KKR*86]. In this
chapter we present statistics gathered using various benchmark programs. Some are
from the suite used by Mohr [Moh92] to benchmark lazy tasks in Mul-T. Others were

programmed by various Sting users.

6.1 Statistical Categories

Each virtual processor in the Sting system maintains statistics about threads, execu-
tion contexts, and mutexes. Each of the tables presented later in this chapter will con-

tain entries for each of the statistics.

145
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The following statistics about threads are recorded by each VP:
Created - The number of thread created by the program.
Delayed - The number of threads created in the delayed state.
Scheduled - The number of threads scheduled to evaluate.
Absorbed - The number of threads absorbed by other threads.
Blocked - The number of times a thread blocked for any reason.
Resumed - The number of times a blocked thread resumed execution.
Determined - The number of threads that determined (i.e. completed) a value.

Wait - The number of times a thread blocked by making a call to thread-wait.

This number is included in the Blocks count.

Resumed from Wait - The number of times a thread blocked in thread-wait

resumed execution.

Blocked on Group - The number of times a thread blocked on a group of other

threads. This occurs as a result of calls to wait-for-n-threads.

Resumed from Block on Group - The number of times a thread, which was

blocked on a group of threads, resumed execution.
Suspended - The number of times a thread was suspended.
Terminated - The number of times a thread was forcibly terminated.

Idle - The number of times the virtual processor had no work to do. When a
virtual processor has no work it runs its root thread which increments this

counter and then spins until there is more work to do.

Migrated - The number of thread explicitly migrated from one virtual proces-

sor to another.

The following statistics about thread execution contexts are maintained by the system:
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Created - The number of thread control blocked created. This occurs when
the virtual processors pool of thread control blocks is empty and it must

create a new thread control block.

Allocated - The number of thread control blocks allocated from the virtual

processor’s pool of thread control blocks.

Re-used - The number of thread control blocks that were reused because an

unevaluating thread was proceeded by a thread which had just terminated.
The following statistics about mutexes are maintained by the system:
Created - The total number of mutexes created by the system.
Acquired - The number of times a mutex was acquired.

Released - The number of times a mutex was released.

6.2 Benchmarks
Sting’s performance has been tested using the following benchmarks:
Abisort - a program that does an adaptive bitonic sort,
Allpairs - a program that find the all pairs shortest path problem,
Matrix Multiply - a program that multiplies two matrices, and
Thread Queens - a program that solves the N queens problem using threads.

Tuple Space Queens - a program that solves the N queens problem using first

class tuple spaces.

N Body - a program that solves the N Body program using the Barns-Hut algo-
rithm. N Body is implemented using tuple spaces.
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Thread Policy Managers - The final benchmark shows the results of running
Abisort on eight processors using six different thread policy managers. The

program was run on each different policy manager without modification:

The results of each of these benchmark are placed in four tables. The first three show
statistics for each processor in the computation. The first table shows statistics for the
program when run on one and two processors. The second table shows statistics for
four processors and the third table shows statistics for eight processors. These three
tables show the “balance” between the processors. The fourth table consolidates the

totals for all processors.

Each table also includes statistics for a virtual processor (VPg) that was running a
thread containing the read-eval-print loop that was used to execute the program. Aside

from creating the initial thread VP did no work.

The results of the thread policy manager benchmark are placed into 7 tables. The first
six show the statistics for each of the eight processors under the six different policy
managers. The seventh consolidates the first six in order to compare their perfor-

mance.

Several of these benchmarks are extremely fined grained (i.e. each thread does almost
no work), particularly those from Mohr. Mohr originally ran these benchmarks on the
Encore MultiMax, whereas the processors on the SGI machine on which we ran these
benchmarks are an order of magnitude faster then those on the MultiMax. This

increase in speed makes the granularity much finer.
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6.3 Abisort

Abisort performs an “adaptive” bitonic sort [BN89] of n = 16,384 numbers. The adap-
tive algorithm achieves optimal complexity (O(n log n) rather than the O(n log2 n) of
the standard bitonic sort algorithm) by storing bitonic sequences in a special tree data
structure. Still, adaptive bitonic sort performs about twice as many comparisons as a
merge sort, and has somewhat greater bookkeeping costs. However, its parallel divide-
and-conquer merge operation allows virtually linear speedup when n >> p. Such
speedup is not possible with straightforward implementations (on MIMD machines) of
other divide-and-conquer sorts such as merge sort and quicksort which contain signifi-

cant sequential phases.1

~ Abisort creates a tree containing 106497 threads. As with most tree based sorting algo-
rithms each node has data dependencies with its children. This can been seen in when
abisort is run on a single processor (see Table 6-a). Every thread in the tree can be
absorbed by its parent, so only one thread has an execution context and every other
thread is evaluated in that execution context. Even with eight processors almost all

threads are absorbed by other threads.

Abisort was run using a thread policy manager that implemented a global lifo sched-
uler. This type of scheduler should balance the load on the processors, but incur
increasing contention on the global queue as more processors are added. Table 6-a,
Table 6-b, and Table 6-c show that this does in fact happen and the work load is
extremely well balanced across the processors. One of the reasons for this is that there
is almost no blocking; however, as we increase the number of processors starvation
starts to occur (even with of 100,000 threads!) because of the program’s extremely fine
granularity. This can be seen by looking at the idle statistic in Table 6-d. As more pro-
cessors are added to the computation the number of times a processor goes idle, for
lack of work, increases super-linearly. Thus, starvation accounts for the sub-linear

speedup. On four processors the efficiency is 97%, but on eight processors it has fallen

1. Abisort is one of Mohr’s benchmarks and the description of the algorithm is largely taken from
[Moh91].
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to 80%.

Sting’s ability to conserve storage and increase locality can be seen in the thread exe-
cution context statistics. When abisort is executed using one processor only one execu-
tion context is created. Thus, one context is used to evaluate 106497 threads! Even
with eight processors only 50 contexts are created. Notice that as the number of execu-
tion contexts increases, there are fewer opportunities for thread absorption, but the
number of re-used contexts increases. A re-used context is a “hot” context since it is

already loaded into the cache.
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Threads VPy | VP4 | Total VPg| VPy | VP, | Total
Created 1/106496] 1064967 1| 54262] 52234] 106497
Delayed o o 0 o o o 0
Scheduled 1{106496] 106497 1] 54262| 52234 106497
Absorbed 0/106496| 106496 0| 54258| 52227| 106485
Blocked 0 0 0 0 4 5 9
Resumed 0 0 0 0 4 5 9
Determined 0]106496] 106497 0| 54263| 52234| 106497
Wait 0 0 0 0 4 5 9
Resume Wait 0 0 0 0 4 5 9
Block on Group 0 0 0 0 0 0 0
Resume Group 0 0 0 0 0 0 0
Suspended 0 0 0 0 0 0 0
Sleep 0 0 0 0 0 0 0
Terminated 0 0 0 0 0 0 0
Idie 0 0 0 0 3 1 4
Migrated 0 0 0 0 0 0 0

Execution Contexts
Created 1 1 2 0 3 4 7
Allocated 0 0 0 0 6 6 12
Reused 0 0 0 0 2 0 2

Mutexes
Created 1{106500] 106501 1| 54274 52250 106533
Acquired 2|532488] 532490 2| 271375] 261235 532621
Released 2|532488| 532490 2| 271375| 261235 532621

Table 6-a :

Abisort with 1 and 2 Processors
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Threads VPg | VPy | VP, | VP; | VP, | Total
Created 1| 26540 26654| 26672] 26630 106497
Delayed 0 0 0 0 0 0
Scheduled 1| 26540| 26654| 26672| 26630 106497
Absorbed 0| 26527| 26640 26664| 26623| 106454
Blocked 0 12 10 8 8 38
Resumed 0 12 10 8 8 38
Determined 0| 26533 26660] 26670| 26634| 106497
Wait 0 12 10 8 8 38
Resume Wait 0 7 10 11 10 38
Block on Group 0 0 0 0 0 0
Resume Group 0 0 0 0 0 0
Suspended 0 0 0 0 0 0
Sleep 0 0 0 0 0 0
Terminated 0 0 0 0 0 0
Idle 0 13 4 11 7 35
Migrated 0 0 0 0 0 0

