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Abstract

Multiple-processor systems can provide higher performance and higher
reliability/availability than single-processor systems. In order to properly
assess the effectiveness of multi-processor systems, measures that combine
performance and reliability are needed. We describe the behavior of the
multi-processor system as a continuous-time Markov chain and associate
a reward rate ( performance measure ) with each state. We evaluate the
distribution of performability for analytical models of a multi-processor
system using a recently improved polynomial-time algorithm that obtains
the distribution of performability for non-repairable as well as repairable
systems with heterogeneous components with a substantial speedup over
earlier work. The system that we analyze with several Markov reward
models is the ( C.mmp ) multi-processor system developed at Carnegie
Mellon University. The example indicates that distributions of cumula-
tive performance measures over finite intervals reveal behavior of multi-
processor systems not indicated by either steady-state or mean values
alone.




1 Introduction

The proliferation of fault-tolerant multiple processor systems has given
rise to the need to develop composite reliability and performance measures.
For this purpose, Meyer [20] developed a conceptual framework of performa-
bility. In this paper, we consider performability models based on Markov
Reward Models (MRMs). We obtain a variety of performability measures
on several models of a multi-processor system to illustrate the effect of dif-
ferent fault-tolerant mechanisms on the ability of the system to complete
useful work in a finite time interval. In the course of this study, we show
that the distribution of accumulated reward illuminates effects that are not
detected by steady-state values, instantaneous measures, or expected values
of cumulative measures. Hence, the performability distribution provides new
insight on the behavior of multi-processor computer systems. We describe a
new O(n®) algorithm for the computation of the distribution of accumulated
reward in a finite utilization interval where n is the number of states in the
MRM.

~ The evolution of the system through configurations with different sets of
operational components is represented by a continuous-time Markov chain
(CTMC) which we refer to as a structure-state process. The set of rewards
associated with the states of a structure-state process are referred to as the
reward structure. Together the structure-state process and the reward struc-
ture determine a Markov Reward Model (MRM). Because the time-scale of
the performance-related events (e.g., instruction execution, job service) is at
least two orders of magnitude less than the the time-scale of the reliability-
related events (i.e., component failure, component repair) steady-state val-
ues of performance models are used to specify the performance levels or
reward rates for each structure state.

We analyze several MRMs of a multi-processor system with 16 proces-
sors, 16 memories and a crossbar switch. In Appendix A we describe an
improved algorithm to obtain the performability distributions from MRMs
with n structure-states that provides an O(n) speedup over the earlier al-
gorithm in [19]. The algorithm may be applied to MRMs constructed for
repairable or non-repairable systems. We demonstrate the use of our al-
gorithm on a problem of moderate size. Previously published results on
performability distributions for finite time intervals have been carried out
only on very small problems. With the multi-processor system, we exam-
ine the effect of different modeling assumptions on a number of measures
including the distribution of accumulated reward.

The freedom to modify the structure-state process as well as the reward
structure allows the modeler to represent a wide variety of situations. In
the performability domain, there are two extremes. First we may have
a structure-state process with only a single state and a possibly complex
performance model to generate the reward associated with the single state.
A ‘pure’ performance model that ignores failure and repair but considers
memory contention overestimates the ability of the system to complete useful
work. On the other extreme, a ‘pure’ availability model ignores different




levels of performance (other than operational or failed). A model that takes
into account both aspects of system behavior by a combined performability
measure is more appropriate for the evaluation of computer systems that
may undergo a graceful degradation of performance. After completing the
introduction, we describe the multi-processor system in section 2. In section
3, we present results for MRMs of the multi-processor system. In Appendix
A we describe and analyze the computational cost of the algorithm used

to determine the distribution of accumulated reward for cyclic or acyclic
MRMs.

1.1 Notation

The evolution of the system in time is represented by the finite-state stochas-
tic process {Z(t), t > 0}, which characterizes the dynamics of the sys-
tem structure and environmental influences. Z(t) € S = {1,2,...,n}
is the structure-state of the system at time t. The holding times in the
structure-states are exponentially distributed, and hence Z(t) is a homo-

 geneous CTMC. Even in situations where the holding times are generally
distributed, they may often be acceptably approximated using a finite num-
ber of exponential phases [14]. We let g;; be the transition rate from state
¢ to state j and Q = [g;;] be the n by n generator matrix where

n
i = - D g
=Ly
Let p;(t) denote Prob[ Z(t) = ¢ ], the probability that the system is in
state ¢ at time ¢. The column vector p(t) of the state probabilities may be
computed by solving a matrix differential equation [23]:

2 p) = Q7 (0 - 1)

The steady-state probability vector x of the Markov chain is the solution
for the linear system :

QTz=0 Y m =1.
[}

Let r; be the reward rate (or the performance level) associated with
structure-state ; then the vector r defines the reward structure. The reward
rate of the system at time t is defined to be X(t) = rz(;). We let Y (t) be
the accumulated reward until time ¢, that is, the area under the X(t) curve,

Y(t)= /:X(r)dr .

Consequently, by interpreting rewards as performance levels, we see that the
distribution of accumulated reward is at the heart of characterizing systems
that evolve through states with different reward rates (e.g., performance
levels). In Figure 1 we depict a Markov reward model with a 3-state CTMC
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Figure 1: 3-State Markov Reward Model with Sample Paths of Z(t), X(t)
and Y(t) Processes.

for the structure-state process and a simple reward structure, the transition
matrix of the CTMC, as well as sample paths for the stochastic processes
Z(t), X(t) and Y (t). Note that a given sample path of Z(t) determines a
unique sample path for X(t) and Y (t).
We denote the distribution of accumulated reward by time t evaluated
at z as:
Y(z,t) =Prob[Y(t) < z].

