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Computation of the relative position and orientation (pose) between a camera and an
object from images is a classical problem in photogrammetry and computer vision.
Many solution methods have been proposed. Most of them assume that the problem
is to be solved in static environments where object models are exact and the corre-
spondences between object and image features are perfectly known. This dissertation
addresses the problem of online pose estimation with noisy 3D model observations
and with partial or no knowledge of the feature correspondences.

With uncertainties in both 3D object space and 2D image space, object model
(structure) and pose must be estimated simultaneously. We present a new error
modeling scheme in which error measures in both 3D models and 2D projection are
fused in the 3D object space using backprojection. A new pose estimation method is
developed based on alternating subspace minimization with which the pose estimation
problem becomes a series of progressive absolute orientation problems. The theory
and the algorithm are validated using statistical hypothesis tests against a typical
0.05 significance level.

Extensive experiments on controlled synthetic data indicate that the new method
is much more efficient than previous nonlinear techniques and is much more tolerant
to noise and outliers than linear methods under most conditions.

A robust estimation scheme based on outlier processes is introduced for rejecting
outliers in pose estimation. A continuation method is proposed for minimizing the
non-convex objective function resulting from robust estimators. Outlier processes
are generalized to correspondence processes to solve model matching problems where
feature correspondences are unknown.



Online Pose Estimation and Model

Matching

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of
Doctor of Philosophy

by
Chien-Ping Lu
May 1996



To my parents
who raised me using
love, patience

and ... sign language



Acknowledgements

I feel grateful to have Eric Mjolsness, a man of wisdom and integrity, as my advisor.
This work would not exist without his inspiration and guidence. From him, I learned
about the beauty of science as well as the characters of a great researcher. He is not
only a teacher, but also a role model.

My collaboration with Greg Hager, a great teacher and colleague, has been excit-
ing for his knowledge and skill in robotics and software engineering. The conversations
and discussions with Anand Rangarajan, my peer advisor and friend, has been always
enlightening through his insights into both the theoretical and algorithmic aspects of
the problems I studied. My colleagues in the neurovision group, including Charles
Garrett, Steve Gold, Suguna Pappu, and Roger Smith, have made my stay at Yale
enjoyable. Charles Garrett, in particular, provided me with many technical assis-
tances in the early years of my Ph.D. study.

I thank my younger sister Wan-Ping (Doris), who kindly and patiently took over
my duty as the eldest son in the family during these years. Finally, and most im-
portantly, I would like to thank my parents, who cannot speak and listen physically,
but do speak and listen with their minds better than anyone else. Their persistent
love and support, expressed through sign language and silent prayers, gave me the
strength to finish this long and challenging adventure in knowledge.

This work would not be possible without the support and the computing facility
of the Yale Center for Theoretical and Applied Neuroscience (now N euroengineering
and Neuroscience Center). The statistical validation results were done with the help
from Tapas Kanungo using the software he developed at University of Washington. 1
also gratefully acknowledge the support of the Defense Advanced Research Projects
Agency and the Office of Naval Research (under grant N00014-92-J-4048) and Air
Force Office of Scientific Research (under grant F49620-92-J-0465).



© Copyright by Chien-Ping Lu 1996
All Rights Reserved




Contents

List of Figures iii
1 Introduction 1
1.1 The Problem . . ... ... .. ... ... ... .. ... . 1
1.2 Estimating Pose: Approaches and Issues . .. ............ . 3
1.2.1 Initialization. . . . ... ... ... ... ... ... . .. . . 3

1.2.2 Robustness tomnoise . . . . ... .. ... ... ... ... . 4

1.2.3 Robustnesstooutliers..................f... 4

1.2.4  Why least-square methods? . . . ... ... ... ... . . . 4

1.3 The New Approach . . .. ... ... .. .. .. ... .. ... _ . )
1.3.1  Fusion of 3D and 2D error measures. . . . . ... ... ... . )

1.3.2  Alternating subspace minimization . ... ... ... ... . 6

1.3.3  From outliers to correspondences . . . ... .. .. ... . . 6

1.4 Outline of the Dissertation . . . .. ... ... ... ... . .. . 7

2 Pose Estimation: A Review 8
2.1 Problem Formulation . . . ... ... ... .. . .. .. . .. . 8
2.2 CameraModel. . . .. ... ... 10
2.3 The Absolute Orientation Problem . . ... ........ . .. 11
2.4 Classical Least Squares Methods . . . . ... ........ ... 12
2.41 The Gauss-Newton method . .. ... ... .. . .. . . . 13



CONTENTS

2.4.2 The Levenberg-Marquardt method . .. ... ... . ...
2.5 Linear Methods . . . .. .. ... ... ... ... . ... ... .

2.5.1 The Projective Transformation Matrix (PTM) method

2.5.2 The Radial Alignment Constraint (RAC) method . . . . .
2.6 Two-Step Methods . . .. ... ... ... ... .........

3 Estimating Pose in Object Space

3.1 Minimum Variance Estimation . . . .. ... ... .........
3.2 The Objective Function . . . ... ... ... ... ........
3.3 Scene Reconstruction and Error Fusion . . . . .. ... ......
3.4 Choice of Reconstruction Methods . . . . . ... ..........