Execution Contexts
Created 0 3 6 5 4 18
Allocated 0 7 9 8 9 33
Reused 0 4 1 4 5 14

Mutexes
Created 1} 26552| 26678| 26692] 26646] 106585
Acquired 21132805 133393 133488] 133273| 532978
Released 2| 132805] 133393 133488{ 133273| 532978

Table 6-b :

Abisort with 4 Processors
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Threads VPg | VP4 | VP | VP3| VP, | VP5 | VPg | VP; | VPg | Total
Created 1113582112960|13334|1331413450] 13263[ 13356 13237| - 106497
Delayed 0 0 0 0 0 0 0 0 0 0
Scheduled 1113582/12960|13334|13314/13450| 1326313356 13237| 106497
Absorbed 0|13550{12921{13291|13280{ 13409 13242 13333]13202| 106228
Blocked 0] 25 34| 34| 32| 30| 27| 22 34 238
Resumed 0 25| 34] 34{ 32| 30| 27| 22| 34 238
Determined 0{13573|12951}13332|13308| 1342813294/ 13363|13248| 106497
Wait 0 25| 34 34] 32| 30| 271 22| 34 238
Resume Wait o 23] 271 39 26/ 18 40 31| 34 238
Block on Group 0 0 0 0 0 0 0 0 0 0
Resume Group 0 0 0 0 0 0 0 0 0 0
Suspended 0 0 0 0 0 0 0 0 0 0
Sleep 0 0 0 0 0 0 0 0 0 0
Terminated 0 0 0 0 0 0 0 0 0 0
Idle of 12f 10] 14 12f 16| 15| 12| 1 102
Migrated 0 0 0 0 0 0 0 0 0 0
Execution Contexts
Created 0 7 8 5 6 10 4 3 9 52
Allocated of 16/ 22| 18 17} 22 17| 13| 29 154
Reused 0 16/ 14 19 16 8 21| 14/ 14 123
Mutexes
Created 1113610{12992|13354|13338|13490]13279] 13368]13273] 106737
Acquired 2168148|68148| 60728 6686467491|66709|67079|66571| 535028
Released 2|68148|68148|60728(66864|67491{66709|67079(66571| 535028

Table 6-c :

Abisort with 8 Processors
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Threads 1 2 4 8
Created 1064967| 106497 106497| 106497
Delayed 0 0 0 0
Scheduled 106497| 106497 106497 106497
Absorbed 106496| 106485 106454 106228
Blocked 0 9 38 238
Resumed 0 9 38 238
Determined 106497| 106497| 106497 106497
Wait 0 9 38 238
Resume Wait 0 9 38 238
Block on Group 0 0 0 0
Resume Group 0 0 0 0
Suspended 0 0 0 0
Sleep 0 0 0 0
Terminated 0 0 0 0
Idle 0 4 35 102
Migrated 0 0 0 0

Execution Contexts
Created 50
Allocated 0 12 33 154
Reused 0 2 14 123

Mutexes
Created 106501f 106533 106585| 106737
Acquired 532490| 532621| 532978] 535028
Released 532490| 532621} 532978| 535028

Timing (secs)

65.2 29.7 16.8 9.1

Table 6-d :  Abisort with 1, 2, 4, and 8 Processors
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6.4 Allpairs

Allpairs solves the all-pairs shortest path problem [Aho, ef al] on a directed linear
graph of n = 117 nodes (footnote) using a parallel version of Floyd’s algorithm. Start-
ing with an n x n connectivity matrix C, where C;; gives the length of the edge con-
necting nodes i and j (or O if i and j are not adjacent), execution continues until Cij
contains the length of the shortest path from i to j for all i and j. The algorithm iterates
sequentially through all vertices K. During step K, all pairs of vertices are checked to
see if going through vertex K produces a shorter path; that is Ci,j is updated if C;; +
Cyj < C;;. These operations may all proceed in parallel. To see why, note that in step k
no element of row k or column k will change; this is so because C;; = 0. Since all
computations in step k will only reference values from row k and column k, all vertex

pairs can be safely handled in parallel during a given step.1

Handling all vertex pair tests in paralle] would produce a rather fine-grained program,
but this is not necessarily a problem on a MIMD machine because a coarse-grained par-
allelism is easily obtained by having each (potential) thread handle the n vertex pair
tests in a single matrix row. This is the strategy adopted for allpairs. Thus the parallel
version of allpairs has n sequential steps separated by barrier synchronization; in each
step there are n potentially parallel tasks. The tasks are created by a divide-and-con-
quer traversal of the index set of the matrix; the additional overhead of such a traversal
compared to an interactive traversal is negligible because of the coarse grain of each

task.

Allpairs creates 13573 threads. Allpairs is another tree algorithm in which the value
each thread is dependent on the value of its children. Thus in the single processor case
all but one thread is absorbed and even in the eight processor case 11204 threads or
83% are absorbed.Allpairs is even finer grained (even though it creates fewer threads)
than abisort and consequently more starvation occurs. The number of times a proces-

sor goes idle increases much more dramatically than in abisort. This explains why the

1. Allpairs is another of Mohr’s benchmarks and again the description of the algorithm is largely
taken from [Moh91].
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efficiency goes from 84% on two processors, to 55% on four processors, and down to

21% on eight processors.

Allpairs also uses more execution contexts than abisort. This is because more blbcking
occurs. Even so, only 174 contexts were created for 13573 threads. And again as more
processors are added to the computation, more execution contexts are created, fewer

threads are absorbed, and the number of contexts allocated and re-used both increase.
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Threads VPg | VP4 | Total VP, | VP4 | VP, | Total
Created 1] 13572] 13573 1} 6777| 6795] 13573
Delayed 0 0 0 0 0 ‘O ’ 0
Scheduled 1| 13572| 13573 1| 6777| 6795 13573
Absorbed 0} 13572 13572 0] 6705] 6667 13372
Blocked 0 0 0 0] 61 89 150
Resumed 0 0 0 0 61f -89 150
Determined 0| 13573 13573 0| 6832 6741] 13573
Wait 0 0 0 of 6l 89 150
Resume Wait 0 0 0 0 89 61 150
Block on Group 0 0 0 0 0 0 0
Resume Group 0 0 0 0 0 0 0
Suspended 0 0 0 0 0 0 0
Sleep 0 0 0 0 0 0 0
Terminated 0 0 0 0 0 0 0
Idle 0 0 0 0 3 1 4
Migrated 0 0 0 0 0 0 0

Execution Contexts
Created 0 1 1 0 2 3 5
Allocated 0 0 0 0f 124/ 73 197
Reused 0 0 0 0 5 1 6

Mutexes
Created 1] 13576] 13577 1| 6785 6807| 13601
Acquired 2| 67868] 67869 2| 35074] 34790 69875
Released 2| 67868] 67869 2| 35074} 34790| 69875

Table 6-e :  Allpairs with 1 and 2 Processors
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Threads VPo | VPy | VP, | VP; | VP, | Total
Created 1} 3412 3347| 3395] 3418] 13573
Delayed 0 0 0 0 0 0
Scheduled 1| 3412{ 3347| 3395| 3418] 13573
Absorbed 0| 3140{ 3095 3117| 3121 12473
Blocked 0] 250] 231 256/ 264 1001
Resumed 0| 250 231 256 264 1001
Determined 0] 3427} 3360/ 3396 3390 13573
Wait 0] 250; 231] 256/ 264 1001
Resume Wait 0] 258] 259 249 235 1001
Block on Group 0 0 0 0 0 0
Resume Group 0 0 0 0 0 0
Suspended 0 0 0 0 0 0
Sleep 0 0 0 0 0 0
Terminated 0 0 0 0 0 0
Idle 0] 263] 297| 328/ 294 1182
Migrated 0 0 0 0 0 0

