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Abstract

A partial evaluator mir is an automatic program optimiza-
tion tool, but no penecea: Sometimes partial evaluation
yields large speedup, othertimes it does not. In this paper
we study speedup in partial evaluation.

It has for long been suspected that partial evaluation
can do no better than linear speedup. We show that if
miz is based on the techniques: constant folding, program
point/function specialization, function unfolding and tran-
sition compression, then superlinear speedup is impossible.

It is usually impossible to predict the outcome of a spe-
cialization. We have developed a simple but pragmatically
rather succesful speedup analysis which, when given a bind-
ing time annotated program, computes a relative speedup in-
terval. Specialization of the program will result in a speedup
belonging to the predicted interval. We give some experi-
mental results, and discuss shortcomings and possible im-
provements.

1 Introduction

During the last decade partial evaluation has proven its use-
fulness as an efficient and automatic program optimization
tool. Given a general program and parts of its input, a par-
tial evaluator miz produces a specialized version. The aim
is efficiency: The specialized version often run an order of
magnitude faster than the general program. Despite many
impressive results, partial evaluation is no panacea: Some-
times specialization pay off in form of a fast(er) program,
othertimes it does not. However, the user without detailed
knowledge of partial evaluation is usually unable to predict
how much can be gained by specialization. In practice, the
question: “is specialization of this program worthwhile?”
must often be answered by actually applying miz and run-
ning of specialized version.

An informative answer to the above question is partic-
ularly desirable when partial evaluation is applied to com-
putationally heavy problems. Examples with long execution
times include specialization of scientific computation [3], ray
tracing [12], and training of neural nets [9]. It is clearly
wasteful to have a programmer specialize a program and let
it run for hours just to realize that partial evaluation gave
no benefit.

An estimate of the obtainable speedup, available before
the specialization is done, would be valuable information.
Then partial evaluation could be applied where ever feasible
and not where ever possible, as is often the case. On the
basic of a speedup estimate, the user could decide to rewrite
her program in order to improve the prospective speedup (or
she could just forget about it!) It would be logical to com-
bine the speedup analysis with a binding time debugger as
supplied with e.g. the Similix [4] and the Schism [6] systems.
Another perspective would be to let the partial evaluator au-
tomatically generalize static computations’ which are found
not to contribute to a good speedup, the objective being
smaller residual programs.

Estimation of speedup is clearly undecidable. We com-
pute an estimate before the values of the static variables
are given and use only binding time information, that is,
knowledge about which computations that will be done at
miz-time.

In this paper we study speedup in partial evaluation. It
have for long time been suspected that partial evaluation
can at most yield linear speedup. We prove that if miz, as
described in e.g. [7], is based on the techniques: constant
folding, function unfolding, transition compression and pro-
gram point/function specialization, superlinear speedup is
impossible.

We have developed a speedup analysis which, when given
a binding time annotated program, approximates the speed-
up to be gained by partial evaluation by a relative speedup
interval [I, k]. The interpretation is: the specialized version
of the program will run at least ! but atmost h times faster
than the original program. If k is oo, an unbounded speedup
is possible. This can happen if e.g. the program contains
a completely static loop where the number of iterations is
determined by the static input.

Outline

In Section 2 we define the notions of speedup and linear
speedup, and prove that miz cannot accomplish superlin-
ear speedup. Section 3 contains description of a prelimi-
nary speedup analysis. In the succeeding section we discuss
shortcomings and improvements.

Section 5 compares our work with related work, Section 6
gives directions for future work in this field, and Section 7
concludes the paper.

1That is, to reclassify to dynamic




2 Measuring and defining speedup

Let the flow chart of a program p be the directed graph
where the nodes n; are control points and the edges are
transitions (jumps, calls, returns, ...). Let ¥ be the values
of the program variables. If a program execution in state
(ni,¥;) causes control to be passed to ;41 with variable
values i1, write (ni, %) — (Rit1,¥it1). A (finite) compu-
tation is a (finite) sequence:

(no,ﬁo) - (n;,ﬁ;) - ...

where no is the initial program point and %o is the program
input. If we assume that the cost in terms of time is the
same for all transitions, it is reasonable to define the eze-
cution time for a finite computation to be the length of the
sequence.

Application of a program to its argument(s) is by jux-
taposition and |- | denotes the execution time of a program
run. We assume the input T = (s,d) to consist of a static
part s and a dynamic part d. p specialized with respect to
s is written p,. Thus for given p, s,d the speedup gained by
partial evaluation is:

Ip(s, d)|
Ipsd|

2.1 Linear speedup
From Jones® [10,11]:

DEFINITION 2.1 (LINEAR SPEEDUP) Partial evaluation ac-
complishes linear speedup on p if for all s there exists an
a such that for all but finitely many d

L e, d)
= Tpdl

[m]

Let for each s, as be the least upper bound (we shall see
later that it does exist) of the possible values for a. Call
a, the speedup on p for s. A largest a does not always ex-
ist. Consider a program with a dynamically controlled loop
with equally time consuming static and dynamic computa-
tions, and assume that outside the loop there is one dynamic
statement (no static). Any a < 2 will work, but not a = 2.
Still a, = 2 seems the right choice for the speedup, since the
computations outside the loop contribute little to the total
run-times when the loop is iterated many times.

Jones posed the following as an open question [10,11]:
“If miz uses only the techniques [program point specializa-
tion, constant folding, transition compression/unfolding] do
there exist programs p on which miz accomplishes super-
linear speedups?” Equivalently: does there exist an s for
which a, is not defined?

When s varies, a, can grow unboundedly. A good exam-
ple: in Consel & Danvy’s derivation of the Knuth, Morris &
Pratt algorithm (complexity O(m+n), m = pattern length,
n = string length) from a naive matching algorithm (com-
plexity O(mn)) by specializing with respect to the pattern,
we have a, = km, k constant and hence linear speedup.

2Jones requires @ > 1, but that is not likely to hold for all s (for
example, take s to be empty) even for programs where a speedup is
intuitively obtained.

If miz uses, say, reductions such as (car (cons el e2))
= el to discard “unnecessary” computations®, introduces
memoization, or elimination of repeated subexpressions (e
+ e) = (let v =-e in (v + v)) then it is easy to con-
ceive examples of superlinear speedup.

We will show that by restricting partial evaluation to pro-
gram point specialization, constant folding, and transition
compression/unfolding the assumption that partial evalua-
tion terminates can be used to place a bound on a,. We thus
provide a negative answer to the question of Jones [10,11].

2.2 No superlinear speedup!

Consider a finite computation for program p on input To:

(no,ﬁo) — (nl,il) -_ .. (n;.,?;,)

Assume that each 7; has form (s, d;). Input to the program
is thus To = (s0,do). Each step, (ni, %) — (ni41,%i+1)
in the computation involves computing variable values v;41
and a new control point ni+1. Variable values depending
only on n; and s; can be computed at partial evaluation
time (= constant folding), and so can the shift of control
to ni41 (= transition compression or unfolding) when it is
uniquely determined by n; and si. (Beware that there may
be other reasons than pure dependency to refrain from per-
forming a compuation of either kind at partial evaluation
time.) We shall call those computations that are performed
at partial evaluation time static and those that are post-
poned dynamic.

Time is measured in computation steps, and for now we
take time to do a jump = time to do an assignment = time
to do an arithmetic operation = one step. To compute the
speedup gained by partial evaluation for p, so, and do, con-
sider the computation (no,%o) — ... above and simply sum
the time spent on static (t,) respectively dynamic (ta) com-
putations. We stress that we consider a standard computa-
tion and imagine: If this program had been partially evalu-
ated with respect to s, then this would have been static and
this would have been dynamic.

The potential speedup is:

to + td
tq

Assume that partial evaluation of p on s terminates in K
steps. Then in the standard computation there can be at
most K static steps with no intervening dynamic computa-
tions. This, in turn, means that the speedup for p, so, and
do is bounded* by 2(K + 1). This bound is independent of
do which rules out superlinear speedup.

3 Speedup analysis

We study languages representable as flow chart programs, as
defined in the previous section. Candidates include Pascal,
C etc, but the techniques are also applicable to functional
languages.

Input to the analysis is a binding time annotated pro-
gram, i.e. a program representation where all statements
have been marked as being either static or dynamic. As our
analysis is not given the value of the static variables, an ex-
act determination of the speedup is not possible. We shall

3The computations may have influence on termination properties.
4 Usually this will be a very loose bound.




approximate speedup by a speedup interval [u,v] C {z € R |
z > 1} U{oo}. A speedup interval for p should capture pos-
sible sgeedups for all s and d in a sense to be made precise
below.

3.1 Safety of speedup intervals

A speedup interval [u,v] is safe for p if the speedup “con-
verges” to an element in the interval as (s,d) are chosen
such that |p(s,d)| — co. Consider again the scenario from
Section 2.1 and assume that the speedup is independent of
the choice of s. Then a safe (and precise) speedup interval
is [2,2]. In general, the speedup will not converge to a fixed
T as |p(s,d)] — oo, but we shall require that all programs
that run “long enough” shall exhibit a speedup arbitrarily
close to the interval.

DEFINITION 3.1 (SAFETY OF SPEEDUP INTERVAL)
A speedup interval [u,v] is safe for p if for all sequences
((si,di)): |p(si,di)| = oo implies

Ve:Bk:Vj>k:M €Elu—e,v+e]
|Pa,'dj|

3.2 Simple loop and relative speedup

Let a flow chart program with nodes n; be given. A loop is
a sequence of nodes

—ng, forkeIN

Ny — N = ¢

where n; = nx. A simple loop is a loop ny — -++ — nx
where ni =nj, 1 <i< j < kimplies i=1and j=k.

Assume given a function assigning for each statement
(assignment, jump etc) an execution time.® Define for a
node n; the cost C(ni) as the sum of the execution times of
the statements in n;. For notational convenience, we write
Cs(n:) for the cost of the static statements in n;, and Ca(ni)
for the dynamic statement.

DEFINITION 3.2 (RELATIVE SPEEDUP IN LooP)

Letl = ny — .-+ — ni be a loop. The relative speedup
SU(1) in 1 is then defined by:

Su(l) = { Ll ifca(l) # 0
) otherwise
where C,(1) = Y471 Co(ns) and Ca(l) = Timy Ca(ni). O
The relative speedup of a loop is a number in {z € R |z >
1} U {c0}.
Relative speedup can be defined for a single basic block
in the obvious way.

3.3 Doing speedup analysis

Let a flow chart program p with simple loops L be given.
The basic idea behind the analysis is the observation that
the relative speedup of the whole program is determined by
the speedups of the loops. If the program run for a sufficient
long time, it will spend most of its time inside loops.

5For addition involving oo we use z + 00 = o0 + £ = oo for all
z € RU {o0}

6 The analysis can be refined by letting the execution time function
take evaluation of expressions into account

Algorithm For all simple loops | € £ in p, compute the
relative speedup SU(1). The relative speedup interval is then
the smallest interval [u,v] C {z € R | z > 1} U {cc} such
that VI € £ : SU(l) € [u,v]. o

To see that the speedups for all non-simple loops are also in
the interval, let us see that if [u,v] is safe for loops !; and
I then it is also safe for a loop ! composed from I; and ;.
Assume w.lo.g. that SU(l1) # oo and SU(l2) # co.

C,()) +Ca(l)
Suny = =L -7
@ Ca(l)
Ca(l1) + Ca(l2) + Ca(l1) + Ca(l2)
Ca(ly) + Ca(l2)
Co(3)+Ca(1 C,(12)+Cq(1
— Ca(la Cq(l2
- Ca(1)+C4(1 Ca(13)+Cq(1
Ca(ly Cq(la
SU(l) SU(l2)
(C‘!ll H‘Cd!'Z!) (C‘Sl] !+cd!'2!)
Ca(l1) Cq(l2)
Assuming SU(l) < SU(I;) it is easy to prove
SuU(l SU(l
Su(ll) < Ca(l fcl)z, ( 2) < Su(b)

+

éd [ ) (C ,Cd.{ég 2 )
The speedup analysis does not take basic blocks outside
loops into account. Clearly, the speedup of the loops will
dominate the speedup of the whole program provided the
execution time is large. However, the analysis can easily be
modified to handle the remaining basic blocks by accumu-
lating relative speedups for all path through the program
without entering loops. Without the revision, the analysis
will have nothing meaningfull to say about programs with-
out loops.

ExaMPLE 3.1 Consider the follwing trivial program which
implements addition.

int add(int m, int n)

{

int sum;

1: sum = n;
2: if (m) goto 3; else goto 6;
3 sum += 1;
4: m=-=1;
5 goto 2;
6: return sum;

}

The basic blocks are: {1}, {2,3,4,5}, {6} where the second
constitute a (simple). loop. Suppose that m is static but n
dynamic. Then the statements 2, 4 and 5 are static and
the rest dynamic. For simplicity, count 1 time-unit for each
statement.

The relative speedup of the loop is 4. Hence, the ap-
proximated relative speedup of the whole program is [4,4].
END oF EXAMPLE

THEOREM 3.1 (SAFETY OF THE ANALYSIS)
Assume speedup analysis computes the speedup interval [u, v]
for program p. Then [u,v] is safe for p.

PROOF  An upper bound v = oo is trivially safe, so we
assume v # 0o.




Consider the sequence of nodes n; visited during a com-
putation ¢ arisen from the application of program p to data

(s,d).
e

To delete a simple loop ni — nip1 — --
to replace ¢ by:

- — niyj fromc is

n1—>..-._>n'~_1_;n.'+j+1...—pnk

Now delete as many simple loops as possible from c. Denote
the multiset of deleted loops by L. The nodes remaining in
¢ now occur only once. The number of nodes in p provides
a uniform bound on the number of remaining nodes, inde-
pendent of the choice of (s,d). Denote the set of remaining
nodes by NL and define nlstat = ), Cs(n) and nldyn
=Y .ent Ca(n). Define the cost functions C, and Ca on a
multiset £ of loops to be the sum of the costs for each loop
lecL.
We now calculate the speedup for p, s,d:

C+(L) + nlstat + C4(£L) + nldyn
C4(L) + nldyn

This expression can be rewritten to the following (ezactly as
in Section 3.8):

( c:(c)'*'g;([’l) ( nlstaH-nldm)

SU = Ca( nldyn
(Cd(£)+nldyn ) (C¢(£)+nldyn)
Cq(L) nldyn

Now we will argue that for all € > 0 there ezists a K such
that SU € [u — €,v + €] if only |p(s,d)] > K. Choose a
sequence of (si,di) such that |p(si,di)] — oo and ezamine
the fractions.

To the right of the +, the numerator 2‘—’%%}‘3’3 is uni-

formly bounded and the denominator -c-ig—ﬁ%%-u — o0 (re-

call that C4(L) — oo since we assumed v # ).
To the left of the +, the denominator Ca(L)tnldyn _ 4 4

Cq(L)
we conclude SU — &= €+g £
4

By the argument in Section 3.3, c—'(%%%ﬂ € [u,v]
which concludes the proof. ]

3.4 Experiments

We have implemented the speedup analysis as part of the
C-Mix system, a partial evaluator for a subset of C [1,2].
The implemented version solely considers loops, and has a
differentiated cost function for statements, but takes evalu-
ation of expressions to take constant time. The analysis is
{ast; there is no significant execution time for the examples
presented here.

The analysis has been applied to a number of programs.
All experiments have been performed on a Sun SparcStation,
and times measured via the UNIX time command (user sec-
onds). Hence, we believe the reported figures provides a fair
view of the reality. Note that the programs Int and Scanner
are from [13] and thus not specially “cooked” for this paper.

Below the measured and estimated speedups for three
different programs are shown. The Add program is given in
Example 3.1 above. The Int program is an interpreter for
a “polish-form” language stolen from [13]. In this example,
the static input was a program computing the first n primes,

and the dynamic input was n = 500. The program Scanner
is a general lexical analysis taking as input a scanner table
(static input) and a stream of characters (dynamic input).
In the test run, it was given a specification of 8 different
tokens which appeared 30000 times in the input stream.

Example || Run-time Speedup

Src | Res || Measured | Estimated
Add 12.2 | 4.6 2.7 [2.7,2.7‘
Int 59.1 | 8.7 68| [5.1,00]
Scanner 1.5 ] 0.9 1.7 [1.5,4.l]

Assessment For the Add program the speedup factor is in-
dependent of the dynamic input and converges to 2.7 as the
static input grows. Hence the very tight interval.

The upper bound for Int is corretly oo as the inter-
preter’s code for handling unconditional jumps is completely
static:

vhile (program[pp] != HALT)
switch (program[ppl)

case ...
case JUMP: pp = program[pp+1]; break;
case ...

}

Thus, an unboundedly high speedup can be obtained by spe-
cializing Int with respect to a program with “sufficiently”
many unconditional jumps. We provide an example below.
Note that the speedup, of course, is bounded by the length
of the program, but as the analysis is performed before the
static values are known, it must err in the most conservative
way and report “unbounded speedup”.

The interval for the Scanner is also satisfactory. Is a
specification of unambiguous tokes given, very litte can be
done at miz-time, and thus a low speedup. On the other
hand, if the supplied table contains many “fail and back-
track” actions, the upper bound can be approached. a]

To demonstrate that the seemingly non-tight speedup in-
tervals computed by the analysis are indeed reasonable, we
have applied the “polish-form” interpreter to three different
programs, i.e. three different static inputs. Each program
exploits different parts of the interpreter. Recall that the
computed relative speedup interval for Int is [5.1,00).

The Primes program is the program computing the first
n primes. The Addp program is the equvivalent to the pro-
gram Add in Example 3.1, but in “polish-form”. The Jump
program consists of a single loop with ten unconditional
jumps (see below). The measured speedups are as follows.

Example || Run-time Speedup
Src | Res || Measured

(Primes || 59.1 | 8.7 6.8
Addp 51.5 | 5.5 9.2
Jump 60.7 | 3.0 20.3

Assessment These experiments clearly demonstrate that
the actual speedup does depend on the static input as pre-
viously claimed.

The Primes program contains mainly aritmetic opera-
tions, and hence, by specializing the interpreter to it, nearly
nothing but the “pure” interpretation overhead can be re-
moved. The lower bound 5.1 could be further approached by




specializing the interpreter to a program containing nothing
but operations depending solely on dynamic input (get, add
etc).

In the case of the Add program, the static “book-keeping”
in the interpreter makes up a greater part of the total execu-
tion time than for the Primes program. Hence the somewhat
larger speedup.

The final example, Jump indicates that an arbitrarily high
speedup is possible. The program is shown below (in a
cooked, more readable syntax).

/% Jump %/

read n;

loop

exitif n = 0;

jump 1;

jump 2;

¢ jump 3;

¢ jump 4;

jump §;

jump 6;

jump 7;

jump 8;

jump 9;

jump 10;
10: n=n - 1;

end;

WWOO~NOOHWN -

Since all the jumps 1 — 2--- — 10 can be done at spe-
cialization time (“transition compression”, cf. the fragment
of the interpreter shown above), the high speedup is ob-
tained. Clearly, when the concrete program is unavailable
to the speedup analysis, it cannot give an upper bound for
the speedup. o.

4 Extensions and improvements

Even though the speedup analysis presented in the previ-
ous section has demonstrated some pragmatic success, it is
also infested with severe drawbacks. We have found that
the lower bound computed by the analysis usually provides
a fairly good estimate, but it is easy to construct examples
which “shake” the analysis. Consider for example the pro-
gram fragments below.

n=K; n=1I;
while (n) while (n)
{ s1; s2; n—-; } {s1; n—-; }
n=1I;
while (n)
{s2; n-=; }

Suppose that S1 (static) and $2 (dynamic) do not interfere
meaning the two programs have the same effect. For the
program to the left, the estimated speedup interval is [4,4]
(counting 1 for all kinds of statements). The corresponding
interval for the program to the right is [3,00], where co is
due to the completely static loop. The latter result is still
safe but less tight than the former.

The problem is that the analysis considers loops in iso-
lation, and fails to recognize that the two loops iterate the
same number of times. (Notice that even though the relative
speedups and the residual programs are equal, the special-
ization time for the former is only half as large as that for
the latter.)

4.1 Relating loops

As exemplified above, a major shortcoming in the analysis
is that all loops are treated as being completely unrelated.
If it was known that two loops iterate the same number
of times, then their bodies could be treated as one. This
would capture the above example but it is only too easy
to construct new and worse “counterexamples”. Another
blemish in the method is that all loops contribute equally to
the final approximation of the speedup. For example, in a
program with two loops, the one iterated 2 times, speedup
2, the other iterated 1000 times, speedup 10, the actual
speedup is clearly close to 10. The speedup analysis would
report the safe but loose speedup interval [2, 10].

A tempting idea is to relate the number of times a (sim-
ple) loop is iterated with its relative speedup. One can com-
pute approximations in the form of an interval [1, k] meaning:
the loop iterates at least ! times but at most h times. Here
oo must be included with the meaning “unknown” number
of iterations.

An advantage of this approach is that bounds on com-
pletely static loops might be detectable thus ruling out some
sources of seemingly unbounded speedup. For instance, in
the example program to the right, the static loop cannot give
unbounded speedup as it is limited by N. This approach
would not, however, capture e.g. the unbounded speedup
in the “polish-form” interpreter, as it depends truly on the
static input.

4.2 Making use of static values

As the obtainable speedup depends on the static input, it
is a possibility to take the values of these into account to
give a more precise speedup estimation. Either the concrete
values or a description of the static input could be consid-
ered. We consider the latter in the next section, as this is
the procedure in automatic complexity analysis.

Often the time for specialization of a program is far below
the execution time of both the original and residual program.
When this is the case, analysis of the residual program seems
to be a reasonable way to proceed. Animmediate advantage
hereby is, that since the static loops have been unrolled, an
upper bound for the speedup can always be computed, that
is, no unbounded speedup. Further, miz-introduced opti-
mizations such as arity arising, unfolding etc, can be dealt
with in an easy way. Beware, a precise speedup still can-
not be computed: The residual program may (dynamically)
choose branches with different speedups.

A way to do speedup analysis of the residual program is
to modify the partial evaluator to output “profiling” infor-
mation into the residual program. More concretely, it could
mark in the residual program where static computations had
been performed. Then the speedup analysis described in
Section 3 could be applied almost unmodified.

4.3 Analyzing speedup in functions

The presented analysis gives as result a speedup estimate
for programs as a whole. In some cases it may also be useful
to have a speedup estimate for each function. For example,
“binding-time-crafting” could then be brought into action
on functions with a low speedup, or a user could decide to
specialize only functions with a high speedup estimate.
The analysis can easily be modified to support speedup
estimation of functions. Consider a call statement as a basic




unit with an associated cost. The flow-chart representation
of a program then consists of a number of sub-graphs, one
for each function. Analyze each sub-graph individually. A
speedup estimate for the whole program can be given by
accumulating the speedups for all (called) functions.

The speedup estimate is likely to be more coarse than be-
fore. The reason is that many small “very” static or “very”
dynamic loops may turn up. On the other hand, a speedup
estimation attached to each function may prevent a com-
pletely static “initialization” loop in a “main” function to
distort the result of the global analysis.

4.4 Extension to other languages

In a straightforward manner, the analysis can be changed
to analyze functional languages. For analyzing higher order
languages, the trace of the control-flow becomes more com-
plicated, but it can be handled by well-known techniques.
We will not dwell on this here.

% Related work

To the best of our knowledge, this is the first humble attempt
at automatic estimation of speedup in partial evaluation.

5.1 Speedup in partial evaluation

Jones defined the notion of a partial evaluator accomplish-
ing linear speedup [10,11], observing that the speedup may
depend on the static input. He posed as an open problem
whether it is impossible for miz to accomplish super-linear
speedup, when it is based on the basic principles function
specialization, constant folding, and unfolding of functions.
We have given an affirmative answer to his problem in this
paper.

As a curiosity, immediately before Jones stated the defi-
nition of linear speedup, Consel and Danvy made an inter-
esting experiment [5]. They specialized a general pattern
matching program and obtained the efficient Knuth, Mor-
ris & Pratt algorithm. It was found that the speedup was
exactly the length of the static input string. Note that the
same tendency is present in the “polish-form” interpreter.

Amtoft [8] proves in the setting of logic programming
that fold/unfold transformations at most can give rise to
linear speedup. The same restrictions as imposed upon miz
are necessary. Note, however, that unification is daringly
assumed to run in constant time.

5.2 Speedup analysis vs. complexity analysis

Automatic complexity analysis has received some attention
during the last years. The aim is: given a program p and
possibly some “size” descriptions of the input, to compute a
worst-case complexity function Op(:) in terms of the input
sizes n;.

It is tempting to apply the techniques from automatic
complexity analysis to speedup estimation. However, as the
following example illustrate, the linear speedup in partial
evaluation does not fit well into ordinary complexity analy-
sis. Consider the program below.

while (n)

{ s1; 82; ... Sj; n=n-1; }

Assume the relative speedup obtained by specialization of
the statement sequence S1; ...Sj; to be k. Then the rel-
ative speedup of the whole program will be approximately
k regardless of the loop being static or dynamic. However,
if the loop is static, complexity analysis of the residual pro-
gram will produce the answer O(1), since the loop has been
unrolled. If the loop is dynamic, the result will be O(n). Not
much insight (about speedup, that is) is gained this way.

It is, however, most likely that the techniques from auto-
matic complexity analysis can be adapted to aid the problem
of speedup analysis.

6 Future work

There are several possible directions for continuation of the
preliminary results presented in this paper. We believe that
automatic speedup estimation is an emerging field, which
will become more important as larger and more practically
applicable partial evaluation systems are built.

Still further experiments may be helpful to figure out
what kind of information is profitable for users of partial
evaluators. An estimate of the loop-iterations appears to
be a fruitful kind of information. It can provide the user
with a tighter speedup estimate, but there are also other
application areas.