A fundamental question about any system is simply, “What is the proba-
bility of completing a given amount of useful work within a specified time
interval?” The answer is provided by the complement of the above distribu-
tion:

Y€(z,t) = Prob[ Y (t) > z ].

The time-averaged accumulated reward, its distribution, and its comple-




mentary distribution are denoted as:

Y(t) _1

W(t) = — =3 ‘/: X(r)dr , W(z,t)=Prob[W(t) <z] and WC(z,t) = Prob[ W (t) > z].

A special case of W (t) is obtained when we assign a reward rate 1 to op-
erational states and zero to non-operational states. In this case, W(t) is
known as the interval availability Aj(t). The complementary distributions
explicitly answer the questions of the modeler and are easily obtained from
the results for Y(z,t) in Appendix A. To complete our notation, we note
that we have assumed a distinguished initial state. To explicitly indicate
this dependence on the initial state we will use a subscript on cumulative
and time-averaged random variables and their distributions. For example,
Wi(t) denotes the time-averaged accumulated reward for the interval (0,¢)
given that the initial state is ¢ (i.e., Z(0) =1).

The ability to complete a given amount of work with probability one is
a property of some Markov Reward models. An MRM is said to have the
completion property if does not have a reachable closed-set C of states such
that r; = 0 for all { € C. As an example of an MRM with the completion
property, consider Figure 1a with all parameters greater than zero. Since
the probability of remaining in structure state 3 for all but a finite amount
of time in an infinite time interval is zero and structure states 1 and 2 have
non-zero reward, any finite amount of reward will be accumulated if the
time interval is long enough. Because descriptions of fault-tolerant systems
almost always include “failed” (zero reward) structure states, we will refer
to MRMs of fault-tolerant systems that take repair actions from all “failed”
structure states as MRMs with completion. The completion property is a
useful distinction because it indicates the most appropriate measures for a
model. MRMs with the completion property are appropriately described
with W(z,t), while models without it are readily described with Y(z,t).
Those Markov models without the completion property will be referred to
as MRMs with imperfect repair. An MRM in which operational states are
assigned reward rate 1 and non-operational states are assigned rate O are
called availability models. In an availability model, if we further require that
all non-operational states are absorbing then we have a reliability model.

1.2 Previous Work

Early attempts to evaluate fault-tolerant computer systems were restricted
to transient analysis of the CTMC describing the evolution of the system
over time. The immediate result relating the transient probability to the
probability of the system operating at a specified reward level,

Prob{ X(t) = r]= 3 Prob[Z() = j]= 3. pi(t)
{3 | rj=r} {i | rj=r}

was exploited by Huslende [15] and Wu [28].
Gracefully degrading systems provide useful computation by reconfig-
uring to adjust to the failure of one or more components. Beaudry used




the notion of computation availability which in our notation is the expected
reward rate at time ¢:

E[X(t)] = Tp(t) = D _rip(t) ,
and its limiting value :

‘l_l‘rgE[ X(@t)] = Tx = Zr,ﬂr,- .

These two quantities are generalizations of instantaneous and steady-state
availability, respectively. Huslende considered performance reliability by
assuming a minimum performance threshold:

R(threshold, t) = Prob[ X(r) > threshold, Vr <t] ;

a generalization of reliability. ‘

Under general assumptions about the stochastic process {Z(t), t > 0}
and the reward structure r, Howard [13] studied the expected accumulated
reward E[ Y (t) ] for finite intervals of time and the expected time-averaged
accumulated reward over an infinite time interval. It is interesting to note
that the limit ¢ — oo of the expected value of X(t) and W (t) are equal:

Jim E[W(t)] = dorm = Jim E[X(t)] .

With our notation we can express E[ Y (t) | as:
E[Y(t)] = E| /O'X(r)df] - /O'E[ X(r) Jdr = Z"/o‘ pi(r)dr.

To compute E[Y (t)] we define L;(t) = [; pi(r)dr to be an element of L(t)
and derive a system of ordinary differential equations for L(t) by integrating
equation (1) :

210) = QTL() + p(0) .

Solutions are readily calculated using methods similar to those used to solve
equation (1). Often we are interested in the behavior of Y (t) far from the
mean (as is the case when a system is required to deliver a specific reward
with high probability), and in this case the central moments do not provide
accurate information. Consequently measures that provide a more detailed
look at system behavior are needed.

Recently, considerable attention has been given to the problem of evalu-
ating the distribution of accumulated reward, Y(z,t). The problem is more
easily solved if the distribution of accumulated reward is to be evaluated over
an infinite time interval. Beaudry [1] has shown that the distribution of ac-
cumulated reward until system failure (Y (z, 00)) for a system with imperfect
repair can be obtained as the time-to-failure distribution of an associated

CTMC obtained by simply dividing the rates of transitions leaving a given
state ¢ by r;.




For finite time intervals, Meyer [21] obtained the distribution of accu-
mulated reward in acyclic Markov reward models (no loops in the structure-
state CTMC) with r; being a monotonic function of the state labeling. A
direct approach that numerically integrated the convolution equations in the
time domain for acyclic models was developed and implemented by Furcht-
~ gott and Meyer [9]. The computational complexity is exponential in the
number of states so the applicability of the direct time-domain approach
is limited to problems with a few states over a short time interval. Subse-
quently, Goyal and Tantawi [10] developed an O(n®) algorithm to compute
the distribution of accumulated reward in general acyclic structure-state
processes with monotonic reward rates. Ciciani and Grassi [3] and Do-
natiello and Iyer [6] proposed algorithms that do not require the rewards to
be monotonic.

MRMs that have cyclic structure-state CTMCs are more difficult. By
using the central limit theorem, it can be shown that the asymptotic distri-
bution of the accumulated reward over a time interval (0, t) for ¢ sufficiently
large is normally distributed with mean lim,_, E[X(r)] multiplied by ¢t
and variance ay/t. Computational methods to determine lim, oo E[X(7)]
and a may be found in Hordijk et al. [12].