Execution Contexts
Created 0 2l 22 17 16 57
Allocated 0f 218 228 227| 230 903
Reused 0 50 45 59, 47 201

Mutexes
Created 1] 3420| 3435] 3471] 3482] 13825
Acquired 2| 20193| 19885| 20111| 20153 80361
Released 2| 20193 19885| 20111{ 20153 80361

Table 6-f:  Allpairs with 4 Processors
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VPg

Threads VPg | VPy | VP | VP3 | VP, | VP; VP; [ VP3 | Total
Created 1] 1601] 1644| 1646| 1674 1706] 1794] 1744] 1763] 13573
Delayed of o o o o o o o o 0
Scheduled 1| 1601| 1644| 1646| 1674| 1706| 1794| 1744 1753| 13573
Absorbed 0| 1301 1389| 1359| 1360| 1371] 1494| 1461| 1469 11204
Blocked O 244 217| 230{ 244| 261| 229| 246 240{- 1911
Resumed 0 243 217| 229| 244| 260| 229| 246] 240 1911
Determined 0| 1594| 1643] 1601| 1654| 1646| 1868| 1777 1790 13573
Wait 0| 244 217 230{ 244 261| 229| 246] 240 1911
Resume Wait 0| 224 211 204| 235/ 221 292] 260] 264 1911
Block on Group 0 0 0 0 0 of o0 0 0 0
Resume Group 0 0 0 0 0 0 0 0 0 0
Suspended 0 00 0o 0 0 0 0 0 0 0
Sleep o0 o o o o 0 o0 of o 0
Terminated 0 0 0 0 0 0 0 0 0 0
Idle 0| 381| 480 470] 390 400| 337| 407] 378 3243
Migrated 0 0 0 0 0 0 0 0 0 0

Execution Contexts
Created of 21 42| 55 12] 26] 12 3 3 174
Allocated 0| 226{ 232| 232 240 237 241] 249 238 1895
Reused 0 50{ 67| 65/ 65 54] 49| 64| 68 482

Mutexes
Created 1] 1685| 1812| 1866 1722| 1810] 1842] 1756] 1775] 14301
Acquired 2| 11148 11328} 11255| 11580| 11643|12481{12144{12156] 93770
Released 2| 1114811328 11255| 11580| 11643|12481|12144{12156| 93770

Table 6-g :

Allpairs with 8 Processors
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Threads 1 2 4 -8
Created 13573]  13573] 13573] 13573
Delayed 0 0 0 0
Scheduled 13573} 13573} 13573 13573
Absorbed 13572) 13372| 12473} 11204
Blocked 0 150 1001 1911
Resumed 0 150 1001 1911
Determined 13573| 13573 13573 13573
Wait 0 150 1001 1911
Resume Wait 0 150 1001 1911
Block on Group 0 0 0 0
Resume Group 0 0 0 0
Suspended 0 0 0 0
Sleep 0 0 0 0
Terminated 0 0 0 0
idle 0 4 1182 3243
Migrated 0 0 0 0

Execution Contexts
Created 1 5 57 174
Allocated 0 197 903 1895
Reused 0 6 201 482

Mutexes
Created 13577] 13601] 13825] 14301
Acquired 67869 69875| 80361 93770
Released 67869] 69875 80361 93770

Timing (secs)

9.95 5.93 4.55 5.82

Table 6-h :  Allpairs on 1, 2, 4, and 8 Processors
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6.5 Matrix Multiply

The matrix multiply benchmark does a simple matrix multiply of two 500 x 500 matri-
ces. Each row of the result matrix is computed by a separate thread. There are no data
dependencies between the threads, and thus, this benchmark is completely parallel.
This benchmark was written as a master/worker program, with one master and 500

workers.

Matrix multiply creates 501 threads. Because there are no data dependencies there is
no blocking or waiting done by any thread. The work load is well balanced across the
various processors. The granularity of this program is reasonable and there is little
contention on the global fifo queue. This can be see by the small number of times the
virtual processors go idle. We suspect that the idle loops occur during the startup of the

program when the master has generated little work.

Because there are no data dependencies and no blocking only one execution context is
created on each virtual processor and all the threads on that processor use that context
over and over again. So even though stealing is not possible the same execution con-

text is used over and over.

The speedup is linear up to four processors. With eight processors the efficiency has
fallen up to 86%. We believe efficiency has fallen off because the master cannot gener-

ate work fast enough for the workers.
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Threads VPy [ VP{ | Total VPy { VP4 | VP, | Total
Created 1] 500 501 1| 500 0 501
Delayed 0 0 0 o o 0 ‘0
Scheduled 1 0 501 1| 500 0 501
Absorbed 0 0 0 0 0 0 0
Blocked 0 0 0 0 0 0 0
Resumed 0 0 0 0 0 0 0
Determined 0 501 501 0| 250| 251 501
Wait 0 0 0 0 0 0 0
Resume Wait 0 0 0 0 0 0 0
Block on Group 0 0 0 0 0 0 0
Resume Group 0 0 0 of o 0 0
Suspended 0 0 0 00 o o 0
Sleep 0 o0 0 00 o o 0
Terminated 0 0 0 0 0 0 0
Idle 0 0 0 0 1 2 3
Migrated 0 0 0 00 o o 0

Execution Contexts
Created 0 1 1 0 1 1 2
Allocated 0 2 2 0 2 1 3
Reused 0] 499 499 0] 249| 249 498

Mutexes
Created 1] 500 501 1] 500 0 501
Acquired 0| 1002 1002 0| 501 501 1002
Released 0] 1002 1002 0} 501} 501 1002

Table 6-i: Matrix Multiply with 1 and 2 Workers
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Threads VPg | VPy | VP | VP3 | VP4 | Total
Created 1| 500 0 0 0 501
Delayed 0 0 0 0f O© ‘ 0
Scheduled 1| 500 0 0 0 501
Absorbed 0 0 0 0 0 0
Blocked 0 0 0 0 0 0
Resumed 0 0 0 0 0 0
Determined 0| 126 125 125| 125 501
Wait 0 0 0 0 0 0
Resume Wait 0 0 0 0 0 0
Block on Group 0 0 0 of o0 0
Resume Group 0 0 0 0 0 0
Suspended o of o0 o o 0
Sleep 0 0 0 0 0 0
Terminated 0 0 0 0 0 0
ldie 0 1 2 2 2 7
Migrated 0 0 0 0 0 0

Execution Contexts
Created 0 1 1 1 1 4
Allocated 0 2 1 1 1 5
Reused 0| 124| 124| 124 124 496

Mutexes
Created 1] 500 0 of o0 501
Acquired 0| 252 250 250| 250 1002
Released 0| 252| 250| 250| 250 1002

Table 6-j :

Matrix Multiply with 4 Workers

163



164  Chapter 6: Results

Threads VPy | VPy [ VP, | VP3 | VP, | VP VPS VP; | VPg | Total
Created 1 0 0 0] 500 0 0 0 0 501
Delayed 00 o o o o o o o o 0
Scheduled 1 0 0 0| 500 0 0 0 0 501
Absorbed 0 0 0 0 0 0 0 0 0 0
Blocked 0 0 0 0 0 0 0 0 0 0
Resumed 0 0 0 0 0 0 0 0 0 0
Determined 0] 63 63 63 62 62 62| 63] 63 501
Wait 0 0 0 0 0 0 0 0 0 0
Resume Wait 0 0 0 0 0 0 0 0 0 0
Block on Group 0 0 0 o0 0 0 0 0 0 0
Resume Group 0 00 o o0 0 0 0 0 0 0
Suspended 0 0 o o0 0 0 0 0 0 0
Sleep 0 o0 o o 0 0 0 o0 0 0
Terminated 0 0 0 0 0 0 0 0 0 0
ldle 2 2l 2 1 2 2 2 2 15
Migrated 0 00 o o o o o o o 0

