Abstract. This paper outlines the beginning of a collaborative research effort whose overall goal
is the development of an effective parallel programming environment called ParLance, consisting of
a para-functional language, highly-optimizing compiler, parallel evaluation kernel, and interactive
support for parallel program development. ParLance is intended to be relatively machine inde-
pendent, with implementations planned for both a shared memory (ENCORE MultiMax) and a
distributed~-memory (INTEL iPSC) multiprocessor. Other machines to be considered include the
Connection Machine and the WARP at CMU.

ParLance: A Para-Functional
Programming Environment for
Parallel and Distributed Computing

Paul Hudak!, Jean-Marc Delosme?, Ilse C.F. Ipsen?!

Research Report YALEU/DCS/RR-524
March 1987

! Department of Computer Science, Yale University
2 Department of Electrical Engineering, Yale University

The work presented in this paper was supported by the Army Research Office (DA AL03-86-K-0158),
the Department of Energy (FG02-86ER25012), the National Science Foundation (DCR-8451415),
and the Office of Naval Research (N000014-85-K-0461).

ParLance: A Para-Functional Programming
Environment for Parallel and Distributed
Computing

Paul Hudak Jean-Marc Delosme Ilse Ipsen

December 1986

Yale University
Department of Computer Science
Box 2158 Yale Station
New Haven, CT 06520

1 Introduction

A fundamental maxim guiding the design of high-level programming languages is the belief
that languages should be pushed further in the direction of high-level abstractions, and
less in the direction of machine detail. In other words, it is desirable for programmers to
say less about the details of a particular computation, and more about the problem speci-
fication itself. As we move further in this direction, the dependence on smart compilation
techniques becomes much greater, since the compiler has “further to go” in generating ef-
ficient code. At the extreme, the problem becomes completely intractable, since it reduces
to synthesizing programs from totally abstract specifications such as those expressed using
abstract data types or formal logic. Somewhere in between the extremes lies the world of
practical programming languages and environments.

Functional (or applicative) programming languages constitute a class of high-level lan-
guages in which machine detail is minimized, yet whose programs can be executed with
quite reasonable efficiency. However, the latter claim has only recently been substanti-
ated. Early implementations were unbearably slow, and it has only been through diligent
research in semantics-based inferencing techniques on one hand, and efficient evaluation
strategies on the other, that we have arrived at the current state of affairs. It is now
possible, for example, to write functional programs with arrays and achieve the same kind
of efficiency as a similar but much lower-level Fortran program [36].

Functional programming languages are also well-suited to parallel computation, since
their declarative nature does not-place artificial constraints on the order of evaluation of
expressions, and the “Church-Rosser Property” guarantees determinacy regardless of the
execution order that happens to occur. These properties are simply manifestations of .the
“high level of abstraction afforded by the languages. Stated another way, the concurrency
- in a functional program is “implicit” — there is no need for special constructs to express
parallelism ‘as is required in most conventional languages. This has been well-known since
early work on dataflow machines, but in twenty years dataflow research has not made
significant - progress because the fine-grained parallelism in the dataflow model requires
complex special-purpose hardware that is difficult and expensive to build [19].

Despite these difficulties, the functional programming paradigm is still a very good one
for parallel computation. In fact, the first part of this paper is a summary of two research
projects in Yale’s Department of Computer Science that, quite independently and from
two different perspectives, are based on the functional programming paradigm:

e Para-functional programming research is based on the use of functional languages for
general-purpose computing, through smart compilation techniques, run-time schedul-
ing, and user-supplied annotations to guide the operational aspects of parallel evalu-
ation. This work has been carried out primarily by Paul Hudak in the Programming
Languages and Systems Group (see Section 3).

o Generation of optimal parallel implementations for systems of recurrence equations
is based on exploiting repetitiveness in certain classes of functional programs, and
generating optimal processor assignments and schedules for those programs on par-
ticular multiprocessor configurations. This work has been carried out primarily by
Ilse Ipsen and Jean-Marc Delosme in the Research Center for Scientific Computation
(see Section 4.2).

These two independent research projects are in strong agreement philosophically, as both
use functional programming as a basis for parallel computation.

The second part of this paper outlines the beginning of a collaborative research effort
between these two groups, whose overall goal is the development of an effective parallel
programming environment called ParLance, consisting of a language, highly-optimizing
compiler, parallel evaluation kernel, and interactive support for parallel program develop-
ment. ParLance is intended to be relatively machine independent, with implementations
planned for both a shared-memory (Encore MultiMax) and distributed-memory (Intel
iPSC) multiprocessor. Other machines to be considered include the Connection Machine
and the WARP multiprocessor at CMU.

2 Motivation and Goals

The basic philosophy motivating our work can be summarized as follows: We believe that a
programmer should be able to write parallel (or for that matter, sequential) programs in a
very high-level language, as close to a true specification as possible, with no concern about
operational issues such as evaluation order or task granularity. Given such an “executable
specification,” an optimizing compiler will be able to generate reasonably efficient code
for a sequential machine, and in certain cases efficient code for a parallel machine, thus
supporting the notion of “rapid prototyping” [28]. However, if this is not good enough,
that is, if the program does not meet the performance requirements demanded of it, then
the programmer should have ways to refine the operational behavior without restructuring
the whole program or completely rewriting it in some other language — the same language
syntax and semantics should be maintained throughout the entire software development
process. Symbiotic with this goal is the desire for formal, rigorous models with which to
reason about program behavior.

Our vehicle for accomplishing these goals is, of course, a functional language, for all of
the reasons mentioned in the Introduction. Furthermore, finer control over operational is-
sues such as evaluation order and process-to-processor mapping can be accomplished quite
elegantly by annotating the program with design information. We refer to a functional lan-
guage augmented with annotations as a para-functional programming language. Although
the use of annotations may sound somewhat ad hoc, in fact annotations can be given a
very precise formal semantics [33], consistent with the goals mentioned above. We prefer
to think of the annotations as actually extending the semantic base of a language; they are
annotations only in the sense that their removal results in a still perfectly valid functional
program.

When viewed in the broader scope of software development methodologies, ParLance
suggests the following software development scenario:

1. One first conceives of an algorithm and expresses it cleanly in a functional program-
ming language. This high-level program is likely to be much closer to the problem
specifications than conventional language realizations, thus aiding reasoning about
the program, facilitating the debugging process, and in general allowing rapid pro-
totyping of target systems.

2. Once the program has been written, “it may be debugged and tested on either a
sequential or parallel computer system. In the latter case, the compiler extracts as
much parallelism ‘as it can from the program, but with no intervention or awareness
on the part of the user.

3. If the performance achieved in step two does not meet one’s needs, portions of the
program may be manually refined as follows:

e Some portions may be restructured so as to conform to the semantic constraints
of a certain class of recurrence equations, in which case the compiler is able to
generate efficient code with respect to specified performance constraints. -

e Some portions may be annotated with design information that specifies certain
operational behaviors desired by the programmer. These annotations can be
made without affecting the program’s functional behavior.

Both kinds of refinements can be combined. freely within the same program. .

There are three aspects of this methodology that we think significantly facilitate program
development: First, the functional aspects of a program are effectively separated from most
of the operational aspects. Second, the multiprocessor is viewed as a single autonomous
computer onto which a program is mapped, rather than as a group of independent pro-
cessors requiring complex communication and synchronization. And finally, sophisticated
compiler technology is used to generate very efficient programs with respect to certain
performance criteria for a reasonably broad class of problems.

Figure 1 shows the main components of ParLance and how they appear to a user of
the system. From a research perspective, there are three aspects of ParLance that we wish
to emphasize in this paper: (1) the para-functional language itself, including its formal
semantics, (2) the automatic compilation strategies, based both on unconstrained lambda
calculus (serial combinators) and affine recurrences (SAGA and CONDENSE), and (3) the
ParLance programming environment, essentially combining the first two components into
one integrated system. Work to date on the first two areas is described in the next two
sections (3 and 4). Then in Section 5 we outline the research aimed at achlevmg the third
- goal,-the development of the ParLance programming environment. '

3 Para-Functional Programming Research

3.1 Annotations Viewed as Semantic Extensions

It is true that functional programs are fairly high-level (albeit executable) specifications,
but as a result there are some operational issues, especially ones having to do with paral-
lelism, that one cannot expect a compiler to be able to deal with optimally in all cases. One
could give up on functional languages and resort to a lower-level parallel language such as
Concurrent Pascal or CSP to express what one wants, but this would mean giving up.all
of the things that we like about functional languages. We argue that a better approach
is to annotate functional programs with design information that expresses the operational
behavior that is desired, and to design the annotations in such a way that they have no
(or at least very little) impact on the functional behavior of a program.