Iyer et al. [16] describe a recursive technique for computing moments of
the distribution of accumulated reward for cyclic MRMs. With the moments
in hand, bounds on the distribution of accumulated reward are available.
As noted earlier, because the central moments describe the behavior of the
distribution about the mean, the bounds are often too loose to be helpful
at the extremes, which are often of interest. The difficulties are similar to
those one faces extrapolating the value of a continuous function a distance
away from a point where all the derivatives are known.

More recently, Goyal, Tantawi, and Trivedi [11] formulated the interval
availability problem (a special instance of W (t), for a reward structure with
reward rates r; = 1 if state 1 is operational and zero else) as a system of
first order partial differential equations. The randomization technique has
also been applied to the interval availability problem by de Souza e Silva
and Gail [8].

Puri [22] derived a linear system in the double Laplace transform of the
distribution of accumulated reward for a general CTMC and arbitrary re-
ward structure. The numerical solution of the double transform system was
proposed in [19]. In Appendix A we present an improved O(n®) algorithm to
evaluate the distribution of accumulated reward for cyclic and acyclic MRMs
with n states. Note that the O(n) speedup over our previous algorithm [19]
makes considerably larger MRMs solvable in practice.

In Table 1 we present the measures that we use to examine the behav-
ior of the example multi-processor system. We group the measures by the
random variables used in their definition. Each measure’s properties are
then indicated. The properties that we indicate are whether the quantity
measured is instantaneous or cumulative, steady state or transient. We also
indicate in Table 1 whether the measure is a distribution or a central mo-
ment. We use a column in Table 1 for each measure to indicate the model




families each measure is typically applied to. We use rel, av, Imp-rep, and
compl as abbreviations for the reliability, availability, imperfect repair, and
completion families respectively.

Common | Cumulative or Steady Distribution
Measure Notation Model | Instantaneous | State or or
Family Measure Transient Moment
pi(t) P[Z(t) =] av Z(t) : 1 T pmf
g lim;_,oo P[Z(t) = 1] av Z(t) : 1 S pmf
CA(t) Licup Pi(t) av X(t): 1 T M
A(o0) limg_,o A(t) av X(t): I S M
- Reliability P[X(r) 2 1,Vr < rel X(t): 1 T cdf
E[ X(t) ] E[ X(1) ] all X(t) : 1 T M
E[Y(t)] E[Y()] Imp-rep Y(t): C T M
Y(z,t) Y(z,1) Imp-rep Y(t): C T cdf
Y(z,00) im0 Y(z,1) Imp-rep Y(t): C S cdf
PlAs(t) < 7] PW(t) <z] av W(t): C T cdf
E[W(t)] E[W(t)] compl W(t):C T M
E[ W (o0) ] E[W(o0) ] compl W(t): C S M
W(z,t) W(z,t) compl W(t): C T cdf
W(z, o0) limgo W(z,1) compl W(t):C S cdf

Table 1. Measures and Their Characteristics

Measures used to characterize the behavior of Markov reward models of
the multi-processor system with imperfect repair (without the completion
property) are the reliability, R(t), the distribution of accumulated reward
(performability) over a finite interval, Y(z,t), and Y(z, 00) = lime_o Y(z, ).
On models with the completion property we use W(z,t), and W(z,00) =
lim¢—,oo W(z,t). The effect of changes in the structure-state process, the
reward structure and utilization interval on these measures of performabil-

ity for MRMs of the multi-processor system are investigated in next two
sections.

2  Multi-processor Model Description

We begin with a basic Markov reward model of the multi-processor
system and then indicate a set of changes in the structure-state process
and reward structure. The measures obtained for the various models of the
multi-processor system are listed in Table 1. In the following section, each
graph plots measures for a sequence of illustrative models.

Determining the way changes in the reward structure and the structure-
state process affect measures of interest is crucial to using MRMs effectively
in the system design process. Efforts to change system behavior in a fa-
vorable way must use the appropriate model and measure or they will be




ineffective. For example, consider adding a repair facility to a high reliability
non-repairable system (failure rate of ~ 107%). The steady-state behavior
will change radically. However, if the utilization interval is short (~ 10
hours) then the repair facility will not substantially change the availability
over the 10 hour interval. We wish to indicate some situations where the
distribution of accumulated reward or its time average will indicate behavior
not captured by other measures. We briefly describe the types of failure and
repair behavior of the multi-processor system modeled with structure-state
processes. The system consists of 16 processors, 16 memories, and an inter-
connection network (i.e., crossbar switch) that allows a processor to access
any memory. Since the system we analyze is similar to the Carnegie-Mellon
multi-processor system, C.mmp, we use the failure data from that system.

Siewiorek in [24] determined the failure rates per hour for the components
to be:

Processor Memory Switch
Failure Rates : A = 0.0000689 ~ = 0.0002241 & = 0.0002024 .

Viewing the network as a single switch and modeling the system at the
processor-memory-switch (PMS) level, we see that the interconnection net-
work is essential for system operation. It is also clear that a minimum
number of processors and memories are necessary for the system to be op-
erational. We follow Siewiorek’s choice of 4 processors, 4 memories and
1 interconnection network (switch) as the minimal operating configuration
required for handling a task. Each state is specified by a triple (1,7, k)
indicating the number of operational processors, memories, and networks,
respectively. We augment the states with a non-operational state F. Events
that decrease the number of operational components are associated with
failure, and events that increase the number of operational elements are as-
sociated with repair. We assume that failures do not occur when the system
is not operational. When a component of the multi-processor system fails, a
recovery action must be taken (e.g., shutting down a failed processor, so that
it does not fill memories with spurious data), or the whole system will fail
and enter state F. The probability that the recovery action is successfully
completed is known as the coverage.