Execution Contexts
Created 0 1 1 1 1 1 1 1 1 8
Allocated 0 1 1 1 2 1 1 1 1 9
Reused 0o 62/ 62 62/ 611 61| 611 62l 61 492

Mutexes
Created 1 0f 0] 0] s00] o] o o 0 501
Acquired 0] 126] 126/ 126| 124 124] 124] 126] 126 1002
Released 0] 126] 126/ 126/ 124 124| 124] 126] 126 1002

Table 6-k :  Matrix Multiply with 8 Processors
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Threads 1 2 4 8
Created 501 501 501 501
Delayed 0 0 0 6
Scheduled 501 501 501 501
Absorbed 0 0 0 0
Blocked 0 0 0 0
Resumed 0 0 0 0
Determined 501 501 501 501
Wait 0 0 0 0
Resume Wait 0 0 0 0
Block on Group 0 0 0 0
Resume Group 0 0 0 0
Suspended 0 0 0 0
Sleep 0 0 0 0
Terminated 0 0 0 0
Idle 0 3 7 15
Migrated 0 0 0 0

Execution Contexts
Created 1 2 4 8
Allocated 2 3 5 9
Reused 499 498 496 492

Mutexes
Created - 501 501 501 501
Acquired 1002 1002 1002 1002
Released 1002 1002 1002 1002

Timing (secs)

2470 1235 62.0 35.7

Table 6-1: Matrix Multiply with 1, 2, 4, and 8 Workers
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6.6 N Queens with Threads

Queens finds all solutions to the » queens problem, where n queens are placed on an n
X n chessboard in such a way that no queen may capture another. For these éxperi-
ments a chessboard with n = 14 was chosen. In this formulation, a queen is placed on
one row of the chessboard at a time. Each time a queen is legally placed, a thread is
created to evaluate a recursive call to queens that finds all solutions stemming from the
current configuration. Threads are not created after a specified cutoff depth in the tree

is exceeded.

Bit vectors are used to build a compact representation, leading to fine thread granular-
ity. Since there exist manifest data dependencies among threads in this example (a
queen on one row needs to know the positions of queens on all other rows), many
scheduled threads can be absorbed, limiting the overall storage requirements needed

by this program.

The thread version of Queens was run on one, two, four, and eight processors with cut-
off depths of one, two, three, and four respectively. As the cutoff depth increases more
threads are spawned. Thus, in this benchmark as more processors are added more
threads are created. The number of threads grows exponentially as the number of pro-

cessors grows linearly.

Like abisort and allpairs, the value of every thread in the tree depends on that of its
children, and thread absorption is possible. On one processor all threads except the
root thread of the tree are absorbed and only one execution context is necessary, but on
eight processors only 7510 out of 11167 threads are absorbed. This is because the
amount of blocking increases as the number of processors increases. Even so, the
number of execution contexts grows logarithmically in terms of the number of threads

created, a very good property for memory conservation.

Using two and four processors the efficiency is 99% and with eight processors the effi-
ciency is 90%. This fall off in efficiency is due to creating two much parallelism. If we

use a depth cutoff of three on eight processors is takes 13.31 seconds to compute
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queens of 14, an efficiency of 98%.

Queens shows an important aspect of Sting programs, namely that since threads are so
cheap to create a reasonable amount of excessive parallelism has little or no effect on
efficiency. This in turn means that a programmer has more flexibility in using Sting

threads than those of other systems.
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Threads VPg | VPy | Total VPy | VPy | VP, | Total
Created 1 14 15 1 78] 92 171
Delayed 0 0 0 0 0 0 0
Scheduled 1 14 15 1 78] 92 171
Absorbed 0 14 14 0 18 20 38
Blocked 0 0 0 0 65 65 130
Resumed ] 0 0 0 64 66 130
Determined 0 15 15 0 83 88 171
Wait 0 0 0 0| 65| 65 130
Resume Wait 0 0 0 0 64 66 130
Block on Group 0 0 0 0 0 0 0
Resume Group 0 0 0 0 0 0 0
Suspended 0 0 0 0 0 0 0
Sleep 0 0 0 0 0 0 0
Terminated 0 0 0 0 0 0 0
Idle 0 1 1 0 3 1 4
Migrated 0 0 0 0 0 0 0

Execution Contexts
Created 1 6
Allocated 0 1 1 0 65 66 131
Reused 0 0 0 0 1 1 2

Mutexes
Created 1 14 15 9 78] 92 171
Acquired 0 30 30 11} 426] 436 862
Released 0 30 30 11]  426] 436 862

Table 6-m: Thread Queens with 1 and 2 Processors




6.6 N Queens with Threads

Threads VP, | VPy | VP, | VP | VP, | Total
Created 1] 286] 384] 406] 458 1535
Delayed 0 0 0 0 0 0
Scheduled 1| 286] 384| 406] 458 1535
Absorbed 0 120 165 166] 147 598
Blocked 0] 182 186 192 205 765
Resumed 0] 187[ 199 197 182 765
Determined 0| 356/ 410 404 365 1535
Wait 0] 182 186 192 205 765
Resume Wait 0] 187 199 197| 182 765
Block on Group 0 0 0 0 0 0
Resume Group 0 0 0 0 0 0
Suspended 0 0 0 0 0 0
Sleep 0 0 0 0 0 0
Terminated 0 0 0 0 0 0
Idle 0 6 3 1 6 16
Migrated 0 0 0 0 0 0

Execution Contexts
Created 14
Allocated 0| 182f 187 193] 205 767
Reused 0 48 45 421 35 170

Mutexes
Created 1] 286] 384] 406] 458 1535
Acquired 0| 1441{ 1564] 1580| 1550 6135
Released 0| 1441| 1564] 1580 1550 6135

Table 6-n: Thread Queens with 4 Processors
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Threads VPo | VPy | VP, | VP3 | VP, | VP | VP, VP; | VPg | Total
Created 1| 1255| 1503| 1192| 1217| 1384] 1700 1325] 1590] 11167
Delayed 00 o o o o o o o o 0
Scheduled 1f 1255| 1503| 1192| 1217| 1384] 1700] 1325| 1590 11167
Absorbed 0| 809| 1021] 809| 823| 894| 1169] 816] 1169 7510
Blocked 0| 267) 286| 256 272| 255 292 301 264 2193
Resumed 0f 275| 281 257{ 270 260 293] 298] 259] 2193
Determined 0 12781 1467| 1274| 1261 1333| 1636] 1301] 1617] 11167
Wait 0| 267 286 256 272| 255! 292 301| 264 2193
Resume Wait 0| 275{ 281 257 270 260 293] 298] 259 2193
Block on Group 0 0 0 0 0 0 0 0 0 0
Resume Group 0 0 0 o0 0 0 0 0 0 0
Suspended 0 0 0 0 0 0 0 0 0 0
Sleep 0 0 0 0 0 0 0 0 0 0
Terminated 0 0 0 0 0 0 0 0 0 0
Idle 0 8 2 5 5 9 4 8 8 49
Migrated 0 0 0 0 0 0 0 0 0 0

Execution Contexts
Created 26
Allocated 0| 260| 282 254 269 252] 286 294] 255 2152
Reused 0| 191} 165 214/ 177] 190] 183] 194] 191 1505

Mutexes
Created 1] 1255 1503| 1192 4404] 1384] 1700] 1325] 1590] 11167
Acquired 0f 3623 4084| 3583121990 3701| 4462| 3825| 4294] 31194
Released 0f 3623| 4084| 3583|21990| 3701| 4462| 3825| 4294| 31194

