Yale University
Department of Computer Science

Efficient Retiming under a General Delay Model

Kumar N. Lalgudi® Marios C. Papaefthymiou?®

YALEU/DCS/RR-1048
September 1994

!Department of Electrical Engineering
2Department of Electrical Engineering and Department of Computer Science

Efficient Retiming of Edge-Triggered Circuits
under a General Delay Model

Kumar N. Lalgudi Marios C. Papaefthymiou

Department of Electrical Engineering
Yale University
New Haven, CT 06520

Abstract

The retiming transformation can be used to optimize synchronous circuits for maximum speed of
operation by relocating their storage elements. Existing retiming algorithms that run in polynomial
time work with relatively simple delay models that neglect several timing issues that arise in logic
design. Recent retiming algorithms for more comprehensive delay models rely on non-linear formu-
lations and run in worst-case exponential time using branch-and-bound techniques. In this paper,
we investigate the retiming problem for edge-triggered circuits under a general delay model that
handles load-dependent gate delays, register delays, interconnect delays, and clock skew. We show
that in this model the retiming problem can be expressed as a set of integer linear programming
(ILP) constraints that can be solved using general ILP techniques.

For the special case where clock skew is monotonic and all registers have equal propagation
delays, we give an integer monotonic programming formulation of the retiming problem, and we
present an efficient algorithm for solving it. Our algorithm retimes any given edge-triggered circuit
to achieve a specified clock period in O(V3F) steps, where V is the number of logic gates in the
circuit and F is bounded by the number of registers in the circuit. A straightforward extension of our
algorithm determines a minimum clock period retiming in O(V3F 1g V') steps. We have implemented
our retiming algorithms in an efficient and versatile tool called DELAY. We illustrate the effectiveness
of our tool by presenting experimental results from its application on MCNC benchmark circuits.

1 Introduction

As minimum feature sizes continue to shrink, factors such as interconnect capacitance,
clock skew, and fanout load are becoming increasingly significant in the total delay of a
combinational path. Traditional architectural-level methods for optimizing synchronous
circuits are applied at a stage where these factors are either indeterminate or very difficult
to estimate, and consequently, they resort to simple delay models for timing analysis and
optimization. When optimization techniques are applied at such an early stage, however,
the timing characteristics of the resulting designs can change significantly after layout. This
limitation can be overcome by optimizing designs at the post-placement stage of the design
cycle. At this stage, the global routing information available can provide good estimates for
interconnect delays, clock distribution delays and fanout loads. Therefore, post-placement
optimization algorithms must be able to take these additional factors into consideration.
Retiming is a popular and powerful architectural-level transformation that optimizes
synchronous circuits by relocating their storage elements without affecting their functional-
ity. Existing retiming algorithms that run in polynomial time assume relatively simple delay
models that neglect the timing effects of several factors such as load-dependent gate delays
and clock skew [12, 13, 19]. The successful application of retiming in a post-placement
optimization scenario requires the effective and efficient handling of general delay models.

However, recently proposed retiming algorithms that operate under comprehensive delay
models rely on non-linear formulations of the problem that are solved using branch-and-
bound techniques that run in worst-case exponential time [21, 22].

In this paper, we investigate the problem of retiming edge-triggered circuits for clock
period optimization under the general delay model proposed in [21, 22]. This model is
more general than the simple models assumed in polynomial-time algorithms and takes into
account load-dependent gate delays, variable register setup times, hold times and propaga-
tion delays, interconnect delays, and clock skew. Our investigation has resulted in improved
retiming algorithms which we have implemented in a software tool called DELAY. The ef-
ficient operation of DELAY relies on a novel integer linear programming formulation of
the retiming problem for satisfying both setup and hold time constraints in this model.
For a restricted version of the general model, which includes the case where clock skew is
monotonic and all registers have equal propagation delays, our retiming algorithm satisfies
setup time constraints and runs in polynomial time. Specifically, our algorithm can retime
any given edge-triggered circuit to achieve a specified clock period, or report that the spec-
ified clock period cannot be achieved by retiming the original circuit, in O(V3F) steps,
where V is the number of logic gates in the circuit and F' is bounded by the number of
registers in the circuit. The efficient operation of this algorithm is based on a powerful inte-
ger programming technique called monotonic programming. A straightforward extension of
our algorithm can determine a minimum clock period retiming in O(V3FIgV) steps. We
demonstrate the effectiveness of our schemes by presenting an empirical comparison of the
accuracy and running times of the algorithms in DELAY when applied on a subset of the
MCNC benchmark circuits. Our experimental results indicate that the retiming algorithm
based on monotonic programming runs almost as efficiently as the algorithms that work
with simple delay models. Moreover, the monotonic programming algorithm yields solu-
tions that approach those obtained with our exact integer linear programming scheme for
the general delay model.

The remainder of this paper has six sections. In Section 2, we provide a brief summary of
existing literature related to our paper. In Section 3 we illustrate the intricacies of retiming
under the general delay model we consider, and in Section 4 we describe the model and its
graph representation in more detail. In Section 5 we give an integer linear programming
formulation of the retiming problem in this model. In Section 6 we describe the integer
monotonic programming formulation of retiming in the special case of monotonic clock
skew and equal register delays. We present our polynomial-time algorithm for solving this
problem in Section 7. In Section 8 we discuss our experimental results obtained by applying
DELAY on a collection of test circuits. We conclude in Section 9 with directions for further
research.

2 Previous Work

In this section, we review existing literature on retiming and summarize previous efforts to
retime synchronous circuits under more general delay models.

Retiming has proved to be a successful technique for optimizing area, clock speed, testa-
bility and low power [2, 6, 16, 17, 20]. Retiming (or “ firing”) was first introduced by Com-
moner et. al. [4] as a technique for state minimization in “marked graphs”. A systematic
treatment of retiming for optimizing the operating speed of synchronous circuits was given
by Leiserson and Saxe in [13]. The authors of that paper studied retiming under a simple
delay model in which every circuit component has a fixed delay and the propagation delay

of any given path increases monotonically with the number of its components. Based on the
properties of this model, they formulated the retiming problem as a set of shortest-paths
constraints that can be solved using an O(V3IgV)-time Bellman-Ford algorithm. They
also described an asymptotically faster retiming algorithm that runs in O(V ElgV) steps.
Papaefthymiou [19] has given bounds for the optimal clock period that can be achieved
by retiming and has described an O(V'/2E1gV)-time algorithm for optimal retiming of
unit-delay circuits, which is the asymptotically fastest known algorithm for the problem.

The clock speed optimization algorithms that use the simple delay model proposed in
[13] rely on the concept of path-breaking: whenever the delay of a combinational path exceeds
the desired clock period, then the path is broken by introducing a register somewhere in
between. However, path-breaking can result in sub-optimal designs under a more general
delay model, as we argue in Section 3. This limitation is intrinsic to the delay monotonicity
assumed by the path-breaking algorithms and is not simply a consequence of the fact that
these schemes do not use comprehensive information about delays in the circuit. As we argue
in Section 8, the path-breaking algorithms will generate sub-optimal designs even when they
compute path delays using general delay models. For example, the modified version of the
O(V31g V)-time Bellman-Ford retiming algorithm generates designs with sub-optimal clock
periods, while the modified version of the O(V Elg V')-time algorithm can result in invalid
circuits.