4 Alternating Subspace Minimization

4.1 Alternating Subspace Minimization . . . . .. ... .. ......
4.2 Solutions to the Absolute Orientation Phase . ... ... ... ..
4.3 Ambiguity in the Scale of the Structure . . . . ... ... ... ..
4.4 Optimizing Scale . . . .. ... ... ... ... . ...
4.5 Probabilistic Analysis of Deviation in Scale . . . . . ... ... ..

4.6 Initialization: A Weak-Perspective Approximation . . . . . .. ..

5 Performance Evaluation

5.1 Statistical Correctness and Optimality . ... ... ... ... ..
5.2 Statistical Validation . . . . .. ... ... ... ... . ... ...

5.2.1 Variance test with known mean . . ... ... ... .. ..

5.2.3 Results and discussions . . . . . . . .. . .. . ... . ...

5.3 Performance Comparison . . . . .. .. ... ... ... ......
5.3.1 Standard comparison experiments . . . . . ... ... ...
9.3.2  Error measures for 3D rotations . . . . ... ........

5.3.3 Results and Discussions . . . . . . .. ... .. ... ...

1

14
14

16
17

18
18
20
23
25

27
27
29
31
32
34
38



CONTENTS

6 Robust Estimation

6.1 Outlier Process and Robust Estimation . . . . ... ........ .
6.2 A Continuation Method for Robust Estimation . ... .... .. . .
6.3 Experiments . ... .. ..., ... . ... .. .. .. ... . .
6.3.1 Absolute orientation . .. ... ... ... ... .. ...
6.3.2  Object pose estimation . . . ... ... ...... .. .. . .
6.3.3 Hand-eye calibration . . . ... ......... . .. . . .

7 Model Matching

7.1 From Robust Estimation to Model Matching . .. ... ... ... ..
7.2 Correspondence Processes . . . ... ........... ... . _
7.3 A Continuation Method for Model Matching . . . ... ... ... ..
7.4 2D-2D Point Matching . . . ... ... .. ... ... ... ...
7.5 2D-2D Line-Segment Matching . . .. ............ . .
7.5.1 Indexing points on line segments . . ... .......... .
7.5.2  Gaussian sum approximation . .. ... . ... ...... . .
7.5.3  Results and discussions . . . . .. ... ... ... ... .. .
7.6 3D-3D Point Matching . . .. ... ... ... ... ... . ..
7.6.1 Experiments. ... .......... . ... ... .. . .

8 Conclusion and Future Work

8.1 What Has Been Done . . . . ... ... .. ... . . . . . . .. .
82 Future Work . . .. ... ...
Bibliography

A Solving Absolute Orientation Using Dual Quaternions

B Fitting Orthonormal Matrices

1i1

59
59
61
64
64
65
66

72
72
73
74
76
79
80
80
82
82
84

88
88
89

91

97

99



List of Figures

2.1

3.1
3.2

4.1
4.2

5.1
5.2
5.3

5.4
3.5
5.6

3.7

5.8

3.9
5.10

The reference frames in the pose estimation problem. . ... ... .. 9
Modeling and imaging errors in pose estimation. . . . . ... ... .. 21
Imaging error measured in image space and object space. . . . . . . . 24
Alternating subspace minimization for pose estimation. . . . . . . . . 28
Plots of p(z) for n = 10 and ¢ = 0.1,0.2,0.3,0.4, and 0.5. . . . . . . . 37
Result of hypothesis test T1 . . . . .. .. .. ... .. ........ 43
Result of hypothesis test T2 . . . . .. .. .. ... .......... 45

Comparing average numbers of iterations used by ASM with and with-
out scaling for Experiment C1. Each point in the plot represents 1,000
trials. . . .. 49
Result of Experiment C1 for comparing ASM with and without scaling. 49
Result of Experiment C1 for comparing ASM with and without scaling. 50
Result of Experiment C2 for comparing ASM with and without scaling.
Each point in the plot represents 1,000 trials. . . . ... ....... 50
Result of Experiment C3 for comparing ASM with and without scaling.
Each point in the plot represents 1,000 trials. . .. ..... .. ... 50
Result of Experiment C4 for comparing ASM with and without scaling. 51
Corrected and uncorrected scale factors computed for different SNR.. 52
The intermediate scene points at iteration 1, 2, 5, and 12 of a typical

run of ASM withscaling. . . . . . ... ... ... ... ... .. .. . 53

v



LIST OF FIGURES

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

6.1

6.2
6.3

6.4

6.5

6.6

6.7

The intermediate scene points at iteration 1, 2, 5, and 12 of a typical
run of ASM without scaling. . . .. ... ... .............
Result of Experiment C1 for comparing linear methods and ASM.