We consider two kinds of repair actions, global repair which restores the
system to state (16,16,1) with rate p = 0.2 per hour from state F and
local repair, which can be thought of as a repair person beginning to fix
a component of the system as soon as a component failure occurs. Our
model of local repair assumes that there is only one repair person for each
component type. We let the local repair rates per hour be:

Processor Memory  Switch
Local Repair Rates: v =20 9n=10 €¢=05 .

A further refinement of the structure-state process can be made with respect
to the interconnection network. Siewiorek in [25] notes that the C.mmp in-
terconnection network is actually implemented as a set of 16 fan-out switches
for each processor and memory port. In this case the failure rate of the in-
terconnection system with respect to some operational configuration (i, 5, 1)




is simply 6(¢,7) = (¢ +7) * (fanout switch failure rate + line failure rate).
Since the cause of failure is uniformly distributed over the fanout switches
and their lines, we will simply let the failure rate associated with each fanout
switch and line pair be 1/32 of the lumped failure rate of the switch. Thus
5(10,10) = 20 * 0.000006325 = 0.0001265. We are pessimistic in that we
assume that the failure of one fan-out switch and line brings the system to
a non-operational state (i.e., (1, 7,0)). The single or “lumped” network with
failure rate § is more pessimistic than the “distributed” network with failure
rate §(1,7). A Markov model of the structure-state process for the C.mmp
system with a “lumped” network and global repair has 170 states.

The two variations of the structure-state process we consider for the
failure transitions are imperfect coverage (i.e., leakage to state F'), and the
network failure rate (“lumped” or “distributed”). Local or global repair
actions are the two kinds of repair strategies investigated. The substantial
increase in model complexity that results from adding a local repair capa-
bility is evident in Figure 2, which depicts the structure-state process of a
model with a “lumped” interconnection network, local and global repair,
and imperfect coverage (365 states). The lower plane in Figure 2 contains
the set of states where component exhaustion has occurred. Most of the
states (169) in the lower level are the result of the interconnection network
failing. Thirteen states represent system failure due to the exhaustion of
operational memories and thirteen more states represent system failure due
to the exhaustion of operational processors. The local repair models will
include both local and global repair. When we speak of a model with only
global repair, we set all local repair rates (v, 1, €) in Figure 2 to zero
and merge all non-operational states with state F. The structure-state pro-
cesses of the MRMs of the multi-processor system thus can be characterized
by their failure type (coverage), interconnection network type (“lumped” or
“distributed”), and repair type (global or local) .

It remains to present the reward structures we use to characterize the
performance behavior of the multi-processor system when it is in a given
structure state. The simplest reward structure is obtained by dividing the
structure states into two classes, operational and non-operational, and as-
signing the reward rate 1.0 to the operational states and O to the rest. A
more accurate measure of system performance is more closely related to the
system’s ability to do useful work. Because memory is the slowest resource
in the C.mmp system, the effectiveness of the system is limited by the num-
ber of available memories. Thus if there are more memories than processors,
performance will still be limited by the memory bandwidth needed by the
processors, while if there are more processors than memories the perfor-
mance will be limited by the number of memories. A simple capacity-based
performance model of an operational structure-state (1, 7, 1) is to let the as-
sociated reward rate be min {,5}. This performance model is optimistic
because it does not consider processors contending for the memories.

When we consider contention for the memories, we use a model devel-
oped by Bhandarkar [2] to obtain the average number of busy memories or
memory bandwidth. Bhandarkar found the average number of busy memo-
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ries, and hence the reward rate in an operational state (i, 7, 1) to be:

rija =m(1- (1-1/m)), (2)

where | = min{s,5} and m = maz{s,j}. We assign a zero reward rate to
each non-operational state. Hence, in addition to a variety of structure-state
processes we also have three reward structures of interest, the availability-
based reward structure (0, 1), the capacity-based reward structure (min{i, j} ),
and the contention-based reward structure (equation (2)).

The initial state of the system in all our models will be (16,16,1) except
in section 3.3 where p(0), the initial state probability vector, is equal to
the steady-state probability vector, x. The effect of changes in utilization-
interval length, structure-state process, and reward structure for the multi-
processor MRMs are examined in the next section.

3 Multi-processor Performability Results

3.1 The effects of coverage and utilization interval on E[ X (t) ]
and E[W(t)], functions of p(t).

First, we use a sequence of models that illustrate the way the completion
property affects E[X(t)] and E[W(t)] as a function of time in Figures 3
and 4, respectively. In both Figure 3 and Figure 4, we use our contention-
based performance model to obtain the reward structure. E[X(t)] is the
expected instantaneous reward at time ¢ and has been called the computation
availability in [1]. This measure answers the question, “What is the expected
performance of the system at time t?”. E[W(t)] is the expected time-
averaged accumulated reward over the interval (0,t). E[ W (t) | answers the
question, “What is the time-averaged performance of the system over the
interval (0,t)?”. In Figures 3 and 4 we let curve I be a ‘pure’ performance
model of the state (16,16,1). The ‘pure’ performance model does not have
any failures so the system performance is independent of time. With memory
contention but no failure, the reward rate is 10.303 and both E[X(t)] and
E[W (t) ] are 10.303 for all time t. In curve II, only component failures occur
(c = 1 for coverage), and we see that the expected performance level has been
halved at time t = 2000. At time ¢ = 2000 in Figure 4, the expected time-
averaged accumulated reward has decreased by only one quarter because
E[ W(t) ] is the time average of E[X(t)] over (0,t). Thus E[ W(t) ] is
relatively insensitive, for large ¢, to the state of the system at a particular
instant, r < t. Both Figure 3 and Figure 4 show the importance of the
completion property. Models with the completion property (curves I, IV
and V) strongly dominate those without it (curves II and III) indicating the
value of global repair for long utilization intervals.