Several researchers have studied retiming in conjunction with clock skew. Fishburn
has drawn attention to the fact that any clock period that can be achieved by retiming a
circuit can also be achieved by adjusting the skew of its clock lines [7]. Chao and Sha have
proposed a two-step procedure to optimize synchronous circuits for clock speed by combining
retiming with clock skew adjustment [3]. The first step of their scheme retimes a unit-delay
version of any given circuit to achieve maximum speed of operation. Subsequently, storage
elements are shifted out of combinational blocks that cannot be broken, and clock skew
is adjusted to maintain clock period. The potential advantage of this approach over the
general scheme presented in [7] is that for the same clock period, it may result in smaller
clock skew adjustments.

Lockyear and Ebeling have considered the effect of monotonic clock skew on retiming
and circuit performance of level-clocked circuits [15]. These researchers have shown that
the paths between vertex pairs that dictate the clock period under a simple delay model
do not change in the presence of monotonic clock skew and constant latch setup times.
They have thus concluded that the form of retiming constraints does not change and that
existing retiming algorithms such as those in [9, 14] can still be applied. As we discuss in
this paper, however, for more comprehensive delay models that include general clock skew,
load-dependent delays, and variable register delays, existing retiming algorithms are not
suitable.

The research most relevant to our work is that of Soyata, Friedman, and Mulligan
who have studied the problem of incorporating clock skew, variable register delay and
interconnect delay into the retiming process [21, 22]. These researchers have expressed the
retiming problem as a set of non-linear constraints that are solved using general branch-
and-bound techniques with a worst-case exponential running time. In this paper, we give
an integer linear programming formulation of the retiming problem for setup and hold
constraints (that is, long and short paths) under the general delay model proposed in
[21, 22]. Our formulation enables the use of ILP solvers which typically use efficient linear
programming code to speed up the branch-and-bound search. In these solvers, the integer
bounds of the variables in each iteration are determined by rounding off the solution to

Figure 1: Intricacies of retiming in a general model.

a linear programming relaxation of the original problem. In addition to the general ILP
formulation, we give an efficient retiming algorithm for satisfying setup constraints under
a restricted yet interesting version of the general delay model. The running time of this
algorithm is polynomial in the size of the input circuit.

3 Intricacies of Retiming

The correctness and computational efficiency of the early retiming algorithms has relied
on the key property of path delay monotonicity which ensures that propagation delays
along combinational paths increase monotonically as the number of logic gates on the paths
increases. Path delay monotonicity provides a straightforward way to satisfy timing con-
straints. Whenever the delay of a combinational path exceeds the desired clock period, the
only way to fix the timing violation is by pulling the registers in the beginning and at the
end of the path closer to each other. The monotonicity of propagation delays along paths
is a consequence of the simple assumptions that have been made in the delay models used
by the early algorithms.

The main difficulty with retiming in a general delay model such as the one we consider in
this paper stems from the fact that path delays are not necessarily monotonic. Due to this
lack of monotonicity, critical delays may decrease when combinational paths are extended
and increase when registers are brought closer together. Thus, it may be possible to meet
a timing constraint along a combinational path by pulling away its bounding registers as
opposed to “breaking” the path by moving a register into it. For example, when a register
at the output of a gate is shifted farther down the circuit, the propagation delay through
that gate will decrease if the input capacitance of the register exceeds that of the logic that
is seen from the gate’s output after the register’s relocation. This situation can occur when
designing with standard cells such as the ones in the CMOS3 cell library [8]. As a result,
the propagation delays of paths can be reduced by extending the paths to include additional
logic gates. Another situation where path delays change in effect non-monotonically arises
when we consider clock skew. When timing is violated along a combinational path, it may
be advantageous to move its bounding registers farther apart, because the differences in the
arrival times of the clocking signals to the bounding registers may allow more time for data
to propagate along the combinational path enclosed between the new register locations.
From a computational perspective, the main source of difficulty behind retiming with a
general delay model is the decision nature of the problem. With simple delay models we
know that registers always move in a direction that reduces the number of vertices along
a combinational path. With more general models, when we relocate a register to achieve
correct circuit timing, we must decide whether we should move to increase or decrease the
number of vertices along a combinational path.

Figure 1 illustrates the intricacies that arise in retiming when we consider a general

model that takes into account the effects of load-dependent gate delays, clock skew, register
setup times and propagation delays, and interconnect delays. The circuit shown in this
figure has four blocks of combinational logic (A, B, C, and D) and three registers (p, g,
and r). Each edge in the graph denotes a wire and is labeled with a pair of numbers z]y
that give the additional propagation delays incurred by signals when there is a register
on that wire. Specifically, z gives the additional delay for all signals that end on this
register, and y gives the additional delay for all signals that start from it. (The numbers
z and y give the total effect of the various factors on propagation delay and may take
on positive or negative values. In Section 4 we discuss how these numbers are obtained.)
When register ¢ is placed on wire k, the path p Latph q has a propagation delay of
1+ 3+ 4+ 4 = 12 units of time. By shifting register ¢ onto wire /, the combinational path
is extended to p Latprtceld g. The propagation delay along this extended path,
however, decreases to 1 + 3+ 4 + 2+ 1 = 11 units of time. Assuming that registers p and
r cannot move, the only way to achieve a clock period of 11 is to increase the number of
combinational logic blocks in the path instead of decreasing it.

4 Preliminaries

In this section, we describe the delay model that we consider and give a graph representation
of an edge-triggered circuit in this model. We also provide some background on retiming,
and show how to compute an O(FE?)-size set that is guaranteed to include the optimal
clock period achievable by retiming any given circuit under our general delay model. Under
a restricted version of our delay model where clock skew is monotonic and all register
propagation delays are equal, we describe how to obtain an O(V E)-size set of potential
clock periods for any given circuit.

4.1 Delay Model

The delay model that we consider in this paper adheres to the basics of the Register Elec-
tric Characteristics model that was proposed in [21, 22]. This model takes into account
load-dependent gate delays, register setup times and propagation delays, clock skew, and
interconnect delays. Specifically, for each wire 7 in the circuit, this model assumes a clock
delay tc(7) for the propagation of the clock from a global clock source to any register on
that wire, a delay tc_,g(¢) for the data to appear at the output of any register on i upon
arrival of the clock signal, and a setup time ¢5(¢) for any register on ;. Moreover, this model
assumes an interconnect delay d;, (7, u) for the propagation of any signal from a register on

the wire u; = u to the block u, an interconnect delay d;, (v, 7) for the propagation of a signal

from a block v to a register on the wire v % vj, and can be straightforwardly extended to
include the delay of the interconnect between combinational logic blocks.
In our analysis, each block u is associated with a number d(u) which gives its propagation

delay when it sees a combinational block at its fanout. Moreover, each fanout wire v 2 v
is associated with a number d;(u,j) which gives the change in the propagation delay of
any signal that reaches j via u when a register is present on j. Depending on the relation
between the capacitive loads presented by a register on j and by the fanout vertex v, the
parameter di(u,J) can take positive or negative values. In this paper, we assume that for
any combinational path p, the propagation delay along p depends only on the elements
on p. Thus, the worst-case delay A(¢,p,j) of a combinational register-to-register path

Figure 2: Graph representation of an edge-triggered circuit. The numbers in the vertices denote the
propagation delay through the corresponding combinational block when the output of the block on the path
we consider “sees” another combinational block. The numbers on the edges denote the delay values t.]ts
which handle the extra delays when registers are placed on these edges.

i P J
u; — u ~» v = v;, where u;,u,v,v; are logic blocks and ¢,j are wires with registers on
them, is given by the equation

A(%Pa]) = tC’(Z) + tC...,Q(Z) + di1(i7 U,) + Zd(x) + dl(’U,j) + diz(v’j)-*_ ts(j) - to(j) .
TEP