Result of Experiment C2 for comparing linear methods and ASM. . .
Result of Experiment C3 for comparing linear methods and ASM. . .
Result of Experiment C4 for comparing linear methods and ASM. . .
Running times and average numbers of iterations used by the tested
methods. Each point in the plot represents 1,000 trials. . .. .. ..
Result of Experiment C1 for comparing ASM and the Leverberg-
Marquardt method. . . . . . . .. .. o L
Result of Experiment C2 for comparing ASM and the Leverberg-
Marquardt method. . . . . . . ... ... o oo L
Result of Experiment C3 for comparing ASM and the Leverberg-
Marquardt method. . . . . . . . ... L
Result of Experiment C4 for comparing ASM and the Leverberg-
Marquardt method. . . . . . . . ...

Plots of the penalty function 2c2z(logz — 1) for ¢ = 0.1, 0.3, 0.5, 0.7,
0.9. .
Plots of the soft-delta function e=*"/2°* for o = 0.1, 0.3, 0.5, 0.7, 0.9.

Comparing robust and non-robust absolute orientation methods against
increasing percentages of outliers. . . . ... ... ... .. .. ... .
Comparing robust pose estimation methods using ASM and LM. . . .
Average running times of the robust pose estimation methods. . . . .
Average numbers of iterations of the robust pose estimation methods
for different percentages of outliers. . . . . ... ... ... ......
The experimental setup showing the positions of the two cameras rel-

ative totherobot arm. . . . . . . ... .. .. ... ...

o4

35

L)

36

36

36

37

57

58

38

62
63

65

66

67

67



LIST OF FIGURES vi

6.8

6.9
6.10

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9

An image from the cameras showing the tracking used to generate

image feature point data. . . . . . ... ... ... ... ... ... .. 69
The projections of 35 model points as seen through cameras. . . . . . 70
Results of the hand-eye calibration experiments. . . . . .. ... ... 71
The objective functions for translation only at different scales. . . .. 77
Comparing template matching and continuous optimization. . . . . . 78
A typical run of the 2D-2D point matching algorithm. . . . . ... .. 79
Approximating ©(¢) by a sum of 3 Gaussian. . . . . .......... 81
Model line segments. . . . .. ... ... .. ... .. ... .. .. .. 82
Model line segments overlayed on the scene image.. . . . .. ... .. 83
Matching line segments. . . . ... ... ... .. ... ... ... .. 83

Results of Experiment C1 and C2 with different knowledge of corre-

spondence. . . . ... 86



Chapter 1

Introduction

1.1 The Problem

Determining the rigid transformation that relates an object coordinate frame to that
of a camera is one of the central problems in computer vision. The available in-
formation for solving the problem is usually given in the form of a set of feature
correspondences, each composed of a 3D model feature on an object and its corre-
sponding 2D projection. The rigid transformation is called the object pose or the
camera pose depending on which reference frame is referred to.

Solution methods were developed long ago for classical photogrammetry applica-
tions [57,60], where the problem is referred to as ezterior orientation. It is known as
hand-eye calibration in vision-based robotics where the relation between the reference
frames of the camera and the robot arm has to be determined. In model-based recog-
nition, such a problem is called object pose estimation or viewpoint solving [5,33,46,39]
for the purpose of recognition.

Sometimes the problems of estimating the rigid transformation between two sets
of 2D features and two sets of 3D features are referred to as the 2D-2D and 3D-
3D pose estimation problems, respectively. In this case, the object pose estimation

problem can be called the 8D-2D pose estimation problem. In the following, it is
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simply referred to as the pose estimation problem.

Recent progress in visual servoing has led to systems which make use of online pose
estimation [10,26,32,68]. This is done by tracking visual features of a manipulator as
1t performs a set of motions. Model points are acquired in the form of 3D positions
computed using the robot inverse kinematics and 2D image positions are detected
by feature tracking. In telerobotics applications [27,16,6], an operator registers a
geometric model with an image by pointing out specific model features in an image.
Following this registration operation, features of the model are tracked and the pose
of the model is updated in real time. A similar scheme could be used in enhanced
reality applications [16,6] to compute a “movie” of a moving object to be rendered
graphically.

All the problems described above are typical examples that suffer from the follow-
ing three sources of errors:

3D modeling error Robot inverse kinematics are notoriously imprecise, par-
ticularly on smaller, flexible robots. The real 3D points that are used to generate
image features on the image plane are not exactly what are given as inputs to the
inverse kinematics system. 3D reconstruction by stereo triangulation or structure
from motion give rise to similar errors in the 3D positions of the model features.

2D imaging error The true image coordinate of a 3D model point is perturbed
by inherent noise in sensors and precision truncations during digitization. Feature
extraction algorithms suffer from localization bias.