In curves III and V the coverage is reduced to 0.9. Curve III like curve II
has no repair, and the expected performance level of curve III deteriorates
more rapidly than that of curve II. Curve IV has only component failures
(¢ = 1), and global repair as well. Consequently, the expected performance
level of curve IV is much improved over that of curve II, especially for large
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t. One might expect curve IV to dominate curve V, which uses the same
model as curve IV with ¢ = 0.9, just as curve II dominates curve IIL
However, for large t it is better on the average to experience a coverage
failure and rapidly return to the highest reward state (16,16, 1) rather than
spend a long interval in the relatively low reward states before returning to
structure state (16,16,1). Both of these measures indicate the importance
of global repair for longer time intervals.

Unfortunately E[X(t)] and E[ W(t)] do not address the likelihood of
completing a given amount of work in a specified interval. E[{W (t)] merely
gives an indication of the average behavior over a utilization interval. We use

Y¢(z,t) to examine the behavior of a non-repairable system over different
length utilization intervals in the next section.

3.2 The effect of utilization interval on Y¢(z,t) for non-
repairable models.

We consider a model of the C.mmp system with a “lumped” intercon-
nection network, ¢ = 0.90 for the coverage, and no repair in Figure 5. The
CTMC of the structure-state process is depicted in Figure 2 with all re-
pair rates p, v, 1, € set equal to zero. The reward structure is based on the
contention-based performance model. Curves I, II, III; IV plot the value of
Y©(z,t) for t = 100, 1000, 10000, and oo respectively.

Loosely speaking, Y¢(z,t) answers the question, “ What is the proba-
bility that z units of work is completed by time t?” Because the model does
not have the completion property, Y¢(z,t) is substantially less than 1.0 for
moderate amounts of accumulated reward even if t — oco. It is interest-
ing to note that Y¢(z,t) for moderate t only falls below lim;—.co Y (z,1t) as
T — ~ 9t

The non-repairable system performs near its asymptotic limit, Y€ (z, o)
for moderate t. However, systems that satisfy the completion property will
complete any finite amount of work in an arbitrarily long utilization inter-
val. When comparing different systems for the same utilization interval,
ye (z,t) is quite satisfactory, whether the system satisfies the completion
property or not. If we wish to compare the behavior of systems that satisfy
the completion property over different utilization intervals, then we need to
normalize the curves of the different complementary distributions of accu-
mulated reward so that they can be compared over the same interval. The
natural approach is to time average the accumulated reward and use W (t)
as the random variable rather than Y'(t). In the next section we examine
- the behavior of a system that satisfies the completion property over different
utilization intervals. The results are rather surprising.

3.3 The effect of utilization interval on W¢(z,t) for models
with the completion property.

As noted in section 3.1, both E[X(t)] and E[W (t)] are functions of
the instantaneous probability vector, p(t). If we let the initial probability
vector, p(0), of the system equal the steady-state probability vector, x, then
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neither E[ X(t)] nor E[W (t)] will change since then p(t) = x for all t. We
show the presence of behavior not detected by these measures in Figure 6.
In Figure 6 we use a structure-state process with global repair and coverage
= 0.95 to model the failure and repair activity of the C.mmp system and
the contention-based performance model to obtain the reward structure.
The measure W¢(z,t) can be used to answer the question, “What is the
probability that the reward accumulated in the interval (0,t) is at least zt?”

We examine the distribution of time-averaged memory bandwidth (per-
formance) for utilization intervals of length 10, 100, 1000, and 10000 in
curves I, II, III and IV of Figure 6. We indicate the steady-state expected
reward rate, Y ; x;r;, with a vertical line labeled V ( + + + ). We can see
the way the curve smooths out and approaches a jump at the steady-state,
time-averaged reward rate as t increases. The dynamic behavior of the sys-
tem in steady state is indicated in Figure 6. Measures such as E[X(t)]
and E[W (t)] are unable to capture the steady-state system dynamics since

both these measures are invariant with respect to time for the Markov re-
ward model with p(0) = x.

3.4 The effect of reward structure, and model “family” on
W¢(z,t) for models with the completion property.

Insight into the way the structure-state process and the reward struc-
ture affect the ability of the multi-processor system to complete a fixed
amount of work in a given time interval (0,t) is obtained from the com-
plementary distribution of time-averaged accumulated reward. We plot
the complementary distribution of time-averaged accumulated reward (in
this case the time-averaged memory bandwidth) for a basic Markov re-
ward model with a “lumped” interconnection network, perfect coverage
(¢ = 1), and global repair. We use “pure” performance models to pro-
vide an optimistic upper bound for MRMs comparing the capacity-based
and contention-based reward structures resulting from the different perfor-
mance assumptions about the way memory is accessed. We examine the
distribution of W (t) and the distribution of the interval availability, Af(t),
in Figure 7. First we consider the system without failure and repair in
curves I and II. The result of this modeling assumption is that no degra-
dation of performance takes place and the state of the system is always
(16,16,1). Consequently, curves I and II of the complementary distribu-
tion of time-averaged accumulated reward are step functions. If we ignore
memory contention, then there are 16 processors and 16 memories and the
memory bandwidth is 16. It follows that the system performance level (re-
ward rate) is constant and W (t) = 16. Curve I in Figure 7 depicts this unit
step form of the complementary distribution of time-averaged accumulated
reward. For curve II, we assume that there is contention at the memories.
The result of modeling the contention is to lower the ability of the system
to deliver useful work. Therefore, the step for curve II occurs at a smaller
value of accumulated reward per unit time than the step for curve I. We use
the work of Bhandarkar [2] to estimate the effect of contention on the per-
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formance of state (16,16,1). Hence, with memory contention but no failure,
the reward rate is 10.303 for all time ¢t. Thus, in curve II the complementary
distribution of W (t) is a unit step, though at 10.303 instead of 16 as in curve
I