Specialization of certain kind of programs have a bad
habit of producing huge residual programs, cf. e.g. [9]. This
may be inconvenient for several reasons, for example the
underlying compiler may be exhausted. This is a general
problem with machine produced programs. An estimate of
the size of the residual program could give the programmer
the opportunity to generalize a loop to prevent unrolling.

Since the size of the residual program to a great extent
is determined by the static loops unrolled, loop-iteration
estimates appear to be the needed tool. Function unfolding,
splitting of data structures etc, may also have an impact,
though.

Let p be a program and pres a specialized version of p.

Define the code blowup as the relation Jhﬁ;;":ll where || p ||

denotes the “length” of p. There is no obvious relaxation
between the speedup J%%illl and the code blowup. Clearly,

if is the speedup is large but the code blowup low, a lot is
gained at a low price. A linear relation between the speedup
and the code blowup appears to be acceptable: the speedup
must be accepted to have a certain price. Can superlinear
code blowup be allowed? No clear distinction seems to exist
which supposedly makes automation of generalization with
respect to code size impossible.

A general problem in this work is the lack of an underly-
ing theoretical foundation, that is, a complexity theory for
linear speedups. We have been able to answer the problem
of superlinear speedups without such a theory, but a classifi-
cation of for examples the speedup in interpreters would be
helpful. This is still an open problem. Further, a closer con-
nection between safe optimizations and superlinear speedup
is still needed. As we saw, by discarding computations or
introducing sharing, superlinear speedups can be achieved,
but the last word about cause and effect is still to be said.

7 Conclusion

We have investigated speedup in partial evaluation. It was
showed, that if miz is based on the techniques: function spe-




cialization, function unfolding/transition compression and
constant folding, superlinear speedup is impossible.

A simple, but useful speedup analysis has been developed
and implemented. The basic principle is that the speedup
of the whole program is determined by the speedup in the
loops. We gave some experiments which showed reasonable
results, but we also pointed out that the analysis can fail
miserably on nasty programs.

We believe speedup estimation is a valuable information
for users of a partial evaluator systems, and hence, further
investigation of this field should be undertaken.
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Abstract

The definition of a partial evaluator determines which input-output function will be computed
by a residual program. For many applications, however, we would like a similar guarantee on
how the residual programs compute this function. This paper presents the prototype of a tool for
predicting the structure of residual programs based on the partial evaluator and (pieces of) the
source program. The result is in the form of a grammar describing the possible residual programs.
The technique is based on abstract interpretation.

1 Intensions and extensions of a partial evaluator

The standard definition of a partial evaluator is purely extensional, stating that the residual program
will compute the “right” (in effect — the specialized) function on the dynamic data. This “correctness
by construction” is the motivation behind most applications of partial evaluation. It is most explicit in
the use of partial evaluation to generate correct compilers from definitional interpreters (as specified
by the Futamura projections [Futamura 71]). But it is also essential to applications such as the
specialization of string matchers by Consel and Danvy. By generating residual programs with the
structure of, respectively, the Knuth-Morris-Pratt failure tables and the Boyer-Moore algorithm from
the same source program with only simple modifications of the primitives, partial evaluation provides
insight into the relation between these two otherwise distinct algorithms as well as an independent
proof of their correctness [Consel & Danvy 89, Danvy 91].

In most practical applications, however, the partial evaluator is expected to have specific intensional
properties as well — it should perform static reductions, so that only certain pieces of the source
program are reproduced in the residual program [Jones et al. 89].

So when using a partial evaluator to compile, the partial evaluator is expected to perform the
traditional “compile-time” actions. For example, a compiled program should not contain any references
to a compile-time environment, but should contain direct accesses to the run-time store. This is
expected to be a general property, that is, for a specific interpreter all the compiled programs should
access the store directly.
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In the string matching example, on the other hand, we do not have any preconceived notion of
“how much” the partial evaluator should do. Clearly it should do “as much as possible”, but there
is no previously established reason why this should lead exactly to the structure of the KMP failure
tables. So again, in order for the results about string matching to have validity as a theoretical tool
for reasoning about hierarchies of algorithms, it must be established that the residual programs have
the structure of the KMP failure tables, resp. the Boyer-Moore algorithm, for all legal static data.

Such results about families of residual programs might of course be proven for each individual
source program by a proof over the entire partial evaluator. Such proofs would be considerably
simpler when the partial evaluator is an off-line partial evaluator (that is, it has a separate binding
time analysis), since the binding time annotated program could then be used as a starting point. Then
a proof would only need to involve the actual core specializer. But it would still be a rather large and
tedious task, and a large number of similar steps would have to be repeated for every source program
one wished to prove properties from.

Thus it seems that there is a need for a generic tool, that could be proven once and for all and
that produces this kind of information about residual programs.

2 Grammars describing residual programs

We have developed a technique for predicting properties of residual programs. From the partial
evaluator and a source program we generate a context-free grammar describing the possible residual
programs.

Together, a partial evaluator and a source program clearly define a set of residual programs (and
possibly some error messages and infinite loops) corresponding to all possible static data. If we consider
this set to be a kind of language, the choice of a grammar as an abstract representation comes quite
naturally.

This is inspired by Jones [Jones 87], who proposes the use of grammars in flow analysis to represent
potentially infinite structures, and Mogensen [Mogensen 88], who uses a grammar representation of
compound structures to describe partially static structures.

With this approach, a non-terminal is generated for each procedure and possibly for each formal
parameter in the program being analyzed. The non-terminals are intended to represent the result of
procedure applications and identifier references. This way any recursive references in the program will
appear as recursive productions in the grammar.

Since an essential part of this project is that it must be proven correct, we base ourselves on
abstract interpretation.

In order to keep the abstraction — and thus the proofs — simple, we use the following observation:
the generating extension of a source program (that is, the result of specializing the partial evalua-
tor with respect to the source program) is a program that maps static data to residual programs
[Ershov 78]. This implies that an abstract representation of all possible output of the generating
extension is also an abstract representation of all residual programs corresponding to this source
program.

So, we design an abstract interpretation of the target language of the partial evaluator, which is,
of course, the language in which the generating extensions are written. This abstract interpretation
produces an abstract representation of the output of a program in the form of a grammar. So when we




use it on a generating extension, we get a grammar representation of the family of residual programs.

This approach implies that we only have to prove the abstraction of the standard semantics of the
target language, instead of proving an abstraction of the entire partial evaluator. Also, our approach
will in principle work for any partial evaluator with the same target language. On the other hand, it
requires the partial evaluator to be self-applicable and each abstract result will correspond to a fixed
division of the input into static and dynamic.

We have proven [Malmkjeer 91] the safety of our analysis (all concrete results must be in the
language generated by the grammar) using logical relations [Jones & Nielson 91].

As a practical experiment, we have implemented a prototype of the analysis for the Similix spe-
cializer [Bondorf & Danvy 91, Bondorf 91]. The prototype uses the abstract syntax trees generated
by Similix before postprocessing. In order to represent the call structure of the residual programs,
it generates non-terminals corresponding to residual procedures as well as procedures in the program
being analyzed.

To facilitate a proof by logical relations, the grammars are generated by local fixed points instead
of a global fixed point over the entire program. Once a nonterminal corresponding to a procedure has
been generated, the corresponding production is computed as a fixed point over the right hand side of
the production. At each step, the right hand side is replaced by the non-terminal and the grammar
containing the production from the non-terminal to the right hand side. Since the non-terminals are
never dereferenced, this ensures termination.

3 Example

As an example of the kind of results we can get with the current implementation, we consider the
following piece of a source program for Similix:

(define (evalExpression E env)
(cond

[(isConstant? E) (constant-value E)]

[(isVariable? E) (lookup-store (lookup-env (E->V E) env))]

[(isPrim? E)

(let ([op (E->operator E)])

(cond
[(is-cons? op) (cons (evalExpression (E->E1 E) env)
(evalExpression (E->E2 E) env))]
[(is-equal? op) (equal? (evalExpression (E->E1 E) env)
(evalExpression (E->E2 E) env))]

[(is-car? op) (car (evalExpression (E->E E) env))]
[(is-cdr? op) (cdr (evalExpression (E->E E) env))]
[(is-atom? op) (atom? (evalExpression (E->E E) env))]
[else "Unknown operator"]))]

[else "Unknown expression form"]))

The experienced reader will recognize this as a part of the MP interpreter that is distributed with
Similix. This toy interpreter is used to demonstrate compiler generation by partial evaluation. We
have chosen it as an example since it was written by someone else without any consideration for the
present analysis.
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The analysis determines that the specialized versions of this piece of code — that is, the compiled
MP expressions — will be members of the language described by the following grammar:

sim-process-expr --> _|_
| (expr (comst "Unknown expression form"))
| (expr (const "Unknown operator"))
| (expr (primop "atom?" sim-process-expr))
| (expr (primop "cdr" sim-process-expr))
| (expr (primop "car" sim-process-expr))
| (expr (primop "equal?" sim-process-expr sim-process-expr))
| (expr (primop “cons" sim-process-expr sim-process-expr))
| (expr (primop "lookup-store" (expr (const Val))))
| (expr (const Val))

Except for renaming the non-terminal to sim-process-expr for readability, the grammar produc-
tions appear exactly as produced by the analysis. L represents possible errors during partial evaluation.
Val represents any value, so the form (const Val) represents a constant in the residual program, the
value of which cannot be determined by the analysis. Note that the grammar shows us that syntax
errors will be reported at run-time rather than at compile-time. This is consistent with the semantics
of the interpreter, which may terminate normally on input that does not cause the part with the
syntax error to be executed.

The remaining productions correspond to the compilation of well-formed expressions. In particular
we notice that the environment lookup has disappeared, whereas the store lookup remains.

We have run the analysis on the entire MP interpreter and the resulting grammar shows that, as
intended, there will be no references to the environment in the compiled programs.

The results of this analysis could be combined with one or more postprocessing steps that could
give more specific information automatically. A very simple example for Similix would be a step that
could make a specialized “run-time package” of adt files, since the grammar can often tell which of
the user-defined primitives are used by the residual programs.

4 Assessment

Although the analysis shows satisfactory results on several examples, there is still room for improve-
ment in other cases.

At present higher-order values are handled in a trivial way, causing loss of information in programs
that rely to any significant extent on higher-order programming. We plan to improve on this by adding
a closure analysis.

We also plan to plan to improve the precision of parameter passing and perhaps to extend the
analysis with some facility to trace back the unknown values in the output to the static data. Thus,
for some of the unknown constants appearing in the residual program, the analysis may be able to
determine that, although the constant is unknown, it corresponds to, e.g., the primitive “length”
applied to the second static argument.

It is likely that this analysis could be “pilled back” over the partial evaluator, so that we would
analyze the binding time annotated source programs directly, instead of the generating extension. This
should give quite similar results, but it would be much more complicated to prove that the analysis
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was consistent with the partial evaluator, since the proof would have to involve the behavior of the
partial evaluator instead of just the standard semantics of the target language.

Alternatively, an analysis directly on binding time analyzed programs could be proven correct by
generating it from the present analysis by partial evaluation. Since the present analysis works on
the generating extension, it can be described as a function on the partial evaluator and the source
program that first produces a generating extension and then analyzes it. If we denote the analyzer of
generating extensions by A and the partial evaluator by PE and the functions they compute by A and
by P&, we can describe the composed function as a mapping from a partial evaluator and a binding
time analyzed source program to a grammar:

(PE,p) — A(PE(PE, p))
Clearly this composed function can be specialized with respect to its first argument:
PE(Ao PE, PE)

The specialized composed function will be a program that takes a binding time analyzed program
and produces a grammar representation of the possible residual programs. Note, however, that this
is only an extensional achievement. To obtain non-trivial results from this specialization, we would
need a more powerful partial evaluator than the current state of the art provides, since the generating
extension is produced under dynamic control. Intensionally, the resulting analyzer would in fact
operate by first producing the generating extension and then analyzing it.

It would also be possible to specialize the composed function by hand, though, in which case we
have a much richer collection of meaning-preserving transformations at our disposal. Thus it may be
possible to derive an analyzer operating directly on the binding time analyzed program in a non-trivial
way by transforming the current analyzer. If we only use meaning-preserving transformations and if
we have proven that the program PE is indeed a partial evaluator, the correctness of such an analysis
will rely on the correctness of the current generating extension analyzer.

To the best of our knowledge, there has been no similar work in partial evaluation. It is still an
open question how well the technique will adapt to other partial evaluators than Similix.

5 Conclusion

We have succeeded to develop a tool that determines some of the properties of residual programs in a
generic way. We have proven that the analysis is safe and implemented a prototype, as reported here.
The prototype is still relatively simple but appears to be an appropriate basis for several extensions
that will produce considerably more precise results.

Currently the partial evaluation programmer writes a source program with a particular intention
of which parts should be reduced — an intention that corresponds to the programmers experience with
how the partial evaluator works. As the partial evaluation technology develops, however, it becomes
increasingly more powerful but also increasingly more complex. This implies that the connections
between the source program and the possible residual programs become less and less transparent.
Correspondingly, the need for automatic and safe tools for determining these connections is likely to
grow. The present approach has the advantage that the analysis will not grow more complex with the
partial evaluator, as it relies only on the target language.
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Abstract

Partial symbolic evaluation is the basis of a new general
formalism for the semantical interprocedural analysis of im-
perative programs. This paper introduces this abstract in-
terpretation framework and presents two of its applications
for (1) interprocedural constant propagation and (2) inter-
procedural side effect analysis. Our approach thus allows a
clean unification of otherwise quite different data-flow anal-
ysis methods. Besides its theoretical appeal, this technique
also permits multiple analysis to be efficiently performed
in one single pass; this was not achievable with previously
published techniques.

Partial symbolic evaluation is based upon a symbolic
evaluator of programs ; its partial aspect comes from the fact
that the choice of the simplification routine on symbolic ex-
pressions is dependent upon the application at hand. Using
an abstract interpretation framework, we give a complete
description of our symbolic evaluator for a generic inter-
mediate imperative language, state its correctness theorem
with respect to the standard semantics and study the com-
putational complexity of our method. By looking at specific
examples, we show that our technique is thus not only more
general and formally sounder than the ad-hoc algorithms
presented in the literature but also gives better results in
some cases (e.g., side effect analysis).

Partial symbolic evaluation and the two applications
discussed in the paper have been implemented inside the
PMACS parallel programming environment at Bull. We
give performance figures comparing our solution to previ-
ous techniques, on programs given in the literature.

Keywords: symbolic evaluation, data flow analysis, ab-
stract interpretation, interprocedural analysis, constant
propagation, side-effect analysis.

1 Introduction

Many optimizing compilers perform intraprocedural data-
flow analysis to gather information that is used within the
optimization phase. The most common kinds of analysis
are: binding-time analysis used in constant folding, avail-
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able expressions for common subexpression elimination and
use-kill bit vectors for dead code elimination [ASU86]. Vec-
torizing and parallelizing tools also rely upon the results of
optimization analysis for building more accurate dependence
relations among statements of programs. Independently, in-
traprocedural analysis have integrated more sophisticated
semantics-based techniques [CH79, RT81, J87, JD89] that
greatly enhance the quality of information provided to sub-
sequent optimization phases.

While all these techniques take into account the data-
flow behavior inside subroutines, only few have been adapted
to go across procedure boundaries, thus impairing their pre-
cision when programs are written (as they should be) in a
modular fashion. This lack of accuracy is predominantly
damaging to parallelizing compilers, for which the quality
of the dependence analysis is crucial for an optimal de-
tection of implicit parallelism within programs. Although
[RG89a, RG89b] argue about the usefulness of these in-
terprocedural extensions for sequential compilers, several
measurements [C88,LSY89] have shown that interprocedural
data-flow analysis drastically reduces the number of depen-
dencies.

This paper describes a new framework, based on partial
symbolic evaluation, for semantical interprocedural analysis
of programs that not only unifies different analysis schemes
but also outperforms current techniques [C88]. As a prac-
tical application, we show how constant propagation and
kill-use computation can be merged together. On a more
theoretical note, by viewing our analysis as a non-standard
interpretation of programs, we can formally prove its sound-
ness [D90], which is seldom done in the literature.

Our approach is to apply a powerful, albeit efficient, sym-
bolic evaluator to each procedure; its result is a function
of the formals that is kept associated to the corresponding
procedure. To propagate the symbolic information inter-
procedurally, we link this function to the intraprocedural
data-flow information of the actuals at each call site. Then,
depending on the data-flow analysis framework we want to
deal with, a dedicated interpretation of the resulting sym-
bolic store is performed, yielding the desired information.
By limiting the amount of simplification performed on sym-
bolic stores (i.e., by using a partial symbolic evaluator), dif-
ferent analysis such as constant propagation or side-effect
can be done with the same information.

Section 2 presents the related work in symbolic interpre-
tation and interprocedural analysis. In section 3, we define
a simple language whose symbolic evaluator is discussed in
section 4. Section 5 discusses the issue of partial symbolic




evaluation for the interpretation of stores in the context of
two interprocedural applications: constant propagation and
determination of side effects of procedures. We conclude in
section 6.

2 Related Work

Symbolic evaluation can be seen as an abstract interpre-
tation [CC77] of programs. This technique is usually very
time consuming and many attempts have been made to try
to find a trade-off between the efficiency and the precision of
the evaluation. [RL76] suggests to compute, for each vari-
able, a text expression that represents the value of the vari-
able at a given program point for all executions of the pro-
gram. Another version of this algorithm, less precise but
more efficient, has been described by [RT81]. These two
techniques only deal with those variables that denote the
same symbolic value for all paths of the flow graph of the
program. [F'84] introduces the notion of symbolic stores and
investigates the use of symbolic evaluation for detecting re-
currences in numerical analysis applications. [J86] presents
a technique for the symbolic evaluation of structured pro-
grams with conditional branches by introducing the notion
of guarded ezpressions that represent the symbolic value for
a particular path in the flow graph; this technique subsumes
the conditional constants of [WZ85]. A modified version of
this technique has been used in [JD89] for improving the
detection of generalized reductions, i.e. loop invariants, in-
duction variables and reduction operations like dot products.
All these techniques are intraprocedural; in this paper, we
extend symbolic evaluation to general procedure calls. A
similar approach has been used in the context of software
re-use [CPGM91] but it addresses Ada and also resorts to a
simplistic loop-unrolling scheme to deal with DO loops.
Interprocedural data-flow analysis has been mainly stud-
ied in the framework of parallelization of scientific programs.
[CCKT86] introduces a series of techniques for extending
the intraprocedural constant propagation methods in order
to deal with procedure calls. [R79] presents an algorithm for
detecting whether a procedure invocation modifies or uses
a variable or preserves its value. This information is en-
coded either by a boolean or a symbolic expression in terms
of the program variables. This algorithm is very powerful
but very expensive. [CK88] introduces the bindings graph
as a means to performing an efficient interprocedural flow-
insensitive side-effect analysis. Using this graph, the for-
mal propagation subproblem becomes linear in the length of
the program. However, this method can only detect those
side-effects that happen at least for one path through the
flow graph of the program. [C88] proposes an interprocedu-
ral flow-sensitive side-effect determination algorithm. The
flow-sensitivity comes from the intraprocedural analysis per-
formed by the algorithm, namely reaching definitions. The
algorithm is polynomial in the size of the program. Since no
semantical information are computed, this technique can-
not determine if a flow-sensitive effect occurs for all paths
of the flow graph. Therefore, the result of the analysis is
related to only one path. Our technique will overcome this
drawback by performing a semantical analysis via symbolic
evaluation. Another benefit of our approach is that only
one single pass is required to perform many different analy-
sis. It is not clear how the previously published techniques
could be properly combined (e.g., constant propagation and
side-effect analysis) to reach some optimum solution.
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[TIF86] and [BC86] address the issue of interprocedural
side-effect analysis of arrays. Our approach only deals with
scalar variables but offers a much cleaner, more powerful and
sounder solution than previous scalar-oriented techniques.

There is some argument about the practical impact of in-
terprocedural analysis. [RG89a, RG89bb] consider that, for
most of the optimization phases used in sequential compilers
(e.g., common subexpression elimination), procedure inlin-
ing is more effective than current interprocedural algorithms
(but see [HS89] for another point of view, in the domain of
software testing). This is not true, as advocated in [C88], for
parallelizing compilers that can use interprocedural analysis
to drastically reduce the size of dependence graphs.

3 Language Definition

In order to give a formal specification of our method, we use
a kernel language that includes several features of widely-
used imperative programming languages such as Fortran77;
it can be viewed as a generic intermediate language. We
assume that branch instructions have been eliminated by
some control flow structuring techniques [B77, AKPW83].
Since Fortran does not support recursive calls, they are pro-
hibited here, although they could be taken into account by
an extension of our method. Explicit declarations of global
variables are not allowed. However, these variables can be
seen as extra arguments of all procedures and, therefore, can
be treated by our symbolic scheme. - Furthermore, subrou-
tines cannot be passed as arguments to procedure calls.

The syntax below defines the syntactic domains of Pro-
grams, Declarations, and Commands (I denote the domain
of Identifiers):

P =D;C
D=Var 1
Proc I1(I1,..,In) D C
D;1;D2
C =Call I(1;,..,I,)
If I C; C2
C1;C2
Do I; Io C

We assume that all arguments are passed by reference.
The succinctness of our syntax deserves some explanations.
First, a program that uses functions can be trivially rewrit-
ten into one that only uses procedure calls and some tem-
poraries. Consequently, a domain for expressions is not nec-
essary any more; all operators are converted to functions,
constants being nullary functions. As a final simplification
and without loss of generality, we disallow nested proce-
dure declarations; they can be eliminated by lambda-lifting
[Joh8s].

We give below an example of the kind of transformations
that are required to map a usual Fortran-like program to our
abstract syntax:

Example 1
SUBROUTINE TEST (X,Y)
INTEGER X, Y
X = Y+2
RETURN
END
18 written as

PROC TEST(X,Y)




Var TWO;Var T;
Call Two(TWO);
Call Add(T,Y,TWO);
Call Assign(X,T);

where Two is the procedure that assigns 2 to its argument,
Add stores in T the sum of Y and TWO and Assign stores in X
the value of T.

The dynamic semantics is given denotationally. We give
below the definitions of domains for Basic values, Locations,
Procedure values, Values, States and Environments:

Basic = Bool +Int + ...

l,ao € Loc = Int

p € Proc = Value® — State — State

Arg = Loc

Local = Loc
Value = Arg + Local + Proc

s € State = Loc — Basic

r€ Env = 1 — Value

Note that the Value domain contains two Loc sum-
mands in order to give a more precise definition of bindings
by distinguishing arguments (in the first summand) from lo-
cals. Denotable values are either locations for formals and
locals or procedures.

The semantical denotation of a declaration, defined by
D, is an environment transformer of type D — Env — Env.
Its structural definition is given below. We use the follow-
ing standard notations: z,y denotes the pair of z and y,
[z1;...;zn] the list constructor, [z.y] the list with = as head
and y as tail, @ the concatenation of lists. [y/z]f is the func-
tion that maps z to y if z is equal to z and to f z otherwise.
e — f,g denotes the function that calls f if e is true and
calls g otherwise. We omit injection functions $ngom in the
domain dom when they can easily be inferred by the reader
(likewise for projection functions outdom):

D[Var I ]r=[NewLocal/I]r

D[ Proc I(I1,..,Ix) D C]r=AI"I=1I"—p,rI’
with p = Moy;...;an].C[C] (P[D] )
and r' = AJ.J = Ii = outarg(ai), LLoc

where NewlLocal creates a new location in the Local do-
main. A procedure declaration binds its identifier to a func-
tion, abstracted over the list of formal parameters locations,
that evaluates the procedure body, using the command eval-
uation function C, in an extended environment that binds
each formal to its location.

The semantical denotation of a command (recall that
we do not have any expression), defined by C, is a state
transformer of type C — Env — State — State. The
structural definition of a call statement is given below:

C[Call I(I1,..,In) Jrs=
A€ {rLi}) = (rI)[(v11);...; (rIa)]sl, (s1)

The resulting state binds the location of each actual to
its value, computed in the state transformed by the called
procedure; other locations’ values are left unchanged.
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4 Partial Symbolic Evaluation

Symbolic evaluation is an approximation of the dynamic se-
mantics of programs. We introduce here the notion of partial
symbolic evaluation. In a partial symbolic evaluator, some
algebraic simplifications on terms are not performed during
symbolic evaluation, but are delayed to enable more sophis-
ticated analysis (see section 5).

4.1 Definitions
The syntax of symbolic terms is given below:

E =1
I(E1,...,En)

The symbolic evaluator manipulates expressions in E, even
though the program does not contain any. Builtin functions,
such as the addition, which are seen as general procedures
in the program, are encoded here as strict function calls;
since their semantics is known, simplification will generally
be possible on them.

e € Sexp E+{T,1}
k € Sbasic = (Sezp x Sezp)®

The domain Sezp of symbolic expressions contains T that
denotes the unknown symbolic value and L that represents
an error such as referencing an uninitialized variable. A sym-
bolic value in Shasic is a list of pairs of symbolic expressions
(see section 4.4 for a simple example). The first element of
each pair is called a guard; it denotes the symbolic logical
expression of a path in the control flow graph, from the
beginning of the program to the point where the symbolic
evaluation is performed. The second expression denotes the
value of the symbolic expression when the corresponding
guard is true. This representation permits symbolic expres-
sions to be propagated through the different branches of
conditional statements.

p € Sproc = Svalue * — Sstate — Sstate
Svalue = Arg + Local + Sproc
o € Sstate = Loc — Sbasic

p € Senv I — Svalue

Variable bindings (in Svalue ) are looked up in symbolic en-
vironments (in Senv). To be able to deal with interproce-
durality, the symbolic evaluator manages two separate sym-
bolic states in Sstate : the intraproceduraland the interpro-
cedural state. As a general rule, values are extracted from
the intraprocedural state, except when the variable is a for-
mal argument with a yet intraprocedurally unknown sym-
bolic value (i.e., [(true, T)] where true is the builtin truth
constant function), in which case its value is looked for in
the interprocedural state.