Table 6-0 : Thread Queens with 8 Processors
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Threads 1 2 4 8
Created 15 171 1535 11167
Delayed 0 0 0 0
Scheduled 15 171 1535/ 11167
Absorbed 14 38 598 7510
Blocked 0 130 765 2193
Resumed 0 130 765 2193
Determined 15 171 1535 11167
Wait 0 130 765 2193
Resume Wait 0 130 765 2193
Block on Group 0 0 0 0
Resume Group 0 0 0 0
Suspended 0 0 0 0
Sleep 0 0 0 0
Terminated 0 0 0 0
idie 1 4 16 49
Migrated 0 0 0 0

Execution Contexts
Created 1 6 14 26
Allocated 1 131 767 2152
Reused 0 2 170 1505

Mutexes
Created 15 171 1535] 11167
Acquired 30 862 6135| 31194
Released 30 862 6135 31194

Timing (secs)

104.74] 5243 2642] 14.54

Table 6-p: Thread Queens with 1, 2, 4, and 8 Processors
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6.7 N Queens with Tuple Spaces

The tuple space version of Queens is similar to the thread version except that it uses
first class tuple spaces for parallelism instead of threads. The first class tuple épaces

are, however, implemented using Sting’s threads.

The tuple space version uses the same size chessboard as the thread version (n=14).
In this formulation, a queen is placed on one row of the chessboard at a time, similarly
to the threads version. But each time a queen is legally placed, a new tuple-space is
created to hold the value of an active tuple that is “spawned” to find all solutions stem-
ming from the current configuration. Other threads access this value by “rd”’-ing the
tuple-space, and either absorb the thread if it has not started evaluating or block if it is

evaluating but the value has not yet been computed.

Like the thread version, the tuple space version uses a depth cutoff to limit the number
of threads created. The depth cutoffs used were the same as those used for the threads
version. Both versions create the same number of threads. The tuple space version is
98% efficient on four processors and 88% efficient on eight processors. Thus, both

versions show approximately the same efficiency.

This result is surprising since tuple spaces are implemented using threads and there-
fore should be slower, but a close look at the data explains it. The tuple space version
absorbs between 105% and 425% more threads than the thread version. Because of
this, it also blocks much less then the thread version. Consequently, the tuple space
version creates many fewer execution contexts then the thread version. Finally, there is
much less starvation in the tuple space version, where on eight processors a processor
was idle only 21 times, than in the thread version, where on eight processors a proces-

sor was idle 49 times.

The fact, that tuple spaces are somewhat slower is the reason for its competitive per-
formance. The tuple space version has threads with larger granularity and thus there
are many more opportunities for absorbing other threads than in the thread version.

The difference between these two benchmarks emphasizes how much faster thread
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absorption is than blocking. It also shows that the granularity of threads is probably

less important on Sting than on other systems.

Finally, we should point out that in spite of all the problems caused by the fine granu-

larity of the thread version, it is just as fast as the tuple space version.
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Threads VPg | VPy | Total VPg | VPy | VP, | Total
Created 1 14 15 1 78 92 171
Delayed 0 0 0 0 0 0 0
Scheduled 1 14 15 1 78 92 171
Absorbed 0 14 14 0 77 85 162
Blocked 0 0 0 0 1 1 2
Resumed 0 0 0 0 0 2 2
Determined 0 15 15
Wait 0 0 0 0 1 1 2
Resume Wait 0 0 0 0 0 2 2
Block on Group 0 0 0 0 0 0 0
Resume Group 0 0 0 0 0 0 0
Suspended 0 0 0 0 0 0 0
Sleep 0 0 0 0 0 0 0
Terminated 0 0 0 0 0 0 0
Idle 0 0 0 0 3 1 4
Migrated 0 0 0 0 0 0 0

Execution Contexts
Created 1 3
Allocated 0 1 1 0 1 2 3
Reused 0 0 0 0 6 0 6

Mutexes
Created 1 14 15 ol 78] 92 171
Acquired 0 30 30 o} 171 179 350
Released 0 30 30 o 1711 179 350

Table 6-q :

Tuple Space Queens with 1 and 2 VPs
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Threads VPg | VPy | VP, | VP; | VP4 | Total
Created 1{ 435 356 346] 397 1535
Delayed 0 0 0 0 0 ‘ 0
Scheduled 1] 435 356] 346 397 1535
Absorbed 0] 420{ 356/ 342 389 1507
Blocked 0 3 1 1 1 6
Resumed 0 2 1 0 3 6
Determined 0] 425 366 348| 396 1535
Wait 0 3 1 1 1 6
Resume Wait 0 2 1 0 3 6
Block on Group 0 0 0 0 0 0
Resume Group 0 0 0 0 0 0
Suspended 0 0 0 0 0 0
Sleep 0 0 0 0 0 0
Terminated 0 0 0 0 0 0
Idle 0 4 7 8 2 21
Migrated 0 0 0 0 0 0

Execution Contexts
Created 6
Allocated 0 3 1 1 2 7
Reused 0 3 8 6 4 21

Mutexes
Created 1| 435] 356] 346] 397 1535
Acquired 0| 862 735{ 700| 797 3094
Released 0f 8621 735 700{ 797 3094

Table 6-r: Tuple Space Queens with 4 Processors
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Threads VPo | VP1 | VPy | VP3 | VP, | VP5 | VPG [ VP; | VPg | Total
Created 1] 1442} 1353} 1236| 1623| 1588| 1308| 1302] 1314| 11167
Delayed 0 0 0 0 0 0 0 0 ol 0
Scheduled 1] 1442} 1353} 1236| 1623] 1588| 1308| 1302] 1314| 11167
Absorbed 0] 1434| 1348| 1233| 1603| 1582| 1308| 1298| 1308] 11108
Blocked 0 3 1 1 2 2 2 2 1 14
Resumed 0 0 2 2 1 2 2 5 0 14
Determined 0] 1441} 1352; 1243] 1609| 1592{ 1311| 1310] 1309] 11167
Wait 0 3 1 1 2 2 2 2 1 14
Resume Wait 0 0 2 2 1 2 2 5 0 14
Block on Group 0 0 0 0 0 0 0 0 0 0
Resume Group 0 0 0 0 0 0 0 0 0 0
Suspended 0 0 0 0 0 0 0 0 0 0
Sleep 0 0 0 0 0 0 0 0 0 0
Terminated 0 0 0 0 0 0 0 0 0 0
Idle 0 8 7 6 4 6 7 9] 11 21
Migrated 0 0 0 0 0 0 0 0 0 0

Execution Contexts
Created 11
Allocated 0 2 2 2 2 3 3 3 1 18
Reused 0 5 3 9 4 8 2 9 1 41

Mutexes
Created 1| 1442) 1353| 1236 1623| 1588] 1308] 1302] 1314] 11167
Acquired 0] 2891 2710f 2492| 3225| 3193| 2626 2631| 2622| 22390
Released 0] 2891} 2710f 2492| 3225| 3193| 2626] 2631] 2622| 22390

Table 6-s:  Tuple Space Queens with 8 Processors
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Threads 1 2 4 8
Created 15 171 1535] 11167
Delayed 0 0 ‘ 0 0
Scheduled 15 171 1535 11167
Absorbed 14 162 1507 11108
Blocked 0 2 6 14
Resumed 0 2 6 14
Determined 15 171 1535; 11167
Wait 0 2 6 14
Resume Wait 0 2 6 14
Block on Group 0 0 0 0
Resume Group 0 0 0 0
Suspended 0 0 0 0
Sleep 0 0 0 0
Terminated 0 0 0 0
Idle 0 4 21 21
Migrated 0 0 0 0

Execution Contexts
Created 1 3 6 11
Allocated 0 3 7 18
Reused 0 6 21 41

Mutexes
Created 15 171 1535] 11167
Acquired 30 350 3094 22390
Released 30 350 3094 22390

Timing (secs)

103.8 52.6 26.4 14.7

Table 6-t : Tuple Space Queens with 1, 2, 4, and 8 Processors
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6.8 N Body Problem

The N-body problem is the problem of simulating the evolution of a system of bodies
under the influence of gravitational forces. Each body is modeled as a point mass and
exerts forces on all other bodies in the system. The simulation proceeds over time-
steps, each step computing the net force on every body and thereby updating that
body’s position and other attributes. If all pair wise forces are computed directly, the

algorithm has a time complexity of O(n?).