UNANNOTATED
SOURCE PROGRAM

PARTIALLY ANNOTATED
OR RESTRUCTURED

PROGRAM
USETI pGresceoscosen :

interpreter {-.--... >
serial SAGA &
combinators CONDENSE :
: PERFORMANCE
DATA
ANNOTATED simulator .- “‘
FUNCTIONAL :
PROGRAM I
code MACHINE
generator | PARAMETERS
target |
MACHINE machine
CODE

Figure 1: ParLance Compilation Strategy, Showing User Interaction

The separation of purely operational concerns that affect primarily efficiency, from
purely functional concerns that-affect the final answer, is what sets apart para-functional
programming from most other approaches to parallel computation. By making this sepa-
ration visible in the language itself (by expressing operational behavior using annotations),
one is able to isolate, reason about, and thus debug, the two classes of problems more-or-
less independently = this obviously facilitates the overall software development process.

On the other hand, annotations tend to conjure an image of ad hoc programming
practice. But in fact, annotations can be given a very precise formal semantics [33],
expressing a behavior that is “beyond” the functional behavior of the program.! We prefer
to think of the annotations as actually extending the semantic base of a language; they are
annotations only in the sense that their removal results in a still perfectly valid functional
program.

Annotations to functional programs have previously been proposed in the context of
both sequential and parallel computation, and include “memoizing” annotations [44], ea-
ger/lazy annotations [9,73], and prioritizing annotations [10]. At Yale an experimental
para-functional language called ParAlfl is being designed that has several other kinds of
annotations [31,35,42], the most important being those that express the mapping of a pro-
gram onto a parallel machine — an operational concern that has nothing to do with the
final value of the overall program. These annotations are described in more detail below.

3.2 Mapping Program to Machine

Part of the reason for providing mapping annotations is the realization that a compiler
cannot be expected to determine the optimal mapping of program to machine in all cases
(without actually executing the program first!), so it is desirable to be able to express
the mapping exzplicitly. This need often arises, for example, in scientific computing, where
many classical algorithms have been re-designed for optimal performance on particular
multiprocessor topologies. Indeed, we have written a variety of programs for such algo-
rithms in ParAlfl [35,42].

On the other hand, it is possible to automatically determine the optimal (or near
optimal) mapping for a restricted class of functional programs — namely, the recurrence
equations to be described in Section 4.2. This is a significant result, and one that fits
in well with the para-functional programming paradigm — the use of smart compilation
techniques to do the best job whenever possible, and the reliance on more explicit user
control when automatic mappings become intractable. Moreover, the “output” of the
transformations described in that section can be viewed as a para-functional program —
i.e., a para-functional language simply becomes the “machine language” of that compilation

1The “para-” in “para-functional programming” is intended to convey this fact, as well as the fact that
one of the primary motivations is parallel computation.

strategy. The relationship between para-functional programming and the ideas p1esented
in Section 4.2 is discussed more later.

As an example of the use of mapping annotations, consider the expression f(z) + g(y).
The strict semantics of the “+” operator allows the two subexpressions to be evaluated in
parallel. If we wish to express precisely where the subexpressions are to be evaluated, we
may do so by annotating them, as in:

(f(2) on 0) + (g(y) on 1)

where 0 and 1 are assumed to be processor ids, or “pids.”

Of course, this static mapping is not very interesting. It would be nice, for example, if
we were able to refer to a processor relative to the currently executing one. We can provide
this ability through the reserved identifier self, which when evaluated returns the pid of
the currently executing processor. Using self we can now be more creative. For example,
suppose we have a mesh or tree of processors that has a notion of “left” and “right”; we
may then write:

(f(z) on left(self)) + (g9(y) on right(self))

to denote the computation of the two subexpressions in parallel on neighboring processors,
with the sum being computed on self.

When used in the context of recursive programs, the use of self in mapped expressions
can yield mappings to an arbitrary number of machines in arbitrary configurations. As a
final example, here is a simple program to compute “parallel factorial,” being representative
of many divide-and-conquer algorithms:

pfac(lo, ht) = if lo = hi then lo
else if lo = ht — 1 then lo * e
else let mid = (lo + h?)/2
in (pfac(lo,mid) on left(self))*
(pfac(mad + 1, he) on right(sel f))

left(pid) = if 2 % pid > k then pid else 2 % pid
right(pid) = if 2 % pid > k then pid else 2 x pid + 1

where left and right have been defined for a tree of k processors. If a different topology
were used, left and right could be redefined accordingly, without changing the definition
of pfac at all; for example, it is relatively easy to embed a tree into a hypercube. In any
case, if the pid of the root processor is root, then the factorial of n may be computed by
the call pfac(1,n) on root.

We have previously shown that our mapping annotations are sufficient to express a
wide range of deterministic parallel algorithms in a concise and perspicuous manner [35,42].

Examples include several other divide-and-conquer algorithms; simple yet interesting pro-
grams such as several variations of a parallel fibonacci generator; numerical algorithms such
as matrix multiplication, matrix-vector product, solving linear systems of block-matrices,
and Jacobi’s method; and systems programs such as distributed databases and resource
management. Topologies considered include linear arrays, rings, trees, two-dimensional
grids, tori, and hypercubes.?

- Given two minor constraints, para-functional programs possess an important determi-
nacy property, which can be stated as a theorem: ' ‘

Theorem 1 (Determinacy) A para-functional program in which (1) the identifier “self”
appears only in pid expressions, and (2) all pid expressions terminate, is functionally equiv-
alent to the same program with all of the annotations removed. That is, both programs
return the same value.®

The reason for the first constraint is that if it is violated, then once the mapping
annotations are removed, all remaining occurrences of self will have the same value - viz.,
the pid of the “root” processor. Thus, removing the annotations might change the value
of the program. For the simplest example of this, consider a system whose root processor
has pid 0, and the expressions “self on 1” (whose value is 1) and “self” (whose value is
0). The purpose of the second constraint should be obvious: if the system diverges when
determining the processor on which to execute the body of a mapped expression, then it
will never get around to computing the value of that expression.

The work that is most similar in spirit to that presented here is Shapiro’s “systolic
programming” in Concurrent Prolog (CP) {72], whose mapping annotations were derived
from earlier work on “turtle programs” in Logo [62]. However, there are several differences:
(1) In CP (and LOGO) the “mapping” annotations are done by directing the process (or
‘turtle) in a particular direction, and then advancing one processor (or turtle step) at a
time. Our approach is more general — it allows arbitrary mappings to any processors in
a purely functional way. (2) CP is based on a rather imperative reading of logic, LOGO
on a conventional imperative language, and our work on a purely functional, declarative
language. (3) There are no formal semantics for CP, LOGO or the annotations that they
use; on the other hand, we have a precise denotational semantics for both our language
and our mapping annotations.

?Mapping annotations are not particularly useful in a shared memory machine (other than to denote task
granularity), unless the machine is heterogeneous, in which case it might be desirable to map a particular
class of computations to a processor tailored for that class.

3A formal statement and proof of this property depends on a formal denotational semantics for the
language, and may be found in [33].

3.3 Eager Expressions

A second form of annotation used in ParAlfl arises out of the occasional need for the
programmer to “override” lazy evaluation, since normally an expression is not evaluated
until absolutely necessary. This annotation would not be needed in a functional language
with call-by-value semantics, such as pure Lisp, but lazy evaluation provides an extra
degree of expressiveness that we desire. Thus an eager expression is introduced, which
has the simple form “#exp” and intuitively forces. the evaluation of exp in parallel with
“its immediately surrounding syntactic form. This annotation is similar to those used in
[9,73].

A special case of eager computation occurs in the construction of arrays, which are
almost always used in a context where the elements are computed in parallel. Because
of this, the evaluations of the elements of an array are defined to occur eagerly (and in
parallel, of course, if appropriately mapped).

Eager expressions are commonly used in lists. Consider, for example, the list expression
[z, #y]; normally lists are constructed lazily, so the values of z and y would not be evaluated
until selected at some later time. But with the annotation shown, y would be evaluated
as soon as the list is demanded. As with arrays, however, the expression does not wait for
the value of y to return — instead it returns a partially constructed list just as it would
with lazy evaluation.

The above discussion leads us to an important point about eager expressions: The
value of an eager expression is the same as that of the expression without the annotation.*
As with mapped expressions, the annotation only adds an operational semantics, and
- thus the user may invoke a non-terminating subcomputation yet have the overall program
terminate. Indeed, in the above example y might not terminate, yet if only the first
element of the list is selected for later use, the overall program may terminate properly.
~ The “runaway process” that is computing y is often called an “irrelevant task,” and there
exist strategies for finding and deleting such tasks at run-time [5,24,34,41]. Indeed, given
such an automatic “task collector” there are real situations where one might wish to invoke
a non-terminating computation (an example of this is given in [42]).