It will be convenient to define the following function Z,()
that extracts the value of a location in either the intrapro-
cedural state o, or the interprocedural state oe:

Zs()oeoa = (0o I =[(true, T)]) — 0c 04 1

Declarations

We now give the symbolic evaluation of declarations D, of
type D — Senv — Senv that transforms symbolic environ-
ments. The interesting part concerns procedures:




D.[ Proc I(1;,..,In) DC]p=
A'.I=1"—p,pI'
with p = A[a1;..;an) Aoe.
Cc](DLD]p')rocoa
and p' = AJ.J = Ii — outarg(ai), Lroc
and & = [(true, true)]
and o, = Al.[(true, (I € {outarg(ai)}) — T,1)]

We will see below that the symbolic evaluation C, of
commands requires, besides the environment p, a contezt &,
an interprocedural symbolic state o. and an intraprocedural
state 0.. A context is a symbolic value (i.e. member of
Sbasic ) that abstracts the current path in the local control
flow graph of the program; it is the current guard. The top-
level context is [(true,true)] since no conditionals have been
locally encountered yet. Similarly, the intraprocedural state
binds variables to symbolic values that have a true guard
and T for formals and L for locals. Therefore, formals have
unknown but valid intraprocedural values for any path of
the flow graph up to the moment they are assigned. Unlike
formals, if a local variable is used in any path of the flow
graph before being assigned, an error occurs.

Commands

The symbolic evaluation of commands C, of type ¢ —
Senv — Sbasic — Sstate — Sstate — Sstate transforms
symbolic states in a given environment and context.

The case for a procedure call is reminiscent of the one
used in Section 3.

Cs[ Call I(I1,..,In) ] proeoa =
A1 € {pLi}) = Z,(D)oeo’,0al
with ¢’ = (pI)[pI1;...;pIn]0a

In the new state, all references to locations that are not in
the argument list go to o4, while the ones that are passed as
actuals go through the transformer associated to the body of
the callee. Symbolic expressions are built whenever a builtin
procedure is called. A program is symbolically evaluated in
an initial environment p; and state o; that bind them to
appropriate values (see below for an example).

The problem with the test command comes from the vari-
ables that are only assigned in one of the two exclusive condi-
tional branches [JD89]; we have to represent both the modi-
fications incurred in one branch andthe non-modifications in
the other one. To preserve the invariant that all the guards
in a symbolic value are mutually exclusive, we have to com-
pute the symbolic states o; at the entry of each branch in
order to take into account the corresponding value of the test
I. We then separately evaluate each branch with respect to
these initial states, before merging them together.

C[If I Cy C2] proeoa= A.01'l@02"1
with oy’ = C,[ Ci ] prigeoi
and oi = AM.shuffle ki (Z,(1)o.0a) (Aerez.€2)
and &y = shuffle v k (Azy.and(z,y))
and k2 =
shuffle [(e1,not(e’1));...; (en,not(e'n))]
K
(Azy.and(z,y))
and v ={[(e1,€'1);...;(en, 'n)] = Zs(pl)oeoa

where shuffle merges two symbolic values by combining them
component-wise, performing an and of their guards and
applying its third argument to the associated expressions.
More formally:
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shuffle[z1, 315 i Tn, Ynl[z'1, 435 5 2'm, ' ] f =
Q;,j[(and(zi,2'5), f yi ¥';)]

Loops

We did not mention how our interprocedural technique ap-
plies to Do loops. The computation of the fixed point that
corresponds to a loop command is independent of the issue
of interprocedurality that concerns us here. It is generally
impossible to compute the fixed point corresponding to a
loop. Nonetheless, it can sometimes be obtained by using
the technique of [JD89]. The basic idea is to match the state
resulting from the symbolic evaluation of a loop body with a
database of idioms that represent standard behaviors such as
loop invariants or induction variables. If a match is found,
the variable is bound to the corresponding generalized re-
duction, else a freshly defined symbolic value is assigned to
the modified variable. In this latter case and conservato-
rily, all information about the variable are lost until another
value is assigned to it (if ever). We expect this approach
to be adequate for typical scientific programs; most of the
loop-carried dependencies correspond to generalized reduc-
tions.

4.2 Correctness

Symbolic evaluation can be seen as an abstract interpre-
tation [CC77] of programs written in our kernel language.
This formal framework has been used in order to prove the
correctness of the symbolic evaluation (see [J86] for the in-
traprocedural loop-free problem and [D90] for the interpro-
cedural version of the algorithm that deals with the approx-
imation of fixed points).

Definition 1 For every environment r and context k, the
concretization y(r, k)e of a symbolic expression e is defined
by :

v(r,k)e = {v/[i(gi, €i)] = shuffle & e (Aerez.e2) A
(3s,3i/E[ gi ] rs = true A
v=~E[ei ] rs)}

while the concretizationT'(r, k)(0e, 04) of the symbolic states
(0e,0a) is defined by:

I(r,k)(0e,00) =
{8/V¥1,3v € v(r,&)(Zs(1)0e0a) s.t. sl = v}

The denotation of £ is straightforward and its definition
is omitted. Concretization functions map symbolic informa-
tion to the set of values they approximate. The correctness
theorem [D90] expresses that symbolic evaluation is a con-
servative approximation (via concretization functions) of the
dynamic semantics.

Theorem 1 (Correctness) For every command C, com-
patible environments r and p, context k, interprocedural
state ge and intraprocedural state o,

{C[c]rs/s €T(r,k)(0e,00)} C
T(r,k)(0e,Cs[ C ] procoa)




4.3 Complexity Evaluation

The symbolic evaluation is linear in the size of the program
but exponential in the number of data dependencies going
from one conditional to another one. This is not admissi-
ble since this parameter can grow rapidly in many existing
programs. The exponential behavior comes from the use
of standard abstract syntax trees (namely E) as symbolic
expressions when the function shuffle is applied within the
evaluation of conditionals.

To alleviate this problem, we developed a new represen-
tation of conditional expressions called a value graph, in-
spired by Bryant’s Binary Decision Diagrams [B86]. The
nodes of such graphs are either a conditionalnode, an oper-
ation node or an identifier. The conditionalnode represents
the shuffle function (see section 5.3). Such a node contains
three branches: the test branch (annotated by t) that points
to the value graph associated with the test expression of the
conditional, the true branch (annotated by 1) and the false
branch (annotated by 0). The operation node represents the
function calls in E. Consequently, since we avoid to perform
the costly shuffle function, the complexity of the symbolic
evaluation is reduced to the one of building the value graph.
Obviously, this latter complexity is equal to O(l) where ! is
the number of instructions of the program translated in our
kernel language assuming that creating a node and its links
costs a unit time.

All the techniques described in this paper have been
implemented in the PMACS [DLTKK91] programming en-
vironment using value graphs. The first experimentations
show that our symbolic evaluator runs just slightly slower
than standard graph-based techniques such as [CK88].

4.4 Example

To show how our symbolic evaluator performs, we give below
the result of applying D, on the declaration of TEST given
above (Example 1). The initial environment p; defines the
symbolic values of Two, Add and Assign:

Two = Mz).Ao. ALl =z — [(true,2)], 0l
Add = Mz,y,z]. 0. AL

1=z — shuffle (oy) (02) +,0l
Assign = Az,y). A0 Al =1z — (0y),0l

The result of evaluating the definition of TEST in p; is an
augmented environment where TEST is bound to:

Az, y) Ac Al (l=12) —
al;utﬂe (o) [(true,2)] +,
o

Note that some calls to shuffle have to be delayed un-
til the actual parameters are known; in any case, they are
completely performed on local expressions.

5 Applications

Our formalism can be applied to the computation of a wealth
of interesting program properties, since symbolic evaluation
strives to mimic the original program semantics. As an illus-
tration, we give below two examples where we discuss some
interprocedural analysis: (1) constant expression propaga-
tion and (2) determination of side-effects.

Up to now, we voluntarily omitted the issue of symbolic
expressions simplification. It turns out that different uses of
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the symbolic state require different simplification rules for
both the symbolic guards and the values. This is the crux
behind the notion of partial symbolic evaluation.

5.1 Interprocedural Constant Propagation

The determination of constant expressions at a given call
site is straightforward once the complete symbolic state has
been computed. The simplification routine for this problem
is the usual one found, for instance, in optimizing compilers
that perform constant folding [ASU86]. We only add to
these standard rules the following one, informally described
as:

[...;(and(e,)E),fz'); s (an]d(not(e), e).l=

s (f,eN); ..

It is mainly used in the test command to simplify unmodified
expressions when merging the symbolic states of the two
branch analysis.

Definition 2 (Constant) A variable I is constant across
a procedure call if its simplified symbolic value is of the form
[(e1,¢);-..; (en, c)] where ¢ is some builtin constant function.

5.2 Interprocedural Side Effect Analysis

Since symbolic evaluation gives a static representation of the
dynamic behavior of programs of which side effects are an
approximation, we show that there exists a simplification
routine that enables the determination of interprocedural
side effect information, also called kill-use or mod-use anal-
ysis.

Definition 3 (Local Expressions) A symbolic ezpres-
sion is local in a symbolic environment p if all its terms are
either a constant, a local variable I (such that is_inpoc(pI)
is true) or its subezpressions are local.

For side effect analysis, any simplification technique can
be used, as long as they are only performed on local expres-
sions. For such simplification to be effective, normalization
of symbolic expressions (such as reordering summands or
multiplicands) can be required to put together local subex-
pressions. The reason why non local expressions cannot be
simplified can be seen by looking at the following example:

Proc LOSE(X)

Var ZERO ;

Call Subtract (ZERO,X,X) ;
Call Assign(X,ZER0Q) ;

where if the expression X-X were simplified to 0, then the
read access on X would be lost. Note that this restriction
could be alleviated if expressions evaluation were atomic in
the dynamic semantics.

Two kinds of side effect analysis (we discuss here the
case of mod analysis, the case for use being similar) can be
performed by a simple treatment of the symbolic stores. The
first ones are independent of the call site and are obtained
by applying the symbolic state transformer of the callee Q to
a simple interprocedural state oo that binds each formal to
itself: oo(pI:) = [(true, Iio)]. Consider the call site defined
by Call Q(Ii,..,In).




o Flow-insensitive [CK88] (may) mod analysis consists
in finding at least one path where a given argument
is modified. If the resulting symbolic state binds the
address of the formal to [(true, T)}, the formal is not
modified on any path. More formally,

I; € Mod (Q) ¢ (o'(pLi)) # [(true, T)]

where o/ = (p Q)[pI1;...;pInlo0

o Flow-sensitive (must) mod analysis consists in finding
all the paths where a given argument is modified. If
the resulting symbolic state binds the address of the
formal to a symbolic value in which all terms are equal
to the formal, then the formal is never modified. More
formally, if o, denotes the symbolic state after the
procedure call is performed: o

I;e Mod(Q) & Vie {1,---,n} ¢/ # Lo

where o'(pLi) = [(e1,€¢'1);+-+;(en,€'n)] and o' =
(o Q)[p11;...;pIn]0o0.

The second class of side effect analysis is dependent of a
particular call site and is obtained by applying the symbolic
state transformer of the callee to the current intraprocedural
state of the caller. If the resulting symbolic state binds the
address of the formal to a symbolic value in which all the
terms are equal to the ones they had before the call site, then
the formal is never modified. For more details, see [D90].

5.3 Example

The behavior of our interprocedural scheme is illustrated in
the following example written in Fortran 77 that is inspired
by the example given in [C88].

subroutine main(x,y)
call suba(x,y,0) (1)
call suba(5,y,x) (2) call subc(x,y,z)
Z=X-y return

end end

subroutine suba(x,y,z)
call subb(x,y,z)

subroutine subb(u,v,w) subroutine subc(u,v,w) '
if (u.eq.5) w=v if (u.neq.5) w=v+i
return return

end end

If xg, yo and zo are the initial values of x, y and z, the
symbolic resulting store of the procedure suba is:

x <+~ [true,xq]
y — [true,yo]
z «— [(=(x0,5),y0); (not(= (x0,5)),¥0 + 1)]

Similarly, the figure 1 shows the value graph associated to
the symbolic values of the variables x and z in main.

Let us look at what can be detected in main by our two
analysis. With side-effect analysis, x is seen to be modified
for all the paths through the control flow graph; this a must
modify situation and both [CK88] and [C88] fail to find this
result. On the contrary, y is not modified. For constant
propagation, after the call site (2), since the value of x is
¥0, z can be shown to be equal to 0.
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Figure 1: Example of value graph
Program Nb. of Lines | Method | Time (s)
Example (above) 35 [CK8g] 0.20
SIA 0.20
[CCKTg6] 25 [CKss[ | 0.16
STA 0.18
Tongl 14 [CKss] | 0.70
STA 1.00
Long2 410 [CK88] 5.30
SIA 7.50

Figure 2: Performance comparison between [CK88] and
our semantical interprocedural analyzer (SIA) for side-effect
analysis on a Sun Sparc 1 workstation.

6 Conclusion

We described a new scheme for the interprocedural seman-
tical analysis of programs. Based on techniques of symbolic
evaluation and abstract interpretation, this general frame-
work can be applied to different specific problems. We have
shown how interprocedural constant propagation and side
effect analysis can be derived by using two different sim-
plification routines on the symbolic store computed by the
partial symbolic evaluator. Our technique can be proved
correct by standard proof methods and is able to perform
as well as or better than the already known ad-hoc algo-
rithms.

As presented in this paper, our method does not deal
with recursive calls. They can be, in many cases, trans-
formed into iterative loop constructs using techniques stan-
dard in functional languages rewriting systems. Then, tech-
niques such as [JD89] can be applied to the resulting it-
erative constructs. Another area of future research is the
extension of this approach to arrays.

This powerful interprocedural symbolic evaluator has
been implemented in less than 2000 lines of C code within
the PMACS parallel programming environment used at Bull
[DLTKK91]. By using value graphs to avoid generating sym-
bolic expressions of exponential size, we found that its per-
formance on literature programs ([R79],[CCKT86],[D90]) is
satisfactory compared to our implementation of [CK88] (cf.
Figure 2). Longl and Long2 are toy programs that exhibit
an artificially large number of data dependencies; this ex-
plains the degradation of performance of our approach (see
section 4.3). We do not expect this eflect to be a factor in
real-life programs.
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Abstract

A binding time analysis (BTA) is a crucial part of a self-
applicable partial evaluator. Given the source program and
a description of which inputs will be known, the BTA anno-
tates every expression of the source program as either known
or unknown.

For improved accuracy, a polyvariant BTA may create
more than one annotation of an expression, leading to more
efficient specialization. This paper presents a polyvariant
BTA, duplicating procedures and lambda-abstractions, for
a higher-order functional language.

Keywords : binding time analysis, polyvariance, higher-or-
der, functional language, partial evaluation, self-application.

1 Introduction

Partial evaluation transforms programs with incomplete in-
put data. The partial evaluator specializes a given source
program together with a part of its input to obtain a residual
program. Applying the residual program to the remaining
input gives the same result as applying the source program
to all of the input.

Specializing the partial evaluator itself is called self-
application and may be used to generate compilers from
interpreters and even a compiler generator [Fut71].

It has been shown that preprocessing is an essential stage
of a self-applicable partial evaluator. Preceding the actual
program specialization, preprocessing adds annotations to
the source program. These annotations will guide the spe-
cializer generating the residual program. The crucial phase
of preprocessing is the Binding Time Analysis(BTA) : Given
the source program and a description of the inputs that will
be known during specialization, the BTA statically deter-
mines which expressions of the source program solely depend
on these known inputs. Known expressions will be evaluated
(reduced) by the specializer, whereas unknown expressions
must be reconstructed in the residual program. We will say
that fully known expressions have the binding time value
static, unknown expressions are called dynamic.

* This research was funded by the Swiss National Science Founda-
tion, Grant No. 20-27951.89.
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2 Overview

The remainder of this paper is organized as follows : In
section 3 we present very briefly the partial evaluator Simi-
lix-2 [Bon90, Bon91b] on which our system is built. Section
4 shows how a monovariant BTA as used in Similix can
lead to inefficient residual programs. Section 5 explains how
polyvariance is achieved through expression duplication. In
section 6 we show that more fine-grained binding time val-
ues allow better polyvariance. Section 7 discusses efficiency
issues. Section 8 briefly presents how partially known values
may be treated in the same framework. Section 9 provides
-examples. Section 10 concludes.

3 Similix

Since our work is an extension of the partial evaluator
Similix-2 (Similix for short), we give a short description of
Similix’ functionality and structure. Details may be found
in [Bon90]. Similix is a self-applicable partial evaluator for a
higher-order subset of the weakly typed functional language
Scheme [RC91). The Similix system consists of several pre-
processing phases, a specializer and a postprocessor. Similix
is “automatic” in the sense it doesn’t require any annota-
tions by the programmer. The use of dynamic conditionals
as “specialization points” avoids infinite call unfolding. The
problem of infinite specialization however is not addressed.

3.1 The language treated by Similix

A Similix program is a collection of user-defined proce-
dures and user-defined operators. While the partial eval-
uator knows the code of procedures, operators are treated
as primitives: they are either completely evaluated or left
untouched. The syntax of Similix programs [Bon90] :

Pr € Program, PD € Definition, F € FileName,
E € Expression, C € Constant, V € Variable,
O € OperatorName, P € ProcedureName
Pr ::= (loadt F)* (load F)* PD+
PD:= P (V*)=E
E :==C|V|(fEEE)| (let (VE))E)|
(begin E4) | (O E*) | (P E¥) |
(lambda (V*) E) | (E E)

We are using a usual semantics for such a language, assum-
ing call-by-value and lexical scoping.
3.2 The preprocessing phases of Similix

All the preprocessing phases work on the source code and
attach annotations (attributes) to some or all expressions.




o The first phase of preprocessing is the closure analysis
(CLA). Its purpose is to collect, for every application
point, the set of lambda-abstractions that might be
applied at that point. Given only the source program
it annotates every expression with the set of lambda-
abstractions that might be a result of the expression.

o The second phase of preprocessing is the binding time
analysis (BTA). As mentioned before, its purpose is to
determine the expressions that solely depend on known
inputs and which may thus be evaluated by the spe-
cializer. The BTA uses the annotations provided by
the CLA to determine at every application point, the
binding times of the implicated lambda-abstractions’
parameters and the binding time value of the result of
the application.

¢ The other phases are not relevant to our work. They
deal (among other things) with computation duplica-
tion and automatic specialization.

The CLA and the BTA are based on abstract interpre-
tation of the source program: for each analysis a finite lat-
tice of abstract values and a set of monotonic abstract rules
are defined. To do the analysis, the program annotations
are first initialized with the least abstract value. Then the
source program is traversed, applying the abstract rules to
every expression and updating the corresponding annota- .
tion. This traversal is repeated until a fixed point is reached.

Similix’ CLA indexes all the lambda-abstractions of a
source program to identify them unambiguously. The lattice
of abstract closure values is the powerset of the set of all
lambda-abstraction indices, ordered by set inclusion.

The BTA uses a lattice BT that includes the stan-
dard bottom (L), static (S), dynamic (D) values as well
as a closure (Cl) value denoting statically known lambda-
abstractions. Note that known expressions that can return
ordinary and closure values are classified as dynamic. The
bottom value is only used by the BTA (and not the special-
izer) to denote a “yet unknown” binding time value. The
completely binding time analyzed program does not contain
any bottom annotations unless there is some programming
error.

C\I\ /S
L
The abstract rules for the CLA and the BTA may be

found in [Bon90]. An expression e which as a binding time
value X will be denoted as X:e.

4 Monovariance of the BTA and its implications
A BTA must satisfy the following (conflicting) constraints :

o To be safe, the BTA must never declare incorrectly
that an expression is static. Otherwise the partial eval-
uator might try to evaluate an unknown expression.

o To be useful, the BTA should declare as many expres-
sions as possible as being static. Only expressions de-
clared static will be reduced by the partial evaluator.
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Since the BTA is based on abstract interpretation over
a very restricted (finite) domain, its results can only be ap-
proximate. According to the safety criterion above, however,
it must only err “on the dynamic side”.

Some expressions may be the result of several other ex-
pressions which don’t necessarily have the same binding time
values. When the BTA encounters conflicting binding time
values for an expression, a widening ensures the unique an-
notation required by the specializer. Widening typically
takes the “most dynamic” or, more precisely, the least upper
bound (as defined by the lattice) of the conflicting binding
time values to ensure that only the intersection of static val-
ues is treated as static. Widening implies that certain static
expressions will be annotated as being dynamic and thus
will not be reduced by the specializer. This may lead to
inefficient residual programs. A BTA which systematically
widens conflicting binding time values is called monovariant.

Widening may happen when an expression has two or
more “sources”. This is the case for conditional expressions
(which select one of two expressions) or parameters of proce-
dures or lambda-abstractions called at more than one point.
Using simple examples, we now present the situations in
which widening occurs.

4.1 Widening for if-expressions

The result of a conditional is either of its branches. These
branches don’t necessarily have the same binding time.

main (a b) = (if (zero? a) b '17)  with S:a, D:b

Since we don’t know the actual value of the parameter
a during the BTA, we don’t know which of the branches
of the conditional will be selected. One of the branches
being unknown, the BTA must assume, that the result of
the conditional will be unknown. Should a be different from
0 during specialization we will treat the static value 17 as
being dynamic and never operate any reduction on it.

4.2 Widening in Residual Code Contexts

In the so-called residual code contests (RCC) [Bon90], a
lambda-abstraction must be treated as being completely dy-
namic. This is the case if the lambda-abstraction may be
the result of a dynamic expression.

main (a b) = (let ((f (lambda (x) (* x x)))) with S:a, D:b
(list (f a) ((if (zero? b) f (lambda (x) 1)) a)))

In this example, the lambda-abstraction £ may be re-
turned by the dynamic if-expression. Therefore £ will figure
textually in the residual program and all occurences of £
must be dynamic. Specializing for a=3 yields the program
main-mono instead of the more efficient main-poly :

main-mono (b) = (let ((f (lambda (x) (* x x))))

(list (f 3) ((if (zero? b) f (lambda (x) 1)) 3)))
main-poly (b) = (let ((f (lambda (x) (* x x

(list 9 ((if (zero? b) f (lambda (x) 1)) 3)))

4.3 Widening for the parameters of a procedure

If the same procedure is used with different binding times
for the arguments, we must widen the different tuples of
abstract arguments to obtain a unique safe description of
the procedure parameters for all calls to the procedure.




ist (test a b) (test b a)) with S:a, D:b

main (a b) = (list
=+ xx)(*yy)

test (x y)

The procedure test is called with the abstract tuples
(SxD) and (DxS). Widening these tuples gives (DxD), dis-
allowing any reduction of test during partial evaluation.
Specializing for a=3 we get main-monoinstead of main-poly:

main-mono (b) = (list (+ (* 3 3) (* b b)) (+ (* b b) (* 33)))
main-poly (b) = (list (+ 9 (* b b)) (+ (* b b) 9))

4.4 Widening for the parameters of a lambda-abstraction

Like procedures, lambda-abstractions may be applied to dif-
ferent tuples of abstract arguments.

main (a b) = (let ((f (lambda (x ¥) (+ (* x %) (* ¥ ¥))))
(list (fab) (fba))) withS:a, Db

The parameters of the lambda-abstraction f are widened to
(DxD) for the same reasons as described in 4.3. :

4.5 Widening due to functional parameters of a procedure

Sometimes a procedure call or lambda-abstraction applica-
tion may cause widening even when there is only one tuple
of abstract arguments.

main (a b) = (let ((f (lambda (x) (+ a x)))
‘(g (lambda (x) (+ b x)}))
(list (test f a) (test g a)))
test (hi) = (let ((r (hi))) (*rr))

with S:a, D:b

Even though the binding times of the arguments are the
same (C1xS) in both calls to test, there occurs a widening
as the residual program (for a=3) shows:

main-mono (b) = (list (* 6 6) (* (+ b 3) (+ b 3)))

In Similix, the BTA uses only one binding time value
(Cl) to denote lambda-abstractions. Different lambda-
abstractions may however, when applied to the same ab-
stract arguments, yield different abstract results. This may
lead to widening at the point of application of such lambda-
abstractions. In our example the lambda-abstraction f has
an abstract signature (S—S) while g has the signature (S—
D). Since the parameter h in test may evaluate to f or g,
the result of the application (h i) becomes dynamic.

4.6 Widening due to functional parameters of a lambda-
abstraction

By replacing in 4.5 the procedure test by an equivalent
lambda-abstraction, we see that lambda-abstractions can
cause the same kind of widening as procedures, when func-
tional arguments of different signatures are passed to them.

5 A Polyvariant Binding Time Analysis

In section 4 we have shown when widening occurs and that
it may lead to inefficient residual programs. In this section
and the next we show how widening can be avoided. We
must satisfy the two following goals :
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o To obtain self-applicability of the specializer, the BTA
must completely and unambiguously annotate every
expression of the source program.

e To avoid widening, the BTA should provide flezible
annotations of certain expressions.

We achieve this through duplicating some expressions of
the source program. Duplicated expressions may be anno-
tated independently and thus widening can be avoided in
many cases. Duplication happens before program special-
ization and its effects are mostly invisible to the specializer.
The specializer thus can be kept simple, which is important
for efficient self-application.

The duplication of expression happens during the BTA.
The BTA repeatedly traverses the abstract syntax tree of
the source program. At each expression the binding time
annotation is updated according to the abstract rule for the
current expression. If a widening of the expression’s bind-
ing time value is about to happen we will try to avoid it
by duplicating the expression concerned. Note that, strictly
speaking, we don’t need to duplicate the offending expres-
sion itself but just its annotations. For simplicity we will
continue talking about “expression duplication”.