The Barnes-Hut algorithm for the N-body problem has an expected running time of
O(n log n) if the bodies are uniformly distributed in space. It exploits the idea that the
effect of a cluster of particles at a distant point can be approximated by one body
whose location is the center of mass of the cluster and whose mass is the sum of the
masses in the cluster. It thus assumes that all bodies are contained in a fixed sized cube

(in the 3-dimensional case) or in a square (in the 2-dimensional case).

We implemented the two-dimensional version of the problem. To partition the plane
the Barnes-Hut algorithm recursively splits the original square into four equally sized
quadrants until each quadrant contains only 1 body. This partition can be represented
by a tree, called a BH-tree. Each node represents a square S in the partition and it is
the parent of the squares that are created by splitting S.Thus, each node has at most
four children and the expected height of the BH-tree is O(log n) if the bodies are uni-
formly distributed in the space. At each node, we store the center of mass and the total

mass of the nodes in its square.

To compute the force that is exerted on a body B, we traverse the BH-tree in the fol-
lowing way: We start at the root of the tree. If the length of the square of the visited
node X is larger than the distance of B to the center of mass of X, we compute the force
that the mass stored at X exerts on B. Otherwise we recur on all children of X. Thus
whether a subtree of the BH-tree is visited depends on the location of B. In each itera-

tion, a new BH-tree is built and the new location of all bodies are computed.

This program generates a number of relatively coarse-grained threads independent of
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the actual input. Each thread has access to a distributed data structure (i.e. a tuple
space) that holds the most recent BH-tree. Each thread is expected to access the dis-
tributed data structure O(log n) times for each body and iteration. Barrier synchroniza-
tion is used to ensure that all forces are computed before a new iteration is initiated. To
optimize storage usage, a new set of threads is created on every iteration; storage gen-
erated during one iteration becomes available to threads created in subsequent ones;

the overall aggregate storage requirements are thus minimized.

Table 6-u show the results of running the program using 3500 bodies, for six iterations
with a velocity of one using on one, two, four, and eight processors. The efficiency is
100%, 75%, and 66% on two, four, and eight processors respectively. The reason for
the decrease in efficiency as more processors are added is that the amount of parallel-
ism in the problem is limited. This can be seen in the both the amount of blocking

being done combined with the number of times processors are idle.
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Threads 1 2 4 8
Created 7 13 25 49
Delayed 0 0 0 0
Scheduled 7 13 25 49
Absorbed 0 0 0 0
Blocked 6] 3822 11395 25062
Resumed 6 3822  11395| 25062
Determined 7 13 25 49
Wait 0 0 0 0
Resume Wait 0 0 0 0
Block on Group 0 0 0 0
Resume Group 0 0 0 0
Suspended 0 0 0 0
Sleep 0 0 0 0
Terminated 0 0 0 0
Idle 1 3830f 12714 49119
Migrated 0 0 0 0

Execution Contexts
Created
Allocated 7 13 25 49
Reused 0 0 0 0

Mutexes
Created 105  3929] 10406 12727
Acquired 1556091| 1579672 1630048| 1730415
Released 1556091} 1579672} 1630048| 1730415

Timing (secs)

751 363 251 142

Table 6-u: N Body with 1, 2, 4, and 8 Processors
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6.9 Thread Policy Management

The final benchmark compares six different thread policy managers. We do this by
running the abisort benchmark (see Section 6.3) using the different policy managers.
The program run is exactly the same for each policy manager, i.e. the source is not

changed and it is not recompiled. The following thread policy managers were tested:

GLIFO - A policy manager that uses one global queue for scheduling all the
threads on virtual processors. The queue is organized in a last in first out

manner.

GFIFO - A policy manager that uses one global queue for scheduling all the
threads on virtual processors. The queue is organized in a first in first out

manner.

L1 LIFO Random - A policy manager that uses one local ready queue on
-each virtual processor. The queue is organized in a last in first out manner.
The initial mapping of thread to virtual processor is done by picking a pro-

cessor at random.

L1 LIFO Round Robin- A policy manager that uses one local ready queue
on each virtual processor. The queue is organized in a last in first out man-
ner. The initial mapping of thread to virtual processor in a round robin

manner using a global counter access to which is synchronized.

L1 FIFO Random - A policy manager that uses one local ready queue on
each virtual processor. The queue is organized in a first in first out manner.
The initial mapping of thread to virtual processor is done by picking a pro-

cessor at random.

L1 LIFO Round Robin - A policy manager that uses one local ready queue
on each virtual processor. The queue is organized in a last in first out man-
ner. The initial mapping of thread to virtual processor in a round robin

manner using a global counter access to which is synchronized.
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Table 6-v through Table 6-aa show the results for each of the eight processors running
abisort under the various policy managers. An examination of the tables show the each
of the policy managers does a good job of scheduling threads evenly across the proces- -
sors with the variance in load under 5% for all of them. The round robin schedulers
distribute the threads with essentially no variance. This even distribution comes at the

cost of acquiring an extra lock for each thread scheduled, however.

All of the policy managers show good balance in other respects. The the number of
threads absorbed by each processor is well balanced as is the amount of blocking and

the number of times a processor goes idle.

Table 6-ab show a comparison of the results for the six systems tested. This table
shows that for abisort a fifo strategy works better than the lifo strategy and that the glo-
bal queue works much better than the local queues. The thread policy manager that
works best, GFIFO, as we might expect, has less idle time, less blocking, and creates
fewer execution contexts than any of the others. The one that performs worst, L1
LIFO Random, not surprisingly has much more blocking, more idle time, and creates

more execution contexts than the others.

The machine we ran these benchmarks on is a physically shared memory machine and
the results of these policy managers show less variance than they might on a physi-
cally disjoint memory machine. Abisort is only one benchmark; to understand the
behavior of various thread policy managers many more benchmarks need to be stud-
ied. Finally, there are many other thread policy managers that we would like to test in

the future.



6.9 Thread Policy Management

183

Threads VPy | VPy | VP, | VP3| VP4 | VP5 | VPg | VP7 | VPg | Total
Created 1]13274[13449]12997|13268] 13385]13525|13251{13347] 106497
Delayed oo, o o o o o o o o0 O
Scheduled 1]13274(13449| 1299713268 | 13385|13525/13251{13347| 106497
Absorbed 0{10889| 11102|10600| 10837| 10895 11076 10938{10959| 87296
Blocked 0| 1472| 1526| 1547| 1506| 1514| 1576] 1491| 1546] 12178
Resumed 0| 1500| 1570| 1568| 1533| 1491| 1495| 1520| 1501| 12178
Determined 0[13191|13527|13123|13209|13372| 13443} 13357{13275| 106497
Wait 0| 1472| 1526| 1547| 1506| 1514| 1576| 1491} 1546 12178
Resume Wait 0| 1500 1570| 1568| 1533| 1491| 1495| 1520{ 1501 12178
Block on Group 0 0 0 0 0 0 0 0 0 0
Resume Group 0 0 0f ©0 0 0 0 0 0 0
Suspended 0 0 0 0 0 0 0 0 0 0
Sleep o0 o o o o o o o O O
Terminated 0 0 0 0 0 0 0 0 0 0
Idie ol 30[ 33 33} 22f 35 27| 21| 28 229
Migrated 0 0 0 0 0 0 0 0 0 0