3.4 Controlling Execution Order

Space consumption has traditionally been ignored in general-purpose functional program-
ming environments, since large virtual memories, relatively large physical memories, and
effective garbage collection strategies have lessened the severity of the problem. . But if
para-functional programming is to be expressive enough to deal with this problem, then

*Thus the determinacy theorem stated in the last section holds regardless of the presence of eager
annotations.

language features need to be added to more precisely control the evaluation order of subex-
pressions. For example, if the invocation of a function f consumes space s, then in the
evaluation of something like f(z)+ f(y), it may not be desirable to begin both invocations
in parallel, since the total memory available might be less than 2s. Indeed, it might be
best to specify their evaluation order as being sequential and non-overlapping.

In the spirit of para-functional programming, this issue should be thought of as an
operational concern, not a functional one; i.e., the same answer is returned in either case.
Thus rather than restructuring the expression f(z) + f(y) in some ad hoc way to achieve
the desired result, what we seek is a language feature, like the mapping annotations,
that can be layered over the program to achieve the desired effect. In ParAlfl we are
experimenting with synchronizing expressions that allow the expression of explicit partial
orders in subexpression evaluation. For the above example one could write:

synch (ab) in a: f(z) + b: f(y)

~which says that the evaluation of the expression labelled a must precede that of the ex-
pression labelled b. The labels and the surrounding “synch” construct should be thought
of as annotations, since the value of the whole expression is still f(z) + f(y).

When used in a recursive setting, this technique can be used to do such interesting
things as ensuring that two functions recurse “in lock-step.” For example, consider the
program:

synch (ab) % in f(I) + ¢({)
where f(lst) = if null(lst) then nil
else ...a:f(tail(lst))...
g(lst) = if null(lst) then nil
else ...b:g(tadl(lst))...

Here the synchronizing expression “(ab)*” only permits zero or more evaluations of the
expression labelled a followed by the expression labelled b.> Normally to achieve this kind
of synchronization one would have to restructure the program by combining f and ¢ into
a single function that returned a composite result which was in turn decomposed for use
where needed.

With respect to the work described in Section 4.2, synchronizing expressions are impor-
tant in that they allow one to express the schedules generated by SAGA and CONDENSE.
However, although synchronizing expressions are promising, more work is needed to de-
termine if they are broadly expressive enough to solve all problems: of this sort, and on
the other hand to investigate the possibility of a simpler mechanism. We would also like
to provide a formal semantics for such annotations - partially-ordered multi-sets are a
promising vehicle for reaching this goal [63].

5Synchronizing expressions are similar to path ezpressions [25], and both are syntactically like regular
expressions in automata theory.

10

3.5 Relationship to Recurrence Equations

As mentioned earlier; the framework within which the transformations to be discussed in
the next section are developed is in strong agreement with the philosophy underlying para-
functional programming. In particular, recurrence equations, taken literally, are functional
programs. Their computabilty depends on the underlying domains and dependences, but
in most cases they can be executed directly -as functional programs after minor syntactic
changes.

Furthermore, the purpose of the transformations to be described in the next section
is to automatically infer the kinds of behaviors that annotations allow one to express ex-
plicitly. Thus we view a para-functional language as the “machine language” of those
transformations. More specifically, inferred processor mappings and schedules can be ex-
pressed using mapped expressions and synchronizing expressions, respectively, as described
in the previous paragraphs.

4 Automatic Compilation Techniques

Ideally we would like to be able to compile any annotation-free functional program into
code for optimal execution on a given parallel machine. Unfortunately, it is fairly easy
to show that determining the optimal processor assignment and evaluation schedule is
undecideable in the general case. On the other hand, all is not lost — in particular, we have
taken two specific directions in attacking this problem:

1. Given an arbitrary functional program, it is possible to perform a certain degree
of program decomposition (using heuristics if necessary) that attempts to find the
largest sequential threads of execution, called serial combinators, and execute them

“using a dynamic load-balancing strategy called diffusion scheduling. This work is
described in Section 4.1.

2. Alternatively, there may be portions of the program whose data dependencies are suf-
ficiently constrained so that optimal (or near optimal) decomposition and scheduling
is possible. More specifically, this becomes possible when the semantic constraints
of affine recurrences are met. This work is described in Section 4.2.

4.1 Serial Combinators and Diffusion Scheduling

Semantic Inferencing Techniques

Our work on serial combinators, using the full unconstrained lambda calculus as the
source language to be compiled, depends critically on several inferencing techniques to

11

optimize programs for both parallel and sequential execution. Most of these efforts are
examples of the use of abstract interpretation [13,59], a denotational semantics:based in-
ferencing methodology Our work in this area has been fairly extensive, but without going
into great detail it can be summarized as follows:

Strictness Analysis. Operationally speaking, strictness analysis is a way to determine
that-an argument to a function may be evaluated before (or in parallel with) a function
call. ‘Strictness analysis is-essential for uncovering parallelism-in languages based on lazy
evaluation, which we prefer ‘due to their expressive power. Previous strictness analyses
[8,59] have been restricted to first-order languages or typed higher-order languages. Our
contribution has been a way to infer strictness for languages with higher-order functions
[43], and variations of strictness analysis to provide order-of-evaluation information about
function arguments [7)].

Copy Avoidance.: Applicative data structures are mathematically elegant, but may im-
ply a high space overhead if implemented in the obvious way. Copy avoidance strategies
are concerned with eliminating this overhead, and we have developed both compile-time
(using abstract interpretation) [36] and run-time [37] strategies. This work represents im-
provements over previous efforts [6,59,67,69], in that not only is the compile-time analysis
more powerful, but in addition we have been targeting our work primarily toward the use of
arrays, which are key data structures in our intended applications in scientific computing.

Applicative Data Flow Analysis. A collecting interpretation of expressions is an in-
‘terpretation:of a:program that allows one to answer questions of the sort: “What are.all
possible values to which the expression exp might evaluate during program execution?”
Answering such questions for functional programs is akin to traditional data flow analysis
of imperative programs. We have developed such an -interpretation for the full untyped
lambda calculus with constants [32]. The method is simpler (no powerdomain construction
is needed) yet more expressive than existing methods (such as Jones and Mycroft’s min-
imum function graph semantics [46]). Indeed, our approach provides the first collecting
interpretation for either lazy or higher-order programs.

Program Decomposition. An important problem in the automatic decomposition of
a functional program for parallel evaluation is determining the largest possible “grains”
of parallelism, which in turn requires “uncurrying” function applications. Doing ‘so re-
quires determining the degree of sharing of partially applied functions. We have solved this
problem, again using the tools provided by abstract interpretation [20,22].

These abstract interpretation techniques set up the framework within which serial
combinators are generated, as described in the remainder of this section.

12

Generating Serial Combinators

+Of the many possible parallel computing models,:it is probably safe to say-that a fixed
set of combinators offers in some sense the finest granularity of computation, even finer than
dataflow. However, if one studies the performance figures for existing multiprocessors, it
becomes apparent that the ratio of interprocessor communication time to CPU instruction
speed is generally quite high; typically anywhere from 10 to 100. Thus it seems that
relatively large “grains” of parallelism need to be found for our overall strategy to be
successful. ‘We -initially became motivated to do this after observing via simulation that
with a fixed set of combinators it is possible for a purely sequential computation (i.e., one
whose data-dependencies preclude any parallelism) to become decomposed for execution
on several processors [39]. Clearly this is a wasted effort, since such a decomposition can
only add communication costs to an already-sequential computation!

Although considerable progress has been made in parallel evaluation models, little
work has been done on choosing the right granularity for parallel program decomposition.

++Our“goal is to retain the environment-less nature of combinators and their usefulness in a

parallel graph reducer, while maximizing their granularity and ensuring that parallelism
is not lost. The strategy used by Keller and Lin [49] relies predominantly on the functions
defined by the user, and is similar to the “lambda-lifted” functions used by Johnsson {45] —
neither technique guarantees “fully lazy” combinators, and no analysis is attempted within
function bodies to detect parallelism. Super-combinators are a step in the right direction,
having considerably larger granularity than a fixed set of combinators, but/they can be
made even larger, and are again targeted for sequential machines, thus not exploiting all
opportunities for parallelism.

Serial combinators [40] are in some sense the best that one can do.in the general case,
since they have the following properties:

1. They are combinators, facilitating their use in a’graph reduction machine (especially
parallel ones).

2. They result in a fully lazy evaluation, guaranteeing that no extraneous computations
are performed.

3. They have no concurrent substructure, guaranteeing that no available parallelism
will be lost.

4, There are no larger objects having these same properties, ensuring that no extraneous
communication costs are incurred because of too fine a granularity.

Even if the third refinement is ignored, simulations demonstrate that the resulting combi-
nators are more efficient than super-combinators, on both sequential and parallel machines.

13

This is because serial combinators have a larger granularity, including the fact that they
may be recursive, eliminating inefficiencies involving the Y combinator.