Matching error In addition to statistical error, there may be error such as me-
chanical backlash in robot arm manipulation. It can also be expected that the 3D to
2D correspondences will occasionally be incorrect due to operator error, mistracking,

or line-of-sight occlusions. Such correspondences are called outliers.
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1.2 Estimating Pose: Approaches and Issues

There are three basic approaches to the pose estimation problem. In nonlinear least
squares methods, the problem is regarded as a nonlinear estimation problem. The
classical approach in photogrammetry is to solve the nonlinear estimation problem by
iterative methods. Linear methods give approximate closed-form solutions by ignoring
the orthonormality constraint on the rotation matrix. Modern work using least-
squares methods can be found in [46,47,23,24]. Analytical methods treat the problem
as purely algebraic or geometrical. The problem is solved exactly for some small
number of feature correspondences. In this aspect, analytical methods are sometimes
referred to as minimal information methods [20,19,34,30,12,13]. Some methods use
weak-perspective instead of perspective (pinhole) imaging model [39,2] to simplify the
problem and also to achieve better efficiency.

Here, we discuss some issues regarding these three approaches.

1.2.1 Initialization

Iterative least squares methods start from an initial approximate solution, and then
iteratively improve the solution according to the deviation of the observed data from
the predictions based on the previous approximate solution. The methods converge to
a final solution which depends on the starting point. In photogrammetry applications,
initial approximate solutions are usually available. However, in modern computer
vision and robotics applications such as visual-servoing and model-based recognition,
initial approximate solutions are either unavailable, or are unreliable.

On the other hand, in analytical methods, a polynomial system is first derived
from the algebraic constraints or the geometric configurations for a minimal number of
feature correspondences, and the problem is solved by finding roots of the polynomial

system. An initial approximate solution is not required.
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1.2.2 Robustness to noise

In practice, any observed data are noisy. In the least squares formulation of the
problem, redundancy in the data is exploited to smooth out noise. Knowledge of the
underlying noise in observation can be utilized to get a better estimation.

On the other hand, there is no implied noise model in the problem formulation of
analytical methods, and since only minimal information is used, no redundancy can

be utilized for filtering out noise

1.2.3 Robustness to outliers

Robust M-estimate solutions to outlier rejection have led to various modified least
squares methods including IRLS (Iteratively Re-weighted Least Squares) (see [38]).
For the cases where very high percentage of outliers are presented, or in the extreme
case where the correspondences are totally unknown as in model-based recognition, a
hypothesis-and-test strategy may be more appropriate. One such procedure for outlier
rejection is RANSAC [19], where a solution is computed for every combination of the
minimal number of correspondences sufficient for an analytical solution. We call such
combinations “evaluation sets”. The solutions computed from each evaluation set
are then tested against the rest of the feature correspondences. Within the RANSAC
framework, it is essential that the number of evaluation sets be minimal (which implies
that the size of each evaluation set be minimal), and the computation of the solution
for each evaluation set be efficient. These requirements obviously call for analytical

methods.

1.2.4 Why least-square methods?

According to the above discussion, neither the least squares approach nor the analyt-
ical approach is clearly better than the other. However, even in object recognition by

alignment in which analytical methods are used extensively, least squares methods
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are still commonly used for verification and refinement of the final solutions [16,24].
To be robust to noise, analytical methods can be applied to more feature corre-
spondences by reducing the problem to a larger polynomial system. However, the
total degree of the resulting polynomial system will be too large to handle as pointed
out in the review article Huang and Netravali [37]. Therefore, the authors concluded
that, after addressing the shortcoming of analytical methods, “the only option ap-
pears to be solving the nonlinear least squares problem by iterative methods”.
Another support for least-squares methods comes from the fact that the error
from 3D reconstructions is usually skewed and elongated. The solutions to such
problems can be remarkably improved by more accurate error modeling in the forms
of covariance matrices [67], which is not possible with analytical methods. Covariance
matrices also contribute important information for outlier rejection and matching

when used in the computation of Mahalanobis distances.

1.3 The New Approach

1.3.1 Fusion of 3D and 2D error measures

Most reported pose estimation methods assume that the 3D model data are accurate
and well-behaved. The only source of error that needs to be considered is 2D image
noise. Extremely accurate results can be achieved with precise 3D models under
controlled conditions. For this reason, 3D models used in camera calibration systems
often use specially designed calibration patterns that are metrically accurate and
have high contrast to enhance the performance of feature extraction. Except for such
calibration patterns or mechanical parts that are manufactured using predefined CAD
models, exact 3D models of objects are usually difficult to get, and we have to deal
with the uncertainties in the observed 3D models.

We present a new least-squares framework that takes into account uncertain-

ties resulting from both 3D reconstruction and 2D imaging. Under this framework,
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object model (structure) and pose are estimated simultaneously. When the pose
and structure estimation is applied recursively to an image sequence, it solves the
structure-from-motion problem where the object model is the structure estimated in

the previous frame.

1.3.2 Alternating subspace minimization

The problem of estimating pose and structure is nonlinear. We present a subspace
minimization method that optimizes pose and structure alternatively. For fixed pose,
the structure is solved linearly. Given fixed structure, the pose is obtained by solv-
ing an absolute orientation problem which is generally much easier than the pose
estimation problem. This approach turns the pose estimation problem into a series
of progressive absolute orientation problems, which also lead to a good initialization
scheme based on weak-perspective projection.