4.2 Graph Representation

An edge-triggered circuit is modeled as a directed multigraph G = (V, E,d, w,t,t.). The
vertices V' in the graph correspond to the combinational elements in the circuit. Each
vertex v € V is associated with a weight d(v) which gives the propagation delay through
the block when it “sees” another combinational block down the path. The directed edges
E of the graph model the interconnections between the combinational blocks. Each edge
e € E corresponds to a wire that connects an output of some combinational block to the
input of another block, and it is associated with a weight w(e) that gives the register count
on that wire.,

Each edge e € E is also associated with weights t3(e) and ¢.(e) which account for the
changes in propagation delays when registers are present on e. For each edge u — v, the
weights #3(2) and t.(¢) are equal to

(i) = to(i)+tomg(i) + diy(i,v)
te(?) di(u, 1)+ di,(u,1) + ts(¢) — te (i) ,

and give the extra delay incurred by signals whose propagation begins or ends at a register
on ¢, respectively. Thus, the effective delay of the combinational register-to-register path

u S udvd v; is given by the equation
A(ip,) = (i) +) d(z) + te(5) -
ZEp

Figure 2 illustrates the graph representation of a synchronous circuit. The longest
combinational path in that circuit is denoted by the shaded blocks and its propagation
delay is 18. Thus the circuit requires a minimum clock period of 18 units of time.

The difficulty of the retiming problem depends on the values of the edge-weights ¢
and .. When these weights take any real value, it may be possible to satisfy timing
constraints by extending paths in either of the two directions possible. In this case, we call
the corresponding circuits two-way eztendible. When all weights ¢, are nonnegative, it may
be possible to fix a timing violation along a path by extending the end of the path. We
call the circuits with this property one-way end-extendible. Symmetrically, we call one-way
begin-extendible the circuits in which all weights . are nonnegative, because in these circuits
it may be possible to fix timing violations by extending the beginning of a violating path.

Based on the definitions of ¢, and t., we can associate circuit properties with circuit
extendibility. For example, it is straightforward to verify that when clock skew behaves
monotonically along every path p, that is, 3.¢,d(z) + dj(v) > tc(j) — to(4), and all
register propagation delays tc_.g(¢) are equal, then the circuit is one-way end-extendible.

4.3 Retiming

A retiming of an edge-triggered circuit G = (V, E,d, w,t,t.) is an integer valued vertex-
labeling » : V. — Z. This labeling denotes the assignment of a lag to each vertex which
transforms G into G, = (V, E,d, w,, ty,t.), where for each edge u = v in G, w, is defined
by the equation

wr(e) = wle) + r(v) — r(v) . (1)
In order for G, to be well-formed, the retiming r must satisfy the constraint w,(e) > 0 for
all edges e € E. By adding Equation (1) along a path u -5 v, it can be shown that

wr(p) = w(p) + r(v) - r(u), (2)
where w,(p) = 3., wr(e) and w(p) = 3=, w(e).

An important circuit parameter in the context of retiming is the delay Dyotqi(¢,7). For

every pair of edges u; - u and v 5 vj in G, this delay is defined as
Dtotal(iyj) = tb(i) + _D(’U,, 'U) + te(j))

where D(u,v) = max{}_,¢, d(z) : u 5 v, and w(p) = W(u,v)}, w(p) denotes the register
count of a path p, and W(u, v) = min {w(p) cud v}. The quantity D(u, v) is the maximum
combinational delay along the paths between the vertices u,v € V with the fewest registers.
Since Equation (2) holds for all paths between every vertex pair (u,v), it can be shown that
in the retimed circuit G,, we have

Wy (u,v) = W(u,v)+ r(v) — r(u) . (3)

Another important parameter is the delay 6;t41(%,j) which is defined for every pair of

edges u; — u and v > v; in G as
6total(i’j) = tb(i) + 6(”’7 v) + dl(’l),j) + diz(vvj) - tC(j) - th(]) 9

where 15,(j) denotes the hold-time requirement on v % v; and 6(u,v) = min{}",c,d(z) :
u S v, and w(p) = W(u,v)}. The quantity 6(u,v) is the minimum combinational delay
along the paths between the vertices u,v € V with the fewest registers. The quantity
8totai(%,j) must be non-negative to satisfy the hold-time requirements of the register on
edge j; otherwise the circuit G can have race conditions.

Since there are O(E?) pairs of edges, the parameters Dyoq:(3, J) and 8¢ot01(¢,7) can
take on O(E?) values. Since the O(V?) delays D(u,v) or §(u,v) can be computed in
O(VE + V21gV) time [13], the O(E?) values Dyosai(i,5) 0T 8101017,) can be computed in
O(VE +V2%IlgV)+ O(E?) = O(E* + V*1gV) steps. The following lemma shows that the
parameters D;otq1(¢,7) can be used to compute a set of values that is guaranteed to include
the minimum clock period achievable by retiming a given circuit.

Lemma 1 Let G = (V, E,d,w,t,t.) be an edge-triggered circuit, and let v be a retiming
of G. Then the minimum clock period ®pin(G,) that can be achieved by retiming G equals
Diotai(3,7) for some pair of edges 1,5 € E.

Proof. The clock period of an edge-triggered circuit is determined by the effectively longest
register-to-register combinational path in the circuit. Since the values Di,t0i(%,) denote
the worst-case delays of every potential register-to-register path in the retimed circuit,
some Dyotai(i,7) will equal the optimal clock period ®min(G,). O

Since there are O(E?) possible edge pairs, the size of the set of values that includes the
optimal clock period is O(E?). However, for circuits whose paths are only end-extendible,

the clock period for the latch-to-latch path u; = u~» v 2 v; is dictated by the worst-case
fanin edge of u. Thus, the number of potential clock periods decreases from O(E?) down
to O(VE). By a symmetric argument, we can show that this bound also holds for begin-
extendible circuits. Moreover, it is straightforward to prove that in circuits whose fanin and
fanout edges exhibit identical delay behavior, that is, for any given vertex u in the circuit,
the parameters #; of u’s fanin edges are equal and the parameters ¢, of u’s fanout edges are
equal, there are only O(V?) potential clock periods.

5 Integer Linear Programming Formulation

In this section, we show that the retiming problem for two-way extendible circuits can
be formulated as a set of O(E?) integer linear programming constraints. We begin by
describing a non-linear set of necessary and sufficient conditions for a retiming to satisfy
the setup and hold time constraints of any given circuit. We then describe a novel graph
transformation of our circuit and give integer linear constraints on the transformed circuit
which are equivalent to the non-linear constraints on the original circuit.

The following lemma gives necessary and sufficient conditions for the clock period ®(G,)
of a retimed circuit G, to meet a specified clock period c.

Lemma 2 Let G = (V,E,d,w,t,t.) be an edge-iriggered circuit, let ¢ be a positive real
number, and let v : V — Z. Then r is a retiming of G such that ®(G,) < c if and only if
for every edge u > v in G, we have

0 < wye), (4)
and for every edge pairs i,j € E such that u; AT v; and Dioq1(1,7) > ¢, we have
We(u,v)=0 = w.(1)=0 or w(j)=0. (5)

Proof. (=) Let G, be a well-formed circuit such that ®(G,) < c¢. We want to show that
Inequality (4) and Relation (5) hold for G,. Since G, is well formed, all edge-weights w, in
G, must satisfy w, > 0, and thus from Equation (1), we infer that Inequality (4) holds.

Let us assume that Relation (5) does not hold for G,. Then there exists an edge pair
U = u,v > v; € E with nonzero w(¢) and w(j) and Dyotai(2, 7) > ¢ such that W, (u,v) = 0.
Therefore, there exists a register-to-register combinational path ¢ ~» j in G, whose delay
exceeds the clock period ¢, thus contradicting our assumption that ®(G,) < c.