Despite the relatively simple characterization of serial combinators as given above, we
make important pragmatic refinements that complicate their analysis. In particular, we
take into consideration strictness properties of functions, common subexpressions, com-
plexity of subexpressions, and the overhead for distributing a computation.

. The overall translation scheme from source program to serial combinators consists of

- three phases. The source program is first translated into an “intermediate form” called a

normalized equation group. A set of refined super-combinators® is then generated, having
the improved properties mentioned earlier. Finally, issues of parallel computation are taken
into account as the super-combinators are further refined into serial combinators.

Diffusion Scheduling

The scheduling of serial combinators for execution on a given multiprocessor is con-
trolled by a dynamic load-balancing mechanism that we refer to as diffusion scheduling,
which takes into account such factors as processor load, memory utilization, and direction
of global references. The intent is for tasks to be “pushed away” from busy processors, and
“drawn toward” those to which they have global references (thus maintaining locality). In
this way work “diffuses” through the network in the direction of least resistance.

For example, the diffusion scheduler may choose a neighboring processor p on which to
evaluate a serial combinator s, such that C(s, p) is minimized, where:

C(s,p) = load(p) + (k * ref-cost(s,p))

and ref-cost(s,p) is a measure of the cost of p’s references to nodes residing on Processors
other than p. load(p) is simply the number of tasks on p’s task queue. The constant k is
a weighting factor that indicates the relative importance of the ref-cost of n compared to
the work load of p. The lower the value of k, the more likely it is that work simply diffuses
towards the least-loaded processors.

An important optimization to this overall strategy is to avoid the message-passing
protocol for local communications, bypassing the task queue entirely whenever possible.
This, coupled with the fact that the combinator definitions are represented as conventional
compiled straight-line code, means that we can take advantage of the efficient sequential
features of the von Neumann processors, using message-passing only when needed. These
optimizations are described in more detail in [20].

A diffusion scheduler for serial combinator- evaluation, part of a virtual parallel graph
reducer called Alfalfa, is currently being implemented on three commercial multiprocessors:
an Intel iPSC hypercube, an NCube hypercube, and an Encore shared-memory machine

60r, more whimsically, super-duper-combinators!

14

[20]. As of this writing the implementation on the Intel iPSC has just begun to work, and
preliminary benchmarks look promising [21].

4.2 Efficient Compilation of Recurrence Equations

Numerous programs for scientific computation are devoted to computing recurrence equa-
tions [50]. Thus, efforts dedicated to the automatic generation of highly efficient parallel
implementations of recurrence equations are wellinvested. - On account-of the repetitiveness
of their computations we classify recurrence equations with respect to the relationships,
or dependences, between their indices.

Frequently one encounters sets of recurrence equations in which these dependences are
not functions of the actual values of the variables in the equations. Annotations represent-
ing schedules (specifications of time and processor for each operation) and interprocessor
communications for such a set of equations may then be expressed as functions of the in-

" :dices. The functions can be determined at compile time and evaluated at run time once the

recurrence bounds and stride parameters are known. This global approach to scheduling
results in parametrized annotations for the entire set of equations, and it is viable because
of the weak relation between dependences and actual data values, i.e. the availability of
almost complete scheduling information at compile time. On the other hand, when the
dependences within a set of equations are functions of the data, it seems most effective to
determine Jlocal, sequential components and distribute their execution across the processors
at run time — this is the route followed in Alfalfa.

The global approach for generating annotations described in this section and the local
approach of ‘Alfalfa are thus two extremes in a spectrum defined by the amount of depen-
dence information available at compile time. Once these two approaches have been fully
developed we hope that we will have gained enough insight to enable us to develop ap-
proaches more suited to the intermediate cases, where local schedulers would dynamically
schedule the execution subject to local data and global control information. We feel that
the general problem of efficient “adaptive” scheduling (adaptive with respect to graded
levels of uncertainty) is a promising area of future research for which our current work
provides a strong basis.

In this section we shall consider recurrence equations whose variables have index func-
tions that are independent of the actual values of the variables. Some recurrence equations,
such as Fast Fourier Transform algorithms, have indices whose dependence isnon-linear. A
general theory for the implementation of recurrences with non-linear dependences does not
appear feasible, and such recursions must be dealt with on a case by case basis. However,
most recursions found in scientific computation have linear or, more accurately, affine de-
pendences [23]. We believe that it is possible to develop procedures that generate efficient,
parallel implementations of recurrence equations with affine dependences. We have already

15

identified the steps that such a procedure should follow, and we are currently de51gn1ng
fast algorithms for each of those steps.

To illustrate the notion of affine dependence consider finding the maximal element
among n numbers {aj, ... a,}. This can be accomplished by constructing a heap:

hi =ai—pny1, n <1< 2n—1, h; = max{hy;, hgiy1}, 1<i<n—1 (hp)
where h; contains the maximal element, or by performing a linear search:
s1=a1, & =max{si-1,a;}, 2<i<n, (1)

in which case s, contains the maximal element. Both equations (hp) and (Is) are recurrence
equations with affine dependences: every subscript is an affine function of the index ¢, that
is, a linear function plus an additive constant. Equation (Is) belongs to the subclass of
uniform recurrence equations: all the index functions are just translations, with linear
part equal to the identity. Note that this classification depends only on the indices of the
variables. No restriction is imposed on the functions, like “max ” above, that compute the
values of the variables.

It has been recognized for several years that simple yet highly efficient schedules can
be found for the implementation of uniform recurrence equations on “systolic array” archi-
tectures. Systolic arrays are homogeneous networks of processors with local memory and
extremely fast interprocessor communication [52,54]. The elegance of systolic array imple-
mentations led to a flourishing of literature in the early eighties describing implementations
for basic linear algebra, signal processing and graph algorithms, see e.g. [1,26]. Although
today most systolic implementations are still found by hand, progress has been made with
regard to automating the parallel implementation of uniform recurrences [67,64,65]./T¢ is
the high degree of repetition and simple dependences between computations that makes
feasible the automatic implementation of uniform recurrence equations: the search for
efficient schedules may be restricted to simple schedules that exploit this structure (by
schedule we mean the specification of time instances and processor assignments for the ex-
ecution of individual operations). In most cases schedules defined by affine functions can
be quickly found whose computation times are within a few per cent of the best attainable.

Most recurrence equations, though, turn out to be more complex than uniform recur-
rences. Often they consist of several sets of recurrence equations, called steps, in such a
way that results of computations of one step represent input data for other steps. More-
over, the variables within a step do not necessarily have the same number of indices. Such
equations belong to the larger class of recurrerice equations with affine dependences; they
cannot be handled by automatic implementation techniques for uniform recurrence equa-
tions. Thus, the limitations of existing techniques become apparent when automatization
is needed most, that is, when hand design of efficient systolic implementations is nearly
impossible. In order to overcome these limitations we have started to develop a method

16

that determines systolic implementations of algorithms with affine dependences, these
implementations attain minimal computation time on a minimal number of ‘processors
[14,15,16,18]. The method is called SAGA, an acronym for Systolic Array Generating Al-
gorithms. SAGA is a sophisticated generalization of the most advanced techniques devised
for the implementation of uniform recurrences. Only with the help of SAGA, for example,
was it possible to develop the algorithm and systolic implementation of the Toeplitz system
solver in [17] whose efficiency is superior to all other existing Toeplitz solver implementa-
tions.

" The number of processors in the systolic implementations determined by SAGA de-
pends on the problem at hand. This is appropriate for many signal processing applica-
tions, where a systolic array always works on problems of the same size (for instance, the
problem size might be determined by the number of antennae in an antenna array). In the
context of scientific computation, however, different problems of different sizes all have to
be implemented on the same parallel machine, and the results from SAGA are not directly
- applicable in this case, when the number of processors is fixed and determined in advance.
This is why we are using a two-phase approach for the implementation of systems of recur-
rence equations on a given target architecture (the Parafrase restructuring compiler [74}
employs a similar decomposition). In the first phase SAGA determines an optimal systolic
array implementation that is essentially target-architecture independent. In the second
phase, called CONDENSE, the processors of this array are partitioned into groups so that
each group is assigned, or condensed, to one processor of the target architecture. The

condensation is done so as to minimize the total run time, and is guided by the systolic
array from SAGA.

- The two-phase approach, SAGA followed by an architecture-specific phase, is applicable
to systolic architectures such as the ten-processor CMU -WARP [2,3], where partitioning
techniques for systolic arrays [58] would provide a starting point for the second phase.
For some other architectures, such as the Connection Machine [29], the second phase is
almost trivial and SAGA can be applied directly to find optimal implementations. The
class of architectures of particular interest to us consists of homogeneous networks of
processors with local memory where communication takes place via message-passing and
the processors do not have fast access to a large common memory. Examples are hypercube
and mesh architectures such as the Intel iPSC, the Caltech Cosmic Cube [70] or a mesh of
MOSAIC processors connected via Torus Routing Chips [56].