~ In curves Il and IV, we examine the effect of modeling failure and repair
" on the complementary distribution of time-averaged accumulated memory
bandwidth. For curve III, we assume there is no memory contention and
use the capacity-based performance model for each structure state in Fig-
_ure 2 (assuming no local repair and merging all non-operational states in
F). The performance (reward rate or memory bandwidth) of operational
- state (1, ,1) is set to min {i,5}. The gap between curve I and curve III re-
flects the fact that when failure and repair are taken into account, memory
bandwidth varies with time thus lowering the time-averaged accumulated
memory bandwidth. Without the occurrence of failures, the memory band-
width stays constant at 16. Another way of stating the situation is to say
- that curve III will asymptotically approach curve I as the maximum of all
the failure rates tends to zero. Curve IV has a similar relationship to curve
1I. In curve IV, we use our most detailed performance model, and take into
account failure and repair. Thus the performance level (reward rate) of each
operational state (1, 7,1) is determined by equation (2). Because the perfor-
mance degradation due to component failure is smaller with Bhandarkar’s
performance estimates than with the capacity-based performance estimates,
curve IV more closely approaches curve II than curve III approaches curve
1. The relationship of the 4 curves discussed indicates that the performance
model assumptions show an upper limit of the system’s ability to complete
work. The magnitude of the failure and repair rates effect the rate at which
the complementary distribution of time-averaged memory bandwidth de-
clines below the step function defined by the performance model.

We see that ‘pure’ performance models overestimate the ability of the
system to complete useful work. For example, using curve IV, we see that
the probability that the time-average memory bandwidth is greater than
or equal to 9.5 is 0.989, whereas using the ‘pure’ performance-based model
of curve II, this probability is 1. It is also true that ‘pure’ failure/repair
(availability) models in which the reward rates for operational states are set
to 1.0 and non-operational states are assigned reward 0.0 underestimate the
ability of a system to complete useful work when the performance levels are
scaled in such way that the minimum reward operation state has a reward
rate > 1.0. Using this reward structure, W(t) is the interval availability
Ar(t). To complete the set of reward structures considered for performa-
bility models of the multi-processor system, with curve V we display the
complementary distribution of interval availability. We see that curve V is
nearly a step function at 1.0 because only a network failure will cause the
system to immediately enter state F (13 processor or 13 memory failures
must occur before the system will enter state F).

14




3.5 The effect of coverage and utilization interval on W¢(z,t)
for models with the completion property.

In this section we continue examining a model of the multi-processor
system with a “lumped” interconnection network, global repair, and different
coverage values. We will use the most accurate performance model, namely
Bhandarkar’s, to obtain the reward structure for the operational states. In
Figure 8 we show the effect of coverage and of the observation period on
the chosen measure of effectiveness. As t — 0, independent of ¢, W(t)
approaches the ‘pure’ performance behavior shown in curve I, a step at
10.303. Curves II, III, and IV (c = 1.0, 0.95, and 0.90, respectively) show
that for larger observation intervals (¢t = 100), the higher coverage curves
dominate the lower coverage curves illustrating the effect of coverage on
the complementary distribution of time-averaged accumulated reward. In
curves V-VII of Figure 8, we plot the steady-state computation availability,
limg,oo E[W(t)] = ¥; rimi, for the different coverage values where =; is the
steady state probability of being in state . We can see that as the length
of the utilization interval increases the probability of accumulating a given
amount of reward becomes more pessimistic. One cause of this effect is that
repair takes place only when the whole system has become inoperable and
the failure rates are small enough to make the occurrence of more than one
failure in a relatively small interval (100 hours) extremely unlikely. States
in which a significant number of failures have occurred become more likely
as time passes. Allowing repair only when the system has failed yields the
relative position of curves V-VII (¢ = 1.0, 0.95, and 0.90, respectively). As
the coverage probability decreases, the steady-state computation availability
actually increases!

The anomalous behavior of the steady-state computation availability is
caused by several factors: the disparity in the reward rates of the operational
states; the relatively large global repair rate in relation to failure rates; and
the assumption that the global repair rate is independent of the number of
failed components. If we set the reward rates for all the operational states to
be 1.0 and O otherwise, then the availability (3°; ri#;) decreases as the cover-
age decreases (the anomaly disappears). Similarly, the anomaly disappears
if we make the global repair rate comparable to the failure rates or make it
dependent on the actual number of components that have failed. Also, local
repair causes the anomaly to disappear. The point is that extrapolating
from steady-state values and expected values can be misleading.

3.6 The effect of interconnection network type and repair
capabilities on W¢(z,t) for models with the completion
property.

We examine the effect of adding a local repair facility for each com-
ponent type to the multi-processor system in this section. In Figure 9 we
obtain W¢(z,t) for two pairs of models with a utilization interval of 100
hours. In curve I we plot W¢(z,t) for a model of the multi-processor system
with both global and local repair, ¢ = 0.90 for coverage and a distributed
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interconnection network ( + + + ). The model used to obtain curve II
(solid) is the same as that used for curve I except for a “lumped” instead of
distributed interconnection network. The effect of the slightly lower failure
rate of the distributed interconnection network is small but discernible.
Curve III is the plot of W¢(z,t) for the same model as curve I without
local repair. Replacing the distributed interconnection network in curve
III with the slightly more failure prone “lumped ” interconnection network
model produces Curve IV. The difference between curves III and IV is also
quite small. The effect of the local repair facility is sizable for time-averaged
memory bandwidth requirements greater than 9.2. This result indicates the
value of local repair for the multi-processor system over even moderately
sized utilization intervals. Another way of expressing the situation is to
observe that as the time-averaged workload requirement increases, the size
of the utilization interval where the local repair facility will substantially
increase Wc(x, t) becomes smaller. Roughly speaking, we can conclude that
local repair is worthwhile for systems expected to operate at nearly full

capacity (maximum reward rate), even if the utilization interval is of only
moderate size.