The new algorithm has been compared to a number of previously existing least
squares methods. All methods have been tested extensively on synthetic data with
varying noise, percentages of outliers, and numbers of reference points. Experimental
data indicate that the new methods require many fewer function evaluations than
classical nonlinear techniques and are much more tolerant to noise and outliers than

linear methods under most conditions.

1.3.3 From outliers to correspondences

To deal with matching error, it is important that a solution method be able to success-
fully “reject” these outliers. A robust estimation scheme based on outlier processes
is introduced for rejecting possible outliers. A continuation method is proposed for
minimizing the non-convex objective function resulting from robust estimators and
outlier processes.

In the presence of outliers, the feature correspondences can be said to be “par-

tially” known. An important family of problems, in which the correspondences are
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totally unknown, is called model matching or model reqistration. It occurs when
there is no human operator for handling the registration operations described above,
or when such operations need to be automated. The correspondences between the
model features and the scene features need to be established.

The alignment method for model matching [62,39] can be considered as an ex-
tension to RANSAC for the cases that the feature correspondences are “totally” un-
known. The tentative feature correspondences are generated from all possible pairings
of model features and image features, and the algorithm tries to reject those corre-
spondences that are incorrect. In this manner, the concept of outlier rejection can be
generalized to correspondence establishment. A similar extension is applied to robust
IRLS algorithms in which every possible pair of model and scene features has a weight
used to represent the “strength” of the associated correspondence. Outlier processes
are generalized to correspondence processes so that the more difficult model matching
problems can be solved in a manner similar to outlier here rejection in robust estima-
tion. A similar continuation method is applied here to 2D-2D point matching, 2D-2D
line-segment matching and 3D-3D point matching.

1.4 Outline of the Dissertation

The remainder of this dissertation is organized as follows. The next chapter describes
the least squares formulation of the pose estimation problem and gives some clas-
sical solutions. Chapter 3 presents a new statistical and computational framework
for pose estimation. Chapter 4 presents a practical alternating subspace minimiza-
tion algorithm based on our new framework. Chapter 5 gives statistical validation
of our theory and implementation. Detailed performance analysis using large scale
simulations are performed to compare our method to existing methods. Chapter 6
discusses robust methods for outlier rejections and Chapter 7 extends robust methods
to deal with the cases that feature correspondences are unknown. Finally, Chapter 8

concludes this dissertation and discusses some possible extensions.



Chapter 2

Pose Estimation: A Review

In this chapter, we give a formulation of the pose estimation problem, introduce
the related absolute orientation problem, and review previous work on least-square

methods including linear and nonlinear methods.

2.1 Problem Formulation

The mapping from 3D points to 2D image coordinates can be formalized as follows.
Given a set of 3D coordinates of model points x = (z,y,2)" in an object reference
frame, and the corresponding coordinates (the scene points) y = (2',y’,2)" in a

camera reference frame, the two frames can be related by a rigid transformation as

(2.1) y = Rx + t,
where
ri tl
(2.2) R=|r} and t=]|t,
rg t3

are a rotation matrix and a translation vector, respectively.
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Figure 2.1: The reference frames in the pose estimation problem.

The camera reference frame is chosen so that the projection center of the camera
is at the origin, and the optical axis points in the positive z direction. The model
points x are projected to the plane with equation 2’ = 1, referred to as the normalized
image plane, in the camera reference frame. The resulting projections u = (u,v)! are
called the normalized image coordinates. Under the idealized pinhole imaging model,
the image vector (or the backprojection vector) v = (u,v,1)?, the scene point y, and
the center of projection are collinear. The line extended by a image vector is called
a backprojection line. The projection equation can be written as
(2.3) V= %(Rx +t),

r3x + t3
which is known as the collinearity equation in photogrammetry literature. Due to
errors that usually occur in the imaging process, the observed image vector Vv is

corrupted by some 2D noise vector ¢ as

(2.4) v=>@1)}! d=u+e.
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2.2 Camera Model

The imaging geometry of real cameras is somewhat more complex than the pinhole
model. This causes various types of optical distortions [21]. Among all studied
distortion types, radial distortion, which produces a positive or negative displacement
of a given image point along the radial direction from the principle point of the
lens, is the most dominant. If only radial distortion is considered, the normalized
image coordinates (&, #)* can be corrected from the distorted (uncorrected) ones (i, )

approximately by

(2.5) 4 =u(1 + kr?)
(2.6) b= (1 + Kr?),
where r? = 42 + 92 and & is the radial distortion coefficient.

In addition, the digitizing hardware imposes its own coordinate system on the
digitized image. The mapping from the sensor coordinates (m,n)! to the distorted

image coordinates (4, ) is defined by

(2.8) v =(n—ng)/fo,

where (mq, no) is the image center in sensor coordinates, and (f,, f,) are the horizontal
and vertical image scales, respectively.