(<) Inequality (4) ensures that G, is well-formed. Relation (5) ensures that for every
edge pair %, such that Diyq(%,5) > ¢, the path i ~ j in G, is not a register-to-register
combinational path. This condition ensures that the clock period constraint ®(G,) < c is
satisfied. O

Lemma 2 gives the conditions under which the setup time constraints are met by the
retimed circuit for a given clock period. Similarly, we can state the necessary and sufficient
conditions for the retimed circuit to be free from race conditions (hold time constraints) as
follows.

Lemma 3 Let G = (V,E,d,w,t,t.) be an edge-triggered circuit, and let r : V — Z. Then
r is a retiming of G such that G, is race-free if and only if for every edge u = v in G, we
have

0< w,,,(e) ’ (6)
and for every edge pairs i,7 € FE such that u; LN v; and O10101(%,7) < 0, we have
We(u,v)=0 = w(i)=0 or w(j)=0. (7)

Proof. Similar to Lemma 2. O

From Lemma 3, we conclude that setup and hold time constraints have the same form
under the general delay model. For the remainder of this section, therefore, we restrict
ourselves to setup time constraints as the treatment for hold time constraints is identical.
Relation (5) cannot be directly expressed in a linear programming form because of the
disjunction (or requirement) in the implication. To obtain a linear program, we construct
a companion graph G’ by segmenting every edge u — v € E into two edges u <> z,, and
Tuy 3 v, where 2y, is a dummy vertex. Specifically, G/ = (V',E',w') is defined as

Vi = VU{xw:u—iveE},
E = {ugwuv,wuvzv:uiveE},
and for each edge u = v in E, we have

w'(e1) min {1, w(e)} , and
w'(ez) = w(e) —min{l,w(e)} .
The following lemma recasts the conditions in Lemma 2 in terms of the companion graph

G'.

Lemma 4 Let G = (V,E,d,w,t,t.) be an edge-triggered circuit, and let G' = (V', E', w')
be its companion graph. Moreover, let ¢ be an arbitrary positive real number. Then there
exists a retiming v : V. — Z such that ®(G,) < ¢ if and only if there exists a function
v’ : V' — Z such that for every edge u <> z,, in E', we have

0 < wie), (8)
whiey) < 1, 9)

02O o &

u’ Xg'u u v Xyy v’
Figure 3: Generating a companion graph G’ from a graph G. Every edge e in G is segmented into two
edges €1 and e in G’ such that e; contains at most one register and ez can contain a register only if there
already exists a register on e;. Constraints in G between a pair of edges e and e’ of the form given in
Relation (5) are transformed into an equivalent set of four constraints in G’ involving pairwise segments of
¢ and j of the form given in Relation (5).

€ B
for every edge z,, = v in E', we have

0< w;-’(e2) 9 (10)
for every pair of edges u = zy, and x4, 32 v in E', we have
wh(e) =0 = wh(e) =0, (11)

7
. e e . e e’ .
and for every pair of edges u' = Tyry, v = Ty in E' such that v/ 5> u, v S5 v in E, u~> v

in G, and Dyytqi(e, €') > ¢, we have
Wii(u,v)=0 = wl(er)=0 or wh(e})=0. (12)

Proof. (=) Let G, be a well-formed circuit such that ®(G,) < c¢. We must show that
constraints (8) through (12) are satisfied by a retiming r’ of G'. Let 7’ be defined as follows

r(u) = r(u) forall uw € V;
M(Ty) = r(u) for all ¥ = v € E such that w,(e) = 0;
m(zyy) = 7r(v)+1 forall u = v € E such that w,(e) > 1.

Since G is well-formed, we have that w,(e) > 0, and therefore, Inequalities (8) and (10)
are satisfied. From the definition of a companion graph, Inequality (9) and Relation (11)
must be satisfied for the edge-weights in G7,. Since ®(G,) < ¢, Relation (5) holds for G,.
Now, we observe that the relation “w/,(e1) = 0 or wl,(e}) = 0” is equivalent to “w,(e) =
0 or w,(e’) = 0”. Moreover, from the definition of ' we have that W/ (u,v) = W,(u,v).
Therefore, Relation (12) must hold.

(<) Given a retiming ' of G’ that satisfies constraints (8) through (12), we must
show that there exists a retiming r of G such that G, is well formed and ®(G,) < c¢. By
construction, a retiming r can be derived from a retiming ' by simply setting 7(u) = '(u)
for all w € V. Therefore, for every edge e € E, we have w}(e1) + wl(e2) = w,(e).
From Inequalities (8) and (10) and the equation w/,(e1) + w!.(e2) = w;,(e), we infer that
wr(e) > 0, and thus G, is well-formed. Moreover, in the previous paragraph we have shown
that Relation (12) and Relation (5) are equivalent. Thus, from Relation (5) and Lemma 2,
we conclude that ®(G,) < e. (|

The following lemma gives an upper bound on the number of registers in a retimed
circuit along any simple path or cycle and it is used to replace Relation (11) by a linear
programming constraint.

10

Lemma 5 Let G = (V, E,d,w,t,t.) be an edge-triggered circuit and let u,v € V be any
pair of vertices in G. For every legal retiming r, we have

Wi(u,v) < F, (13)
where F = max {W(u,v) + W(v,u):u,v € V}.

Proof. The vertices u, v lie either on a cycle or on a cycle-free path from the primary inputs
to the primary outputs. From [13], we know that retiming leaves the number of registers in
a cycle unchanged. Moreover, for input-to-output cycle-free paths, we can impose retiming
constraints to ensure that the latency of the computation remains unchanged. Thus, the
maximum number of registers over the minimum register-count paths between « and v in
G, can be no greater than either the number of registers in the cycle containing vertices
u, v with the minimum register-count in G or the latency of the input-to-output cycle-free
path on which vertices u,v lie. Since W(u,v) + W (v, u) denotes the register count of the
minimum weighted cycle through (u,v), and F denotes the maximum over all minimum
weighted cycles, we conclude that Inequality (13) must hold. O

A corollary of Lemma 5 is that the register count on any edge in a retimed synchronous
circuit G cannot exceed F. The following lemma, with the help of Lemma 5, shows that
we can replace Relations (11) and (12) by linear inequalities without changing the solutions
set of the original constraints.

Lemma 6 Consider the constraints set of Lemma 4. For every pair of edges u = 2, and
Ty 3 v in E', let Relation (11) be replaced by the inequality

wy(ez) < F - wp(er) (14)

€1

where F = max {W(u,v) + W(v,u): u,v 6 V}. Moreover, for every pair of edges u' =

Turny U 2 Ty in E' such that u' 5 u, v % o in E, u~ v in G, and Diya(e,€') > ¢, let
Relation (12) be replaced by the inequality

whi(er) + wii(ey) < Whi(u,v)+ 1. (15)
Then the resulting set of constraints is equivalent to the original one.

Proof. We will show that from any solution r for Inequalities (8), (9), and (10) and Relations
(11) and (12) we can derive a solution for Inequalities (8), (9), (10), (14), and (15) and vice-
versa.

We first show that Inequality (14) implies Relation (11) by a case analysis of wl,(eq). If
w).(e1) = 0, then Inequality (14) implies that w/,(ez) < 0. From Inequality (10) we conclude
that w],(ez) = 0, and thus Relation (11) holds. If w’,(e1) > 1, then Inequality (14) implies
that w)..(ez) < F. From Lemma 5, we have that F is an upper bound on w/,(es), and
thus the inequality w],(e2) < F does not impose any additional restriction on the value of
w}/(ez). Thus, Relation (11) holds.