We will now introduce step by step a polyvariant analysis
for the different widening situations described in 4.1-4.6. For
each situation the following questions must be examined.
How can the BTA recognize an imminent widening? What
kind of duplication must be done to avoid widening? What
impact does this expression duplication have on the BTA
or even the whole preprocessing stage. Will the BTA still
remain finite?

5.1 Polyvariance for if-expressions

The solution to this problem lies in the equivalence of

(E1 (if E2 E3 E4)) = (let ((V E1)) (if E2 (V E3) (V E4)))

This problem obviously cannot be resolved by the BTA
through mere duplication of some annotations and we don’t
address it any further.

5.2 Polyvariance for Residual Code Contexts

Some lambda-abstractions in residual code contexts may be
protected against widening through eta-conversion[Mos91].
Details of our method based on automatic eta-conversion
of certain variables bound to lambda-abstractions are de-
scribed in [Ryt92].

5.3 Polyvariance for the parameters of a procedure

The obvious solution (which has been widely used manu-
ally as well as for first-order languages) is to duplicate the
procedure for each tuple of abstract arguments. We call all
duplicates of a given procedure its variants. All variants
of one procedure are operationally equivalent but may have
different binding time annotations.

5.3.1 Detecting widening & creating duplicates

The part of the BTA dealing with procedure calls may be
described by the following function bt. bt is common to
a monovariant and a polyvariant analysis but the function
choose-procedure it calls differs in both cases.




bt : Expression — BT
bt[Expr] =
case [Expr] of

[(P E;...En))k
let param* = <param; ...paramg>
= fetch-procedure-parameters(P),
bt-par* = <bt[param;] ...bt[param,]>,
bt-arg* = <bt[E1] ...bt[En]>,
P’ = choose-procedure(P, param*, bt-par*, bt-arg*)
in replace-caller(Expr, P’)
annotate(Expr,fetch-procedure-bt(P’))

annotate : Expression x BT — BT
annotate(Expr, Bt) =

set-bt(Expr, Bt)

return(Bt)

In a monovariant BTA choose-procedure is defined as :

choose-procedure : ProcedureName x Parameter* x BT* x BT*
— ProcedureName
choose-procedure(P, param*, bt-par*, bt-arg*) =
for i:[1..n] do annotate(param;, bt-par; U bt-arg;)
return(P)

where U is the smallest upper bound to its two arguments
according to the lattice BT. A polyvariant BTA might define
choose-procedure as :

choose-procedure : ProcedureName x Parameter* x BT* x BT*
— ProcedureName
choose-procedure(P, param*, bt-par*, bt-arg*) =
if bt-par* = bt-arg* then
return(P)
else if variant-exists?(P, bt-arg*) then
return(fetch-variant(P, bt-arg*))
else
return(duplicate-procedure(P, bt-arg*))

where duplicate-procedure creates a new variant of a pro-
cedure for a given tuple of abstract arguments. This new
variant, which initially has “bottom” annotations, is added
to the source program and remembered, such that it can be
reused. Different variants are naturally indexed by the bind-
ing times of their parameters and receive a unique procedure
name. Since the BTA works by continually updating bind-
ing time annotations, some variants that have been created,
may be of no use in the completely binding time analyzed
program. A call graph analysis may be done when the an-
notation process is finished in order to eliminate them.

5.3.2 lterating the CLA & BTA

Duplication of procedures seems to be straightforward at
first glance. There is a catch however : Remember that
the closure analysis, run before the BTA, annotates each
expression with the set of lambda-abstractions the expres-
sion might evaluate to. Now, when we duplicate proce-
dures, what happens with their CLA-annotations? We
might simply preserve those annotations and thus share
lambda-abstractions among variants of the same procedure.
Unfortunately this leads to yet another instance of undesired
widening. Consider the following example :

main (a b) = (list (test a) (test b))
test (x) = (let ((f (lambda () x)))
(* (1) (D))

with S:a, D:b
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Two variants of the procedure test will be generated,
one for S:x (say test.S), another for D:x (test.D). If the
lambda-abstraction bound to £ is shared by the two variants,
its free variable x has two different binding time values and
must be widened to dynamic. Thus the variant test.S will
have the same, dynamic, annotation as the variant test.D
which won’t result in an efficient residual program.

To prevent this kind of widening of their free variables,
lambda-abstractions should not be shared between variants.
Each time a new variant is created, the lambda-abstractions
occurring in that variant, must be distinguishable from ex-
isting lambda-abstractions. Introducing a new variant of a
procedure changes the flow of control and may globally inval-
idate the CLA-annotations. Therefore we choose to iterate
CLA & BTA when a new variant is created.

source program

CLA If an expression
¥ has been
TA duplicated

rest of preprocessing ...

Of course it would be very costly to restart the CLA &
BTA each time a new variant is found. In section 7 we
explain, how several variants may safely be created before
an iteration is needed.

Iterating CLA & BTA may also avoid generating useless
variants for lambda-abstractions or procedures.

main (ab) = (let ((f (lambda (x y) (* x y)))  with S:a, D:b
‘(g (lambda (x y) (+ X Y))))
(list (test f a b) (test g b a)))

test (u vw) = (uvw)

The CLA detects that the variable u at the applica-
tion point (u v @) in test may be bound to the lambda-
abstractions £ and g. The BTA generates two variants
for test with the binding time values (ClxSxD) and
(C1xDxS). Hence for both f and g we must generate the
two variants (SxD) and (DxS).

If we restart the CLA after BTA has generated the vari-
ants for test we get more precise results. The second CLA
will be applied to the following code.

main (ab) = (let ((f (lambda (x y) (* x ¥)))
(g (lambda (x y) (+ x y¥))))
(list (test.C1.S.D f a b) (test.CL.D.S g b a)))
test.CL.S.D (uvw) = (uvw)
test.CL.D.S (uv w) =(uvw)

with S:a, D:b

Now, the variable u of (u v w) in test.Cl.S.D (resp.
test.Cl.D.S) may only point to f (resp. g). Hence, we
need only the variants (SxD):£ and (DxS):g.

5.4 Polyvariance for the parameters of a lambda-
abstraction

Like procedures, lambda-abstractions may be called with
different abstract arguments. It seems obvious to dupli-
cate a lambda-abstraction for each tuple of abstract argu-
ments. We call these duplicates versions. Since lambda-
abstractions are anonymous and we don’t want to overly
change the source programs by explicitly passing around
all versions, we simply wrap them in a new syntactic con-
struction that replaces the original lambda-abstraction (see
example). Operationally and from a CLA point of view this




construction behaves like any of the versions it contains. At
the point of application of the lambda-abstraction the BTA
chooses the appropriate version, based on the arguments’
binding time values. We also extend the specializer in this
way to handle the versions. The choice of the appropriate
version is thus entirely determined by the binding time an-
notation, which is crucial for efficient self-application.

5.4.1 Detecting widening & creating duplicates

Thanks to the CLA annotations we know at each point of
application the set of applicable lambda-abstractions. For
each of those lambda-abstractions a version corresponding
to the binding time values of the arguments must exist.
The next example shows a versions-construct and the
way it is extended to contain multiple versions for the dif-
ferent binding time values possible. We give the (approxi-
mate) annotations only for the abstractions involved. In the
following we will not explicitly write the versions operator.

main (a b) = (let ((f (versions (lambda (x) x))))

' (list (f a) (f b)))

mainann (a b) = (let ((f (versions Cl:(lambda (S:x) S:x)
Cl:(lambda (D:x) D:x))))

(list (f a) (f b)))

with S:a, D:b

5.5 Finiteness of the CLA & BTA

For both procedures and lambda-abstractions, only a finite
number of variants or versions will be generated. At most,
we create as many variants of a procedure as there are tuples
of abstract arguments. If r is the number of possible binding
time values (r=4 in Similix) and d the arity of the procedure,
then there are at most r¢ possible variants per procedure.
The same applies to lambda-abstractions and their versions.

The CLA is exactly the same as in [Bon90] and has been
proved to be finite. The BTA also is the same as [Bon90],
unless it detects a widening situation, in which case it stops
(after duplicating an expression). Thus it is obviously finite.
The number of iterations of CLA & BTA is limited by the
number of new variants/versions that may be created and
hence is finite.

6 Extending the binding time lattice

6.1 Motivation

So far we based the detection of widening on the simple
binding time lattice BT of Similix which uses one value (Cl)
to denote all statically known lambda-abstractions. Certain
cases of widening, as described in 4.5 and 4.6, involving pro-
cedures and lambda-abstractions, will escape our polyvari-
ant BTA, unless we use a more fine-grained binding time lat-
tice taking into account binding time signatures of lambda-
abstractions. Let’s first treat a typical problem in an infor-
mal way and consider again the example of 4.5.

main (a b) = (let ((f (lambda (x) (+ a x)))
(g (lambda (x) (+ b x))))
(list (test f a) (test g a)))
= (let ((r (h 1)) (* r )

with S:a, D:b

test (h i)

As pointed out previously, h may be bound to the ab-
stractions f and g which have the different signatures (S—S)
and (S—D). The type of (h i) is thus S for the call (test
f a) and D for (test g a). Note that Similix must inspect
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the annotation of the abstraction bodies of £ and g in order
to get the types of the results for (h i). If, as it is the case
here, the result types are different then a widening takes
place.

Our approach to this problem consists in “indexing” the
binding time value Cl of the formal parameter h with the
possible signatures of the abstractions h is bounded to. As
both f and g may be bound to the formal parameter h, the
two abstractions undergo the same treatment in the proce-
dure test. In particular they will be applied at the same
points. Hence we may avoid duplicating the procedure test
as long as the versions common to f and g, i.e. applied
to the same arguments, are compatible, that is, yield the
same type of result. In the opposite case, we duplicate the
procedure.

Let’s point out that the correctness is trivial. We might
not duplicate the procedures, systematically duplicate all
procedures or do anything in between. The correctness is
in fact gnaranteed by the widenings taking place where nec-
essary. The finiteness is less trivial and will be addressed
later.

In our example, the computation proceeds as follows :
In a first traversal, there are no versions for £ and g and
test will not be duplicated. Analyzing test will generate a
(S—S) version for £ and a (S—D) version for g.

In the second pass, the BTA will notice that f and g are
incompatible, i.e. may yield results of different binding time
values when applied to a static argument. The procedure
test is therefore duplicated. The overall result will be as
expected :

main (a b) = (let ((f (lambda (x) (+ a x))) with S:a, D:b
(g (lambda (x) (+ b x))))
(list (test-f f a) (test-g g a)))
test-f (hi) = (let ((r (h1))) (*rr))
test-g (h i) = (let ((r (h i))) (*rr))

6.2 Considering more fine-grained binding time values

When treating a procedure call, the BTA must determine
whether an appropriate variant already exists or not. Thus,
we need a compatibility predicate on the call-arguments to
decide whether two different calls may share the same vari-
ant without widening.

Consider two unary calls (P E;), (P Ez) (for n-ary pro-
cedures, arguments are handled pair-wise). So far (5.3) we
compared only the binding times of the arguments :

compatible?(Ej, E2) = (bt[E;] = bt[E2])

To avoid widening for arguments that have bt[E;]=Cl
we must distinguish closures of different binding time sig-
natures. As mentioned in 3.2 the CLA annotates each ex-
pression with the set of closures it may evaluate to. Conse-
quently we now use the closure annotations as well as the
binding time annotations when comparing call arguments.
The following formulation of compatible?’, which simply
compares the closure sets for equality, is not satisfying be-
cause many occasions for sharing are neglected. Indeed, if
different abstractions have the same binding time signatures
they may be passed to the same variant without causing
widening.

compatible?’(Eq, E2) = (bt[E1] = bt[E3]) A (cl-set[E;] = cl-set[E3])




Let’s repeat that a lambda-abstraction may exist in sev-
eral versions. Two different lambda-abstractions passed to
a procedure may share that procedure without widening, if
all the versions they have in common have the same binding
time signature. The following formulation of compatible?’’
expresses this idea.

compatible?” (Eq, E3) =
(bt[E;] = BE[E;]) A
(bt[E1] = C1 =
let X = all-versions(cl{E1]), Y == all-versions(cl[E2])
in Vd. Vz= (1 Xx...Xzq—2zr)€ X.
Vy=(y1 X...Xya —yr)€ Y.
(1 X...xza)=(y1 X ... X ya)=> zr=yr

Now we are left to define the function all-versions
which, given a set of closures, is supposed to return a set
of binding time signatures, describing the complete (bind-
ing time) behavior of the abstractions in the closure set.

As described in 4.6 widening may not only occur
when different lambda-abstractions are passed to procedures
but also when different lambda-abstractions are passed to
lambda-abstractions. Therefore abstract signatures may aec-
tually be nested. Example :

main (a b) = (let ((f (lambda (h x y) (h (+ x y))))
(g (lambda (x) x))

(list (f g ab) (f g ba)))
all-versions(cls(f)) = { (D—D)xSxD—-D), (D—D)xDxS—D) }

with S:a, D:b

More disconcertingly, binding time signatures may even be
infinitely nested :

main (n) = (wrap (lambda (x) x) n) with Sin
wrap (g n) = (if (zero? n) (g 1) (wrap (lambda (x) g) (- n 1)))

all-versions(cls(g)) = { (S—8), (S—=(5—5)), (8—=(S—(5—5))),..}

The function all-versions must of course only return a
finite number of abstract signatures and we need therefore
a way to detect, represent and handle infinite signatures.

We introduce a new binding time lattice BT’ which is
the smallest set containing {Ll, S, D, CI’} and closed under
the following operation

1 1
zl,.,‘,:z:“,:z:rl, EERIY- 2 FRURRY- MR-l BT' =

Cl(z§x...xx}1—.zrl, ,:cix.,.xa:;, — zr'} € BT/

The ordering in the lattice is given by the following figure
where x is any element of BT’ not in {L, S, D, CI’}. The
new symbol CI’ represents the upper bound of all closures.

D

7
g
L

Two elements X and Y of BT’ different from 1, S, C’,
D are ordered as defined below. Y is superior to X if it
continuously extends all signatures of X. The least upper
bound of X and Y will be written X U Y.

XY € BT'-{L, S, D, CI'}
X<Y ®Vd>0Vzs= (23 x...xzq —2r)€ X.
Jy=(y1 X...Xyq = yr)€eY.
(z3 x...x723)=(y1 X...Xya)Azr < yr
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The function ¢ below takes a simple binding time value
and the closure set of an expression and returns a more fine-
grained, yet finite binding time value in BT’. It allows us to
define all-versions.

all-versions : Closure-Set — BT’
all-versions(cls) = ¢(Cl, cls)

¢ : BT x Closure-Set — BT"

#(L,) =41}
#(,-) ={s}
#D,.) ={D}
#(Cl, {i}) =
if infinite-binding-time?(i) then
{cr}
else

let v* = fetch-versions(i) in
Uvev. let by X ... X by == param-bt(v),

br == result-bt(v),
€1 X ... X ¢y = param-closure-set(v),
er = result-closure-set(v)
in let Py= ¢(bx, 1 ), veey Pp= ¢(b", Cn),
Pr= ¢(br,cr)

in {(p1X...Xpa—Pr)|pi = P; if P; € {1,5,D,CI'}
pi € P; otherwise }
#(C1, IuJ) = ¢(CLI) U $(C1,I)

The explicit test infinite-binding-time? is the key to
the finiteness of the result of ¢. Whenever a binding time is
known to be infinite, it is approximated by CI’. Thanks to
the results of the closure analysis, finiteness of binding times
of abstractions can be easily verified : it is sufficient to check
the graph of closure annotations of a lambda-abstraction for
cycles. The previous example would have been annotated in
the following way by the CLA :

main (n) = (wrap {0}:(Jambdag (x) x) n)
wrap ({0,1}:g n) = (if (zero? n)
({0,1}:g 1)
(wrap {1}:(lambda, (x) {0,1}:g) (- n 1)))

We observe that the body of the lambda-abstraction 1
returns the closure set {0,1} i.e. it may return itself and
will therefore receive the binding time value CI’.

We now have all the tools to decide, at the point of a
procedure call, whether a variant of a procedure may safely
be shared or if a widening might occur.

6.3 Example : Polyvariance for the functional parameters
of a procedure

In 5.4 a new variant was created, when a new abstract tuple
of arguments for a procedure was encountered. Now we use
the extended binding time lattice BT’ to compare abstract
tuples. Let’s consider an example :

main (a b) = (let* ((f (lambda (x) (* x x))) with S:a,D:b
(g (if (odd? a) (lambda (x y) (+ x y)) f))
(h (lambda (x) (* x b))))
(list (f b) (test f a b #f) (test g a b (odd? a))
(test h a b #f)))
test (uabc?) = (ifc? (uab) (ua))

£: { (S=8)(D—D)}, g: { (5—8),(D—D), (SxD—D) },
h: {(S—=D)} = f,g are not compatible with h

mainann (a b) = ...(list (f b) (test; fa b #f) (test; ga b (odd? a))
(test2 h a b #f))

Note that the procedure test has been duplicated once,
but that it is still shared by the first two calls because the
versions of £ and g are compatible.

Functional arguments passed to lambda-abstractions are
treated analogously.




6.4 Finiteness

The argumentation given in 5.5 is still valid if the number r
of possible binding time signatures for any function is bound.
This is the case as the result of the function ¢ (6.2), on which
the duplication of expressions is based, is finite.

7 Complexity & Efficiency

The complexity of the CLA and the BTA depend on the
number of iterations needed to reach a fixed point : both
do repeated traversals of the source program, the complex-
ity of the traversal being proportional to the length of the
program. Repeated traversals are needed when the anno-
tation of some expression depends on annotations not yet
established. In the worst case, there is a long chain of de-
pendencies treated in the inverse order by the BTA. The
length of such a chain determines the number of iterations
needed before a fixed point is reached. The following pro-
gram needs n iterations of the BTA since the bodies of the
lambda-abstractions are analysed before they are applied.

t1  (a) = (let ((f Jlambda (x) x))) (t2 (f a)))
tu_q () = (let ((f (lambda (x) x))) (ta (£ 2)))

tn a)=a

Our polyvariant analysis increases the complexity because
it may

¢ duplicate expressions, increasing the size of the source
program,

o need several CLA & BTA passes.

We stated in 5.5 that at most r¢ variants/versions may
be generated for a procedure/lambda-abstraction of arity d,
r being the number of binding time values. The following
program generates 3* = 81 variants for procedure test :

main (ab) = (test a b (lambda () a)a) with S:a, D:b
test (a b c d) = (if #t 'ok
(list (test a a a a) (test a a a b) (test a a b b)
(test a b c c) (test b c d a) (test ab d c)))

In general, it is not possible to reduce the number of vari-
ants/versions generated without sacrificing some efficiency
of the residual program.

As explained in 5.3.2 an expression duplication may in-
validate the results of the CLA and thus necessitate redoing
the CLA & BTA. It would however be extremely costly to
stop the BTA, reset all annotations and restart a new CLA
& BTA cycle after each duplication of an expression. Instead
we adopt the following scheme :

o The BTA always continues until reaching a fix-point.
If new variants/versions have been created or if the
flow of control has changed during the BTA, we restart
a CLA & BTA cycle.

¢ Even when the the results of CLA have been invali-
dated, our BTA never over-estimates any binding time
values. Thus, binding time annotations need not be re-
set between iterations, leading to faster convergence of
the BTA in subsequent runs.
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To achieve this, we keep track of the abstractions for which
the CLA-annotations have become invalid and we don’t
apply these abstractions any more, thus effectively under-
estimating some binding time values. When no duplications
are created, all abstractions remain valid and the desired
fix-point is reached.

A polyvariant BTA has two sides : on one hand it is
more precise, leading to more efficient residual programs,
on the other hand it may considerably (or catastrophically)
increase the time and space requirements of the BTA. Our
BTA is based on detecting potential loss of information,
without any analysis of effectiveness. Moreover, a more pre-
cise analysis also increases the risks of infinite specialization,
since there is more static information with respect to which
procedures may be specialized.

These negative aspects suggest the introduction of a
means of manual annotation by the programmer to guide the
BTA. Currently this is possible using the generalize oper-
ator [Bon90] which acts as an identity operator but forces
its argument to become dynamic. Filters as used in Schism
[Con89] would ultimately be more versatile and are concep-
tually simpler. A polyvariant BTA might also warn the user
if a given number of variants is reached and indicate which
parameters have different binding times.

8 Extending the BTA to partially static values

If partially static values, like a cons of a static and dy-
namic argument, are considered being entirely dynamic (as
does Similix) much information may be lost and the pro-
grammer has to use tricks (like splitting an a-list or using
continuations for multiple return values) to obtain efficient
residual programs. We have developed an extension of Sim-
ilix’ BTA, that handles partially static conses. Other con-
structed data-types (e.g. vectors) could be easily included.

The extension is based on a Cons-Point Analysis [Con89]
and is done together with the CLA : After indexing unam-
biguously all points of construction (i.e. cons-operators),
every expression is annotated with the set of construction-
points that may be returned by this expression.

This annotation is used by the new BTA to maintain
structured binding time information. Recursively defined
data-structures are easily detected and are handled correctly
to keep the polyvariant BTA finite.

9 Examples

9.1 Self-Application

Self-application permits not only a realistic test with a fairly
complex program, but also verifies that the generation of
compilers is still feasible. Since the original specializer had
been written with a monovariant binding time analysis in
mind, the residual programs produced by our polyvariant
system are not significantly improved. Here are some results
showing the number of CLA & BTA iterations, the passes
CLA and BTA needed to reach the fixed point and the sizes
of the program.

Pass 1 2 3 4 5 6 7 Final
Prog. Size (K) 19 41 110 155 220 280 280 130
CLA Passes 4 5 5 5 5 5 5 -
BTA Passes 4 4 6 4 2 2 1 -




With respect to a the monovariant analysis, the prepro-
cessing time for the polyvariant analysis has increased by a
factor 75 for the CLA and by a factor 25 for the BTA.

9.2 A toy interpreter

FUNBACK is an interpreter for a strict functional language

- with back-tracking (and the related fail and cut), imple-
mented in continuation passing style [Sch86]. The language,
close to ML and Prolog, defines procedures as clauses which
are called by pattern matching.

The interpreter may be specialized with respect to a pro-
gram, but without knowing the main function (goal). In this
case, Similix treats all goals (including the ones defined by
the source program) as unknown, while the polyvariant BTA
distinguishes between known and unknown goals.

If the goal is known, both Similix and our polyvariant
partial evaluator produce similar results, with a slight ad-
vantage for the polyvariant evaluator because of minor bind-
ing time improvements. The following automaton

may be described in FUNBACK as :

accept (S () = (final S)
accept (S (cons X R)) = (let ((N (trans S X))) (accept N R))
accept (S R) (let (N (silent S))) (accept N R))

final (’S3) = 'ok
trans (’S1 'a) =’S1
silent ('S2) =54

Comparing FUNBACK to Similix and our evaluator, we
get the following result for an acceptable string of length 20
for which there are 128 ways to be recognized :

Time Size Speedup over Increase factor
(s) (cells) FUNBACK in size
FUNBACK 19.2 162 - -
Goal Known
Similix 1.14 1057 16.8 6.5
Polyvariant 0.95 930 20.2 5.7
Goal Unknown
Similix 2.10 1799 9.1 11.1
Polyvariant 1.10 2100 17.5 13.0

Both partial evaluators reduce a significant part of the
interpretation. The polyvariant system yields better results
in execution time especially for specialization with unknown
goals.

10 Conclusion

In this paper, we have presented a polyvariant BTA for
higher-order programs. We have described the situations
in which undesired widening may occur. Duplicating ex-
pressions during the BTA allows for multiple annotations
and can help avoid widening.

We have shown that a fine-grained binding time lattice is
required to avoid certain cases of widening. Recursive bind-
ing times must be detected in order to avoid infinite duplica-
tions. Since our approach concentrates on the preprocessing
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phases, with only minor modifications to the specializer it-
self, self-application still yields efficient compilers. We have
shown bounds for time & space requirements of our method
and that it behaves reasonably in practice.

Our polyvariant BTA is another step towards making
partial evaluation practically useful as a bigger class of pro-
grams now can be specialized to more efficient residual pro-
grams. This frees the programmer from knowing the intri-
cacies of the partial evaluation tool.

10.1 Comparison with other work

Our work is based on the partial evaluator Similix-2
[Bon90]. Similix contains a so-called “binding time debug-
ger” [Mos91], that can signal undesired widening, but leaves
the duplicating and adjusting to the programmer.

[Con89] discusses a polyvariant BTA. The method iden-
tifies fully connected sub-graphs in the call graph and only
creates new instances of procedures for calls between differ-
ent sub-graphs. This ensures a finite number of procedure
variants, but still may lead to widening. It does not address
higher-order programs.

[NBV91] use a form of expression duplication (called bi-
furcation) to allow partially static values in a (polymorphi-
cally) typed functional language.

10.2 Future work

To make the preprocessing phase more efficient, the CLA
& BTA should be incremental i.e. more annotations should
be conserved between iterations. We need also a method to
help making trade-offs between the complexity of the pre-
processing and the quality of the residual programs. These
could be made by a heuristic estimating the usefulness of a
duplication or through annotations by the programmer.
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1 Introduction

We have designed a new method for performing partial eval-
uation. This method divides specialization into two phases:
a polyvariant analysis phase and a code generation phase.
The analysis phase does not differentiate between unfolding
and specializing. Symbolic ezecution is the sole operation
performed during the analysis phase. Symbolic execution
of an expression yields a characterization of the value that
would be returned by the expression if it were executed at
runtime, a description of the residual operation(s) that must
be performed to generate the runtime value, and a record of
the information utilized in performing symbolic execution.
(The third result of symbolic execution will be explained in
some detail later.) Only delta-reductions are performed dur-
ing symbolic execution. No beta-substitution of user func-
tions occurs during the analysis phase and no values are
in-lined. Consequently, symbolic execution yields extremely
polymorphic, and highly reusable, specialized function bod-
ies. The code generation phase constructs the residual pro-
gram from the specialized function bodies. It is responsi-
ble for all beta-substitution. Delaying the beta-substitution
decisions until the code generation phase allows us to con-
struct a partial evaluator that both produces highly special-
ized code and makes intelligent decisions regarding code size
versus lower function call overhead.