4 Conclusion

The ability to determine the distribution of accumulated reward and
its time average for moderate size problems is a recent development. We
presented a systematic study of a complex multi-processor system and an
O(n®) algorithm for the computation of the distribution of accumulated
reward of general Markov reward models.

The study of Markov reward models of the multi-processor system points
to a number of interesting facts about different performability measures.
The first three examples indicate that instantaneous measures do not show
the dynamic behavior of the system while W¢(z,t) does. The next two ex-
amples show that steady-state values are deceptive in some circumstances,
and the final example indicates the importance a local repair facility may
have on the distribution of performability for moderate-size utilization in-
tervals. Furthermore the study indicates how changes in the failure/repair
behavior of the system such as the interconnection network failure rate,
repair strategy, and coverage probability affect the complementary distribu-
tion of accumulated reward. We also examine the way changing the reward
structure and utilization interval affects the distribution of time-averaged
accumulated reward. Thus some inadequacies of steady-state values and ex-
pected values are illustrated and an examination of how changes in Markov
reward models effect the performability distribution is made. The new algo-
rithm presented in the paper can thus aid the system designer in exploring
detailed dynamic behavior of multi-processor systems.

16




v
- S -+ - 4 4 - G G G G G G 4 S -+ 4 <4 4 <
I 4CA
.o
| «—-—- o)

l______________________

Figure 2: Markov Chain for the Multi-processor System ( each state (1, j, k)
has a transition with rate 0 = ( (1 - ¢)(1A + jv) ) to state F ).
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Figure 3: Expected Instantaneous Memory Bandwidth E[X(t)] Vs. time t.
E[ W(t) ]

12.0 |

/

10.0 |debtttttttttttrtttttt bttt A E bbb
A%

1 ¥ T T T T T T
500 1000 1500 2000 2500 3000 3500 4000
t ( hours )

Figure 4: Time-Averaged Expected Accumulated Bandwidth E[W (t)] Vs.
time ¢.
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A  An Algorithm and Its Analysis

In this section, we detail the double-transform inversion method for the
distribution of accumulated reward. We begin with:

Yi(z,t)=P|Y(t) <z | Z2(0)=1].

First, we apply the LST, (i.e., [§° e “*dVYi(z,t) ) , signified by ~, to Y(z,t)
with respect to the work requirement z (transform variable u), and then
apply the Laplace Transform signified by * with respect to time t (transform
variable 8). The following linear system has been derived for Y~*(u, s) in
[22] and [18]:

(I+uR-Q) Y™ () = e. (3)
The matrix of reward ratesis R = diag [r1, r2, ..., T, ..., n|, Q is the
generator matrix of the CTMC, and ¢ is a column vector of size n with all
elements equal to 1.

Using Cramer’s rule, we can see that Y;~*(u, s) is a rational function in
s . Hence, it has a partial fraction expansion'

Y~ (u,8) = Z Z aije(u)( & = Aj(v) )+ (4)
i=1k=1
where the A;(u), 1, 2, ..., 7, ..., d are the d distinct eigenvalues of
[@ — uR], each with algebraic multiplicity m;. The QR algorithm [27] is
used to numerically determine eigenvalues of [Q — uR] in O(n®) time. Using
(4) we can invert analytically with respect to s and obtain:

Yi~(u,t) = ZE aijk(u) Bigk\%) k=1 25(u)t

j=1k=1 1)|
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We define the column vector A; by:

ai11
@412

at‘lm;

Aidmy

and the row vector ET (s) by:

ET(s)= [(s=M(u)™* ++- (6= Aa(u))™ -+ (8= Ag(u))™™].

Now equation (4) can be written in vector notation as:

Y (u,8) = ET(s)A: .

In order to determine A; we need n linearly independent equations. For
this purpose we choose n distinct values of s, denoted by s1, 82, ..., sn
sufficiently separated from the cigenvalues of [Q — uR]. The matrix E is
constructed from the eigenvalues of [Q — uR] and the n values of s:

ET(s1)
ET(s;
p= B
Er(sn)
A way of choosing the n values of s so that E has a reasonably small con-
dition number is to choose 8; so that the j*" element of ET (s;) ~ 1.0. This
causes the diagonal elements of E to be reasonably large, although it does

not guarantee E is non-singular. If E is found to be singular, then a new s
value can easily be chosen at the time. We then solve the linear system

yiN‘ (“a sl)
Yi™*(u, 82)

EA; = yiN‘(u)Q) = (5)

Yi~* (u, 8n)

for the unknown vector A; once the right-hand side has been determined.
Since the problems we consider are of small size (for the solution of a lin-
ear system) we use a direct method (LU factorization) on E. The O(n®)
LU factorization must be done only once and an O(n?) backsolve must
be done for each of the n possible right-hand sides. Thus we may solve
E A; = Yi™*(u,8) for all n values of 1 for a cost that is O(n®). The prac-
tical implication of this fact is that the Y~ (u,t) may be obtained at O(n®)
cost if the n different right-hand sides can be obtained at an O(n3) cost as
well.

Since we are interested in the n vectors of partial fraction coefficients
A;, 1 <1< n,let us define '

A=[A1 A; -+ A,] and YV =[U1™"(u,8) Ya™"(uv,8) -+ Yn™"(u,8) ] .
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Hence the problem of determining the n? partial fraction coefficients can be
written in matrix form as:

EA =Y . (8)

Because of the economical way direct methods handle multiple right-hand
sides we need only address the problem of determining all the Y;~* (u,8)
that make up Y in O(n®) time.