We now show that Inequality (15) implies Relation (12) by a case analysis of W/, (u,v).
For W/,(u,v) = 0, Inequality (15) implies that w/,(e;) + w’,(e}) < 1. Since register counts
are integers, from Inequality (8) we infer that either w/,(e;) = 0 or w/,(e}) = 0, and thus
Relation (12) holds. For W/,(u,v) > 1, Inequality (15) implies that w!,(e1) + wl.(e}) < 2.
This constraint can also be derived from Inequality (9), however, and places no additional
restrictions on the values of w/,(e1) and w/,(€}). Thus, Relation (12) holds.

11

The above arguments can be reversed in a straightforward manner to show the other
direction of the proof. O

We conclude this section with the following theorem which describes the necessary and
sufficient conditions of the retiming problem as integer linear programming constraints on
the companion graph G’.

Theorem 7 Let G = (V, E,d,w,t,t.) be an edge-triggered circuit, let G' = (V', E',w') be
its companion graph, and let ¢ be a positive real number. There exists a retimingr : V — Z
such that ®(G,) < c if and only if there exists a function r' : V' — Z such that for every
edge u 5 x4, in E', we have

0 < w'(er)+ m(zw) — 7'(u)

w'(er) + r'(zy) — r'(u) < 1,
for every edge x4, 3 v in E', we have

0 < w'ez) +7'(v) — '(24)
for every pair of edges u 3 ., and zy, 3 v in E', we have

w'(e2) +1'(v) = 1'(u0) < F - (w'(e1) + 7' (2u0) = '(w))

7
. e € . e e .
and for every pair of edges u' = Ty, v > Ty in B! such that v’ S u, v 5 v in E, u~ v
in G, and Disiqi(e, €') > ¢, we have

w'er) + r'(zur) — '(w') + w'(€}) + ' (Tyr) — 7'(v) < W (u,v) + #(v) = r'(u) + 1 .

Proof. Follows directly from Lemmas 4 and 6 and Equation (3). O

6 Monotonic Programming Formulation

The integer linear programming constraints of Theorem 7 do not appear to have any special
structure and thus we need to resort to general ILP solvers to compute a solution. There are
restricted versions of the delay model, however, for which the retiming problem can be solved
using more efficient techniques. In this section, we give an integer monotonic programming
formulation of the retiming problem for the special case of one-way end-extendible circuits.
We also show how to obtain an O(V E)-size set of reals that includes the minimum period
achievable by retiming. The symmetric results hold for one-way begin-extendible circuits.
Lemma 2 can be expressed for one-way end-extendible circuits as follows.

Lemma 8 Let G = (V,E,d,w,ty,t.) be a one-way end-extendible circuit. Moreover, let ¢
be a positive real number, and let v : V — Z. Then r is a legal retiming of G such that
®(G,) < c if and only if for every edge u = v in G, we have

() = r(v) < w(e), (16)
and for every edge pairs i,j € E such that u; - u ~» v ER v; and Dioiqi(3,7) > ¢, we have

We(u,v)=0 => w,(j)=0. (17)

12

Proof. (=) Let G, be a well-formed circuit such that ®(G,) < c. Since G, is well formed,
all edge-weights w, in G, must satisfy w, > 0, and thus, from Equation (1) we infer that
Inequality (16) holds.

If Diotar(4,5) > ¢, Wp(u,v) = 0, and w,(j) > 1, then there exists a path u; = u ~
v S v; whose delay exceeds c¢. Since G is one-way end-extendible, the delay of every
register-to-register path that begins on or before i, passes through u, and ends at j will
exceed Diotai(7,7). Thus, there exists a register-to-register path whose propagation delay
exceeds the clock period ¢. This conclusion contradicts our assumption that ®(G,) < «,
and therefore Relation (17) must hold.

(<) By contradiction. Assume that Inequality (16) and Relation (17) are satisfied by
a retiming r of G and that ®(G,) > c. Inequality (16) and Equation (1) ensure that the
retimed circuit is well-formed, and thus the retiming is legal. The condition ®(G,) > ¢

implies that there exists a register-to-register combinational path u; = u ~ v 2 v; such
that Diotai(7,7) > ¢. By the definition of the register-to-register path, we have w,(5) > 1.
Since Diotai(%,7) > ¢, the last inequality implies that Relation (17) is violated which is a
contradiction. O

The following lemma, with the help of Lemma 5, leads to an integer linear programming
formulation of the constraints in Lemma 8.

Lemma 9 For every pair of edges i,j € E such that u; LAUHIEN v; and Dioai(i,7) > ¢,
we have that Relation (17) is equivalent to the inequality

wr(5) < F - Wp(u,v) . (18)

Proof. Since the register count along any path is nonnegative, Inequality (18) implies that
when W,(u,v) = 0 we have w,(j) = 0. Moreover, it implies that when W, (u,v) > 1 we have
w,(j) < F. By Lemma 5, we know that the register count along any path and consequently
on any edge in a retimed circuit cannot exceed F. Thus, w,(j) < F implies that there is
no restriction on w,(5). This condition is identical to the condition in Relation (17). [

Inequalities (13) and (18) are illustrated in Figure 4. We want to impose the constraint
wy(j) = 0 when W,(u,v) = 0, and to place no restriction on w,(j) otherwise. The solution
space for w;,(j) is denoted by the points in Figure 4. The bound in Lemma 5 implies that
the solution space can be restricted to the region enclosed by the horizontal axis and the
three lines in the graph. Since w,(j) is an integer, the solution space corresponds to the
integral points in this region.

The following theorem states the retiming problem for circuits that are one-way end-
extendible as an integer linear program with O(E?) constraints.

Theorem 10 Let G = (V, E,d,w,t,1.) be a one-way end-extendible circuit. Moreover, let
¢ be an arbitrary positive real number, and let r : V — Z. Then r is a legal retiming of G
such that ®(G,) < ¢ if and only if for every edge u = v in G, we have

r(u) —r(v) < wle) , (19)
and for every pair of edges i,j € E such that u; LA v; and Dyoqi(4,j) > ¢, we have

r(vj) = r(v) + w(f) < F - (r(v) = r(v) + W(u,v)) . (20)

13

|
/))
F e —
F-l (<] (-] o (-] ©] (-] © (-]
; o [° ° ° -} o o o Qy
[° ° o ° ° °) [
slope =F
2 o o (<] (<] [<] (<] (<] o [+
1 © o o -] [+ (<] (-] [~ -]
) >
«

00 1 2 3 4 F-2 F-1 F W:(uv)

Figure 4: Graphical illustration of Inequalities (13) and (18). The points on the plane denote the solution
space for wr(7). If the problem is feasible, then the region enclosed by the four lines includes an integral
solution.

Proof. Immediate from Lemmas 8 and 9 and the definition of W, (u,v). g

The inequalities in Theorem 10 are in the special form of a simple integer monotonic
programming problem [9, 18] which is defined as follows.

Problem SIMP (Simple Integer Monotonic Programming) Let S be a set of constraints
over the unknowns z;,zs,- -+, 2,, in which the k** constraint has the form

fk(xz) Z gk(xl,w%"'axn) 9 (21)

where the function f; is a monotonically increasing in the single unknown z; and gi is
a monotonically increasing in the unknowns z;, for j = 1,2,---,n. The simple integer
monotonic programming problem is to find a vector z = (1, 22, - -, ,,) of integers satisfying
S, or to determine that no feasible vector exists. O

Theorem 11 The retiming problem for any one-way end-extendible circuit G = (V, E,d, w, ty, t.)
can be reduced to Problem SIMP.