We will end this section with a brief summary of the features of SAGA & CONDENSE.
First of all, in abidance with functional language principles, SAGA & CONDENSE make
it possible to express algorithms in a natural fashion. For instance, to compute an inner
product ’

i a;b; (<p)

i=1

17

or part of a dynamic programming algorithm

min { f(ax, ax;) } (dp)

i<k<;

the user does not specify the order of evaluation of these functions; SAGA will automati-
cally find an order that does not introduce constraining dependences.

The implementations found by SAGA and adapted to a specific architecture by CON-
"DENSE are systolic implementations. This does not constitute a severe restriction. As
‘illustrated in equation (hp) systolic implementations include trees and support “logarith-
mic” evaluation schemes, and broadcasting in general; their data communication structure
is as repetitive and simple as their computational structure; and, due to the systolic na-
ture, data “flows” through the array so that the storage per processor is kept low. In fact,
the systolic algorithm and programming approach has already shown the best performance
on hypercube architectures with regard to important numerical applications [66] and has
been advocated [71] as an “algorithm design and programming methodology for general
purpose {...] parallel computers” due to its wide applicability, convenient scalability and
ease of programming.

SAGA generates minimal-time systolic implementations. Not insisting on minimal
computation time can easily result in implementations that are fifty percent or possibly
an order of magnitude slower than the best implementation. Once minimal computation
time is attained, SAGA minimizes the number of processors, often improving efficiency by
a factor of two or three. Typically SAGA generates several optimal arrays, of one, two
or higher dimensions (for instance, it generates one-, two- and three-dimensional arrays
for a two-dimensional convolution). The constraints in SAGA’s optimization problems are
not very sensitive to the target architecture; this low sensitivity is an attractive aspect of
*our two-phase decomposition. SAGA is invoked at compile time since it does not require
knowledge of the exact bounds in the recurrence equations.

CONDENSE employs a collection of heuristic strategies that quickly determine, at run
time, processor partitionings optimized with regard to the parameters of the target archi-
tecture. In particular, for each of the arrays generated by SAGA the size and aspect ratios
of processor blocks and the packet sizes for data transfer are determined, and the one
with the best run time on the target architecture is selected. Ample flexibility with regard
to the properties of the target architecture, such as processor interconnection topology,
number of processors, and communication model and costs, is achieved by adjusting the
parameters within CONDENSE. Accordingly, machines like the Intel iPSC and the Con-
nection Machine that have such different communication properties can be accommodated
in our framework.

Description of SAGA SAGA requires as input a single assignment language [4], a con-
dition that is fulfilled naturally in a functional language. As a result the only dependences

18

Figure 2: Dependence Graph for Example Equations (ex)

are the data dependences induced by the recurrence equations; there are no extraneous
output and anti dependences such as found in imperative languages [51,60]. The goal of
SAGA is to generate simple control dependences in such a way that the overall run time
is kept minimal. The following description attempts, where applicable, to relate SAGA’s
features to the better known notions used in compiler design.

By exploiting the computational regularity inherent in systems of recurrence equations
it is possible to design fast algorithms for SAGA that determine parallel 1mplementa.t1ons
whose run time is provably minimal (asymptotlcally)

The regularity in a system of recurrence equations, such as

Ti0 = Qj, 1<:<n
Si1 = Qi-2, 3<1<n+2
Tij =Ti—1j-1— Sit15, 1<j<n-—-1, j+1<:<n, (ex)

8ij = ~Ti—gj_2+8ij-1, 2<5<n, J+2<¢<n+2

is captured in a dependence graph, shown. in Figure 2. The nodes of the dependence graph
correspond to variable names (in an imperative language they might also correspond to
program statements [51,60]). The arcs of the graph correspond to the data [60] or flow
[51] dependences: there is an arc (r, s) from variable r to variable s since the computation
of r requires s. Each arc is labeled by the corresponding dependence mapping

(’t j)A,-,-:(’t—l .7._1)’ (’t J.)Ars:(’i+l j),
(7 J)As=(i—=2 j—-2), (1 J)Ap=(¢ 7-1),

19

whose argument is the index (¢ j) of the variable on the left-hand side of the equation
and whose value is the index of the used variable on the right-hand side.

The domain of computation of r is the domain of the dependence mappings A,, and
Arg
Cr={(¢,4):7+1<i<n,1<j<n—-1},

and, similarly, the domain of computation for s is
Co={(6,5):5+2<i<n+2,2<7<n},

In this example if the domains for A,, and A,, had not been identical, the renaming
procedure in [18] would have been applied first. The notion of “domain” thus replaces
that of “loop dependence” [51].

The equations in the example represent uniform recurrences since all the dependence
mappings are translations such as

PAs = PDys + dys,

where
.. 1 0
P=(: 7), D”:(O 1):], drs = (1 0).

The time step t at which the quantities rp and sp are computed for a point P belonging
to the domains C, and C, can be simply expressed as [57,64]

t = Pr+u. (1)
Here, r = (ry rz)T is a column vector, called the t1me vector and u is a scalar offset. The
time of computation is therefore defined by an affine time function. :

The dependences restrict the choice of the time vector in the sense that the computation
‘of rp, or sp, must not use a value that has not yet been computed. Hence 7 should satisfy

(1 1)r>0, (-1 0)r>0, (2 2)r>0, (0 1)r>o0. (2)

Among the many vectors satisfying (2) one selects those 7 that minimize the computation
time. The shapes of the domains C, and C, together with the dependences provide the
first and the last computed index, and thus an expression for the computation time in the
following optimization problem:

Determine 7 that satisfies (2) (i.e., 0 < —7; < ;) and minimizes

(n+2 n)r—(n+2 1)r=(0 n—-1)7.

This problem has the unique solution 7 = (-1 2)T and results in a computation
time of 2n steps. However, the longest chain of dependent computations traverses only

20

n points, thus the above time is far from optimal. The computation time can actually be
made optimal in such cases without increasing the complexity of the implementation, by
using different offsets, u, and u,, for different variables r and s [16,65]. Geometric insight
is gained by viewing such a time schedule as the application of a single affine function,
with the same offset, to both variables r and s but the domains of » and s are displaced
with respect to each other [16]. The idea here is that the original system of:recurrence
equations (ex) is written in a somewhat arbitrary fashion and a better formulation may
~be obtained by translating the domain of s with respect to the domain of r.. A translation
by (—1 —1) results in the equivalent system of equations

rio = aj, 1<7<n
8i0 = @i-1, 2<1<n+1
Tij =Ti—1j-1—Sij-1, 1<3<n—-1, 7+1<7<n (ex')

8ij = —Ti~1j-1+8ij-1, 1<3<n—-1, 74+2<2<n+1

which, for the affine time function (1) with 7 = (0 1)T, gives the minimal computation
time, of n steps.

The question remains how the displacement (—1 —1) of C, with respect to C, that
leads to the optimal computation time was discovered. The answer, according to our ap-
proach, is obtained by considering the invariants associated with the system of recurrence
equations. In the above example, the invariants are those translations that are associated
with the composition of dependence mappings around “cycles”: A,,, Ag, A;sA, and
A, AL, the time vector 7 should be consistent with the invariants

(1 1)7r>0, (0 1)r>0, (1 2)r>0. (3)

Naturally, the invariants are the same for the original system (ex) and the “displaced”
system (ez’). The cone defined by the conditions (3) (7, +72 > 0, 7 > 0) is called the “time
cone” for the recurrence equations. Any vector 7 within the time cone defines a general
“global” time function for the system of recurrence equations and one can always find
translations that define precise “local” time functions for each of the computed variables;
this means, one can always find translations of the domain of s with respect to the domain
of r so that ¢t = Pr + u is a time function consistent with the (new) dependences d,,, d.,
d, and d,,. Intuitively, a global time function provides only enough information about
the execution time of each operation to guarantee an asymptotic time bound, while a local
time function specifies the ezact time of each operation.

Thus, from the original recurrence equations (ex) our procedure first computes the
invariants that define the time cone. From the time cone a time vector 7 is then selected
that minimizes the “global” computation time max{(0 n)r, (n n)r}, ie., 7 minimizes
max{(0 1)7,(1 1)7}subjecttor +m >0, 7> 0, resulting in 7 = (0 1)7. Finally,
the translation is chosen to satisfy secondary criteria such as minimization of register count

21

Step 0

Step 1

Step 2

‘Figure 3: Dependence Graph for the Toeplitz Factorization Algorithm

and communication. This results in (=1 —1) as the translation of the domain of s,
thus yielding the modified system (ez'). The determination of 7 represents the “global”
optimization problem while the determination of the displacement represents what we call
the “local” optimization.