Assuming known distances d, and d, between adjacent sensor elements in both
horizontal and vertical directions, the image scales can be represented by camera focal

length f and correction factor s, for horizontal scale by

(29) fu:'suf/du, f'u:f/d'u

The reason for introducing the correction factor s, is as follows. The image of 3D
scene is first formed on the sensor plane. The digitizing hardware scans and digitizes

the sensor image, and stores the result in the frame buffer. For commonly used CCD
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cameras, both the sensor plane and the frame buffer are composed of discrete elements,
therefore the mapping between them should be one-to-one. It is true for the vertical
coordinates since the sensor image is scanned line by line horizontally. However, for
horizontal coordinates, the mapping is not one-to-one due to the resolution differences
between the camera and the frame buffer.

Both representations give two degrees of freedom. They are equivalent mathe-
matically since their relation as specified by (2.9) is one-to-one. We choose to use
the (f., fu) representation instead of the (f,s,) representation for two reasons: first,
the calibration code using the former representation does not need to know d, and
dy; second, the mapping from sensor to frame buffer is linear in f, and f, while it
involves a nonlinear term fs, if the other representation is used.

The parameters f,, f,, mo, no and & are referred to as the camera intrinsic param-
eters. In the rest of this dissertation, we assume that the camera intrinsic parameters
are known, and normalized image coordinates can be computed from sensor coordi-
nates accordingly. The problem of estimating the camera intrinsic parameters as well

as the pose is referred to as camera calibration [61,45)].

2.3 The Absolute Orientation Problem

If the 3D camera frame coordinates y have been reconstructed physically (for example,
by range sensing) or computationally (for example, by stereo matching or structure-

from-motion), we have
(2.10) ¥ = Rx +t+1,

where ¥ are observed 3D camera frame coordinates, and 7 are noise vectors that
account for the uncertainties in 3D reconstruction. Assume that ¥ has a covariance
matrix ¥ due to 7.

The process of determining R and t from ¥ and x is called absolute orientation or

3D-3D pose estimation. It can be generalized to include an unknown scaling factor,
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in which case the transformation involved is known as a similarity transformation,

and Equation (2.1) takes the form
(2.11) y = sRx + t.

Several closed-form solutions have been proposed for the equally-weighted least-
squares minimization corresponding to Equation (2.11) [36,4,35,63] for the cases
that 7 are independently and identical distributed, and are also isotropic such that
3 = o?]. These methods can be very easily extended to find scalar-weighted least
squares solutions. An algorithm based on linear subspace decomposition is presented
in [64] for non-isotropic, but independently and identically distributed noise. Weng
et. al. presented a two-stage matrix-weighted least-squares solution for more general
heterogeneous and non-isotropic noise [67]. The orthonormality constraint on rota-
tion matrix is ignored in the first stage in order to get a closed-form solution, which
1s in the form of a 3-by-3 matrix and a 3-vector. An improvement is made by finding
a rotation matrix that best fits the 3-by-3 matrix.

In practice, it was pointed out in [25,18] that the pose estimation problem can
be greatly simplified when 3D depth information is available, since this avoids some
of the nonlinearities resulting from projection. This is further confirmed by the fact
that good closed-form least squares solutions exist for absolute orientation, although
they use linear approximations such as the aforementioned approximate closed-from
solution by Weng et. al. It appears that the nonlinearity coming from projection con-
tributes much more to the difficulty of problem than that coming from orthonormality

of the rotation matrix.

2.4 Classical Least Squares Methods

The rotation matrix R is subject to the orthonormal constraint

(212) I‘t<I‘j = 6@, 2,] = 1,2,3,

1
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and has three degrees of freedom. It is related to the Euler angles ¢, 6, by

(2.13)
cos 0 cos o) cos 0 sin —siné
R = | — cos ¢sint) + sin ¢sin 6 cos cos ¢ cos) + sin psinfsiny  sin ¢ cos f
sin ¢sin + cos ¢sinfcosyp —sin pcosth + cos psinfsintp cos ¢ cos 6

In classical photogrammetry, the pose estimation problem is solved by minimizing

image error, which is equivalent to solving the nonlinear least-squares problem

t i
B - . X+t _NXiti
(2.14) F(8) = If(6))I* = 3 _|(& — = rix: + 5

1
; r3x; +ts

)+ (3 ),

where ry, 3, 13 are functions of three Euler angles ¢, 0,1, and 8 = (4,0, 1,11, 1,, t3)".
Two commonly used methods for minimizing F'(@) are Gauss-Newton and Levenberg-

Marquardst.

2.4.1 The Gauss-Newton method

The Gauss-Newton method is a classical technique for solving nonlinear least-squares
problems such as (2.14). It operates by iteratively linearizing the collinearity equation

around the current approximate solution 8 using a first-order Taylor’s expansion

(2.15) f(0+ A0) = |[f(8+ A0)|?
(2.16) ~ ||f(0) + J(8)A8]?,

and then solving the linearized system in A8
(2.17) — JH6)f(8) = J(6)J(6)A8

for the next approximate solution 8 + A8, where J(8) = % is the Jacobian of F
at 8. The Gauss-Newton method relies on a good local linearization. If the initial
approximate solution is good enough, it should converge very quickly to the correct

solution. However, when the current solution is far from the correct one and/or the
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linear system is ill-conditioned, it may even fail to converge. It is reported in [31] that
for the Gauss-Newton method to work, the initial approximate solutions have to be
within 10% of scale for the translation and within 15° for each of the three rotation

angles.