We first transform the linear system (3) to a simpler one. Any matrix
can be put into upper Hessenberg form using a sequence of Householder
- unitary similarity transformations [27]. Therefore we can write

vt = v' and UNQ-uwR)U=FH,

where T denotes conjugate transpose and H is an upper Hessenberg matrix.

By making the transformation U t Y~*(u,s) = M~*(u,s) the linear system
(3) can be rewritten as

(sI - H)M™*(u,8) = ule

This upper Hessenberg linear system requires only O(n?) time to determine

M~*(u,8). Y~*(u,s) can be regained from M~*(u,s) by a matrix vector

product:
Y (u,8) =UM(u,s) ,

which also costs O(n?). An important observation here is that the required
sequence of unitary transformations (U) and the matrix H are already avail-
able from the QR algorithm that solves the eigenvalue problem for (@ —-uR)
and hence does not add any cost. Thus the complexity to obtain Y~*(u, s)
is now only O(n?) for every value of s for each u.

It remains to invert Y;~(u,t) with respect to u. A number of methods to
numerically invert the Laplace transform have been developed. Orthogonal
polynomials [26] and Fourier series [4] [5] have been the most commonly used
tools for inverting the Laplace Transform. To avoid unnecessary notational
complexity we define V (u) = Y;~(u,t)/u = V;*(u,t) and to follow standard
notation let § = /=1 in the next two equations. We employ the following
method to numerically obtain v(z), the inverse Laplace Transform of V(u)
using the well known complex inversion formula

a+i00 %% oo .

v(z) = / U=V (u)du = — / R{V (1)} dw
a—tioo x Jo

where u = a + iw. If the above integral is now discretized using the trape-

zoidal rule with step size x/T, the following Fourier series approximation

(z), of period 2T, is obtained:

o(z) = (L Y (v (ot B cos(E2) -8V (o ST ))sin( )}
k=1

(™

The discretization error declines exponentially as aT increases [7]:
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(o o]
¥(z) — v(z) = Z e"”“Tv(ZkT +z); 0<z<2T.

k=1
Since v(z) < 1.0 Vz, the discretization error is easily made very small.
Therefore, the bulk of the error in the numerical inversion procedure ac-
crues from truncating the Fourier series. The Fourier series exhibits char-
acteristically slow convergence. However, acceleration methods that allow
accurate estimates of the series from the first m terms are known. We use
the quotient-difference algorithm of Rutishauser with a remainder estimate
suggested by DeHoog et al. in [5] to accelerate the convergence of the Fourier
series. Cooley et al. in [4] use the cosine transform to approximate a series
very similar to (7), and Jagerman [17] obtains an expression similar in form
to (7) by considering the generating function of a sequence of functionals
that converge in the limit to v(z). Because of the O(n®) cost of computing
each function value, the method that reliably yields accurate results with the
fewest evaluations is best. We have been pleased with the results obtained
when the Fourier series is evaluated to the first m = 80 terms with the De-
Hoog remainder estimate (even when the desired distribution has jumps at
various values of z). The structure of the overall algorithm is as follows:

A: Determine Y~(u,t)
for( m values of u) {

determine the eigenvalues of (uR — Q) O(n®)
for( d unique eigenvalues of (uR — Q) ) {
solve transformed Hessenberg system O(n?)

}

evaluate partial fraction coefficients O(n?)
}

B: Numerical Laplace Transform Inversion
for( n states ) {
for( p desired values of t ) {
for( m values of u ) {
sum partial fraction coefficients to evaluate V(u)  O(n)

}

for(q values of z) {
sum Fourier series approximation to evaluate v(z) O(m)
}

}
}

In the worst case, the inner loop of phase A of the computation is executed
O(n) times. Since each iteration of the inner loop has a computational
cost of O(n?), phase A has a computational complexity of O(mn3). The
computational cost of phase B is primarily a function of the p different
values of time t at which Y(z,t) is to be evaluated and the m terms in the
Fourier series approximation. Phase B has a computational complexity of
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O( pmn (n+q) ). Therefore, phase A comprises the principal computational
burden of the algorithm. The total computational effort to obtain Y(z,t) for
q values of z at each of p values of t is O(pmn(n + ¢) + mn3). The practical
implication is that once the computationally expensive phase A has been
used to determine Y~ (u,t), evaluating Y(z,t) at other (z,t) points can be
done very cheaply.

Often the constants that are brushed under the rug by the O() notation
are important. The computational cost of the algorithm is approximately
- 16m(14+a)n® where a is a difficulty factor for the Q R algorithm that depends
on the spectrum of (Q — uR). Since for most matrices 1 < a < 2, the
computational cost should be between 32mn® and 48mn3. We present in
Table 2 the operation counts (flops) and approximate computation times for
determining Y;(z,t) on a CONVEX C-1 XP. The operation count values are’
the median of a small sample, and the time values are the maximum of the
same small sample. The order estimates of the previous paragraph indicate
the importance of n to the asymptotic behavior of the computation time.
Consequently, we fix the number of terms in the Fourier series expansion
m at 80 and the number of time values p at 1. The number of values of z
(amounts of accumulated reward) is fixed at 100. These are typical values
we used to examine Y;(z,t) for the examples in this paper.

n—

4 10 40 170 365
flops 3.2x10° 4.0x10° 1.8x10® 1.1x10!° 1.0x10%!

time 6sec. 15sec. 320sec. 3.1hr. 25 hr.

Table 2. Computation Time and Flops with Different Values of n

The effect of the pmn(n + ¢) term is unimportant when p < n and pg <
n?. Therefore, the increase in flops becomes approximately n3 for values of
n > 6. The computation time for the larger state problems is approximate
because the jobs were run at a low priority and the CONVEX C-1 was not
dedicated to solving these problems.
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