Execution Contexts
Created 50
Allocated 0| 1164| 1206| 1226| 1207| 1177| 1286] 1187| 1201 9654
Reused 0| 1181| 1191{ 1180| 1214| 1148 1191{ 1204| 1238 9547

Mutexes ‘
Created 1]13274[13449]12997]13268]13385] 13525] 13251 13347| 106497
Acquired 0{33351]34073|33363|33524{33540|34156| 33611|33729| 269347
Released 0{33351|34073|33363|33524{33540|34156{33611{33729| 269347

Table 6-v: Abisort with Global LIFO Policy
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Threads VPg | VPy | VP, | VP3| VP, | VP5 | VPg | VP, [ VPg | Total
Created 1113541113370/13167{13510| 13220[ 13155/ 13198 13335| 106497
Delayed 0 0 0 0 0 0 0 0 of 0
Scheduled 1113541|13370/13167|13510|13220{13155]13198]13335| 106497
Absorbed 0{1351211333513128]13468|13189/13127|13171]13288] 106218
Blocked 0f 29 30f 27 40| 34/ 30 25/ 36 251
Resumed 0 50 26/ 21| 25 39{ 35 27/ 28 251
Determined 0)13572|13364|13148|13493| 13244 13161]13200{ 13315 106497
Wait 00 29| 30; 27 4ol 34| 30| 25/ 36 251
Resume Wait 0f 50] 26/ 21| 25| 39/ 35 27] 28 251
Block on Group 0 o0 o o o 0 0 0 0 0
Resume Group o0 o o o o 0 0 0 0 0
Suspended 0 0 0 0 0 0 0 0 0 0
Sieep 0 0 0 0 0 0 0 0 0 0
Terminated 0 0 0 0 0 0 0 0 0 0
Idle 0f 21} 250 25| 22| 19 18 27| 25 182
Migrated o0 o o o o0 0 0 0 0 0

Execution Contexts
Created 38
Allocated 0 18 211 21 22} 20/ 171 19| 21 159
Reused 0 20y 12| 13} 14| 13| 18] 15/ 15 120

Mutexes
Created 1113541113370{13167|13510] 13220]13155]13198] 13335] 106497
Acquired 0]27259{26849|26412|27143{26607|26448|26507|26775] 214000
Released 0]27259)26849)26412]|27143|26607|26448|26507|26775| 214000

Table 6-w:  Abisort with Global FIFO Policy
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Threads VP, | VPy | VP, | VP53 | VP4 | VP5 | VPg | VP; | VPg | Total
Created 1{13332[13322]13258]13191{13309]13332{13440{13312| 106497
Delayed 0 0 0 0 0 0 0 0 0 0
Scheduled 1/13318[13400/13233|13096|13297| 13504 13023{13254| 106497
Absorbed 0{12835]12800{12709|12727|12867{12845{13023|12745| 102551
Blocked 0| 397{ 405 401| 384| 411| 433| 365| 415 3211
Resumed 0| 371 359 420| 417| 385 432| 402| 425 3211
Determined 0{13277{13234|13287{13264]13351|13381{13479|13224| 106497
Wait 0] 397| 405 401| 384| 411 433| 365 415 3211
Resume Wait 0| 371| 359 420| 417| 385 432| 402| 425 3211
Block on Group 0 0 0 0 0 0 0 0 0 0
Resume Group 0 0 0 0 0 0 0 0 0 0
Suspended 0 0 0 0 0 0 0 0 0 0
Sleep 0 0 0 0 0 0 0 0 0 0
Terminated 0 0 0 0 0 0 0 0 0 0
Idle o 170 115 164 191 175 120{ 144 122 1201
Migrated 0 0 0 0 0 0 0 0 0 0

Execution Contexts
Created 52
Allocated 0| 419 400{ 411| 408| 432| 445 378| 410 3303
Reused of 80| 95| 89 8| 82| 76/ 64| 75 643

Mutexes
Created 1]13332[13322]13258]13191]13309| 13332{13440{ 13312} 106497
Acquired 0128265|28233|28238|28167|28450|28563{28538{28204| 226658
Released 0]28265|28233{28238|28167|28450|28563|28538/28204| 226658

Table 6-x :

Abisort with Local LIFO and Random
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Threads VPo | VPy | VP, | VP3 | VP, | VP5 | VPg | VP, [ VPg | Total
Created 1113227)13259)13396|13240] 13499] 13332 13347]13196] 106497
Delayed 0 0 0 0 0 0 0 0 o' 0|+
Scheduled 1113313113312/ 13312[13312{ 1331213312/ 13312]13312| 106497
Absorbed 0]10889}11102|10600| 10837|10895| 11076]10938/10959] 87296
Blocked 0] 251 254| 258 237| 256 243] 237] 235 1971
Resumed 0| 244 247\ 267| 226] 272] 244 238] 233 1971
Determined 0]13163/13339)13410{13184{13546]13413{13326|13116] 106497
Wait 0j 251 254 258 237/ 256| 243 237| 235 1971
Resume Wait 0| 244 247| 267| 226| 272| 244] 238] 233 1971
Block on Group 0 0 o 0 0 0 0 0 0 0
Resume Group 0 0 0 0 0 0 0 0 0 0
Suspended o o of o o o 0 0 0 0
Sleep 0 0 of o 0 0 0 0 0 0
Terminated 0 0 0 0 0 0 0 0 0 0
Idle Op 80 69 75/ 42{ 59| 85| 57 51 518
Migrated 0 0 0f o0 04 o 0 0 0 0

Execution Contexts
Created 36
Allocated O 257\ 254] 264] 237 265 250] 246| 237 2010
Reused 0f 55| 51 52| 44| 46| 68 45| 37 398

Mutexes
Created 1113227113259| 1339613240 13499] 13332] 13347]13196] 106497
Acquired 0]27386/27696|27906|27350|28088(27810{27647{27228| 221111
Released 0]27386{27696|27906|27350|28088{27810|27647]27228] 221111

Table 6-y :  Abisort with Local LIFO and Round Robin
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Threads VP | VPy | VP, | VP3 | VP4 | VP5 | VPg | VP, | VPg | Total
Created 1/13326]13398|13370| 13342{13233| 13344 13371] 13311 106497
Delayed 0 0 0 0 0 0 0 0 0 0
Scheduled 1]13302{13388/13229|13106{13305| 13512 13413[13112| 106497
Absorbed 0]13260] 13272{13275|13257(13117|13253{13292{13017| 105743
Blocked o 81} 80| 78 72| 82| 77 75| 63 608
Resumed ofp 78/ 911 97| 66 78 s6{ 91| 51 608
Determined 0]13366|13385{13392|13314|13217|13322|13425{13077| 106497
Wait of 81| 80 78 72| 8| 771 75| 63 608
Resume Wait 0 78 91 97 66 78 56 91 51 608
Block on Group 0 0 0 0 0 0 0 0 0 0
Resume Group 0 0 0 0 0 0 0 0 0 0
Suspended of o0 0 of o o 0f o 0 0
Sleep 0 0 0 0 0 0 0 0 0 0
Terminated 0 0 0 0 0 0 0 0 0 0
Idie 0| 43] 27 16] 35 19| 24| 27| 15 206
Migrated 0 0 0 0 0 0 00 0 0 0
Execution Contexts
Created 40
Allocated 0| 61} 57| 54| 51y 54 58 44 43 422
Reused 0] 45| 40| 40| 41| 48] 32| 54/ 33 333
Mutexes
Created 1{13326{13398|13370|13342{13233| 13344 13371|13311| 106497
Acquired 027059{27094|27092|26953{26764|26959|27133(26412| 215466
Released 0[27059|2709427092{26953|26764|26959|27133{26412| 215466