2.4.2 The Levenberg-Marquardt method

The Levenberg-Marquardt method solves the least squares problem by solving the

stabilized linear system
(2.18) — JH(0){(8) = (AD + J'(6)J(8))A8,

where D is a scaling matrix and A is an adjustable parameter. It can be regarded
as an interpolation of steepest descent and the Gauss-Newton method. When the
current solution is far from the correct one, the algorithm behaves like a steepest
descent method: slow but guaranteed to converge. When the current solution is
close to the correct solution, it becomes a Gauss-Newton method. It has become a
standard technique for nonlinear least squares problems, and has been widely adopted

In computer vision literature (for example, see [47], [65]).

2.5 Linear Methods

With more data points, linear least-squares methods solve for the 9 parameters (or
part of them) in the 3-by-3 rotation matrix linearly by ignoring the orthonormal-
ity constraint. The solution can then be improved by finding the orthonormal ma-
trix that best fits the 3-by-3 matrix. For our experiments, we have included an

orthonormalization step. Representive work on linear squares methods can be found

in [1,69,17,61,45).
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2.5.1 The Projective Transformation Matrix (PTM) method

By ignoring the orthonormality constraint, the 3-by-3 rotation matrix R = (r;;) and
the translation vector t can be solved in closed form up to a scale factor using the
collinearity equation (2.3). This method is adapted from the original PTM method
(1,69,17] which uses the 4-by-3 projective transformation matrix to encode the image
center and image scales in addition to R and t.

Cross-multiplying the collinearity equation (2.3) yields

(219) (rgx + t3)l~t = rﬁx + tl
(2.20) (rix +t3)0 = rix + t,.

Dividing by t5 on both sides, Equations (2.19) and (2.20) become

(2.21) (ry)'x + D = (r))x + ¢}
(2.22) ((r3)'x + 1)o = (ry)'x + 8,

where r{ = ¢3'r,1y = t3'ry, vy = t3'rs,t) = 3, and ¢}, = t3't,. Six pairs of
a model point x and an image vector v = (#,9,1) are required for solving for the
11 parameters R’ = (r},r),r})% ¢} and t}, since each of them contributes two linear
equations ((2.21) and (2.22)). A least-squares solution is found by singular value
decomposition of the resulting system.

What needs to be done next is to decompose R’ into the s;ale factor ¢3! and the

orthonormal matrix R. #3 can be determined by
(2.23) det(R') = det(t5'R) = #3.

R is computed as the rotation matrix that best fits sign(det(R))R’ = |t3'|R. Such
decomposition can be done in a straightforward manner by solving a 4-point absolute
orientation problem (see Appendix B).

Now with known ¢35 and R, the remaining unknowns ¢; and ¢, can be calculated

by solving the overdetermined system of Equations (2.19) and (2.20) for each pair
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of image vector and model point. To improve the accuracy, 5 can be recalculated

together with ¢; and t,.

2.5.2 The Radial Alignment Constraint (RAC) method

Tsail introduced a two-step method for camera calibration [61,45]. The first stage
makes use of the radial alignment constraint which can be formulated in our notation
as

rix + tl

2.24 —_—
( ) rt2x + tg

U
v

SEYIN~31

The radial alignment constraint says that the vector defined by the orthographic pro-
jection of a 3D model point, the normalized image vector (&, 9,1)?, and the distorted
image vector (&, 9, 1)" under just radial distortion are all parallel. Using this formula,
the horizontal scale factor and all of the camera pose parameters except for t3 can
be computed using linear techniques. The second stage computes the remaining pa-
rameters by applying nonlinear optimization to the collinearity equation (2.3) using
the values computed in the first stage. With known intrinsic parameters or ignoring
radial distortion, normalized image vectors are available and ¢ can also be computed
linearly using the collinearity equation.

We observe that (2.24) can be converted by division and cross-multiplication to
(2.25) o(ry)'x + ot; = a(rh)'x + 4,

where r} = t;'r;, 1} = t3'ry, and #, = t5'¢;. Seven pairs of a model point x and its
corresponding image vector v = (&, ?,1)" are required to solve for the 7 parameters
ry, Ty, and #}, since each of them contribute one linear equation (2.25). Least-squares
solution is computed by singular value decomposition of the resulting system.

Given these values, R and t, are determined from rj and r, as follows. The

absolute value of ¢, is determined by

(2.26) o] = IF ™0 or il



CHAPTER 2. POSE ESTIMATION: A REVIEW 17

The sign of £; also determines the signs of ry,r; and t;. It should be chosen such that
4 and © have the same sign as r{x +t; and rix +¢,, respectively. The point x used to
determine the sign of ¢; can be chosen as some model point whose image point is far
away from the image center. Then r; and r; are computed from ¢;, r} and rj. Using
the orthonormality of the rotation matrix, r3 can be computed from r; and r,.
With known 24, {; and R, the remaining unknown, t3, can be calculated by solving
the overdetermined system of Equations (2.19) and (2.20) for each pair of image vector
and model point. Again, to improve accuracy, t; and ¢; can be recalculated together

2.6 Two-Step Methods

Linear least-squares methods are very fast. However, it should be noted that they
provide only an approzimate closed-form solution. The orthonormality constraint on
rotation matrices is not fully considered in the solution process. Consequently, in the
presence of noise, the 3-by-3 matrix is not exactly orthonormal, and the accuracy
of the final result is relatively poor even when it is further improved by finding the
closest orthonormal matrix.