Proof. In order to prove the lemma, we must show that Inequalities (19) and (20) from The-
orem 10 can be written in the form f(r(v)) > g(r(u),r(v;)), where f and g are monotonic
functions.

For every edge u = v € E, Inequality (19) can be written as
r(v) +w(e) > r(u) (22)

which has the desired form since both sides of the inequality are monotonic. By rearranging
the terms of Inequality (20) we obtain

(F+1)-r(v)+ F - W(u,v) > F-r(u) + r(v;) + w(5) (23)

14

MoNoRELAX (5)

1 fori—1ton

2 ;<0

3 while there exists an unsatisfied constraint in S

4 pick an unsatisfied constraint fi(z;) > gr(z1, 22, -, Tys)
5 repeat z; — z; + 1

6 until constraint satisfied

7 S — S U {all constraints with z; on their r.h.s.}

8 return (21,22, :-,Z,)

Figure 5: Algorithm MONORELAX for solving a simple integer monotonic problem S with unknowns
Z1,%2, "+, Tn. The procedure returns a solution if the constraints in S can be satisfied.

Since F' > 0, both sides of the inequality are monotonically increasing and Inequality (23)
has the desired form. O

It can be shown that for one-way end-extendible circuits, for each pair of vertices u,v €

V, we only need to consider the constraints corresponding to the worst-case fanin edge of
u. As a result, the O(E?) constraints in Theorem 10 can be reduced to O(V E) constraints.
This number can be reduced further down to O(V?), since between any two vertices u and
v it suffices to consider the worst-case fanin edge of » and the fanout edges of v that lead to
a clock period violation. If the total combinational delay from the worst-case fanin of u to
some fanout edges of v exceeds the desired clock period, then from Relation (17) we have
that none of these fanout edges should have a register after retiming. Thus, for each pair
of vertices u and v, the constraints described by Inequality (18) can be written as a single
inequality

o w() <V F-We(u,v). (24)

v,
The index j ranges over all fanout edges of v for which Disai(2,5) > ¢, where 7 denotes
u’s worst-case fanin edge. Inequality (24) is monotonic, since it can be expressed in the
following form

Z w(j)+ Z r(v;)+ V- -F-r(u)<(V-F+ Z)-r(v)+ V- -F-W(u,v). (25)

J J o J
’U—'VUJ ‘U"')"UJ ’U—*’U)

7 An Efficient Retiming Algorithm

In this section, we describe an efficient algorithm for solving the retiming problem for
one-way end-extendible circuits. Our algorithm relies on the monotonic programming for-
mulation of the retiming problem described in Section 6.

A feasible solution to a simple integer monotonic problem can be computed using Al-
gorithm MONORELAX which is described in Figure 5. The monotonic constraints for the
retiming problem described by Inequalities (22) and (23) have an important property that
allows us to solve them by applying Algorithm MONORELAX. Specifically, if 7 is a solution
for these inequalities, then 74k is also a solution, where k is any integer. Consequently, any
solution which results in negative values for 7(v) can be shifted up by a constant to yield a
nonnegative solution. Moreover, no variable r(v) needs to increase above a minimum value

15

7(v), since by the monotonicity of f and g that minimum value is also a solution. As a
result, one can find a minimum nonnegative solution to the retiming problem if a solution
exists.

The following lemma shows that if the retiming problem is feasible, then F' gives an
upper bound for the minimum solution 7.

Lemma 12 Let G = (V,E,d,w,t,t.) be a one-way end-extendible circuit, and let T be
the minimum nonnegative retiming that achieves the minimum clock period for this circuit.
Then for every vertex v € V, we have

Fv) < F (26)

Proof. Let u be the vertex such that 7(u) < 7(v) for all v € V.. This implies that 7(u) = 0.
If not, we can subtract 7(u) from the retiming of all the vertices and still satisfy Inequal-
ities (22) and (23) which contradicts our assumption that 7 is minimum. For the sake of
contradiction, let there exist a vertex v with a retiming 7(v) > F. Consider a minimum
weighted simple path p from v to u. Adding by parts Inequality (16) along p, we obtain

7(v) — F(u) < W(v,u) .
Since 7(u) = 0, we obtain

T(v) < W(v,u)
< F, (27)

which contradicts our original assumption. O

Our Algorithm GDMFEAS for the efficient retiming of one-way extendible circuits is
described in Fig. 2. The operation of this algorithm is based on the fact that simple
integer programming programs can be solved by iterative relaxations [9, 18]. Initially, all
constraints corresponding to Inequalities (22) and (23) are inserted into a queue, and all
variables r(v) are set to zero. The algorithm proceeds by iteratively removing constraints
from the queue. For each violated constraint, it increases the value of the variable on its
left-hand side and reinserts into the queue any constraints that are violated as a result of
this operation. This iterative scheme continues until all constraints are satisfied or until
the value of some variable exceeds F'. In the latter case, the algorithm concludes that the
specified clock period cannot be achieved by retiming.

Theorem 13 Given a one-way end-extendible circuit G = (V,E,d,w,t,t.) and a real
number ¢, Algorithm GDMFEAS determines in O(V3F) time a retiming r such that ®(G,) <
¢ or that such a retiming does not exist.

Proof. It can be shown from Theorem 11 and Lemma 12 that Algorithm GDMFEAS com-
putes a unique nonnegative solution for Inequalities (22) and (23) in which every variable
r(v) attains its minimum value that does not exceed F [11].

We now show that Algorithm GDMFEAS terminates in O(V3F) steps. The parameters
D and W required for Inequalities (22) and (23) in Step 1 can be computed in O(VE +
V2?1gV) time using Johnson’s algorithm for all-pairs shortest-paths [5]. The functions
f(r(v)) and g(r(u),r(v;)) can be computed in O(1) time. Since we have only V variables
and no variable can exceed F, the body of the while loop is executed O(V F’) times. Since

16

GDMFEAS(G,¢)
1 @ « { Inequalities (22) and (23) from Theorem 11}
2 for every vertex v € V

3 r(v) <0

4 while Q #0

5 remove a constraint “f(r(v)) > g(r(u),r(v;))” from Q
6 if f(r(v) < g(r(uw), (vy)

7 repeat 7(v)— r(v)+1

8 if r(v) > F

9 return fail

10 until f(r(v)) > g(r(u), r(v;))

11 @ «— Q U {all constraints with 7(v) on their r.h.s.}

12 return r

Figure 6: Algorithm GDMFEAS for retiming a given circuit G to achieve a specified clock period c.

for each increment of variable r(v), at most O(V?) constraints with r(v) on their right-hand
side are inserted in the queue, Step 11 takes O(V?) time. Consequently, the total running
time of Algorithm GDMrEas is O(V3F). O

The optimal retiming problem can be solved in O(V3FIgV) steps by using Algorithm
GDMFEASs to binary search the set of O(V E) potential clock periods.

8 Experimental Results

We have implemented our retiming algorithms in an efficient and versatile software tool
called DELAY that has been developed at Yale University. DELAY has been implemented
using the C programming language and integrated into the SIS tools from Berkeley. In
order to evaluate the efficiency of our new retiming algorithms and the limitations of pre-
vious retiming algorithms that assume simple delay models, we have implemented three
algorithms in our tool.