Termination decisions are made in the analysis phase
based on lazy use-analysis, an extension of eager use-analysis
[5]. Lazy use-analysis considers both the information used
by symbolic execution in performing delta-reductions and
how information about the values returned by delta reduc-
tions is used. Information is only used in a fundamental
sense if there is a causal chain between its use in performing
some delta reduction and the production of the final runtime
answer returned by a program. The less information used
in creating a specialized function body that contributes to
the return value of the function, the greater the number of
contexts in which the specialization can be reused. Further-
more, the less information used about the value returned by
a function call, the less restrictions that are placed on the
characteristics of the specialization to be called. A partial
evaluator based on lazy use-analysis promises to produce a

*Supported in part by NSF Contract No. MIP-8902764, and in
part by Defense Advanced Research Projects Agency Contract No.
N0039-91-K-0138.
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better combination of quality residual code and termination
than previous alternatives. For example, a partial evaluator
constructed using lazy use-analysis safely handles the stan-
dard “counter” problem® and properly unfolds Mogensen’s
(unpublished) regular expression accepter. No automatic
partial evaluator to date has been able to do both.

The remainder of this paper is divided into three sections.
The first presents a classification scheme for the types of di-
vergences that partial evaluators experience and a discussion
of different forms of termination (reuse) mechanisms. Next,
use-analysis and its application to termination and reuse
mechanisms are presented. The paper closes with our plans
for future research and some conclusions.

2 Termination

2.1 Types of Divergence

We divide the types of divergence experienced by partial
evaluators into three categories: true divergences, hidden
divergences, and induced divergences. A program is consid-
ered divergent if normal execution of the program diverges
for some valid program inputs. A partial evaluator is said
to experience true divergence when it diverges processing a
divergent input program and an input specification that in-
cludes values on which the input program diverges. Some
convergent programs contain divergent segments that can
never be reached for any valid set of inputs. If control ever
reached these divergent pieces of code, the programs would
diverge. We say such programs contain a hidden divergence.
A partial evaluator may diverge because it stumbles across
a hidden divergence during symbolic execution due to the
partial nature of an input specification.

All other divergences of a partial evaluator are called in-
duced divergences. The divergence does not exist in the in-
put program, but is induced by the partial evaluation strat-
egy being utilized. Induced divergences result from a partial
evaluator pursuing a control path that could never be fol-
lowed by a runtime evaluator. Some induced divergences
result from bad termination strategies; others, from an in-
ability of the partial evaluator to prove that a control path
could never be taken.

2.2 Types of Tefmination Mechanisms

We classify termination schemes based on induced diver-
gences. Termination priority (TP) partial evaluators utilize

1Many partial evaluators fail to terminate on programs containing
a recursion in which a static argument is incremented between each
recursive call (e.g., counting up factorial) when the recursion cannot
be completely unfolded during partial evaluation.




termination strategies that ensure that no induced diver-
gences will take place. Residual code priority (RCP) partial
evaluators allow some induced divergences in an attempt to
yield better residual code. In principle, a TP partial evalua-
tor should be able to produce ‘optimal’ residual code in some
cases. In practice, existing RCP partial evaluators produce
better code than their TP cousins. We propose a partial
evaluator based on a new form of analysis that is aggressive,
yet attempts to minimize the classes of programs on which
induced divergence will take place. Our reasons for taking
the RCP approach are discussed in more detail later.

2.3 Essence of Termination

Termination is only an issue for recursive programs, as sym-
bolic execution of non-recursive code always terminates.
When a partial evaluator encounters a recursive function
call,?2 the question to be answered is whether continued sym-
bolic execution of the recursion will terminate. If symbolic"
execution will terminate, then it is safe for the partial evalu-
ator to completely symbolically evaluate the recursion, and
this will yield the best possible residual code. If symbolic ex-
ecution will diverge, then it is desirable for a partial evalua-
tor to discontinue symbolic execution and produce a residual
loop. Unfortunately, it is not decidable whether symbolic
execution will terminate.

All termination mechanisms use some concept of equiv-
alence in deciding whether to continue symbolic execution
or produce residual code. When a recursive call is reached,
the current iteration of the loop is compared with previ-
ous iterations. If two iterations are deemed equivalent, then
symbolic execution of the loop is discontinued and a residual
loop is produced. If all iterations are deemed distinct, then
symbolic execution is continued. TP partial evaluators use
equivalence metrics that place all iterations of a loop into
different equivalence classes only when symbolic execution
of the loop terminates or the loop is truly divergent. RCP
partial evaluators use equivalence metrics that only place
two iterations of a loop in the same equivalence class if no
improvement in residual code quality would result from con-
tinuing symbolic execution.

It is enlightening to think about termination of symbolic
execution of recursions in terms of fixed points. Deciding
whether to continue symbolic execution of a recursion is ba-
sically the same as determining whether symbolic execution
of the recursion has reached a fixed point with respect to the
creation of new, unique specialized function bodies. Once
a fixed point has been reached, continued symbolic execu-
tion of the recursion would lead to divergence since the data
available for making the termination decision is by defini-
tion not changing and the algorithm has previously decided
based on this data to continue symbolic execution. The
central issue, therefore, is how to define an equivalence met-
ric that captures the concept of symbolic execution having
reached, or not reached, a fixed point.

Two specializations are completely equivalent if one spe-
cialization can be replaced by the other (in any context)
without changing a program’s behavior. . Complete equiva-
lence is overly restrictive. A more liberal equivalence that
gets to the essence of partial evaluation is: two specializa-
tions are equivalent with respect to a given call site in a
residual program if a call to one specialization can be re-

2Not all partial evaluators distinguish recursive calls from non-
recursive calls. This observation doesn’t affect our argument.
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placed by a call to the other without changing a program’s
behavior. Note that an original function and any nontrivial
specialization of it are not equivalent in the first sense, but
can be equivalent in the second.

2.4 Enlarging Equivalence Classes

Virtually all partial evaluators characterize specializations
based upon the information in the arguments that the
specializer was allowed to use when constructing the
specialization.® For example, in offline specializers such as
Similix [1] and MIX [4], specializations are characterized by
the information in the static arguments; in online special-
izers such as Fuse [8], all of the information in the argu-
ments characterizes the specialization. These characteriza-
tions form equivalence classes of arguments. A specialization
can be safely reused at any call site where the information
allowed to be used during specialization is present at the
call site (i.e., wherever the arguments are in the equiva-
lence class of the specialization). Regardless of how they
are created or the context from which they are invoked, two
specializations of the same function are equivalent when the
equivalence classes of their arguments are equal.

Recently, Ruf showed how to enlarge the equivalence
class (reusability) of a specialization by characterizing it by
the information in the arguments that was used to construct
the specialization [5]. He invented the term domain of spe-
cialization (DOS) to name the equivalence class a special-
ization can be safely reused on, and showed how to compute
a safe approximation to the DOS (called the MGI) by track-
ing the information used to construct a specialization. Ruf
showed that the larger equivalence classes that his methods
constructed for a specialization significantly increased the
reuse and sharing in residual code without degrading the
quality of residual code.

The DOS defined by Ruf is not as large as possible be-
cause it assumes all the information contained in the value
returned by a specialized function at runtime will be used;
however, this is often not the case. The less information that
is used about the return value of a specialization by some
context, the larger the equivalence class of specializations
that can be called from that call site. We will refer to the
DOS defined in [5] as the contezt free domain of specializa-
tion (CF-DOS) to differentiate it from the contest sensitive
domain of specialization (CS-DOS) that accounts for both
the values to which the specialization is applicable and how
its results can be used. When a function is called from a
context that doesn’t use all the information available about
its return value, it is important to know if a specialization
already exists (even one returning a different value) that
makes it reusable from this call site. The CF-DOS is not as
useful for this purpose since it is a characterization based on
information that may not be used in this context. That is,
the CF-DOS may be too small to be of use, in particular,
too small to ensure termination.

A direct consequence of the definition of the CS-DOS is
that only information that causally contributes to generat-
ing the result of @ program appears in the definition of any
equivalence class. This follows from each specialization be-
ing characterized by the context in which it is called, which
is in turn characterized by the context in which it is called,
etc. We argue that the CS-DOS is the largest possible equiv-

3The significant exception to this rule is systems using manual
annotations such as Schism [2].




alence class that can be used by a partial evaluator without
degrading the quality of residual code. (i.e., The CS-DOS
characterizes specializations with the greatest potential for
reuse that does not impact the ability to create useful spe-
cializations.)

To effectively approximate the equivalence classes of the
CS-DOS, a partial evaluator should place two specializations
of a function that depend on identical information from two
separate argument vectors in the same equivalence class.
Two otherwise equivalent specializations lose their equiva-
lence if beta substitutions of values into the specializations
yields residual code with differing equivalence classes. This
means specialization must not perform unnecessary beta-
substitution.

A partial evaluator that bases its control decisions on an
accurate estimate of information usage can produce a better
combination of residual code quality and termination prop-
erties than one that does not. For example, a TP partial
evaluator could use knowledge of the information that would
be used in forming a specialization to prove that symbolic
execution of a function call would result in a new, unique
specialized function body. This would enable a TP par-
tial evaluator to be more polyvariant (i.e., create more use-
ful specializations and perform more unfolding) while still
maintaining its termination properties.

Conversely, an RCP partial evaluator that exploits the
property that two specializations only fail to be interchange-
able when different information about the available values
was utilized in creating them can better decide whether
symbolic execution of a function body will result in a new
specialization.” For example, whereas Similix assumes that
progress is being made towards producing a new specializa-
tion as long as no introduced function is called with identical
static arguments [1], an information based partial evaluator
would only distinguish between argument sets that differed
in some piece of information to be used in forming the spe-
cialization. This enables the RCP partial evaluator to cor-
rectly terminate more often.

2.5 Equivalence Classes and Termination

We propose using equivalence classes based upon use in-
formation as our sole termination method, unlike previous
methods that appeal to dynamic conditionals, such as Fuse
and Similix, use induction methods, such as Mix [6], use
finiteness criteria, such as [3], or use manual annotations,
such as Schism [2]. It is vital that we construct the largest
classes possible without degrading residual code quality. In
particular, to ensure termination, it is important that the
equivalence class of a specialization not be restricted simply
because the value of some variable has been inlined in the
specialization, if inlining has not allowed for further opti-
mization. Gratuitous inlining decreases the size of equiva-
lences classes, and induces unnecessary distinctions between
specializations.

For example, consider a  procedure, called
check-numeric-type, that signals an error if its sole argu-
ment is not numeric, and is otherwise the identity function
(Figure 1). The application of check-numeric-type to the
value 1 can yield two different specializations. Performing
all possible beta reductions yields a specialization that just
returns the value 1 (Figure 2). A more polymorphic spe-
cialization is the identity procedure that remains parame-
terized over the argument value, which must be numeric
(Figure 3). A partial evaluator that generates the less poly-
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(define check-numeric-type
(lambda (val)
(if (number? val)
val
(error val))))

Figure 1: A function for checking that an argument is nu-
meric

(define check-numeric-type
(lambda (val) 1))

Figure 2: A  maximally - specialized version of

(check-numeric-type 1)

morphic form of specializations could not reuse the special-
ization generated for (check-numeric-type 1) for a call to
(check-numeric-type 2) in any context that uses the re-
turn value of the call.

To detect the equivalences required for effective termi-
nation, we propose dividing the specialization process into
two phases. During the first (analysis and symbolic exe-
cution) phase of partial evaluation, the specializer only in-
corporates into specializations that information about val-
ues that is necessary to perform further optimizations dur-
ing symbolic execution. In other words, it would pro-
duce the more polymorphic specialization in Figure 3 for
(check-numeric-type 1). Only type information about the
value 1 is used in evaluating the predicate of the conditional
in check-numeric-type, and no information is used in the
consequent. The specializer would not inline the value since
doing so enables no further optimizations, and would re-
strict the applicability of the specialization (i.e., reduce the
size of its equivalence class). Additional inlining decisions
are delayed until the code generation phase. During code
generation all of the call sites of a specialization are known,
which determines the maximum amount of code sharing that
is possible after the analysis phase has completed. At that
time the traditional inlining trade-off between code size and
execution efficiency can most effectively be made.

An added benefit of our two phase approach based on
use-analysis is that the partial evaluator can choose to pro-
duce code for more or fewer specializations than it generated
during the analysis phase. When a single specialization is
only applied to a small number of elements of the equivalence
class to which it is applicable, it may choose to generate a
separate specialization for each element of the equivalence
class that appears in the code. For example, a specializa-
tion might be applicable to all numbers, but only called
with the arguments 0 and 1. Instead of producing a single
specialization, it might be better to produce two special-
izations by inlining one of the possible argument values in
each. This would yield two specializations: one applicable
to 0 and the other applicable to 1. Conversely, the partial
evaluator may occasionally combine several specializations
produced during the analysis phase into a single, more gen-
eral specialization. An important property of use-analysis
is that it produces code that is as polyvariant as desirable




(define check-numeric-type
(lambda (val) val))

Figure 3: A maximally polymorphic specialization of
(check-numeric-type 1)

without forcing the code generation phase to produce more
code than is necessary.

3 Use-Analysis

3.1 The Use-Analysis Framework

Use-analysis maintains an approximation to the information
used by a partial evaluator during symbolic execution. Use
information can be represented by points in an information
lattice. Figure 4 shows the value domains for a pure sub-
set of Scheme. A richer set of value domains is required for
representing use information. They are needed because in-
formation about a value other than its identity is often used
in forming a specialization. We add values to the Scheme
domains that represent unspecified members of existing do-
mains, similar to the symbolic values used by Fuse[8]. For
example, use of only the integer property of the number
3 in a specialization might be represented by the abstract
value L7n:. A complete set of value domains for a partial
evaluator based on this concept is presented in Figure 5.

An information lattice based on the domains in Figure 5
and the binary relation <, meaning has less information
than, is presented in Figure 6.* Lppyar represents having
no information about a value. The first clause in the lattice
description states that there is information contained in the
type of a value. The next three clauses express that there is
more information in the identity of a value than in its type.
Pairs are organized in an information hierarchy based on the
information known about the car and cdr of the pair. The
more information known about the two components of the
pair, the more information that is known about the pair,
itself. Finally, the last clause states that T represents more
information than any other lattice element.

There are many types of information about values that
cannot be precisely represented by nodes in the information
lattice of Figure 6. For example, the best representation
of the information that an integer is less than 5 is either
the integer’s identity or Llrn.:. The integer’s identity is an
overspecification, excluding other integers that are less than
5. Llrne is an underspecification, including integers greater
than or equal to 5. The effects on partial evaluation algo-
rithms of different choices of information lattices and means
of imprecisely representing information usage utilizing them
will be discussed later.

Our presentation of use-analysis will proceed in three
stages. First, an eager use-analysis that is fairly sim-
ple to explain and understand will be developed. A fully
lazy use-analysis will then be discussed. Finally, lazy use-
analysis that eliminates some of the shortcomings of eager
use-analysis will be presented.

4The orientation of an information lattice is arbitrary in that
one can either have more information represented by higher or lower
points in the lattice. The orientation we have selected is opposite of
the one used by Ruf in [5]
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Eager Use-Analysis

A partial evaluator uses information about data values when
performing computations during symbolic execution. Eager
use-analysis, first presented in [5], records usage information
as soon as information about a value is used in performing a
computation. The information about a value that is utilized
is represented by an element of an information lattice. Val-
ues in a partial evaluator are replaced by annotated values
that are pairs composed of a representation of the infor-
mation known about an object’s value and a use annotation
for that value. When the partial evaluator symbolically exe-
cutes a primitive function on a set of annotated values, a new
value is produced and the use information of the annotated
argument values is updated. Use-analysis seeks to record the
maximum amount of information about a value that is uti-
lized, so primitives only modify the use information field of
an annotated value when they use more information about
that value than has previously been used.

A table of Scheme function applications and use profiles
for their arguments based on the information lattice pre-
sented earlier (Figure 5) is shown in Figure 7. Less trivial
use profiles result when multiple functions are composed.
For example, (number? (car (car ’((1 2) (3 4))))) re-
sults in a use profile that might be represented as <<
Lint, LPEvat >, LPEvat >. The innermost car uses the
information that the argument is a pair. The next car uses
the information that the first component of the pair is also a
pair. number? uses the information that the first component
of that pair is an integer.

Eager use-analysis often produces an overestimation of
the information required to produce a given specialization.
For example, in the expression (number? (+ 1 2)), + uses
the identity of both of its arguments to produce the re-
sult 3 and modifies the use annotations of the arguments
to reflect this usage. The function number? only uses that
3 is an integer, not its value. This function would return
the same result for any two integer arguments to which +
were applied. The specialization only depends upon the
types of 1 and 2, not their identities (values). Embed-
ding the example expression in a larger expression leads to
yet greater overestimation of information usage. In the ex-
pression ((lambda (a b) a) #t (number? (+ 1 2))), no
information about 1 or 2 is used since the result of number?
is thrown away; however, the use annotations still show that
the identities of these integers are used. While the code ex-
amples shown may seem unrealistic, similar expressions do
appear in real programs because of macros and other ab-
straction mechanisms.

Fully Lazy Use-Analysis

Eager use-analysis has the flaw of recording information us-
age of intermediate computations that do not contribute to
the result of a program. Ideally, only information utilized
in generating the final result should be recorded. Informa-
tion contributes to the result in one of two ways, either by
affecting the data or the control flow of a program. How in-
formation about a value percolates through the data flow of
a program to affect the final result is fairly obvious. Values
also affect the result of a program when they are used to
make a control flow decision (e.g., the predicate of a condi-
tional). If a control flow decision affects the final result of a
program, then the information used to make the control flow
decision has been used in generating the program’s result.




Figure 4: Value domains for a subset of Scheme

Int = 0,%1,%2,... integers
Bool = true+ false booleans
Nil = nil empty list
Pair = Swval x Sval pairs
Func = Swval* — Sval function values
Sval = Int+ Bool4 Nil+ Pair + Func scheme values
Int = 0,%1,£2,-.- integers

Line unspecified integer
Bool = true+ false booleans

1 Boot unspecified boolean
Nil = nil empty list
Pair = PEFEval x PEval pairs

Lpair = LPEval X LPEval unspecified pair
Func = PFEval* — PEval function values

L Func unspecified function
Kwval = Int+ Bool+ Nil+ Pair + Func known values
Bots = Lint+ LBoot + LPair + LFunc bottom values
PEval = Kwval+ Bots+ Lpgval

LpPEval

partial evaluation values
unspecified value

Figure 5: Value domains for information

Vz € (Bots U Nil).(LpEval < T)

Vi € Int.(Line < 1)

Vb € Bool.(LBoot < b)

Vf € F‘unc.(J.Func < f)

YV < £,y >€ Pair.(Vz' < z.(< 3',y ><< z,¥ >))

VY < z,y >€ Pair.(Vy' <y.(<z,¥' ><< 2,y >))

V< z,y >€ Pair.(Vz' < z.(Vy' < y.(< 2,9y’ ><< 2,9 >)))
vk € (Kval U Bots).(k < T)

Figure 6: Information lattice description

Expression Argument Use Profiles
+12) 1,2

(number? 3) Lrne

(car (1 . 2)) Lpair

(boolean? #t)  Lpoa

Figure 7: Eager use annotations

In fully lazy use-analysis a complete model of the execu-
tion of the entire program must be built before a use-analysis
can be performed. Only then can it be determined if there
is a causal chain from the use of some information at one
point in a program’s execution all the way to the final result.
While fully lazy use-analysis would be ideal, it is unfortu-
nately unknown at this time how to implement it, or even
if it is theoretically computable.

Lazy Use-Analysis

Lazy use-analysis is an approximation to fully lazy use-
analysis that solves many of the problems associated
with eager use-analysis. Lazy use-analysis delays deciding
whether information about values has been used until the
information usage contributes to making a control flow de-
cision. It differs from its fully lazy cousin in that all control
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flow decisions immediately assert the usage of information,
even if they eventually turn out not to contribute to the fi-
nal result. Lazy use-analysis works backwards from a point
where information is used to make a control flow decision
back through the data flow to the original sources of the in-
formation used in making that decision. Lazy use-analysis
maintains a record relating the information usage of one
value to the information usage of another value. For exam-
ple, execution of the expression (number? 3) creates a link
between using the value of the boolean result and using the
type of 3. Execution of (+ 1 2) creates links that express
two properties: use of the value of the result implies use of
the values of both 1 and 2, and use of the type of the result
implies use of the types of both arguments (i.e.,, that they
are integers).

When a value affects a control flow decision, lazy use-
analysis records usage information about that value using an
annotation from an information lattice. If the value utilized
in the control flow decision is linked to other values, then
the values to which it is linked also have information usage
recorded about them. They, in turn, may pass on usage
information to other values to which they are linked. This
process is continued until all necessary values have had their
usage profiles updated. Since the use links follow the data
flow of the program, they must be acyclic and the process
is guaranteed to terminate.

3.2 Termination Based on Use-Analysis

Our termination mechanism defines its equivalence classes
in terms of information usage profiles. When the first recur-
sive call to a function is detected, an information based par-
tial evaluator has already acquired information about the
first iteration of the loop. However, the partial evaluator
must continue symbolic execution until a second recursive
call is made, because two equivalent calls (iterations) are
required to detect a fixed point. Once the second recursive
call is reached, the question is whether the two iterations are
equivalent with respect to information usage. If the itera-




tions are equivalent, then the analysis process has reached a
fixed point, and a residual loop will be produced. If the it-
erations are not equivalent, then symbolic execution should
continue until either the recursion terminates (i.e., is com-
pletely unfolded) or a new iteration which is equivalent to
some previous iteration is detected.

We divide each recursive procedure into two segments.
The head is the portion of the procedure performed be-
fore the recursive call; the ta:l, the portion performed after.
The termination algorithm described so far has only utilized
use information about the head of a recursion in deciding
whether two iterations are equivalent. In attempting to pro-
duce a specialized function body, it may be determined that
two iterations are in actuality not equivalent because their
tails are not equivalent. In this case, symbolic execution of
the recursion is resumed and proceeds as outlined above. A
final residual, recursive loop is only produced when both the
head and the tail of two iterations of a recursion are found
to be equivalent.

An ideal partial evaluator maintaining perfect use in-
formation would suffer from no induced divergences and
could produce as good residual code as is possible from
any physically realizable system. Perfect use information
would require a fully lazy analysis based on a set of value
domains that could capture precisely the information used
by all primitives in the language being specialized. This
type of optimality arises because fully lazy use-analysis cap-
tures perfectly the applicability of all specializations based
on the available data. Therefore, when symbolic execution
of a recursion reaches a fixed point (finds two equivalent
iterations) based on this perfect form of use-analysis, it is
guaranteed that two iterations are fundamentally equivalent
and that no alternative means of specialization could cause
them to be nonequivalent.

Imperfect use profiles result in either TP or RCP par-
tial evaluators. Information profiles that always over-record
information usage yield RCP partial evaluators. Over-
recording information usage can cause two equivalent iter-
ations of a loop to appear distinct. This means the partial
evaluator may not recognize that the symbolic evaluation
process has reached a fixed point, and may diverge trying
to completely unroll the recursion. Under-recording infor-
mation usage yields a TP partial evaluator. Iterations of a
recursion that are not in actuality equivalent may appear to
be equivalent to such a partial evaluator. This means that
an under-recording partial evaluator may give up unrolling
a loop before the symbolic execution process has actually
reached a fixed point, which results is an overly general
equivalence class and a suboptimal specialization. However,
under-recording can never lead to more symbolic execution
than would result with perfect information profiles, so it
must terminate whenever the ideal information based par-
tial evaluator does. Since an ideal partial evaluator does not
suffer from induced divergence, an under-recording partial
evaluator will not, either.

4 Two Termination Examples

Lazy use-analysis enables a partial evaluator to produce
higher quality code than many existing partial evaluators
while incurring fewer induced divergences than other RCP
partial evaluators. This is demonstrated through two exam-
ple programs. No other automatic partial evaluator both
terminates on the Iota program and produces good residual
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(define iota
(lambda (n)
(define loop
(lambda (i)
(if (= i n)
'O

(cons

i
(loop (1+ i))))))
(loop 0)))

Figure 8: Iota function

code for the Regular Expression Acceptor.

4.1 Effective Termination

Partial evaluation of the iota function in Figure 8 with
respect to an unknown value for n causes an induced di-
vergence for Similix[1]. This system defines equivalence in
terms of the identity of the values to which parameters that
have been labeled as static by a binding time analysis[4] are
bound. The salient issue is that it parameterizes its spe-
cialization points by the variable i, which it labels as being
static. Since the value of i is incremented on every recur-
sive call to loop, no two iterations of the recursion ever have
identical values for i so Similix unfolds and symbolically ex-
ecutes loop forever.

Partial evaluation of iota based on lazy use-analysis ter-
minates. During the first symbolic execution of 1oop, no use
annotation is created for (= i n) since n is unknown; and,
no use annotation is created for evaluating i to place it in
the car of a cons cell since this involves no computation.
The expression (1+ i) causes the creation of a use link be-
tween the value returned by the function application and
the value of i. The second iteration creates a similar anno-
tation, but no actual use of i. At the point when symbolic
execution reaches the second recursive call to loop, it is rec-
ognized that the two previous iterations of the loop have
used identical information about the free variables (i.e., no
information). In other words, the two iterations of loop are
equivalent so a residual loop is produced. Eventually, par-
tial evaluation terminates yielding a residual program that
is identical to the input program.