These concepts may be applied to more general recurrence equations such as the fol-
lowing algorithm, which computes for a given symmetric Toeplitz matrix both its LDLT

22

factorization and the LDLT factorization of its inverse

Tio = @i-1, 1<t1<n

$i0 = @4-1, 2<1<n

Pi = Si+1,j-1/Tji-1, 1<j<n-1

Tij = Ti-1,j-1 — PjSi,j—1, J+1<i<n

8ij = —PiTi-15-1+ Sijo1, J+2<i<n (f)
y0=1

Yii—2 = 0, 2<i<n

Yij = —Pj¥jta-ij-1 T ¥ij-1, 1<3<n—-1, 1<:<75+1

In such a general case, SAGA proceeds as follows:

1. Decomposition of the algorithm into steps.

SAGA decomposes the set of recurrence equations into tightly coupled systems of
equations referred to as “steps” by determining the strongly connected components
of the dependence graph (m-blocks in [60]), as shown in Figure 3. Consequently,
results from one step that are required as inputs to a second step do not depend on
results from the second step. The decomposition of the algorithm into steps provides
a unique division of the implementation problem into (smaller) subproblems for the
steps that can be solved independently and whose solutions can then be combined
into an optimal solution for the whole without disregarding potential designs.

2. Separate computability analysis and characterization of all possible schedules for
each step.

A proper parallel implementation of recurrence equations necessitates a preliminary
analysis of the computability of the equations (likewise, the first phase in the design
of a control system is a controllability analysis). The information gathered during the
‘verification phase is then used in the time scheduling and processor assignment phase.
The notion of time cone is generalized to apply to steps with affine dependences such
as A,, in equations (f) above.

It often occurs that the inherent parallelism in an algorithm is limited (for instance,
if the dependences in (ex) were changed in such a way that the longest chain of
dependent computations traverses O(n?) points instead of n points.) Although the
time cone is empty in this case one can still find simple schedules that minimize the
computation time. In the case of uniform recurrence equations the methods in [57,64]
break down. However, the seminal work of Karp, Miller and Winograd in 1967 [47,48]
provides the essentials of a solution to the associated time scheduling problem. Our
theory parallels that work at a fundamental level for affine dependences.

3. Solution of the global optimization problem to find the global schedule that minimizes
the total computation time and the number of processors.

23

4. Separate solution of the local optimization problems to find the local schedules for
each step.

SAGA synthesizes systolic arrays through the direct determination of transformations
that are applied to each step as a whole. This approach is computationally efficient and
requires interaction only at a high level. Approaches based on incremental transformations
[30,53] appear less efficient and call for low level interactive decisions; some decisions may
be avoided through the use of greedy -algorithms [12] but there is no proof of the optimality
of the resulting arrays. SAGA performs these decisions automatically since the knowledge
required to make them is encoded into a hierarchy of objectives constructed before the
invocation of SAGA. SAGA’s efficiency in finding optimal implementations is a key feature
for integrating it into a general parallel compiler.

Description of CONDENSE Some of the issues dealt with by CONDENSE have
already been encountered in the context of efficient register management and memory
access on vector register machines (see the loop distribution and loop blocking strategies in
[51]). In order to determine the total run time of a systolic implementation from SAGA
on the target architecture, fast algorithms compute optimal condensation parameters such
as the dimension of the condensed array and its data transfer parameters, e.g. the packet
size. Our model is very general and applicable, for instance, to systolic implementations
encompassing streams of data flowing at different speeds, as in systolic implementations of
Gauss-Jordan and dynamic programming algorithms. When incorporated into an actual
code generator, the expressions for the total run time of the systolic implementation on
the target architecture are set up at compile time and their optimal solution is determined
at run time.

Differences Between Qur Approach and Conventional Code Improvement Tech-
niques In the remainder of this section we illustrate the superiority of our approach over
the well known code optimization, or more accurately code improvement, techniques.

o Repetitive computations with limited data dependence. Only by restricting the range
of SAGA to this particular class of computations, can we claim optimality and achieve
mathematical tractability. However, it is exactly this class of computations which
prevails in scientific computing and ensures the wide applicability of SAGA. We
assume that recurrence equations consist of data independent statements; data de-
pendent statements in scientific calculations (such-as “if” or “while”) can be handled
without difficulty: they occur either for the prevention of under- and overflow (such
as if-statements in the implementation of plane rotations, see [23]) and can be rel-
egated to the processor design level [1,26] or they occur when testing convergence

24

5

(such as while statements in the unshifted QR-algorithm for the symmetric tridiag-

~onal eigenvalue.problem) in which case one iteration is implemented in parallel and

a whole sequence of iterations is “pipelined in time” [27,68].

Thorough parallelism detection. As opposed to the code improvement transformations
of a compiler SAGA and CONDENSE really perform optimization transformations.
Compilers for sequential as well as parallel languages [61] choose among a few ways of
evaluating nested loops (usually interchanging or unrolling the loops). The concept
of “time cone”,-a notion borrowed from multi-dimensional systems theory {55], allows
SAGA to summarize all possible schedules and to choose among those the ones with
minimal complexity that yield minimal computation time.

Global (and local) optimization. All compiler optimizations occur at a local level,
that is the compiler tries to efficiently schedule a nest of loops but does not look
far beyond. We have proved that the problem of finding minimal-time implemen-
tations for systems of recurrence equations can be decomposed into a sequence of

'subproblems without losing optimality: SAGA first finds all the schedules for each

step, then solves a global optimization problem to select step schedules whose com-
position yields minimal computation time with a minimal number of processors.

Accounting for processor topology. Hitherto, schedulers for parallel architectures have
been restricted to shared memory machines (see Parafrase [74]), and have disregarded
processor interconnection topology. The only work on scheduling that takes into
account topology is scheduling on linearly connected processor arrays [11] which is
not practical for recurrence equations since it employs the computation graph instead
of the dependence graph, and poses restrictions on the computation graph that could

. lead to artificial data dependences.

The Incarnation of Parlance

In this section we outline a recently begun project whose goal is to combine the research
described in the previous two sections into a single integratred parallel programming en-
vironment called Parlance. As mentioned in the introduction, ParLance will consist of a
language, highly-optimizing compiler, parallel evaluation kernel, and interactive support
environment, with implementations planned for both a shared-memory (Encore MultiMax)
and distributed-memory (Intel iPSC) multiprocessor. :

5.1 Parallel Implementation Issues

In recent years great advances have been made in implementing functional languages for
both sequential and parallel machines, and much of that work is applicable here. In

25

particular, graph reduction provides a very natural way to coordinate the parallel evaluation
of subexpressions, and solves problems such as howto migrate the values of lexically bound
variables from one processor to another [38,40]. As mentioned earlier, a virtual parallel
graph reducer called Alfalfa is currently being implemented at Yale on three commercial
multiprocessors: an Intel iPSC hypercube, an NCube hypercube, and an Encore shared-
memory machine [20,21]. This graph reduction engine will be able to support both implicit
(dynamic) and explicit (annotated) task allocation.

We have also designed a para-functional programming language called ParAlfl that
incorporates many of the ideas mentioned earlier {35,42], and have a working prototype
compiler for ParAlfl that generates serial combinators for direct execution on Alfalfa.

5.2 The ParLance Programming Environment

Another important issue, of course, is the programming environment that we provide to
“the user." Most existing environments on parallel machines are at a very low level of
sophistication, and much research is needed to determine what kinds of development and
debugging tools are appropriate. Yet we believe that the para-functional programming
paradigm has some definite advantages over more conventional approaches when it comes
to designing suitable programming environments:

e First, because there is a lack of side-effects in the language, one does not have to
worry about timing issues in debugging the functional aspects of a program. In fact,
one can do'such debugging entirely on a sequential machine, where the annotations
are simply ignored. Then, with the minor constraints on the annotations mentioned
earlier, one is guaranteed that the same program will run “correctly” on a parallel
machine (i.e., it will return the same answer).

¢ Second, because we have a formal, deterministic semantics for, as an example, the
mapping annotations, we can easily build an interpreter that mimics this behavior.
(Indeed, a prototype interpreter for the mapping annotations has already been built
[33].) So to some extent even operational semantics may be debugged independently
of parallel hardware. We envision a graphical interface as being the ideal mechanism
for conveying such information; perhaps even a real-time display of the computation
as it “unfolds.”

¢ Finally, if the timing and mapping annotations are derived formally and automati-
cally as described in Section 4.2, then the user is guaranteed that the program will
meet the performance criterion set forth in the source program.