The first implementation is an adaptation of the O(V31gV)-time Bellman-Ford algo-
rithm (BF) from [13] for optimal retiming. We have modified the original algorithm so that
the parameters Dyiqi(u,v) are used as the critical path delays between u and v instead
of D(u,v). Even though the critical delays Di,tqi(u,v) are computed under a general de-
lay model, the algorithm still applies the path-breaking approach to satisfy clock period
constraints. As a result, this approach, which is optimal for the simple delay model, is
still sub-optimal for the general delay model. The purpose of this implementation was to
investigate how far from their optimal values are the clock periods of the retimed circuits it
generates. The second algorithm (IMP) is the O(V3FlgV)-time Algorithm GDMFEAs for
optimal retiming using integer monotonic programming. Our third implementation (ILP)
solves the integer linear programming formulation of the retiming problem described in
Section 5. In this implementation, DELAY generates the integer linear programming con-
straints which are then solved separately by 1p_solve, a public-domain mixed-integer linear
programming solver [1]. In all three implementations, the optimal retiming is computed by
a binary search over the set of potential clock periods.

In addition to these three algorithms, we implemented a modified version of the O(VEIg V)

17

—(O—_" ~_—O—-0—

Figure 7: Generation of ill-formed circuits by modified version of the Leiserson-Saxe retiming algorithm.
When d(s & u) > ¢ for a given clock period ¢ and d(s &3 v) < ¢, then the algorithm results in a negative
register count on the edge v — v in the retimed circuit.

algorithm by Leiserson and Saxe so that path delays would be computed based on the
general delay model. This modified retiming algorithm, however, can generate ill-formed
circuits with negative register counts on some edges when paths have non-monotonic delay.
In the remainder of this paragraph we describe this phenomenon, assuming that the reader
is familiar with this algorithm as presented in [13]. Let the delay d(p;) of the combinational
path s & u in Figure 7 be greater than the desired clock period ¢ and let u — v be an
interconnection with no registers. The modified retiming algorithm increments r(u) and
attempts to break this long path by inserting a register somewhere on s ~» u. If the delay
d(p2) along the path s 22 v is less than ¢ (which can happen under the general delay model
when path delays are non-monotonic), the algorithm does not increment r(v), since the
path s & v does not violate the clock period constraint. As a result, we have r(v) < r(u),
and edge u — v ends up with a negative register count in the retimed circuit.

We experimented with DELAY on the MCNC suite of benchmark circuits by applying the
following methodology. We first mapped the test circuits using a version of 1ib2.mis21ib
that was augmented to include flip-flops. We then used random numbers to obtain values
for ¢, and t. for every interconnection in the circuit, thus emulating the effects of clock
skew, load-dependent delays, setup delays and register delays. We considered two different
random number distribution for ¢, and ¢.: a uniform distribution and a gaussian distribution
in the range of (0,2 - dnqz], Where dy;,, Was the maximum propagation delay of the circuit
components. The standard deviation of the gaussian distribution was dy,q,/ v/12. For both
distributions, we applied the following experimental procedure. We first retimed each circuit
using TiM [20], a timing package that assumes the simple delay model described in [13].
We then calculated the actual clock period under the general delay model of the optimal
circuit generated by TiM, and we compared it with the clock period obtained using the three
algorithms BF, IMP, and ILP in DELAY. Our experiments were performed on a SPARC 10
with 64 MB of main memory.

Our experimental results are summarized in the tables of Figures 8 and 9 for the uniform
and the gaussian distribution, respectively. In each table, the first and the second column
give the name and the size of the test circuits. The third column (®(G,) (simple)) gives the
clock period of the optimally retimed circuits using T1M under the simple delay model. The
actual clock periods of the retimed circuits under the general delay model are given in the
fourth column (®(G,)(general)). The fifth, sixth and seventh columns give the clock period
of optimally retimed circuits under a general delay model using algorithms ILP, IMP, and
BF, respectively.

Our experiments show that algorithms which are exact for simpler delay models demon-
strate varying degrees of sub-optimality when optimizing circuits under the general delay
model. T1M employs the Leiserson-Saxe algorithm for the simple delay model given in [13]
and does not use any information about the general delay model. As a result, circuits
optimized by TIM have very large clock periods under the general delay model. Similarly,
Algorithm BF generates sub-optimal clock periods. Since this algorithm computes path
delays using the general delay model, it yields better clock periods than those generated
by TiM. IMP is an exact algorithm for retiming circuits with only one-way extendible

18

Circuit circuit optimal G, optimal G,

size with TiM with DELAY
ILP IMP BF

(no. of || ®(G,) o(G,) ®(G,) ®(G,) ®(G,)

gates) || (simple) | (general) || (general) | (general) | (general)
traind 12 6.87 13.40 11.23 11.23 12.31
s8 17 7.48 14.78 13.53 14.09 14.18
beecount 26 8.90 18.44 14.75 15.00 16.52
bbara 37 11.31 20.18 18.29 18.29 18.29
dk14 43 11.85 23.60 12.34 14.72 19.86
sse 52 12.91 23.88 23.03 23.09 23.28
markl 59 11.36 21.61 19.53 19.53 21.69

Figure 8: A comparison of clock periods of optimally retimed circuits generated by the three retiming
algorithms BF, IMP, and ILP implemented in DELAY with those generated by TiM. The delay values for t;
and t. were assigned from a uniform distribution.

paths. This delay model is more sophisticated than those assumed by TiM or BF, and thus,
even though IMP generates circuits with sub-optimal clock periods under the general delay
model, it gives better results than those generated by BF. Among the three algorithms in
DELAY, ILP is exact for our general delay model and generates the optimal retimed circuit
with the smallest clock period.

Our experiments also indicate that the distribution of the random numbers makes a
difference in the results generated by ILP, IMP and BF. Under a gaussian distribution, the
random numbers for ¢, and ¢, are close to each other which leads to a small number of
non-monotonic paths in the circuit. Under a uniform distribution, however, the random
numbers for ¢, and t. can take values far from each other, thus increasing the number of
non-monotonic paths. For this reason, when with the results obtained under the gaussian
distribution, the optimal clock periods computed by IMP and BF are farther away from
the optimal clock periods generated by ILP under the uniform distribution.

In addition to experimenting with the effectiveness of our implementations, we evaluated
their efficiency in terms of their running times. A comparative graph of the running times
is given in Figure 10. ILP is considerably slower than the other retiming algorithms. The
running times of IMP and BF are comparable, while TiM is faster than both. During the
binary search performed in ILP, retimings for feasible clock periods can be computed quickly.
For detecting infeasible clock periods, however, ILP takes a long time since it searches the
entire solution space of the constraints. As a result, ILP takes significantly more time to
compute a solution compared to IMP, BF and TiM. We believe that better running times
for ILP can be obtained by using more sophisticated software packages for solving integer
linear programs, in place of the public domain software 1p_solve. Our experiments with
ILP were restricted in circuit size by the large memory requirements of our implementation.
The O(E?) constraints that need to be generated for this formulation blow up very quickly
with increasing circuit size. We were able to run IMP, BF and T1M on significantly larger
circuits due to their smaller memory requirements.

In conclusion, IMP offers a good compromise in terms of speed and optimality of clock
period. Furthermore, the IMP formulation has more potential than what is evident from
our empirical results. Our IMP implementation generates clock period constraints assuming

19

Circuit || circuit optimal G, optimal G,

name size with T1M with DELAY
ILP IMP BF

(no. of | ®(G,) ®(G,) ®(G,) ®(G,) o(G,)

gates) || (simple) | (general) || (general) | (general) | (general)
train4 12 6.87 10.61 8.32 8.89 9.95
s8 17 7.48 12.25 11.20 11.20 11.31
beecount 26 8.90 15.58 12.06 12.75 12.75
bbara 37 11.31 17.93 15.25 15.25 15.25
dk14 43 11.85 21.88 18.59 18.59 19.46
sse 52 12.91 20.77 18.89 18.89 19.10
mark1 59 11.36 19.13 16.87 16.87 16.97

Figure 9: A comparison of the clock periods of optimally retimed circuits generated by the three retiming
algorithms BF, IMP, and ILP implemented in DELAY with those generated by TiM. The delay values for #;
and t. were assigned from a gaussian distribution.

that all paths in the given circuit are end-extendible. A preprocessing step that classifies
paths or vertex-pairs as begin-extendible or end-extendible would, however, greatly improve
the effectiveness of IMP without affecting its running time. We believe that this augmen-
tation to IMP would result in retimed circuits with clock periods very close to the clock
periods of the optimally retimed circuits generated by ILP, but in a significantly shorter
time.