If iota had been applied to a known value, (= i n)
would create a use dependence between the value of i and
the resultant value of applying = to its arguments. The value
of the predicate of the conditional would be used in making
a control flow decision causing the value of the = expression,
and therefore the value of i, to be used. Since each itera-
tion of loop has a different value of i, no two iterations are
ever found to be equivalent, and the recursion continues to
be unfolded until the execution of iota is completed. The
residual program that is eventually produced is just straight
line code that conses together the list to be returned by iota.

4.2 High Quality Residual Code

Optimal residual code for partial evaluation of the regu-
lar expression matcher in Figure 9 with respect to a known
regular expression, a*, and an unknown input string is a
completely inlined decision tree with a single loop for kleene




star matching as shown in Figure 10.5* Mix cannot produce
this code because it only continues symbolic evaluation of a
recursion as long as the loop is self recursive and all of the
static arguments either have identical values or are bound to
proper substructures of previous values. Leaving aside the
self recursive limitation, the difficulty is that as a regular
expression is processed, the expression is on average shrink-
ing; however, kleene star processing temporarily increases
the size of the regular expression. Also, the regular expres-
sion is often stored in two pieces, one of which is shrinking,
and the other is growing.

Fuse uses a slightly more aggressive unfolding strategy.
Unfolding and symbolic execution of a recursion is always
continued unless two iterations of a recursion are separated
by a dynamic conditional, one whose predicate is not decid-
able during partial evaluation. When a recursion spans a
dynamic conditional, symbolic execution is still continued
as long as all the arguments are either identical or shrink-
ing in size. Although Fuse fails to produce optimal residual
code for reasons similar to Mix, we include a more detailed
outline of the steps performed by Fuse because it illuminates
the underlying problem. Symbolic execution of the regular
expression matcher by Fuse would proceed as follows:

(match? (make-kleene-star (make-term ’a)) 7)
(match? [kleene-star [term ’al] 7)
(match-pattern? [kleene-star [term ’al]
[null-pattern] ?)
(match-star? [kleene-star [term ’al]
[null-pattern] 7)
(if (match? [null-pattern] 7)
#t
(match-pattern? . . .))
(match? [null-pattern] ?)
(match-pattern? [null-pattern] [null-pattern] 7)
(match-null? [null-pattern] 7)
(null? ?7)

Since (null? ?7) can not be evaluated during par-
tial evaluation, this expression would be left resid-
ual. As a result, the conditional in match-star? would
be dynamic. Symbolic execution of the alternative
of this dynamic conditional would yield a call of the
form (match-pattern? [term ’a] [concat [kleene-star
[term ’al] [null-pattern]] 7). Since this is a recursive
call to match-pattern? that spans a dynamic conditional
and one argument grows in size, Fuse would suspend sym-
bolic execution at this point and use generalization to pro-
duce a specialized version of the loop. The result is residual
code that still includes the dispatcher in match-pattern?
and many of the data-structure abstractions of the pattern
matcher.

Partial evaluation of the regular expression matcher us-
ing lazy use-analysis is not inherently complicated, but it is
easy to get lost in the details. This presentation will there-
fore proceed through a simulation of the partial evaluation
process virtually function call by function call. The proce-
dure to which a recursive call will be detected and which will

5The regular expression matcher presented does not include dis-
junctions or epsilon rules. These have been omitted for simplicity and
do not effect the way in which any of the systems discussed would per-
form partial evaluation.

6 Brackets are used in code segments to denote objects to which
functions are to be applied. Question marks are used to represent
unspecified values (i.e., Lpgya1)-
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(define match?
(lambda (pattern input)
(match-pattern? pattern null-pattern input)))

(define match-pattern? !
(lambda (pattern rest-pattern input) :
(cond ((null-pattern? pattern) j
(match-null? rest-pattern input))
((term? pattern)
(match-term? pattern rest-pattern input))
((kleene-star? pattern)
(match-star? pattern rest-pattern input))
((concat? pattern)
(match-concat? pattern rest-pattern input)))))

(define null-pattern?
(lambda (pattern) (eq? pattern null-pattern)))

(define match-null?
(lambda (rest-pattern input)
(if (null-pattern? rest-pattern)
(null? input)
(match? rest-pattern input))))

(define match-term? !
(lambda (term-pattern rest-pattern input)
(if (and (pair? input)
(equal? (term-symbol term-pattern)
(car input)))
(match? rest-pattern (cdr input))
$#£)))

(define match-star?
(lambda (star-pattern rest-pattern input)
(if (match? rest-pattern input)
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(match-pattern?

(kleene-star-expr star-pattern)
(concat star-pattern rest-pattern)
input))))

(define concat
(lambda (patterni pattern2)
(cond ((null-pattern? patterni) pattern2)
((null-pattern? pattern2) patterni)
(#t (make-concat patternl pattern2)))))

(define match-concat?
(lambda (concat-pattern rest-pattern input)
(match-pattern?
(concat-head concat-pattern)
(concat (concat-tail concat-pattern) rest-pattern)
input)))

Figure 9: Regular expression matcher example




(define match?
(lambda (pattern input)
(if (null? input)
#t
(if (and (pair? input)
(equal? ’a (car input)))
(match? [kleene-star [term ’a]]
(cdr input))

#£))))

Figure 10: Optimal residual code for (match?

(make-kleene-star (make-term ’a)) 7)

lead to termination is match?. This is the very first function
that is called after the regular expression that is supplied as
input has been generated.

(match? (make-kleene-star (make-term ’a)) ?) Initial call

to begin partial evaluation.

{match? [kleene-star [term ’al]] ?) Regular expression
description created.

(match-pattern? [kleene-star [term ’all [null-pattern] 7)

A use dependence is created between the pattern vari-
able in match-pattern? and the pattern variable in
match?.

(null-pattern? [kleene-star [term ’al]l]) A usedepen-
dence is created between pattern in null-pattern?
and match-pattern?.

(eq? [kleene-star [term ’al]] [null-pattern]]) A use
dependence is created between the #f returned by eq?
and pattern in null-pattern?. The value of #f is
used to make a control flow decision in the cond in
match-pattern?. This use propagates along the use
dependence links eventually asserting use of the iden-
tity of patternin both match-pattern? and match?.

(term? [kleene-star [term ’al]) A use dependence is
created between the #f returned by term? and pattern
in match-pattern?. When this #£ is used by the cond
the same use assertions created by the previous clause
of cond are made.

(kleene-star? [kleene-star [term ’al]) Same as the
previous step.

(match-star? [kleene-star [term ’a]] [null-pattern]
A use dependence is created between the correspond-
ing variables of match-star? and match-pattern?.

(match? [null-pattern] ?) This expression returns an
unknown value. Since it is the predicate of a con-
ditional, both arms of the conditional will be inves-
tigated by the partial evaluator. None of the use-
analysis done for this expression is of interest, so the
details have been omitted.

(kleene-star-expr [kleene-star [term ’all) A usede-
pendence is created between the value [term ’a] re-
turned by the function application and the correspond-
ing subcomponent of star-pattern.
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?)

(concat [kleene-star [term ’al] [null-pattern]) Use
dependencies are created between the values patterni
and pattern2in concat and the values star-pattern
and rest-pattern in match-star?. The values of
both patterni and pattern2 are then used causing
use assertions to be propagated back to pattern and
rest-patternin match-pattern?.

(match-pattern? [term ’a] [kleene-star [term ’all)
Use dependencies are created between the formal pa-
rameters in match-pattern? and the sources of the
actuals. null-pattern? is then handled similarly to
the previous call to this function.

(term? [term ’a]) A use dependence is created between
the #t that is returned and pattern. The #t is then
used by the cond causing a use assertion to propagate
back all the way to the [term ’a] subcomponent of
the very first call to match?.

(match-term? [term ’a) [kleene-star [term ’al] ?) Use

dependencies are created between the corresponding
arguments. The predicate in match-term? does not
yield a value during partial evaluation so both arms of
the conditional must be investigated. The use asser-
tions made during the evaluation of the predicate are
again uninteresting.

(match? [kleene-star [term ’al] ?) This is the first re-
cursive call to match?. At this point a use profile for
the first iteration of the recursion is available. It shows
that the value of pattern was used, but no information
about input was required.

The second call to match? would proceed exactly like the
first, yielding a second recursive call to this function. At that
point, the use profiles of the two iterations would be com-
pared. In both iterations, the value of pattern was used;
however, since the values were identical, the two iterations
are equivalent. As a result, a residual loop would be created
for match. The residual code produced is precisely the opti-
mal code for (match? [kleene-star [term ’al] 7) shown
in figure 10.

5 Future Research

We are in the process of building an RCP partial evaluator
based on lazy use-analysis and an information lattice simi-
lar to that in Figure 6. The input language that the partial
evaluator will accept is a subset of higher-order, pure (func-
tional) Scheme including only the integer, boolean, pair, and
closure data types. This language includes all of the funda-
mental complexities inherent in any higher-order, applica-
tive order, functional language.

Our goals are to investigate the classes of programs on
which the proposed mechanism terminates, how efficiently
the mechanism can be implemented; and, depending on
these results, in what ways the information lattice or infor-
mation retention mechanisms might be modified to produce
a better partial evaluator. We also hope to gain insight into
the use of use information as a guide to partial evaluation.
This may enable us to investigate TP use information based
partial evaluators in the future.




6 Conclusions

A partial evaluator based on lazy use-analysis will termi-
nate on programs including counters and will properly un-
fold Mogensen’s (unpublished) regular expression accepter.
No automatic partial evaluator to date has been able to
do both. Use-analysis offers a potential solution to other
open challenges in partial evaluation such as selecting which
specializations to include in a residual program, specializ-
ing imperative programs, and performing driving. Selecting
which specializations to produce in a residual program was
the first application to which use-analysis was applied [5].
This work used an eager form of use-analysis and demon-
strated the viability and effectiveness of use-analysis. We
believe that lazy use-analysis will only improve the solution
to this problem.

Partial evaluation of imperative programming languages
is not conceptually complicated. The problem is how to
determine when two iterations of a recursion are equiva-
lent. Previous partial evaluators could not handle arbitrary
side effects because the only known method for comparing
two iterations was comparison of the complete stores at two
points in the execution sequence. This is simply infeasible.
In a use-analysis based partial evaluator, only those por-
tions of the store that are used must be compared to decide
equivalence. Since the portion of a store used by a pro-
gram segment will typically be a small fraction of the entire
store, use-analysis makes partial evaluation of imperative
languages both computationally and conceptually feasible.

Whether use information can be utilized to perform driv-
ing [7] is an open question. Preliminary investigation indi-
cates that maintaining use information not only about val-
ues, but also about the residual code produced, may enable
a use based partial evaluator to perform the same optimiza-
tions achieved through driving. The viability of achieving
driving through use-analysis should become clearer through
further investigation of use information.

In conclusion, use-analysis is a promising new technology
for solving many of the open problems in partial evaluation.
We are in the process of building an RCP partial evalua-
tor based on lazy use-analysis that will produce a better
combination of residual code quality and effective termi-
nation than any existing system. We believe this system
will demonstrate the efficacy of basing termination on use-
analysis and act as a stepping stone to the solution of several
other problems currently impeding the transition of partial
evaluation from a laboratory experiment into a widely used
tool.
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Abstract

Higher-order functions have become quite indispensable
to functional programming. They increase the expressive
power of the language and provide an additional level of soft-
ware abstraction from which to write concise and reusable
programs. However, higher-order functions are more expen-
sive to execute and are also more difficult to analyse for
optimisations.

In [CD92], we proposed a transformation method which
could automatically remove most higher-order expressions
from functional programs. However, the proposed method
does not preserve full laziness and may actually result in
(lower-order) programs which are less efficient. Previous
full laziness techniques have depended on the higher-order
facility and are therefore not compatible with the higher-
order removal method. In this paper, we propose a new full
laziness transformation method that does not rely on the
higher-order facility. This new method extracts out ground-
type maximal free expressions and can be formalised as a
transformation algorithm. We present the algorithm, use
examples to illustrate it, and provide an outline of its ter-
mination proof. Integration of this full laziness method into
higher-order removal will also be presented. Lastly, we re-
view the proposed full laziness method.

1 Introduction

Higher-order functional programs can contain functions as
results and/or pass functions as arguments. This facility en-
ables more concise and reusable programs to be constructed.
However, higher-order facility is expensive to support (relies
heavily on heap space for closures) and complicates program
optimisation (more difficult to handle than first-order lan-
guage).

Recently, an automatic transformation method, called
higher-order removal [CD92], has been proposed which
can remove most higher-order expressions from purely func-
tional programs by transforming them to equivalent first-
order or lower-order expressions. This method uses two
techniques which can be formalised as fold/unfold transfor-
mation algorithms. The first technique, called lump uncur-
rying, is used to convert curried applications to equivalent

0 Author’s Address: Dept of IS & CS, National University of Sin-
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uncurried function calls. This technique helps to eliminate
function-type results. The second technique involves a pro-
cedure which can specialise higher-order function calls with
instantiated function-type arguments. This technique helps
to eliminate function-type arguments. Together, the two
techniques can remove most higher-order expressions from
functional programs.

However, a current problem of this method is that it is
not fully lazy. In particular, during the elimination of non-
linear* function-type arguments, our method may result in
less efficient programs. For example, the following Hope
program? contains a function call, dup, with higher-order
argument, lambda x => sqr(y)+x end.

---p(y) < dup(lambda x => sqr(y)+x end);
---dup(v) <= v(3)+v(4);

The original higher-order removal method is able to elim-
inate the function-type argument by directly unfolding the
dup call. However, this step produces the following less effi-
cient first-order program:

---p(y) < (sar(y)+3)+(sar(y)+4);

The main cause of the above loss of efficiency is that a
free expression®, sqr(y), has been duplicated (during unfold-
ing) via the non-linear function-type parameter of dup. This
causes some codes to be duplicated.

The problem posed by this duplication of free expres-
sions is closely related to the full laziness concern which
was addressed by Wadsworth’s fully lazy graph reduction
technique [Wad77)], and Hughes’s fully lazy lambda lifting
technique [Hug82]. Wadsworth’s technique is a run-time
technique, while Hughes’s technique is a compile-time one.
Both techniques try to identify mazimal free erpressions
which ought to be shared, rather than duplicated. (A maz-
imal free ezpression (MFE) is a free expression which is
not contained within another free expression). For exam-
ple, the lambda lifting technique, which converts all lambda
abstractions to supercombinators, can be made fully lazy by
the direct extraction of MFEs during lambda lifting itself.
Lately, Peyton-Jones and Lister [PJL91] have shown that
the full laziness technique can be divorced from lambda lift-
ing. They use the let construct to capture MFEs which are
then floated outwards, as much as possible. This helps to
facilitate sharing of the MFEs.

However, all the previous methods of preserving full lazi-
ness (by extracting MFEs) have relied on the higher-order

1A parameter of a function is non-linear if it occurs more than
once in each evaluation branch of its function’s RHS term.

2In the Hope language, equations are of the form
---LHS < RHS;

3A free expression (of a lambda abstraction) is an expression
(other than a variable or a constant) which does not contain any
bound variables (of the lambda abstraction).




facility. They are therefore not compatible with higher-
order removal. This is because the extracted MFEs may be
function-type. Their extractions through new intermediate
functions (or via let constructs) actually cause the introduc-
tion of function-type arguments, rather than their removal.
Apart from this incompatibility with the higher-order re-
moval method, there are several other shortcomings present
in the previous full laziness techniques. These shortcoming
include:

e Maximum laziness is often dependent on the positional
order of parameters. Different orderings of parameters
can result in different degrees of laziness [PJ87].

o Extraction of partially applied expressions which are
unshared can result in unnecessary intermediate func-
tions [HG85).

o Space leak may occur when partially applied recursive
functions are lambda lifted in a fully lazy way [PJ87].

In this paper, we propose a new transformation approach
to full laziness which is able to overcome the above short-
comings. This new full laziness method is also compatible
with the higher-order removal method. In Section 2, we
describe four main techniques which can be used to pre-
serve full laziness, without depending on (the introduction
of) higher-order expressions. In Section 3, we formalise these
full laziness preservation techniques as a transformation al-
gorithm. This algorithm is terminating. An outline of the
termination proof will be given. In Section 4, we show how
the full laziness method is integrated with the higher-order
removal method. Pros and cons of the new full laziness
method, together with measures to minimise loss of laziness,
are discussed in Section 5. Section 6 concludes.

2 New Techniques for Full Laziness

Instead of extracting out all MFEs, our new full laziness
method will extract out only ground-type MFEs. A ground-
type MFE (GT-MFE) is an MFE whose result type is that of
a first-order object (e.g. num, char). In contrast, a function-
type MFE is an MFE whose result type is that of a function
(e.g. num — num — num).

We avoid the extraction of function-type MFEs. This
is because they are incompatible with the higher-order re-
moval method. Function-type MFEs result in function-type
arguments. They introduce new higher-order expressions,
rather than their removal.

To maximise the laziness of the transformed programs,
we shall use four main extraction techniques, namely:

T1: Extraction of GT-MFEs from lambda abstractions

T2: Conversion of grounded GT-MFEs to constant func-
tions.

T3: Direct unfolds of non-recursive function calls. This
is to help reveal implicit GT-MFEs, where possible.
Implicit MFEs are MFEs which are hidden underneath
function calls (inside the calls® function bodies).

T4: Linearise the parameters of certain non-recursive func-
tion calls. This is to facilitate direct unfolds to help
reveal further implicit GT-MFEs.
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These four techniques are referred to as T1, T2, T3 and
T4, respectively. The full laziness transformation method
consists of these four safe techniques to help float out both
ezplicit and implicit GT-MFEs. During higher-order re-
moval, these techniques can be repeatedly applied to each
(non-linear) higher-order argument until no more GT-MFEs
can be found. This is to ensure that the non-linear higher-
order argument can be eliminated without loss of laziness.

In the next few sub-sections, we describe (with the help
of examples) the above four techniques for extracting GT-
MFEs.

2.1 Ti1: Extraction of GT-MFEs from lambda ab-
stractions

We assume the use of an uncurried language where partial
applications are written using lambda abstractions. These
are also the places where free expressions may exist and can
be extracted to preserve full laziness. The first technique
T1, of our full laziness method, is to search and extract out
all explicit GT-MFEs from lambda asbtractions.

As an example, consider the function F:

dec F : list(num) # num # num — list(num);

dec map : list(A) # (A — B) — list(B);

---F(xs,A,B) < map(xs,Jambdaa = a+A*B end);

---map([lf) <« [;

- -- map(x::xs,f) < f(x)::map(xs,f);
(Note on Hope syntax: the dec statement is used to declare
the type of functions, and :: is the infix constructor for the
list data type.)

Presently, this function is not fully lazy as there is a
GT-MFE, A*B, in the lambda abstraction of the map call.
To make this function fully lazy, this GT-MFE must be ex-
tracted with an intermediate function (or a let construct as
used in [PJL91]). Below is an extraction of the GT-MFE
using (intF) as an intermediate function.

---F(xs,A,B) < map(xs,int.F(A*B));
---int F(Z) <« lambdaa = a+Z end;

We suggest that it is quite acceptable to consider only
ground-type MFEs for extraction. This is true as long as
there is a way of extracting out all such MFEs, may they be
explicitly present or implicitly hidden under levels of func-
tion calls. The rationale behind this is that ground-type
MFEs are the major source of redundancy when expressions
are duplicated. In contrast, function-type MFEs require ad-
ditional inputs before being complete for computation. We
shall see in Section 5 that ignoring the function-type MFEs
need only suffer from a minor loss of laziness. This loss of
laziness can be tolerated because it is related to the space-
leak problem.

2.2 T2: Conversion of grounded GT-MFEs to con-
stant functions

In a given lambda abstraction, grounded* sub-expressions
(with neither free nor bound variables) are also considered
as free expressions. Instead of extracting them and risk the
introduction of (unnecessary) intermediate functions, we can
introduce constant functions (CF) in place of grounded GT-
MFEs.

For example, the function F2 below, contains a grounded
GT-MFE sqr(4) in its lambda abstraction.

4 An expression is ground if it does not contain free variables. Note
that this is a different notion from ground-type which is for expres-
sions which return first-order objects.




dec F2 : list(num) — list(num);
---F2(xs) < map(xs,Jambda a = a+sqr(4) end);

It is possible to introduce a constant function sq4, to

replace the grounded GT-MFE sqr(4), as shown below.
---F2(xs) < map(xs,Jambda a = a+sq4 end);
---sq4 <« sqr(4);

This constant function need only be evaluated once with
its result shared by all calls to it, making the above pro-
gram fully lazy. This technique is adapted from [PJ87]. In-
stead of all CAFs (Constant Applicative Form), we convert
only ground-type CAFs (or grounded GT-MFEs) to con-
stant functions.

2.3 T3: Direct unfolds of non-recursive function

calls.

Not all GT-MFEs are explicitly available for extraction in

lambda abstractions. Some of them may be hidden under-

neath function calls (in the calls’ function bodies). As an

example, consider the function F3, as shown below.
---F3(xs,A,B) < map(xs,lambda a = G3(a,A,B) end);
---G3(x,y,2) <« x+y*z;

This function contains an implicit GT-MFE, A*B, which
is hidden beneath the non-recursive G3 call. One way of
making this GT-MFE explicit is to directly unfold the non-
recursive G3 function call, to give:

---F3(xs,A,B) < map(xs,Jambda a = a+A*B end);

Direct unfolding results in fewer intermediate function
calls. It also helps to reveal hidden GT-MFEs for extraction
by the first technique, T1. However, we may only apply
direct unfolding to non-recursive function calls which do not
have large non-linear arguments. (A large argument is a
sub-expression that is not a variable or a constant.) This
restriction is meant to avoid two problems. Firstly, recursive
functions may cause non-termination if they are considered
for direct unfolding. Secondly, function calls with large non-
linear arguments can cause loss of efficiency (by duplicating
code) when they are directly unfolded.

2.4 T4: Parameter Linearisation

Lastly, not all non-recursive function calls can be directly
unfolded to reveal implicit GT-MFEs. Some of these calls
are prevented from direct unfolding because it contains large
non-linear arguments. An example is the following function,
F4.
---F4(xs,A,B) < map(xs,Jambda a => G4(a*a,A,B) end);
---G4(x,y,z) <« x*(y*z)-x;

The RHS of F4 contains a G4 call which hides an im-
plicit GT-MFE, A*B. However, this call cannot be directly
unfolded because there is a large non-linear argument, a*a,
which can cause loss of efficiency when duplicated.

One way of revealing the hidden GT-MFE is to linearise
the problematic parameter with an intermediate function,
G4a, as shown below.

---F4(xs,A,B) < map(xs,]Jambda a=> G4(a*a,A,B) end);
---G4(x,y,2) <« Gda(x,y*z);
---Gda(x,yz) <« x*yz-x;

This linearisation enables the G4 function to be directly
unfolded. Unfolding this call reveals the hidden GT-MFE,
A*B, as shown below.

---F4(xs,A,B) < map(xs,Jambda a = G4a(a*s,A*B) end);

40

3 Full Laziness Tranformation Algorithm

The above collection of techniques can be combined together
to form the full laziness method. This method can be used to
convert a program to fully lazy form prior to lambda lifting.
It can also be used to make the higher-order removal method
fully lazy (see Section 4).

We can formalise the full laziness method as a transfor-
mational algorithm that is made up of three main sets of
syntax-directed rules, named £, £ and F. The first rule,
L, is used to strategically place the second rule £ at each
lambda abstraction. The second rule, £, is used to perform
direct unfolding and extract out all GT-MFEs from each
lambda abstraction. It uses the third rule, F, to find both
explicit and implicit GT-MFEs. The F rule is also used to
linearise the parameters of certain non-recursive functions
which contain implicit GT-MFEs but cannot be unfolded.
Before presenting the three sets of rules, we first introduce
a simple higher-order language for which the full laziness
algorithm will be based.

3.1 The Language

Consider a simple higher-order language with functions of
the form:
o .- (01,..‘,v',-,)<=tf;
with its RHS term, tf, described by:
tu=v | flC(t],...,tn) | t(t],...,tn)
| casetinpi= t1;.;pn=> tp end
| lambda (vy,...,vn) = tf end

pu=v]|c(ps,...,p5)

This simple language contains variables (v), construc-
tor terms (c(ty,...,tn)), applications ((ts,...,¢n)), user-
defined functions (f), case constructs and lambda abstrac-
tions. These constructs are basic expression structures found
in almost all modern functional languages. We shall base our
full laziness method on this language.

The above language is an uncurried language. How-
ever, it is still possible to have curried applications. Cur-
ried applications are all those applications, except function
calls, f(t1,...,ta), and variable applications, va(ty,...,tn),
where:

va =:=v |va(ty,...,tn)

Curried applications are more difficult to handle. Fortu-
nately, they can be eliminated by a technique, called lump
uncurrying [CD92], which replaces each curried application
by an equivalent uncurried function call. This technique
has been formalised as a transformation algorithm, named
A, which could transform any well-typed expression of the
full higher-order form to an equivalent expression without
curried applications. The new expression form without cur-
ried application, called the applyless form, can be specified
by the grammar:

t s=ov || c(tsy... ta) | va(ty,. .. tn) | f(t1,.. . tn)
| case tin pi= t1;.;pn=> tn end
| lambda (vyg,...,vn) = tf end
WHERE f is an applyless function. An applyless
function is a function whose RHS term is applyless.

In this paper, we shall base the full laziness algorithm on

this simpler applyless expression form.




3.2 The £ Rule

The main rule, £, for the full laziness transformation must
be applied to the RHS of each function. This must be
applied in a bottom-up order, so that auxiliary ( or child)
functions become fully lazy before their parent functions. A
function, fi, is considered to be a child function of another
function, f2, if f2 calls f; but not vice-versa. If f; also calls
f2, then we have sibling or mutually recursive functions.