Given these comments, what is left to debug on the parallel machine? If the imple-
mentation is faithful to the formal semantics (and we have to allow the user to at least

26

assume that!), then all that is left are certain concerns about timing and mapping that
relate entirely to efficiency, not functionality.: If the resulting performance (which can be
monitored in straightforward ways) is not good enough, one is free to change the algorithm
or performance criterion, or perhaps add annotations of one’s own, and reassess the re-
sulting performance. The difficulty here is relating performance to the modifications being
made — for example, determining where the communication bottlenecks are, or.in general
finding imbalances in the distribution of work. We feel that this problem can be suitably
solved by providing effective monitoring tools of the dynamic execution of the program. It
is at least a far more tractable situation than the many problems that must be solved in
more conventional approaches to parallel programming.

6 Remaining Work

Obviously, there remains musch work to be done. We view our current work as a symbiotic
effort in which advances are made both in transformation strategies and in para-functional
programming language design and implementation. The many issues that we wish to
investigate include: the formal semantics of synchronizing expressions, issues involving
language syntax, re-use (in a software engineeriing sense) of annotations, optimization of
processor communication, strictness analysis on non-flat domains, treatment of architec-
tural constraints during optimization, development of index expansion techniques, and
development of condensation strategies.

Perhaps one of the most important issues for us to resolve is how the user “transi-
tions” between programming with “explicit” annotations (those generated by the user)
and “implicit” annotations (those generated automatically by the compiler). There is a
clear advantage to allowing the user to combine both techniques within the same program,
as well as combining both forms of automation, one for affine recurrences, the other for
serial combinators. How does one coordinate these different compilation technques? Fur-
thermore, are there degrees of regularity in programs that lie somewhere between affine
recurrences and completely unconstrained functional programs? Although we do not yet
have satisfactory answers to these questions, there are several partial solutions worth men-
tioning.

First of all, it is likely that language features (perhaps just keywords) will be useful when
combining compilation techniques.' For example, consider these two combined compilation
situations:

1. One may wish to partition the multiprocessor, mapping (automatically) a set of affine
recurrences to one partition, and mapping (manually) an unconstrained subprogram
to some other.

27

2. The function bodies of a set of affine recurrences may be arbitrarily complex. Thus
- one may wish to use either explicit annotations or the serial combinator techniques to
compile the function bodies.. This may in turn imply the use of even more complex
partitioning strategies, such as clustering of processors for local (corresponding to
function body) computations.

The first example demonstrates a “flat” partitioning strategy, the second a “nested” parti-
tioning. Language features that indicate where affine recurrences begin and end, and that
declare global partitioning strategies, may be useful in these situations.

Secondly, the compiler is likely to be interactive, both querying the user about de-
sign information and providing information about its decisions. As described earlier, the
intermediate output of the compiler is just a (perhaps heavily) annotated version of the
source program. It is here that the annotations can be seen in toto, and the user is free to
examine, and possibliy modify, them.

- ‘Finally, we plan to use a structured editor to provide alternative “views” of an an-
notated program. In particular, the editor will be able to display the program with all
annotations, with no annotations, or with certain classes of annotations chosen by the
user. If a color display is available, the annotations can be highlighted in the obvious way.

7 Conclusions

We have described the foundation of a versatile parallel programming environment called
ParLance that is based on a functional programming paradigm augmented with anno-
“tations for refinement of parallel operational behavior, sophisticated compiler technology
for automatic decomposition and scheduling, and software development tools tailored to
parallel computing. ParLance is firmly based on mathematical principles, making it pos-
sible for one to systematically develop parallel programs with predictable, quantifiable
performance.

Using ParLance a programmer can optionally (1) write programs with no concern
whatsoever for parallelism, (2) annotate programs in ways that are likely to improve per-
formance, or (3) write programs that satisfy certain semantic constraints (those of affine
recurrence equations) and automatically compile them efficiently for a particular machine.
In all cases the same base language is used, and in fact programs in all three categories
can be mixed freely, and could easily be combined into a single large application.

There are several aspects of our methodology that we think significantly facilitate
program development. First, the functional aspects of a program are effectively separated
from most of the operational aspects. This is manifested both in our compilation strategies
and in the use of annotations to express operational behavior. By making the separation

28

visible in the language, one can isolate, reason about, and thus debug, the two classes of
problems more-or-less independently. '

Second, the multiprocessor is viewed as a single autonomous computer onto which a
program is mapped, rather than as a group of independent processors requiring complex
communication and synchronization. There are no special “parallelizing” constructs, no
message-passing constructs, and in general no forms of “excess baggage” to express the
rather simple notions of “where and when to compute things.”

Third, 'sophisticated compiler technology is used to generate very -efficient programs
(indeed, optimal programs, if given enough processors) with respect to certain perfor-
mance criteria, for a reasonably broad class of problems. For certain compute-intensive
applications this programming option is essential.

Finally, the annotations used to refine the operational behavior are natural, concise,
and have the property (with some minor constraints) that if a program is stripped of its
annotations, it is still a perfectly valid functional program. A program may be written and
debugged on a uniprocessor that ignores the annotations, and then executed on a parallel
processor for increased performance. Portability is enhanced, since only the annotations
need to change when one moves from one parallel topology to another (unless the algorithm
itself changes). The ability to debug a program independently of the parallel machinery is
invaluable.

29

References

[1] H.M. Ahmed, J.-M. Delosme, and M. Morf. Highly concurrent computing structures
for matrix arithmetic and signal processing. IEEE Computer, 15:65-82, 1982.

[2] M. Annaratone, E. Arnould, T. Gross, H.T. Kung, M.S. Lam, O.‘Menzilcioglu, K.
Sarocky, and J.A. Webb. Warp architecture and implementation. IEEE Computer,
:346-56, 1986.

[3] E. Arnould, H.T. Kung, O. Menzilcioglu, and K. Sarocky. A systolic array computer.
In Proc. IEEE ASSP, pages 232235, 1985.

[4] J.L. Baer. Computer Systems Architecture. Computer Science Press, 1980.

[5] H.G. Baker and C. Hewitt. The incremental garbage collection of processes. A1 Work-
ing Paper 149, Mass. Institute of Technology, July 1977.

[6] J.M. Barth. Shifting garbage collection overhead to compile time. CACM, 20(7):513~
518, 1977.

[7] A. Bloss and P. Hudak. Variations on strictness analysis. In Proc. 1986 ACM Conf.
on LISP and Functional Prog., pages 132-142, ACM, August 1986.

[8] G.L. Burn, C.L. Hankin, and S. Abramsky. The theory of strictness analysis for higher
order functions. In LNCS 217: Programs as Data Objects, pages 42-62, Springer-
Verlag, 1985.

- [9] F.W. Burton. Annotations to control parallelism and reduction order in the dis-
tributed evaluation of functional programs. ACM Trans. on Prog. Lang. and Sys.,
6(2), April 1984.

[10] F.W. Burton. Controlling speculative computation in a parallel functional language.
In Int’l Conf. on Distributed Computing Systems, pages 453—-458, May 1985.

[11] McDowell C.E.. and W.F. Appelbe. Processor scheduling for linearly connected par-
allel processors. IEEE Trans. Comp., C-35:632—638, 1986.

[12] M.C. Chen. A design methodology for synthesizing parallel algorithms and architec-
tures. Journal of Pamllel and Distributed Computmg, December 1986.

[13] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Jth ACM Sym.
on Prin. of Prog. Lang., pages 238-252, ACM, 1977. ‘

[14] J.-M. Delosme and L.C.F. Ipsen. Design methodology for systolic arrays. In Proc.
SPIE Symp. 696, 1986.

30

[15] J.-M. Delosme and I.C.F. Ipsen. Efficient systolic arrays for the solution of Toeplitz
systems: an illustration of a methodology for the construction of systolic architectures
in VLSI. In Systolic Arrays, Adam Hilger, 1986. To appear.

[16] J.-M. Delosme and I.C.F. Ipsen. An illustration of a methodology for the construction
of efficient systolic architectures in VLSI. In Proc. Second Int. Symposium on VLSI
Technology, Systems and Applications, pages 268-273, Taipei, Taiwan, 1985.

[17] J.-M. Delosme and I.C.F. Ipsen. Parallel solution of symmetric positive definite sys-
tems with hyperbolic rotations. Linear Algebra and its Applications, 7T7:75-111, 1986.

[18] J.-M. Delosme and I.C.F. Ipsen. Systolic array synthesis: computability and time
cones. In Algorithmes et Architectures Paralleles, North Holland, 1986.

[19] D.D. Gajski, D.A. Padua, D.J. Kuck, and R.H. Kuhn. A second opinion on data flow
machines and languages. Computer, 15(2):58-69, February 1982.

[20] ‘B. Goldberg. Multiprocessor Ezecution of Functional Programs. PhD thesis, Yale
University, Department of Computer Science, expected Spring 1987.

[21] B. Goldberg and P. Hudak. Alfalfa: distributed graph reduction on a hypercube
multiprocessor. In Proceedings of the Santa Fe Graph Reduction Workshop, page to
appear, Los Alamos/MCC, Springer-Verlag LNCS ..., October 1986.