9 Conclusion and Future Work

In this paper we have investigated the retiming problem for edge-triggered circuits under
a general delay model that includes the timing effects of load-dependent delays, register
delays, interconnect delays, and clock skew. For the general retiming problem, we have
given an integer linear programming formulation. In this formulation, however, the con-
straints are not in any special form and we need to resort to general algorithms for integer
linear programming in order to solve them. For a restricted version of our general delay
model which includes one-way extendible circuits, we have presented an efficient retiming
algorithm whose running time is a polynomial in the number of circuit components. The
design of this efficient algorithm has relied on a monotonic programming formulation of the
retiming problem. We have incorporated our retiming algorithms into DELAY, a versatile
and efficient tool for timing optimization of synchronous circuits, and presented empirical
results demonstrating their effectiveness.

Even though the delay model we have considered is more general than other models
previously considered in the literature, it still has its shortcomings. Most notably, this
model does not take into account load-dependent delays due to multiple fanouts. When the
output of a gate u fans out to several other gates, then the propagation delay of a path p
that goes through u depends on the load presented by the other gates, even though these
gates are not on p. Thus, as retiming relocates registers, the propagation delay along p
can change even if the registers in the beginning and the end of p are not relocated. In
this case, the retiming problem is complicated by the fact that it may be possible to fix a
timing violation by relocating registers adjacent to a violating path instead of registers in

20

10° ¢ . . . ; . .

[+ iLP
10° b Ed iMP 1
E © BF
TIM
B
€ 102 kb -
8
D
w
=
L5
E
€10 |k 3
IS
o —

10°

10—
o 50 100 150 200 250 300 350 400

Number of gates

Figure 10: Semilog plot of runtimes (in CPU seconds) against circuit size (in number of gates) for algo-
rithms ILP, IMP, BF, and the retiming algorithm in TIM.

the beginning or the end of the path. Even though we can express this retiming problem in
terms of register-to-register constraints that are amenable to iterative relaxation schemes,
we cannot guarantee that these schemes will always succeed in finding a solution when the
problem is feasible.

We are currently working on improving the performance and applicability of DELAY.
Our current implementations generate and solve an exhaustive set of constraints whose
size can be significantly reduced by eliminating redundant constraints. We are planning to
improve the performance of our tool by reducing the number of constraints it generates for
a given clock period. We are also developing algorithms for retiming level-clocked circuits
with general delay models. The main challenge in level-clocked retiming under general delay
models is that timing violations can be fixed by moving latches along paths in addition to
moving latches around paths. This phenomenon appears to make the problem intractable,
and we are investigating more restricted models where we assume that violating paths can
be fixed only by moving the latches on either end of the path. Our preliminary investigations
reveal that it is possible to express the retiming problem as an integer linear program under
this restricted condition. In future research, we will also extend our retiming algorithms to
handle precharged gate circuits with general delay models.

Acknowledgments

We would like to thank Jean-Marc Delosme of Yale for helping us with several VLSI mod-
eling issues. We would also like to thank Carl Ebeling of the University of Washington and
Charles Leiserson of MIT for several helpful discussions.

References

[1] M. Berkelaar. 1p_solve: A mixed-integer linear programming solver. Available by
anonymous ftp from ftp://ftp.es.ele.tue.nl/pub/lp_solve.

21

[2] S. Chakradhar and S. Dey. Resynthesis and retiming for optimum partial scan. In
Proceedings of the 31st ACM/IEEFE Design Automation Conference, pages 87-93, June
1994.

[3] L. F. Chao and E. H. Sha. Retiming and clock skew for synchronous systems. In
Proceedings of International Symposium on Circuits and Systems, pages 283-286, June
1994.

[4] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked directed graphs. Journal
of Computer and System Sciences, 5:511-523, 1971.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw-
Hill, MIT Press, 1990.

[6] S. Dey and S. Chakradhar. Retiming sequential circuits to enhance testability. In Proc.
of the 12th IEEE VLSI Test Symposium, pages 28-33, April 1994,

[7] J. P. Fishburn. Clock skew optimization. IEEFE Transactions on Computers, 39(7):945—
951, July 1990.

(8] D. V. Heinbuch. CMOS3 Cell Library. Addison Wesley, 1988.

[9] A. T. Ishii, C. E. Leiserson, and M. C. Papaefthymiou. Optimizing two-phase, level-
clocked circuitry. In Advanced Research in VLSI and Parallel Systems: Proc. of the
1992 Brown/MIT Conference, pages 245-264. MIT Press, March 1992.

[10] K. N. Lalgudi and M. C. Papaefthymiou. DELAY: An efficient tool for retiming with
realistic delay modeling. In Proceedings of the 32th ACM/IEEE Design Automation
Conference, pages 304-309, June 1995.

[11] K. N. Lalgudi and M. C. Papaefthymiou. Efficient retiming under a general delay
model. In Advanced Research in VLSI: Proc. of the 1995 Chapel Hill conference, pages
368-382. IEEE Computer Society Press, March 1995.

[12] C. E. Leiserson and J. B. Saxe. Optimizing synchronous systems. Journal of VLSI and
Computer Systems, 1(1):41-67, 1983.

[13] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry. Algorithmica, 6(1):1-
27, 1991.

[14] B. Lockyear and C. Ebeling. Optimal retiming of multi-phase, level-clocked circuits.
In Advanced Research in VLSI and Parallel Systems: Proc. of the 1992 Brown/MIT
Conference. MIT Press, March 1992.

[15] B. Lockyear and C. Ebeling. The practical application of retiming to the design of high
performance systems. In Digest of Technical Papers of the 1993 IEEE International
Conference on CAD, pages 288-295, November 1993.

[16] G. De Micheli. Synchronous logic synthesis: algorithms for cycle-time minimization.
IEEE Transactions on Computer-Aided Design, 10:63-73, January 1991.

[17] J. Monteiro, S. Devadas, and A. Ghosh. Retiming sequential circuits for low power. In
Digest of Technical Papers of the 1993 IEEFE International Conference on CAD, pages
398-402, November 1993.

22

[18] M. C. Papaefthymiou. A Timing Analysis and Optimization System for Level-Clocked
Circuitry. PhD thesis, Massachusetts Institute of Technology, September 1993. Avail-
able as MIT/LCS/TR-605.

[19] M. C. Papaefthymiou. Understanding retiming through maximum average-delay cycles.
Mathematical Systems Theory, 27:65-84, 1994.

[20] M. C. Papaefthymiou and K. H. Randall. TiM: a timing package for two-phase, level-
clocked circuitry. In Proceedings of the 30th ACM/IEEFE Design Automation Confer-
ence, pages 497-502, June 1993.

[21] T. Soyata and E. Friedman. Retiming with non-zero clock skew, variable register
and interconnect delay. In Digest of Technical Papers of the 1993 IEEE International
Conference on CAD, pages 234-241, November 1994.

[22] T. Soyata, E. Friedman, and J. Mulligan. Integration of clock skew and register delays
into a retiming algorithm. In Proceedings of International Symposium on Circuits and
Systems, pages 1483-1486, May 1993.

23