The L rule, given in Figure 1, basically places an £ rule
application for each lambda abstraction. This is intended
to lead to the extraction of GT-MFEs via the techniques of
T1, T2, T3 and T4. However, each user-defined (global)
function:

- f(v1y.eyvn) & Uf;

is also a lambda abstraction - the outermost one. This outer-
most lambda abstraction does not contain free variables but
it may still be possible to find grounded GT-MFEs which
must be converted to constant functions. To extract these,
we place an £ invocation (before the £ call) on the RHS of
each function definition, as follows:

---f(vgs..yvn)) « EL[H]) {vg,...

To illustrate the use of the £ rules, let us consider the
following simple program.

---P(x) <« dup(lambda a = hi1(x,a) end);
---hl(x,a) < h2(x*x,sqr(a));

---h2(x,a) & x*x+(a+a);

---dup(v) < v(3)+v(4);

The only function with a lambda abstraction is the func-
tion P. To make this program fully lazy, we apply the £ and
L rules to its RHS term, as shown below.

---P(x) <« €[L[dup(lambdaa=> h1(x,a)end)]] {x};
<« E[dup(L[lambdaa = hl(x,a) end)])] {x};
<« &[dup(€[lambdaa=> L[h1(x,a)] end] {})] {x};
<« E[dup(£[lambdaa => h1(x,a)end] {})] {x};

,Vn}

The above steps manage to place two £ calls. These calls
are capable of extracting out all the GT-MFEs (both explicit
and implicit) in P. The outer £ call, with x as its bound
variable, will be used to convert all grounded GT-MFEs to
constant functions. The inner £ call will be used to extract
out all GT-MFEs from the inner lambda abstraction. In the
next sub-section, we shall look at how the GT-MFEs of this
example are extracted through the £ rule.

3.3 The £ Rule

Both explicit and implicit GT-MFEs are extracted by the £
rules of Figure 2. These rules repeatedly extract out GT-
MFEs which are free relative to a set of bound variables, bv.
An expression is free relative to a set of bound variables,
if none of the bound variables are contained in the given
expression.

At the start, each expression is subjected to an auxil-
iary rule, called Y. This rule performs direct unfolding on
each non-recursive function call, which will not cause loss
of efficiency when unfolded. Note the use of the ® anno-
tation (in U7) to identify non-linear parameters. This rule
avoids unfolding function calls with large non-linear argu-
ments. It also avoids unfolding function calls whose bod-
ies are lambda abstractions. This is because such function
calls will not contain any GT-MFEs after a bottom-up or-
der of transforming functions. The non-recursive function
calls are allowed to contain instantiated function-type argu-
ments when unfolded. This may cause curried applications
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to be formed from variable applications. To remove them,
we simply apply the A rule to each of the unfolded calls.

The actual extraction is done with the help of another
rule, named F. This rule is repeatedly applied until no more
GT-MFEs are left in the given expression. This repetitive
application is invoked by £1a and £1b. It terminates with £2
when no more new GT-MFEs are found. For each GT-MFE
extracted, the rule uses an auxiliary meta-function, CF, to
check if the GT-MFE is either:

1. a grounded GT-MFE, and/or
2. a curried application.

If it is a grounded GT-MFE, the CF rule will convert it
into a constant function. If it is a curried application, the A
rule will be used to transform it to uncurried form. There is
a possibility of getting curried applications because we are
performing this full laziness transformation before the elim-
ination of function-type arguments. These function-type ar-
guments may be used to instantiate variable applications
to curried applications when rule F7b2.2.1 (see Section 3.4)
searches for implicit GT-MFEs.

The earlier example from the previous section contains
two un-evaluated £ rule applications. We are now ready to
show the main steps of extracting GT-MFEs by these two £
applications. At each invocation of the £ rules, the F rule
is called to search for both explicit and implicit GT-MFEs.
We show the results of these F rule applications as brief
comments preceded by the symbol ‘!’. (More detailed steps
of the F rule will be presented in the next section.) Each
of the F invocations returns a tuple of three items, namely
the new expression after extraction, a list of extracted GT-
MFEs and a corresponding list of new variables to replace
the extracted GT-MFEs. The presence or absence of GT-
MFEs is used to determine what action must be carried out
by the £ rule, as shown below.

---P(x) <« &[dup(€[lambdaa = hi(x,a)end] {})] {x};
! Fllambdaa=> h2(x = x,sqr(a)) end] {} gives
! (lambda a = h2(A,sqr(a)) end,[x*x],[A])
! £la:extract and define fn1
<« E[dup(fn1(x = x))] {x};
! Fldup(fn1(x* x))] {} gives
! (dup(fal(x*x)).[],[])
! £2:terminate
<« dup(fnl(x*x));
Define fnl1 by (£)
---fn1(A) <« E[lambdaa=> h2(A,sqr(a))end] {};
! F{lambdaa= h2(A,sqr(a))end] {}
! (lambda a = h2'(B,sqr(a)) end,[A*A],[B]) gives
! €la:extract and define fn2
< fnl1(A*A);
Define fn2 (by £)
---fn2(B) <« E[lambdaa=> h2'(B,sqr(a)) end] {}
! Fllambdaa=> h2'(B,sqr(a)) end] {} gives
!  (lambda a = h2’'(B,sqr(a)) end,[],[])
! £2:terminates
<= lambda a = h2'(B,sqr(a)) end;
Define h2’ (by F)
---h2'(B,a) < B+(a+a);

The result of the above extractions is the following fully
lazy program for P.
---P(x) < dup(fnl(x*x));
---fn1(A) < Mm2(A*A);
---fn2(B) <« lambda a = h2'(B,sqr(a)) end ;
---h2'(B,a) <= B+(a+a);




(1) £[v] <

(2) £[f] < f
(3) Llc(ts,. -1 ta)] < o(L[t), ..., L[tn])
(4) Llva(ts,...,tn)] & Lva)(L[t1),- .., L[tn])

(5) L[caset in p1=> t1;..;pn=> tnend] < case L[t]in p1=> L[t1];..;pn=> L[tn] end
(6) L{lambda (vy,...,vn)=> tfend] < E[lambda (vy,...,vn)=> L[tf] end]
(7) LUf(t1,- > tn)] <« f(L[t],. .., L[ta])

Figure 1: Rule £

Elezpr] by
LET (expre,fe; --- fep,vey - - - vep) =F[U[ezpr]] bv IN
1) IF p > 0 THEN
LET (ezpre’,fe'  ---fe'g,ve'y - - ve'q) =CF[ezpro] IN
a) IF ¢ > 0 THEN < f_new(fe’l,...,fe'q,vrl,...,vr,)
WHERE vrj - - - vr,=free_vars[ezpre'] — {ve; --- veq}
’ DEFINE --- f-new(ve'y,...,ve'q,vry, ..., vr;) < E[ezpre’] bv
b)IF ¢=0 <« E[ezpre’] by

2) IF p =0 THEN <« ezpr
WHERE
1) CF[(e,[,0)] < (e,[1,0)

2) CF[(e,fe :: fe-lt,ve :: vet)]
a) IF fe IS grounded THEN < CF[(e[fc/ve],felt, ve-lt)]
DEFINE --- fc <= A[fe] ; constant function

b) OTHERWISE < (€, Alfe] :: fedt', ve :: ve lt")
WHERE (¢, fe-it', vedt') = CF[(e, fe-lt, ve-it)]
1) Ulv] <
2) U[f) <f
3) Ule(ty,--.,ta)) < c(Ult),...,U[ta])
4) Uva(ts,...,ta)] < Ulva)U[t], ..., U[ts])

5) Ulcasetinpi= t1;.;pn=> tnend] <« casel[t]in pr=> U[t1];..;pn=> Uftn] end
6) U[lambda (vy,...,vn)=> tf end] <= lambda (vy,...,vn)=> U[tf] end
7) Uf(ts,-. -, ta)]
IF f is not recursive and Va € 1...%,%,® IS A VARIABLE or CONSTANT (direct unfold)
< U[A[tf[t1[v1,. .., tn[va]]]
OTHERWISE < fU[t), ..., Uts))

Figure 2: Rule £ and its Auxiliaries, ¥ & CF
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Two intermediate functions, fnl and fn2, were introduced
by the £ rule to hold the extracted GT-MFEs. Another new
function, h2’, was introduced by the F rule to help extract
out an implicit GT-MFE from a function call which could
not be directly unfolded, namely h2(A,sqr(a)). Each of £
calls terminates whenever no more GT-MFEs are found by
the F rule.

3.4 The F Rule

The search for GT-MFEs is carried out by the F rule of
Figure 3. This rule takes an expression, e, together with a
set of bound variables, bv, in order to return a tuple of three
items, namely:

1. a new expression, ee, obtained from the original ex-
pression, e, by extracting some or all of its GT-MFEs.
(Note the use of notation, ee, to denote an expression
which has just been processed by one application of
the F rule.)

2. alist of ground-type MFEs, fe, - -- fe,, extracted from
e which are free relative to the set ofp bound variables,
bu.

3. a corresponding list of new variables, ve;.--vep, to
replace the extracted GT-MFEs, fe, -~fep.

Every expression examined by F is initially tested to see
if it is a ground-type MFE by F0. If it is not, then one of
the remaining cases of the F rule is invoked instead.

Of particular interest is rule F7 which deals with func-
tion calls. Initially, the arguments of these calls are tested
to see if there are GT-MFEs among them. If there are, then
these GT-MFEs are extracted through F7a. However, if
there are no GT-MFEs in the arguments and if the function
call being dealt with is neither recursive nor has a lambda
abstraction for its body, then we can search for implicit GT-
MFEs. This search for implicit GT-MFEs begins in rule
F7b.2. Initially, a procedure called divide-arg is used to
classify the arguments of the function call as either free or
bound, depending on whether it contains bound variables
from bv. If none of the arguments are free, then there are
no implicit GT-MFEs (see F7.2.1). If free arguments exist,
then we recursively call F to search for implicit GT-MFEs
in the body of the function call (see F7b.2.2). If implicit
GT-MFEs are found, we use the technique of T4 to define a
new intermediate function in the function body, followed by
a direct unfold for the call (see F7b.2.2.2). There is also an-
other auxiliary rule, F_list. This rule is a more general form
of F. It deals with the extraction from a list of expressions
rather than from a single expression.

Notice that the F rule will locate and extract out all
explicit GT-MFEs before the implicit ones. Each invocation
of the F rule often find some of the GT-MFEs. This means
that we may have to apply the F rule a number of times
before all the GT-MFEs are found. This repetitive location
and extraction of GT-MFEs is handled outside the F rule
(e.g. by the £ rule).

We are now really to illustrate the location and extrac-
tion of GT-MFEs by F, using the earlier example. Alto-
gether, there were four invocations to the F rule but only
two of them produced any GT-MFEs. These two invoca-
tions are illustrated in Figure 4.

The first invocation of the F rule results in the extrac-
tion of an explicit GT-MFE, x*x. The second invocation is
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slightly more complicated because it involves the application
of technique T4 by step #7.2.2.1. This invocation manages
to extract an implicit GT-MFE, A*A, and introduces an
intermediate function, h2".

3.5 Outline of Termination Proof

There are a number of rules used by our full laziness trans-
formation algorithm. The main rules are £, £ and F. These
rules fall under the following invocation or calling hierarchy,
namely £ > £ > F. Apart {from these rules, there are also a
number of auxiliary rules, e.g. U, CF, F_list and divide_arg,
but these auxiliary rules can be trivially shown to be termi-
nating. We shall therefore be concerned with just the main
rules in this proof outline.

To prove that the entire full laziness transformation al-
gorithm terminates, we have to prove that each of the above
recursive rules terminates. Starting, with the F rule (which
lies at the bottom of the calling hierarchy), we can see that
each of its recursive rules either (1) operates on successively
smaller sub-expressions or (2) operates on the bodies (RHS
term) of non-recursive functions (in order to locate hidden
GT-MFEs). These rules can have a well-founded decreasing
measure that is made up of the function calling hierarchy
number® combined with the size of expression.

The L rule operates on successively smaller expressions.
It will therefore terminate if the £ rule terminates. The £
rule is also recursive but has a termination property that
is tied closely to the F rule. In particular, it repeatedly
extracts GT-MFEs (via F) from its expression and will ter-
minate when no more GT-MFEs are found. To show that
this repeated extraction terminates, we must show that each
application of F extracts out some GT-MFEs, in such a way
that fewer GT-MFEs are left behind. To prove this, we sim-
ply define a GT-MFE measure to count the maximum num-
ber of extractable GT-MFEs (by F) that is present in any
given expression. The equational definition for this measure
will essentially mirror the recursion structure of the F rule.
It will always return a finite value because such a recur-
sion structure (for F) has been shown to be terminating.
Having defined this GT-MFE measure, we could prove (by
induction) that each expression which results from an ap-
plication of F will either have a measure that is less than
the measure of the original expression, or is zero (i.e. no
more GT-MFEs). This well-founded decreasing measure is
sufficient to prove that the £ rule terminates.

4 Integrating the Full Laziness Method into Higher-
Order Removal

Our full laziness method can be used independently to make
programs fully lazy. It can also be combined with the higher-
order removal method to preserve full laziness while remov-
ing higher-order expressions. To obtain a fully lazy higher-
order removal method, we must first subject our programs
to the full laziness transformation. This will help extract
out all GT-MFEs from each lambda abstraction. This fully
lazy form is more amenable to the extraction of GT-MFEs
from non-linear function-type arguments which is our next
step. (Linear function-type arguments do not cause loss of

5A number related to the calling hierarchy such that those func-
tions on top of calling hierarchy always have larger numbers than
those below them.




(0) Flezpr] bv
IF expris a GT-MFE without any of the variables in bv THEN
< (ve, [€],[ve])

(1) F[v] bv < (v,0,0)
(2) F[f] bv < (£,0.0)
(3) Fle(ts,..., ta)] bv < (c(tey,...,tey), felt, ve lt)
WHERE (te; --- teg, fe_lt,velt) =F list[ty - ta] bv
(4) Flva(ts,...,tn)] bv < (vae(tey ---tey), fedt <> fe lt', ve_ It <> ve lt')

WHERE (te; -.-tegq, fe_lt,ve lt) = F_list[ty--- ta] bv
(vae, felt', ve It') = F[va] bv
(8) Flcasetinpy= t1;.;pn=> tn end] bv < (casetein p1=> tey;..;pn=> te, end
Jedt <> felty <> .- <> felltn
yeldt <> veldty <> ... <> vellty)
WHERE (te, fe_lt, ve_lt) =F[t] bv
(teg, felty, velty) =F[t;] bv U free_vars[p,]

(ten, feltn, velty) =F[ta] bv U free_vars[pn)
(6) Fllambda (vy,...,vn)=> tf end] bv <« (lambda(vy,...,vn)=> tfeend, fe_lt, ve_lt)
WHERE (tfe, fe_lt, ve_lt) = Flva] bv U {vy,...,va}
(7) Flf(t1,.. ., ta)] b

LET (tes---ten,fes - fep,vey .- vep) =F list[ts.--ta] bv IN
a) IF p > 1 THEN < (f(tes,...,ten),fes - fep,ves - vep)
b) IF p = 0 THEN (Given --- f(vy,...,vn)< tf)
b.1) IF f is recursive, primitive or tf is a lambda abstraction THEN
< (f(tl IRREE) tﬂ)yu)n)
b.2) ELSE LET (freed, bounded)=divide_arg[t; - - - tn] bv IN
b.2.1) IF freed = {} THEN < (f(t1,---, )00
b.2.2) IF freed # {} THEN
LET (tfe,fe’, ---fe'q,ve'j --.ve'q) =F[tf] {vili € 1...n,t; € bounded} IN
b.2.2.1) IF ¢ >0 < (f-n(vry,...,vr2)[t1/v1, ..y in/vn]
Jfe'y - fel gt fvr,. . tnfvn],ve's - ve'y)
WHERE vrj ... vr; = free_vars[tfe]
DEFINE --- fn(vry,...,vr;) < tfe

b.2.2.2) IF ¢=0 < (f(t1,.-., ta),0,0)
WHERE
F_list[[] bv < @00
F_list[t :: ts] by < (te:: tse, fe t <> fe_ts,ve_t <> ve_ts)
' WHERE (te, fe_t, ve_t)=F[t] bv
(tse, fe_ts, ve_ts)=F list[ts] bv
divide_arg][[]] bv < (0.0
divide_arg[t; :: ts] bv <« IF t; does not contain any variables of by
THEN (¢; :: freed, bounded)
ELSE (freed, t; :: bounded)
WHERE (freed, bounded)=divide_arg[ts] bv
Figure 3: Rule F and its Auxiliaries F_list & divide_arg
Fllambdaa=> h2(x xx,sqr(a)) end] {} ! Fe
= (lambdaa=> tf end,fel, vel) where (tf, fel, vel) =F[h2(x * x,sqr(a))] {a} ! F7a

= (lambdaa=> tf end,fel, vel) where (tf, fel, vel) = (h2(A, sqr(a)),[x * x], [A])
= (lambdaa=> h2(A,sqr(a))end,[x * x],[A])
Fllambdaa— h2(A,sqr(a)) end] {} ! F6
= (lambdaa=> tf end,fel, vel) where (tf, fel, vel) = F[h2(A,sqr(a))] {a} ! F7b.2.2.1define h2’
= (lambdaa=> tf end, fel, vel) where (tf, fel, vel) = (h2'(B, sqr(a)),[A = A, [B])
= (lambdaa=> h2'(B,sqr(a))end,[A * A, [B])
DEFINE h2’
---h2’(B,a) < B+(a+a);

Figure 4: Two Examples of F Rule Applications
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laziness when duplicated. Hence, there is no need to extract
their GT-MFEs.)

During the elimination of instantiated function-type ar-
guments, we must ensure that all GT-MFEs are extracted
from non-linear function-type arguments before these are
eliminated by unfold/fold transformations. The algorithm
to eliminate higher-order arguments, called R, consists of
seven syntax-directed rules (see [CD92, Chi90]). The main
elimination rule, R6, deals with function calls which may
contain function-type arguments. This rule has the form:

(6) R[S (tg,-.-,tn)l & ...

To make this elimination rule fully lazy, we simply modify
R6 to be the following.

(6) R[f((l .
t.l,

lower order expr. ..

mvtm+]1" ytn)]
Jtom feq,... , fepvey, ..., vep
=F tistulen], o Ut {} IN
IF p > 0 THEN <« f_n(vry,... urz,R[fq], - R[fe,])
WHERE vry-..vrz; =
freevar{te s,...,.tem bty q,..
DEFINE-‘-f_n(vrl,“,,ur;,vej, ., vep) &
R[j(tol,...,tom,tm+1,. ,tn));
. lower order expr.

LET

tu] {ve1 ~71¢p}

ELSE <.

Notice that the non- hnear function-type parameters have
been separated out as t2,...,18. The above modified rule
uses U to perform direct unfolds, where possible, on the
non-linear function-type arguments. It also uses F_list to
search and extract out the GT-MFEs from t?, .,t8. Each
successful extraction uses an intermediate function (f-n) to
hold the extracted GT-MFEs. This step is repeated by R6
until no more GT-MFEs are found. When this happens, the
non-linear function-type arguments can be safely duplicated
(without loss of laziness) by the elimination step of R6.

As an example of this fully lazy higher-order removal,
consider the following set of three (applyless) functions.

dec main : list(num) # num # num — list(num);
---main(xs,A,B) < map(xs,lambda y = f_1(y,A*B) end);
---11(y,A) < [2(y*y,A+A);

---£2(y,A) < y¥y+sqr(A);

The above program can be converted by £ to the follow-
ing fully lazy form:
---main(xs,A,B) < map(xs,llx(A*B);

---llx(A) « Ix2(A+A);

---ll.x2(A) <« ll.x3(sqr(A));

---11.x3(A) <= lambda y = f.2a(y*y,A) end;
---12a(y,A) <« y*y+A;

In making the above program fully lazy, three intermedi-
ate functions, ll_x, ll.x2 and 11x3, were introduced to lift out
the GT-MFEs of the argument, lambda y = £_1(y,A*B) end.
This program also used a new function, f-2a, which was in-
troduced to help recover an implicit GT-MFE. Higher-order
expressions are still present in the above program but these
were not introduced by the full laziness method. To remove
them, we can use our new fully lazy higher-order removal
method to obtain the following first-order program.

---main(xs,A,B) <« main_1(xs,A*B);
---main-1(xs,A) < main2(xs,sqr(A+A)) ;
---main2([J,A) <« [J;

---main.2(x:xs,A) < 1. 2a(x x,A)::main.2(xs,A) ;
---1-2a(y,A) € yy+A;

Notice the introduction of two new intermediate func-
tions, main_.1 and main2. These are used to lift out GT-
MFEs, prior to the elimination of the higher-order map call.
Also, the previous intermediate functions, llx, Ilx2 and 11.x3,
have now been eliminated by direct unfolding.
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5 Pros and Cons

In this section, we shall discuss the advantages and disad-
vantages of the new full laziness method when compared to
previous methods of preserving full laziness. The original
motivation for this new method is to design techniques of
preserving full laziness which are compatible with higher-
order removal. This objective constrained us to techniques
which could extract out only ground-type MFEs. One im-
mediate advantage of this constrain is that we avoid expen-
sive higher-order facility. This is likely to result in more
efficient (lower-order) target programs.

One of the basic techniques used is to perform direct
unfolds, where possible. This technique helps to avoid un-
necessary intermediate functions. It can be used in place
of (or in conjunction) with the sharing analysis of [HG85]
to avoid unnecessary intermediate functions from unshared
function-type arguments.

Another advantage of the proposed full laziness method
is that it is not dependent on suitable ordering of parame-
ters for maximal laziness. Past full laziness techniques have
relied on the extraction of (explicit) MFEs to preserve lazi-
ness. The laziness of these techniques are often affected by
the way the parameters are ordered. However, our method
extracts out both explicit and implicit GT-MFEs and is not
sensitive to parameter ordering.

As an example, consider the program:

---p(y) <« dup(lambda x = g(x,y) end);
---8(xy) < sqr(y)+x;
---dup(v) < v(3)+v(4);

The fully lazy lambda lifting technique of Hughes is not
able to maximise laziness of this program unless the pa-
rameters of g are swapped around. However, our method
is able to convert the above program to the following fully
lazy form:

---p(y) < dup(aux(sqr(y)));
---aux(y) < lambda x = y+x end;
---dup(v) <= v(3)+v(4);

A potentially serious disadvantage of our method is that
some loss of laziness may be possible! This is due to the
fact that none of the function-type MFEs are extracted and
shared. Let us informally examine how this loss of laziness
can occur.

In general, function-type MFEs must wait for additional
arguments before they form complete expressions for com-
putation. As a result, duplicating FT-MFEs will, at most,
cause the constructions of graph (or code unrolling) to be
repeated at run-time. In the case of non-recursive functions,
we can use direct unfolds to unroll codes at compile-time.
This helps to minimise those loss of laziness associated with
graph construction. However, recursive functions cannot be
directly unfolded because we may run into non-termination
problem. As a result, we may sometimes be prevented from
maximising the laziness of recursive functions.

However, this may be a blessing in disguise because re-
cursive functions can cause space leak problems when they
are made fully lazy. This is because partially applied recur-
sive function calls may be completely unrolled (unfolded) at
run-time into a large graph/code, which awaits additional
arguments. Such unrolled codes may help to reduce compu-
tation but they also require large storage spaces. This can
happen unexpectedly - hence the space leak problem. We
illustrate this phenomenon with the following example from
[PeytonJ87]. (We assume the use of a curried language.)




---q <= drop 1000;
---drop n xs < if n=0 then xs else drop (n-1) (tl xs);

The above function, q, contains a partially applied func-
tion call, drop 1000, which could be shared. This program
can be converted by the fully lazy lambda lifting technique
to:

---q <= drop 1000;
---drop n < L (n=0) (drop (n-1)) ;
---L bool nxt xs <= if bool then xs else nxt (tl xs);

With this fully lazy program, the function call drop 1000
(of q) can be fully unrolled by one of its invocations (at
run-time), in the following manner:

q = drop 1000
= L false drop 999
= L false L false drop 998

= L false L false L false ... drop 0
= L false L false L false ...L true drop -1

The above fully unrolled code (the last line) can be re-
tained for re-use by other calls of function q. The sharing of
this unrolled code helps to avoid some re-computation (in-
volved in building this code/graph). However, it also takes
up considerable amount of storage space and may force the
program to abort if there is insufficient heap space. This
form of laziness is dependent on the higher-order facility. It
is not compatible with higher-order removal.

In contrast to the above program, the original function of
drop is actually tail-recursive and could be optimised into an
iterative loop which uses constant space. This could result in
a space and time-efficient program. Other programs may not
be tail-recursive but can still avoid the space-leak problem
by sacrificing this form of laziness from partially applied
recursive function calls.

A second more serious problem is that those FT-MFEs,
which are case constructs, may cause loss of laziness when
duplicated. Consider the following higher-order program:

dec Floss: num # truval — num;
dec app-twice: (alpha — beta) # alpha — beta;
--- Floss(x,b) <« app-twice(case b in true = sqr;
false => cube end,x);
---app-twice(f,x) < f(f(x)) ;
---sqr(x) & x*x;
---cube(x) & x*x*x;
where the app-twice call in function Floss contains a FT-
MFE, case b in true = sqr; false = cube end. This MFE is
also a higher-order argument which is to be eliminated.
The present fully lazy R rule cannot extract it out because
this would result in another intermediate function with the
same higher-order argument. Instead, it can eliminate this
function-type argument by the following sequence of steps
which duplicates the FT-MFE.
- -- Floss(x,b)
< app-twice(case b in true = sqr;
false = cube end,x);
! unfold app-twice
<4 case b in true => sqr; false = cube end
(case b in true = sqr; false = cube end)(x);
! eliminate curried application
<« case b in true =
sqr(case b in true = sqr x; false = cube x end);
false =
cube(case b in true = sqr x; false = cube x end)
end;
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This duplication causes a loss of laziness because the b
argument of the original case construct is a free variable.
This argument is already known when the higher-order call
is invoked. As a result, the same case selection will be exe-
cuted twice! A possible remedy for this is to float out case
constructs using the following case transformation.