[22] B. Goldberg and P. Hudak. Inferring sharing properties of partial applications in
higher-order functional languages. Research Report in preparation, Yale University,
Department of Computer Science, November 1986.

[23] G.H. Golub and C.F. van Loan. Matriz Computations. The Johns Hopkins Press,
Baltimore, MD, 1983.

[24] D.H. Grit and R.L. Page. Deleting irrelevant tasks in an expression oriented multipro-
cessor system. ACM Transactions on Programming Languages and Systems, 3(1):49-
59, January 1981.

[25] A.N. Haberman. Path Ezpressions. Technical Report, Carnegie-Mellon University,
June 1975.

[26] D.E. Heller and I.C.F Ipsen. Systolic networks for orthogonal decompositions. STAM
J. Sci. Stat. Comp., 4:261-269, 1983.

[27] D.E. Heller and I.C.F Ipsen. Systolic networks for orthogonal equivalence transfor-
mations and their applications. In Proc. Conference on Advanced Research wn VLSI,
1982, pages 113-122, Artech House, Inc., 1982.

31

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

P. Henderson. Functional programming, formal spepcification, and rapid prototyping.
IEEE Trans. on SW Engineering, SE-12(2):241-250, 1986.

W.D. Hillis. The Connection Machine. The MIT Press, 1985.

C.-H. Huang and C. Lengauer. Mechanically derived systolic solutions to the algebraic
path problem. In CompFEuro ’87, page , 1987.

P. Hudak. ALFL Reference Manual and Programmer’s: Guide. = Research Re-
port YALEU/DCS/RR-322, Second Edition, Yale University, October 1984.

P. Hudak. Collecting interpretations of expressions.
Research Report YALEU/DCS/RR-497, Yale University, Department of Computer
Science, 1986.

P. Hudak. Denotational semantics of a para-functional programming language. Int’
Journal of Parallel Programming, 15(2), 1986.

P. Hudak. Distributed task and memory management. In Proc. of Symposium on
Principles of Distributed Computing, pages 277-289, ACM, August 1983.

P. Hudak. Para-functional programming. Computer, 19(8):60-71, August 1986.

P. Hudak. A semantic model of reference counting and its abstraction (detailed sum-
mary). In Proc. 1986 ACM Conf. on LISP and Functional Prog., pages 351-363,
ACM, August 1986.

P. Hudak and A. Bloss. The aggregate update problem in functional programming
systems. In 12th ACM Sym. on Prin. of Prog. Lang., pages 300-314, ACM, 1985.

P. Hudak and B. Goldberg. Distributed execution of functional programs using serial
combinators. ‘In ‘Proceedings of 1985 Int’l Conf. on Parallel Proc., pages 831-839,
August 1985. Also appeared in IEEE Trans. on Computers, Vol C-34, No. 10, October
1985, pages 881-891.

P. Hudak and B. Goldberg. Experiments in diffused combinator reduction. In Proc.
1984 ACM Conf. on LISP and Functional Prog., pages 167-176, ACM, August 1984.

P. Hudak and B. Goldberg. Serial combinators:: “optimal” grains of parallelism.
In Functional Programming Languages and Computer Architecture, pages '382-388,
Springer-Verlag LNCS 201, September 1985.

P. Hudak and R.M. Keller. Garbage collection and task deletion in distributed ap-
plicative processing systems. In Proc. 1982 ACM Conf. on LISP and Functional Prog.,
pages 168-178, ACM, August 1982.

32

[42]

43)
ja4]
45)

[46]

[47]
48]
[49]
50]

51]

P. Hudak and L. Smith. Para-functional programming: a paradigm for programming
multiprocessor systems. In 12th ACM Sym. on Prin. of Prog. Lang., pages 243-254,
January 1986.

P. Hudak and J. Young. Higher-order strictness analysis for untyped lambda calculus.
In 12th ACM Sym. on Prin. of Prog. Lang., pages 97-109, January 1986.

J. Hughes. Lazy memo-functions. In Functional Programmaing Languages and Com-
puter Architecture, pages 129-146, Springer-Verlag LNCS 201, September 1985.

T. Johnsson. The G-machine: an abstract machine for graph reduction. Technical
Report, PMG, Dept. of Computer Science, Chalmers Univ. of Tech., February 1985.

N.D. Jones and A. Mycroft. Data flow analysis of applicative programs using minimal
function graphs. In Proc. 18th Sym. on Prin. of Prog. Lang., pages 296-306, ACM,
January 1986.

R.M. Karp and R.E. Miller. Properties of a model for parallel computations: deter-
minacy, termination, queueing. SIAM J. Appl. Math, 14:1390-1411, 1966.

R.M. Karp, R.E. Miller, and S. Winograd. The organization of computations for
uniform recurrence equations. JACM, 14:563-590, 1967.

R.M. Keller and F.C.H. Lin. Simulated performance of a reduction-based multipro-
cessor. IEEE Computer, 17(7):70-82, July 1984.

D.E. Knuth. An empirical study of fortran programs. Software and Ezperience,
1:105-33, 1971.

D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M. Wolfe. Dependence graphs

-and compiler optimizations. In Proc. 8th ACM Symposium on Principles of Program-

[52]

53]

[54]
[55]

ming Languages, pages 207-218, 1981.

H.T. Kung and C.E. Leiserson. Systolic arrays (for VLSI). In Sparse Matriz Proceed-
1ngs, pages 256-282, SIAM, Philadelphia, PA, 1978.

M.S. Lam and J. Mostow. A transformational model of VLSI systolic design. IEEFE
Computer, :42-52, 1985.

C.E. Leiserson. Area-Effictent VLSI Computation. The MIT Press, 1983.

B.C. Levy. 2-D Polynomial and _Rational Matrices, and their Applications for the
Modeling of 2-D Dynamical Systems. PhD thesis, Dept of Electrical Engineering,
Stanford University, 1981.

33

[56]

C. Lutz, S. Rabin, C. Seitz, and D. Speck. Design of the MOSAIC element. In Proc.

- Conference on Advanced Research in VLSI, 1984, pages 1-10, Artech House, Inc.,

57)
58]
59]
60]
61]
62]
63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

1984.

D.I. Moldovan. On the analysis and synthesis of VLSI algorithms. IEEE Trans.
Comp., C-31:1121-1126, 1982.

D.I. Moldovan and J.A.B. Fortes: Partitioning and mapping algorithms into fixed size
systolic arrays. IEEE Trans. Comp., C-35:1-12, 1986.

A. Mycroft. Abstract Interpretation and Optimizing Transformations for Applicative
Programs. PhD thesis, Univ. of Edinburgh, 1981.

D.A. Padua, D.J. Kuck, and D.H. Lawrie. High-speed multiprocessors and compila-
tion techniques. IEEE Trans. Comp., CC-29:763-776, 1980.

D.A. Padua and M.J. Wolfe. Advanced compiler optimizations for supercomputers.
CACM, 29:1184-201; 1986.

S. Pappert. Mindstorms: Children, Computers and Powerful Ideas. Basic Books,
1980.

V. Pratt. Modelling concurrency with partial orders. Int’l Journal of Parallel Pro-
gramming, 15(1):33-72, February 1986.

P. Quinton. Automatic synthesis of systolic arrays from uniform recurrent equations.
In Proc. 11th Annual Intern. Symp. Computer Architecture, pages 208-214, IEEE,
1984.

S.K. Rao. Regular Iterative Algorithms and their Implementations on Processor Ar-
rays. PhD thesis, Dept of Electrical Engineering, Stanford University, 1985.

Y. Saad. Gaussian elimination on hypercubes. In Algorithmes et Architectures Par-
alleles, North Holland, 1986. to appear.

D.A. Schmidt. Detecting global variables in denotational specifications. ACM Trans.
on Prog. Lang. and Systems, 7(2):299-310, 1985.

R. Schreiber. Systolic arrays for eigenvalue computation. In - Proc. SPIE 841 (Real
Time Signal Processing V), pages 27-34, 1982.

J. Schwarz. Verifying the safe use of destructive operations in applicative programs.
In B. Robinet, editor, Program Transformations — Proc. of the 3rd Int’l Sym. on
Programming, pages 395-411, Dunod Informatique, 1978.

C.L. Seitz. The cosmic cube. CACM, 28:22-33, 1985.

34

[71] E. Shapiro. Systolic programming: a paradigm of parallel processing. In Proc. Int.
Conf. Fifth-Generation Computer Systems, pages 458-470, 1984.

[72] E. Shapiro. Systolic-programming: a paradigm of parallel processing. Dept. of Applied
Mathematics CS84-21, The Weizmann Institute of Science, August 1984.

[73] N.S. Sridharan. Semi-applicative programming: an ezample. Technical Report, BBN
Laboratories, November 1985.

[74] M.J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis, University
of Illinois at Urbana-Champaign, 1982.

35