Table 6-z: Abisort with Local FIFO and Random
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Threads VP | VPy | VP, | VP3 | VP, | VP5 | VPg | VP; [ VPg | Total
Created 1113340/ 13444113244/ 13238 13269]13304(13375[13282| 106497
Delayed 0 0 0 0f o0 0 0 0 ol 0
Scheduled 1113313{13312{13312{13312|13312|13312]13312{13312] 106497
Absorbed 0]13264/13391|13164]|13140{ 13193 13262|13298]13236] 105948
Biocked 0 48] 61| 56/ 48 42| 571 521 56 420
Resumed 0 28 59 471 49 64| 64 50, 59 420
Determined 0}13296) 134581 1321113198 13260} 13366 1338113327 106497
Wait 0] 48] 61} 56/ 48] 42| 571 521 56 420
Resume Wait Of 28} 59| 471 49| 64| 64! 350/ 59 420
Block on Group 0 0 0 0f o 0 0 0 0 0
Resume Group 0 0 0 0 0 0 0 0 0 0
Suspended 0 0 0 0 0 0 0 0 0 0
Sleep 0 0 0 0 0 0 0 0 0 0
Terminated 0 0 0 0 0 0 0 0 0 0
idle 0o 221 111 16| 23] 211 13| 22| 21 149
Migrated 0 0 0 0 0 0 0 0 0 0

Execution Contexts
Created 38
Aliocated Of 40f 42f 39| 35 29/ 43| 43| 41 306
Reused 0f 22y 311 28 26 30f 30 30 34 243

Mutexes
Created 1113340 1344413244 13238/ 13269]13304[13375] 13282 106497
Acquired 0]26798|27166|26659(26594|26707|26942|26962]26867] 214695
Released 0|26798127166|26659|26594|26707|26942|26962]26867] 214695

Table 6-aa: Abisort with Local FIFO and Round Robin
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G G L L L L
Threads LIFO FIFO LIFO LIFO FIFO FIFO
Random RR Random RR
Created 106497 106497| 106497| 106497 106457 106497
Delayed 0 0 0 0 0 0
Scheduled 106497| 106497| 106497 106497 106497| 106497
Absorbed 87296] 106218| 102551 87296| 105743| 105948
Blocked 12178 251 3211 1971 608 420
Resumed 12178 251 3211 1971 608 420
Determined 106497 106497| 106497 106497| 106497| 106497
Wait 12178 251 3211 1971 608 420
Resume Wait 12178 251 3211 1971 608 420
Block on Group 0 0 0 0 0 0
Resume Group 0 0 0 0 0 0
Suspended 0 0 0 0 0 0
Sieep 0 0 0 0 0 0
Terminated 0 0 0 0 0 0
Idle 229 182 1201 518 206 149
Migrated 0 0 0 0 0 0
Execution Contexts
Created 50 38 52 36 40 38
Allocated 9654 159 3303 2010 422 306
Reused 9547 120 643 398 333 243
Mutexes
Created 106497 106497 106497| 106497| 106497| 106497
Acquired 269347| 214000] 226658| 221111] 215466 214695
Released 269347| 214000| 226658| 221111| 215466 214695
Timing (secs)
14.77 11.40 16.94 14.76 14.14 14.68
Table 6-ab :  Abisort with Various TPMs
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Chapter 7

Concluding Remarks

The goal of the Sting design has been to provide a foundation for modern program-
ming languages, particularly parallel languages, that is powerful while at the same
time being both simple and efficient. We believe that these goals have largely been
met. The architecture is composed of a small set of simple concepts that compose well.

The implementation is also small comprising less than 7,000 lines of scheme code.

Sting has proven to be a useful foundation for designing and implementing parallel
programming constructs. In addition to threads as a programming paradigm, futures,
first class tuple spaces, engines[HF84], and speculative constructs have been imple-

mented.

Continuations have proven to be a powerful and elegant way of handling complex
control issues in the operating systems. They have simplified the implementation of
context switching, interrupts, and exceptions. It was the use of continuations that first

made us realize it would be possible to eliminate kernel threads altogether.

The goal of separating control from policy lead to the discovery of small and simple
interfaces to the virtual processor policy manager and the thread policy manager. This
in turn has made policy customization not only straightforward, but also easy. Sting’s

flexibility of policy management makes it unique among current operating systems.

The implementation of first class tuple spaces by Suresh Jagannathan of NEC

Research Institute [Jag91] has demonstrated the usefulness of Sting. His system is

191



192  Chapter 7: Concluding Remarks

interesting in several respects, but perhaps the most interesting consequence of using
Sting is that tuples can contain not only immediate data, but also reference data such

as threads, procedures, and objects. In fact, any data in the system can be placed in a |
tuple. This not only leads to enhanced expressiveness in his system but also to
increased efficiency, since data can be communicated by reference rather than by

copying. The tuple space implementation is between 1000 and 1500 lines of code.

Finally, Sting has demonstrated that with sufficiently lightweight threads parallel pro-
grams can have a significant measure of excess parallelism and still perform effi-
ciently. This allows the parallel programmer or language designer greater freedom and
flexibility.

7.1 Future Research

We believe that Sting provides a rich foundation for future research. Below is a list

some of the projects we envision for the future.

Sting is currently implemented on top of Unix. The next step is to move it to bare
hardware. Much of the abstract physical machine has been implemented, but it is
impossible to completely test the effectiveness of the design without removing the

intervening layer of Unix.

Sting was designed as a vehicle for implementing and testing new paradigms of paral-
lelism. We have implemented several of the well known paradigms, but there are many
others to explore. Sting provides a “flat” playing field on which to compare the rela-
tive efficiencies of competing paradigms and implementations. There is much useful

work to be done in this area.

The Sting memory management system is quite novel and there remains a large num-
ber of experiments that should be performed to determine the effectiveness of the
design. For example: What are the number and cost of inter-area references? What are
the number and percentage of intra-stack references, intra-private-heap references,

intra-shared-heap references? What is the mean reference distance, i.e. how much
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locality is exploited? What percentage of objects that are typically allocated in the
heap can be allocated in the stack? What are the number of loads and stores on shared
objects as compared to private objects? There are many other questions of a similar
nature that would be useful to answer. There are also other possible design choices in
the memory management system, e.g. eliminating private heaps or having shared
heaps on a per virtual processor basis rather than on a thread group basis. These design

modifications should be directed by the answers to the questions above.

The memory management system was also designed with a eye toward using it to
implement a persistent object store bases on persistent shared virtual memory. In order
to do this we envision adding first class environments to Sting. These environments
would fill the same function as directories in file systems. With the advent of 64 bit
addresses it is possible to map a large persistent object space into many different vir-
tual machines. The object space would reside at a fixed location in each virtual mem-
ory and thus object IDs would simply be references with no extra level of indirection
or swizzling necessary. The generational nature of Sting’s garbage collector combined
with the fact that different areas can be collected independently make it ideally suited

for a persistent object store.

Sting’s shared virtual memory model allows the implementation of “polymorphic
ports.” These are ports to which any object can be sent or received without defining a
type for the port. This is possible because all references are consistent in the shared
virtual memory. This is not the case in disjoint address space architectures such as the
hypercube. Polymorphic ports allow the transmission of “active messages.” Active
messages are represented as thunks. Transmitting an active message involves simply
sending the closure of the thunk to a port. The receiver of the message “decodes” the
message simply by invoking the thunk. Active messages can be thought of as poly-
morphic chunks of work that the sender requests the receiver to perform. We believe
this paradigm might be very useful for structuring parallel algorithms and should be
explored further.

There are several enhancements to the system we would like to make. Two important
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ones are adding first class continuations and implementing lazy task creation. These
should be straightforward to implement given the current design. It would be
extremely interesting to compare the performance of thread absorption versus lazy

task creation across a broad spectrum of programs.

Finally, the Sting programming environment is extremely primitive; many useful
enhancements in terms of profiling/metering, debugging, and program visualization
could be added.
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