...casetinpy=> t1; .;pn=> inend.--
=casetinpy=> ooty . pn > -otpe--end
whenever possible. In particular, this transformation can be
carried out if the free variables of ¢ are not bound by the
context expression.

By moving case arguments outwards, this transforma-
tion will allow the selection variables to be shared more of-
ten. Applying this to the earlier function Floss, followed
by higher-order removal, gives us the following first-order
program:

---Floss(x,b) <& case b in true = app-twice(sqr,x);
false => app-twice(cube,x) end;
! unfold app_twice
& case b in true = sqr(sqr(x));
false = cube(cube(x)) end;

The use of this case transformation to move selection
variables outwards (to be shared) is similar to the tech-
niques for binding-time improvements of if expressions with
dynamic condition and static branches [CD91, HG91]. In
their work, they use the continuation-passing style (CPS)
style transformations to bring producers and consumers of
intermediary data together. This was aimed at improving
the partial evaluation transformation. A similar effect has
been achieved by the above case transformation. However,
we have a different motivation. We use this case transforma-
tion to help preserve full laziness without introducing higher-
order expressions.

6 Conclusion

In this paper, we have presented a new method for preserv-
ing full laziness which does not depend on the higher-order
facility. This method uses a collection of techniques which
could extract out both explicit and implicit ground-type
MFEs. An important contribution of this paper is that the
new full laziness method is compatible with the higher-order
removal method. It could be used to help remove non-linear
function-type arguments with minimal loss of laziness. Pre-
liminary investigations have also shown that this new full
laziness method can produce better target programs.

Further work remains to be done. One area worth in-
vestigating is a more rigorous treatment of the notion of
full laziness. One interesting exploration of full laziness
was made by Holst and Gomard [HG91]. They extended
the conventional notion of full laziness (for first-order lazy
programs) by exploring additional program transformations
needed to match the better sharing property of partial eval-
uation for eager programs.

We have informally suggested that the extractions GT-
MFEs and FT-MFEs result in different forms of laziness.
Most of the full laziness come from GT-MFEs, whilst the
laziness of FT-MFEs can be largely recovered by direct un-
folds and case transformations. The only unrecovered lazi-
ness is that due to recursive functions but this laziness is
associated with the space-leak problem. These small results
are only the beginning towards a better understanding of
the issues of full laziness.
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Abstract

For a programming system based on term rewrite rules such
as equational logic programming, a serious efficiency prob-
lem of the generated code is the creation of terms that only
serve to drive further pattern matching. In this paper, we
define a terminating call unfolding strategy based on fine-
grain partial evaluation that removes much of this unneces-
sary term allocation for programs in intermediate EM code
generated {rom equational logic programs.

Our approach is based on calculation, for each instruc-
tion, of two sets that reflect the usage of registers in finite
execution paths of the program. These sets are calculated
using fixed-point iteration over the graph representation of
the intermediate code.

1 Introduction

Finding call unfolding strategies for partial evaluation is an
annoying problem. On the one hand, the basic problem—
knowing how much unfolding is necessary to expose a par-
ticular computation if it occurs—is undecidable. Nearly any
recursive definition can lead to unbounded unfolding by the
partial evaluator. On the other hand, there are a great num-
ber of common cases when it is clear that a certain amount
of unfolding will permit significant performance gains. Con-
sider the simple example of an expression g(a, b) + f(a, b) in
a functional setting where f(z,y) = g(z,y); unfolding the
f call once permits us to share the g call. Caught between
possible untermination in the first case and obviously poor
performance in the second, we search for heuristics, termi-
nating strategies that give “good enough” results.

In this work we consider call unfolding in the context
of equational logic programming. The actual unfolding and
partial evaluation is performed on an imperative interme-
diate language, EM code, but as we will see the strategies
depend fiercely upon properties of forward-branching equa-
tional logic programs and the pattern-matching automata
we create for them.

*Funded by French Government under Bourse Chateaubriand
N°065760C 1 2201H, with partial support from NSF grants
CCR 9016905 and CDA 8822657.

TPartially funded by the ESPRIT basic research working group
“Computing by Graph Transformations”.
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Our presentation here is in the same vein as Sestoft’s con-
sideration of call unfolding for functional languages in [Ses88].
In comparison with approaches for general functional lan-
guages, we have a somewhat degenerate case. Instead of
calls to many functions, we start with calls to just one label.
We have no partial input to these calls other than the values
constructed in the original program. We have no notion of
binding-time analysis to help us choose which calls can be
safely unfolded.

On the other hand, EM code programs for equational
logic programming have a fairly rigid and predictable struc-
ture. The programs operate in definite phases: match a
left-hand side, build a right-hand side, restart the automa-
ton. Moreover, the order in which the result of a previous
step is inspected mirrors the order in which its parts were
assembled. We will use these characteristics to advantage.

After briefly giving some background in section 2, we
concentrate in section 3 on the call unfolding strategy we
have developed, describing both the basic principles and the
mechanics of implementing it. In section 4 we give some
idea of the transformations made possible by this unfolding
strategy, show a simple example, and measure the practical
difference in terms of the number of basic operations per-
formed by the compiled program. Finally, we mark some
open questions in section 5, and conclude in section 6.

2 Background

The context of our work is the efficient implementation of
equational logic programming. A given set of equations de-
fines a rewrite system that reduces questions (subject terms)
to provably correct answers (normal forms). The theoretical
foundations of the work lie in the class of forward-branching
systems[Str89], an important subclass of strongly sequential
systems as defined by Huet and Lévy[HL91] and in turn in-
debted to Kahn’s idea of a sequential predicate. Both classes
are based on the construction of an indez tree, which can be
used to specify an efficient pattern-matching antomaton for
identifying needed redexes in the subject term. Forward-
branching systems of equations have the important prop-
erty that subterms participating in needed redexes can be
reduced to head-normal form before they are inspected, let-
ting us perform innermost stabilization without compromis-
ing the overall outermost reduction. We compile these au-
tomata into an intermediate code EM code[SS90] and sig-
nificantly improve the running time of these systems by
using semantics-preserving code transformations. We only
consider transformations up to finding a head-normal form;
transformation beyond head-normal forms would compro-
mise the essential laziness of the system, a characteristic




that is absolutely necessary to preserve logical completeness.

A critical efficiency concern is the construction of strictly
intermediate forms, that is, portions of terms that are used
solely to drive further pattern-matching in the reduction to
head-normal form. This problem was identified in [Str87]
and [Str88], where a form of partial evaluation was investi-
gated. Wadler treated a similar problem for the case of lazy
functional languages in [Wad88]. In [DSS91b] we treated the
equational case more generally, showing how build (node
construction) instructions can be used to drive program spe-
cialization, and in [DSS91a] we showed how recursive stabi-
lization calls in the EM code program could be unfolded one
instruction at a time.

EM code programs for forward-branching equations have
a very regular structure: they form a tree where each inter-
nal node stabilizes and inspects a needed redex, and each
leaf builds a right-hand side bottom-up and recursively calls
the start of the program to continue reduction. It is these
recursive calls that we specialize with respect to the partial
input given by the build instructions that construct the
right-hand side.

Since our main motivation is to eliminate unnecessary
construction, we use the build instructions to drive the un-
folding and specialization. We push these instructions down
through the program, at the same time using them to spe-
cialize the program and delaying them as long as possible—
ideally forever, that is, pushing them into little-executed
branches or off of the program entirely. The key is a set
of rewriting rules coupled with a register usage analysis.
The analysis provides, for each instruction, two register sets
named usb (used somewhere below) and ueb (used every-
where below). The former indicates whether a given register
is used by the instruction or any instruction following it in
the execution tree. The latter indicates whether the register
is used in every possible path between the instruction to a
return instruction, taking into account recursive calls. It
should be clear that ueb is always a subset of usb. If the
register written by a build instruction is not in the usb set
of the following instruction, the build can be discarded. If,
on the other hand the register written by the build instruc-
tion is in the ueb set, then the register written by the build
is needed in every possible path to a return instruction and
no further action is taken (the build is stuck).

The interesting case is the remaining: the register writ-
ten by the build is in the usb of the following instruction
but not in the ueb. There are two subcases. First, if the
register written by the build is not used by the successor
instruction, then the build instruction can be delayed, that
is, pushed into the successor branches of the successor. Sec-
ond, the register is used by the successor. The only way
the register written by the build can be used by the succes-
sor instruction and yet not in the ueb set is if the successor
instruction is a call. In this case, we can unfold the call.
So we see that, practically speaking, the ueb set reflects not
only whether registers are used in every path, but whether
unfolding may pay off.

The semantics of EM code permit us to define fine-grain
unfolding[DSS91a] of programs: we can unfold calls one in-
struction at a time while strongly preserving the program
meaning at each step.

The rules that we use to unfold and specialize EM code
programs are described in greater detail in [She92]. The
question of when we unfold a call when we are able is the
topic of section 3.

For a brief example, consider the two equations a = b
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and b = c. (In this and further examples we omit treatment
of replace instructions, which would double the size of the
examples. Since they only affect the speed of programs and
not their correctness, we can safely gloss this detail in the
interest of clarity.) The original automaton looks like this:

branch RO
/ b ‘M“u
build R1 b() . build R2 (). return RO
call R3 (R1—RO) call R4 (R2—R0)
return R3 return R4

Our first step is to unfold the first instruction in the
leftmost call, pulling out a branch instruction:

branch RO

/ b ‘Mm

‘build R1 b()  build R2 ¢(). return RO
- branch R1 call R4 (R2-R0) o
. return R4 '

b - “ca11 Ri7 (R1—RO) -

a . return R1

call R16 (R1—RO)
return Ri16

call R15 (R1—R0)
return R15

Now the build of b can be used to specialize the branch,
leaving just the middle alternative.

branch RO
/bl ‘Mﬂt
build R1 b() ., build R2 (), return RO
call R16' {R1—R0) call R4 (R2—R0)

return R16 return R4

Now, the body of the call does not use RO, so the call
in the leftmost branch need not pass R1 as an argument.
Therefore, the build is not stuck in front of the call, and
can be pushed past it and subsequently off of the bottom
of the program and discarded. The final program looks like
this:

branch RO

bl ‘Mm

.. »build R2 ¢(), return RO
call R16 (R1—R0) call R4 (R2—R0)

return R16

return R4

So when the transformed program sees an a, it imme-
diately jumps to the b branch to build the correct result,
¢, without the unnecessary intermediate. We can rely upon
the backend optimizations in our compiler to convert tail-
recursive calls to jumps.




3 EM code Call Unfolding

In this section we describe a successful strategy for unfold-
ing EM code calls for equational logic programs. We first
describe the basic principle, and show that this principle
provides a terminating strategy. Then, in section 3.2, we
discuss the details of the computations of the dependency
sets used by our strategy. Finally, in section 3.3, the quality
of the resulting code is discussed.

3.1 Principle

Unfolding is driven by the build instructions rather than
by the call instructions. A call is unfolded only when
doing so permits a build to be pushed further down the
instruction tree either into a path where it is always needed
or into a path where it is never needed. The basic principle
is that we can unfold instructions from a call for a given
build until either:

1. thebuildis no longer used in the rest of the instruction
tree; or

&\7

the build is needed in every path in the instruction
tree.

When we say “used,” we mean that the register is directly
read by an instruction, not that it is an argument of a call
instruction.

The ezecution graph of an EM code program has two
kinds of edges, flow edges and call edges. The flow edges
are those defined by the successor links in the instructions.
The call edges are those defined by call instructions: we
get a call edge between the calling node and the invoked
node, and another call edge when we return to the caller.
Following a register along a call edge in the execution graph
engenders a register name translation based on the argument
list and return register in the call instruction. The nodes
of the execution graph are run-time states of the program.
Since EM code programs are deterministic, the execution
graph is defined straightforwardly, but we do not use it di-
rectly. First, it is usually infinite; second, when analyzing
programs we sometimes want to skip over recursive invoca-
tions that represent arbitrarily long (or even infinite) paths
in the execution graph. When we speak of paths in the fol-
lowing it should be understood that we mean paths in an
approximation of the execution graph that may skip over
recursive invocations, automatically performing the register
name translation. Naturally the implementation of the par-
tial evaluator must keep track of these details.

The heart of the unfolding strategy is the definition of
two sets, usb and ueb, defined for each instruction in a given
program. They are both a form of register analysis.

The set usb(I), used somewhere below, is the set of reg-
isters needed by a branch or a return instruction J along
a finite path from I to J. A register is directly needed if
it is read by a return instruction or a branch instruction.
The former determines a value to be returned to the caller,
and the latter determines program state. A register can, of
course, be indirectly needed by being read by an instruction
(such as a down) writing a register which in turn is needed
by a return or a branch instruction. If a register is used
only along infinite paths from I then it is not in usb(I). In
practical terms usb is a register lifetime analysis that tells us
what register values might be needed after a given instruc-
tion. The semantics of EM code tell us, not unreasonably,
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that if a register written by an instruction 7 is not in usb of
the successor of I, then I can be discarded. In particular, if
I is a build instruction, the memory allocated by I is not
needed.

In our implementation, usb is used in a dependency anal-
ysis that removes instructions that cannot affect the result.

The set ueb, used everywhere below, is a set of registers
such that if R & ueb(I), then there is an integer n such that
every path from I of length n reaches an instruction I' such
that either

1. I' is a return instruction on the same invocation level
as I that does not use R, or

2. R € ueb(I'),

where a call C is followed only if R € usb(T) where T is
the target of C. That is, R ¢ ueb(I) only if, along some
execution path, there is a branch where R is not needed.
The reason that I’ must be on the same invocation level in
the case of a return, is that otherwise we cannot guarantee
an upper bound on the length of a path to a place where the
register is needed, as we may go though a call instruction
where the target, but not the successor, have such a bound
on the length of the paths. On the other hand, requiring
bounded paths both on the target and the successor of a
call instruction would be too restrictive, especially when the
target does not use the register in question. Thus the rule
that makes such a call a single step.

In practical terms ueb tells us when we might profitably
move a build instruction. Suppose that R is a register writ-
ten by build instruction I with successor J. The first two
cases are easy.

Case 1: R ¢ usb(J). I can be discarded.

Case 2: R € ueb(J). I is considered stuck and is no longer
considered for unfolding.

Case 3: R is not read by instruction J. Push I to the
successors of J.

The interesting case remains: R € usb(J) but R ¢
ueb(J), and it is not read by J.

Case 4: J must be a call instruction. Unfold the call.

If we suppose that we can construct the sets usb and
ueb, then the termination of the unfolding follows directly.
Each transformation of the program is driven by a build
instruction; in each step, either: the build is discarded, the
build is no longer considered for unfolding, or the finite
paths from the build to places where transformations can
take place are shortened by one step. We unfold calls in
front of a build until either it is no longer needed, or it is
still needed but needed everywhere.

3.2 Computing the Dependency Sets

It remains to show how we find usb and ueb. Both of
these sets are constructed with a fixed-point analysis of the
program. Currently we perform these analyses after every
transformation, as discussed further in section 5. In this sec-
tion we describe the constructions, and sketch proofs that
these constructions satisfy the properties stated in the pre-
ceding section.




In the case of usb we start with usb(I) = @ for all I.
Next, for R read by I where I is either a branch or a
return instruction put R in usb(I). Finally, propagate the
usb sets to the predecessors of each instruction translating
registers written by an instruction to registers used by the
instruction. Propagation of a register stops when it reaches
the instruction where the register was written or when it
reaches an instruction I such that R € usb(I). For a branch
instruction the union of the usb of the successors is com-
puted. Finally, for a call instruction, the union of the usb
of the successor and the target is computed. The last rule
makes the usb calculation approximative, as the target of
the call may contain only infinite paths, but we conclude,
erroneously, that there is a finite execution path to its suc-
cessor. For EM code programs generated from equational
logic programs, this is a very good approximation. In the
worst case, we do not detect the possibility of discarding a
useless instruction.

For the ueb set, we initialize ueb(I) to usb(I) taking the
pessimistic attitude that if a register is used somewhere, it
is used everywhere. Fixed-point iteration is done by com-
puting, for each branch instruction, the intersection of the
ueb sets of its successors. The register read by the branch
instruction is deleted from ueb. This rule essentially says
that it is profitable to unfold if the term created in a build
instruction is inspected after a finite number of steps. For a
call instruction the union between the corresponding sets
of the successor and the target is computed. Any modifica-
tion is propagated to the predecessor as usual. Propagation
of a register stops when it reaches an instruction where the
register is written or read.

Proving that the computations of the ueb and usb sets
preserve the properties stated above is done by induction
over the fixed-point construction and case analysis on the
type of instruction. For ueb, in particular, the basis case
is ueb = usb, so every possible path has length zero and is
trivially finite.

3.3 Quality of Transformed Code

It is obvious from the definition of the strategy that build
instructions are preserved only if what is built is needed in
every finite path from the build instruction to a return in-
struction on the same invocation level, or in other words,
what is built is actually returned to the caller. However, we
still have to show that this strategy improves on particular
programs. For that, consider what happens when we com-
bine this criteria with the particular structure of automata
for forward-branching sets of equations.

Recall that an EM code program representing a pattern-
matching automaton starts with a branch instruction for
the root of the subject term, and then for each index node
we have a recursive stabilization followed by an inspection
of the stable form of the index. When we unfold a call
in a leaf of an automaton, the first instruction that we un-
fold is typically a branch on the root symbol of the newly-
constructed right-hand side. Since the right-hand side is
constructed bottom-up, the root was built last and so the
build that unfolded the call is the same node inspected by
the unfolded branch! So quite often the unfolded branch
at the beginning of the call body consumes the constructed
node immediately. Furthermore, the automata for forward-
branching sets of equations stabilize—with a recursive call—
before inspecting, so subterms in the right-hand side trigger
unfolding that consume them in the same way. Symbols that
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are roots of indexes in the index tree corresponding to the
EM code program are built only in default branches, cases
where no left-hand side was matched.

The important observation here is that the unfolding
strategy is particularly suited to the structure of the EM code
programs we generate. Tailoring the strategy to our problem
domain was an important step in getting good results.

4 Results

The simple unfolding strategy outlined above produces good
code for our programs. In this section we discuss the quality
of the code produced by our partial evaluator. We first
describe the kinds of transformations we can expect, then
work through a simple example to show the improvements.
Finally, we discuss some areas in which the results can be
improved.

As we recall from the previous section, our unfolding
strategy permits the partial evaluator to remove any build
of a node that will be an index in the next reduction step.
What does this mean in practical terms?

1. The root of a right-hand side is built only if it is a
head-normal form; otherwise the effect of the build
is represented by restarting the automaton in the ap-
propriate state. For equations written in a functional
style, the dispatch on the function name (head symbol)
is done without need for construction.

2. Type constructors are not built if all references to them
are accounted for in the next rewrite. This handles the
annoying box-unbox-box overhead seen when dealing
with boxed values (like integers).

3. Recursive definitions become automaton loops, that
is, the recursion is directly in the automaton, not in-
directly by way of construction and stabilization of an
intermediate. The automaton loops may still contain
calls and so forth, as necessary.

Thus the transformed EM code programs share some proper-
ties with lazy functional programs after some strictness anal-
ysis (we are reminded here of Fairbairn and Wray, [FW87]):
nonstrict subcomputations are represented by suspensions
built in the heap, and strict subcomputations are repre-
sented by code to directly compute the result.

4.1 An Example

To get a clearer idea of what is going on, let us look at an
example. Consider a simple set of equations:

rev[x] = catrev[x;()];

catrev[()iy] = y;
catrev[(x . xs); y] = catrev|xs; (x . y)].

The EM code program constructed for this example is shown
in figure 1.

What happens when we run the partial evaluator on this
example? The transformed EM code program is shown in
figure 2. First, we see that the catrev that would have been
built in the rev branch has been unfolded: rev|nil] is directly
rewritten to the normal form nil, and rev[cons]...]] jumps into
the catrev branch without intervening builds. Second, in the
catrev branch we see that the traversal of the cons-chain is
turned into a automaton loop that only builds the cons nodes




0 branch[RO,
rev. :21
catrev : 35
DEFAULT 44 J;
21 R16 := down[RO, 1];
125  R17 := build[nil,};
126  R15 := build[catrev, R16 R17];
127 R18 := call[0, R0:=R15];
128  return[R18];
35 R19 := down[RO, 1};
36 R20 := call[0, R0O:=R19};
132 branch{R20,
cons : 38
nil  :140
DEFAULT 143};
38  R23 := down[R20, 1];
39 R24 := down[RO, 2];
11 R22 := build[cons, R23 R24];
12 R25 := down[R20, 2];
137  R21 := build[catrev, R25 R22];
138 R26 := call[0, RO:=R21};
139 return[R26];
140 R27:= down[RO, 2J;
141  R28 := call[0, R0O:=R27];
142 return[R28];
143 return[ROJ;
44 return[R0J;

Figure 1: Example before transformation.

for the eventual result. In fact the transformed program
builds no node that is not necessary for either the final result
or for logical correctness. Notice that the “default” branches
are no longer trivial: if there is a failure of pattern-matching,
we must build the correct head-normal form.

If we compare the number of basic operations performed
by the modified code, we see substantial improvements. Fig-
ure 3 shows the number of down, branch, and build instruc-
tions before and after program transformation, for a sub-
ject term of 600 nested reverses of a list of 600 elements.
The transformed program builds and inspects half as many
nodes, and performs one-third fewer inspections.

5 Room for Improvement

There are several areas in which this work can be improved.
The foremost open problem is to find a terminating strategy
that permits us to unfold build instructions from calls. It is
not hard to construct cases where desirable transformations
depend upon exposing (by unfolding) a build hidden inside
of a call. For a simple example, consider the equations

a=n>b;
flbx] = «c;
glx] = ffax].

The problem is that the result of a reduction participates in
a reduction above it. We cannot infer that g[x] = c unless
the a constructed by the third rule is unfolded and pushed
through the unfolded f branch.

Unfortunately it becomes difficult to ensure termination
if we permit builds to be unfolded. While the propaga-
tion step outlined in section 3.1 will eventually stop for a
given build, that doesn’t help if we are steadily increas-
ing the number of them we propagate. On the other hand,
prohibiting unfolded builds from triggering the unfolding of
further builds seems too restrictive.

52

0 branch[RO,
rev. :21
catrev : 35
DEFAULT 44];
21 R16 := down[RO, 1};
22 R1042 := call[0, R0:=R16];
23 branch[R1042,
cons : 24
nil :28
DEFAULT 30};
24 R1054 := down[R1042, 1];
25 R17 := build[nil,};
26 R1043 := call[11, R20:=R1042 R23:=R1054 R24:=R17];
27 return[R1043];
28 R1055 := build[nil,};
29 return[R1055];
30 R1057 := build[nil,};
33 R1051 := build[catrev, R16 R1057];
34 return[R1051};
35 R19 := down[RO, 1];
36 R20 := call[0, R0:=R19];
37 branch[R20,
cons : 38
nil  : 40
DEFAULT 43];
38 R23 := down[R20, 1];
39 R24 := down[R0O, 2];
11 R22 := build[cons, R23 R24];
12 R25 := down[R20, 2];
13 R1029 := call[0, R0:=R25];
14 branch[R1029,
cons : 15
nil :18
DEFAULT 45};
15  R1041 := down[R1029, 1J;
16 R1030 := callf11, R20:=R1029 R23:=R1041 R24:=R22];
17 return[R1030];
18 R1113 := call[0, RO:=R22];
19 return[R1113];
45 R1038 := build[catrev, R25 R22];
46 return[R1038];
40 R27 := down[RO, 2];
41 R28 := call[0, R0:=R27];
42 return[R28];
43 return[RO};
44 return[RO};

Figure 2: Example after transformation.

Operation Base Transformed Ratio
stabilize 1201 1201 1.0000
down 1441800 720600 0.4998
branch 1083601 723001 0.6672
build 721800 361200 0.5004

Figure 3: Basic operations for rev example, before and after
partial evaluation.




Another deficiency of our present implementation is that
the register usage analysis is too expensive. Currently, we
update the register usage annotations on program subtrees
after each program transformation. This is woefully ineffi-
cient, as one might hope that in most cases a transformation
only makes small changes to the annotations. We have not
yet found a satisfactory incremental definition of this anal-
ysis.

6 Conclusion

We have defined a call unfolding strategy for intermedi-
ate code from forward-branching equational logic programs.
The purpose of the strategy is to eliminate unneeded term
construction, an expensive overhead in equational logic pro-
gramming as compared to applicative programming. Our
strategy performs well on typical programs and has the ad-
vantage of being terminating. Although the algorithm cur-
rently used is not very efficient (quadratic in the size of the
program), there are indications that this complexity can be
improved by rather simple methods.

Although our strategy eliminates unnecessary term con-
struction as can be determined by left hand sides, it is clear
that a more advanced strategy is needed in order to take
full advantage of the possibilities for optimizing intermediate
code. A minimal requirement for such an advanced strategy
is the ability to follow reductions, thus taking into account
right hand sides in further optimization. Doing so clearly
introduces the danger of nontermination. A simple termi-
nating strategy that seems good enough has been tested in
a slightly different context. This strategy allows us to follow
reductions only if the relative size of the subject term de-
creases monotonically. We currently do not know whether
such a strategy is possible on intermediate code.

A potentially much harder problem occurs because a pro-
gram in EM code can be called externally. This makes it
necessary to return full terms to any caller. Sometimes, how-
ever, it would be advantageous to return immediate mode
data, such as integers. To handle this problem, we need
to specialize our intermediate program so that the caller is
responsible for so-called bozing of values if necessary. Our
fine-grain unfolding does not handle this situation automat-
ically, although it can be used to further optimize a special-
ized program.
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