A two-step method solves the problem in two stages. In the first stage, a linear
algorithm is employed to get an approximate closed-form solution. In the second
stage, a nonlinear method uses the previous closed-form solution as an initial guess
to search for a better result. The same idea can be found in structure-from-motion
[65] and camera calibration [61,66).

Although two-step methods seem to be the answer to the issues of initialization and
robustness, problems remain. Without the orthonormality constraint, linear methods
not only overfit noise, but also overfit the outliers if they exist. The latter can lead to
a solution that is meaningless. When used as a starting point, such a solution is very
likely to cause subsequent nonlinear optimization to fail. These problems motivate

the need for a better initialization method than linear methods.



Chapter 3

Estimating Pose in Object Space

In this chapter, we address the problem of estimating pose in the presence of uncer-
tainty in model observation in addition to that in image space. We present an error
modeling scheme in which error measures in both object space and image space are

fused into a single error measure by backprojection image error into object space.

3.1 Minimum Variance Estimation

Throughout the rest of this dissertation, we follow the conventions described below.
An “observed” or “noise-perturbed” quantity is designated as ¢ which is a random
variable. Likewise, an “estimate” is written as . A quantity with a subscript, ¥;,
represents either a typical member in the set {y;}, or the set itself depending on the
context.

Different kinds of errors in the observations contribute to different kinds of errors
in the pose solution. In order to solve the problem properly when both modeling and
imaging errors present, we need to be able to measure their contributions to the esti-
mation errors systematically. The development of our method for the pose estimation
problem is based on what is called minimum variance estimation framework in which

the error measures are represented elegantly as covariance matrices. The minimum

18
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variance estimation framework is outlined as follows.
Suppose that an observation vector ¥ is related linearly to the parameter vector

8 to be estimated by

where A is called design matriz. Assuming that 7 is a Gaussian noise vector with a
zero mean (E(n) = 0) and a covariance matrix X3 = E(nyn}), the “best” (in the
sense of minimum variance) linear, unbiased estimator (BLUE) of 8 is the one that

minimizes the objective function

(3.2 (5 - A8)'S3'(§ - 46),
and the resulting estimator 8 is

(3.3) (A’ A)TTA'SG g
with a covariance matrix

(3.4) 3y = (AtZ!T,lA)'l.

The minimum variance estimator in the Gaussian case is also the linear mini-
mum variance estimator in the general case, without any Gaussian assumption [41].
This implies that when the best “linear” estimator serves our needs, we can safely
assume that the underlying noise distribution 15 is a Gaussian. Only knowledge of
second-order statistics and below is required. Note that such a best estimator may
be computed using nonlinear methods.

Similarly, in nonlinear cases where ¥ is related to @ by a nonlinear equation

(3.5) y=f(0)+n,

the best linear estimator of 8 is the one that minimizes the objective function

(3.6) (9 - £(6))'5'(3 - £(8)),
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and the covariance matrix of 8 can be approximated by

af(0) _,3f(8)._,
(3.7 2y~ (L0 55107000

where 3_‘2(921 is the Jacobian matrix of f evaluated at 6. Since f is nonlinear, iterative
methods are required to solve for 8.

There are cases in which the observation vector § is obtained indirectly as a
function of another observation & which is contaminated by a noise with a zero mean
and a covariance matrix Xz. The covariance matrix ¥ of § to be used in (3.4) or

(3.7) can be computed as

99(2) 5 09(E)°

With the minimum variance estimation framework, we can find the best (in the
sense of minimum variance) linear estimator by minimizing a least squares objective
function such as (3.6). The measures of the uncertainties, expressed in the form of
covariance matrices, can be propagated from observations to estimations according
to (3.4) and (3.7) (see [29] for details of theory).

Since the mean and covariance of comprise a sufficient statistic for @ if it is a
Gaussian, solving for optimal 8 and the associated covariance matrix can be consid-

ered as finding the “distribution” of .

3.2 The Objective Function

When a set of model points is determined as the result of an inverse kinematics
computation, stereo triangulation, or structure-from-motion algorithms, the points
are noisy. Instead of writing each of them as an exact model point x;, we have a

“perturbed” model point %; which is related to x; by

(3°9) i‘i =X + C,’,
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A

Figure 3.1: Modeling and imaging errors in pose estimation.

where (; is a noise vector with a covariance matrix x,. A specialization to the case
where exact model data is available can be achieved by having the covariance matrix
¥z =0.

In the case of noisy model observations, we need to estimate both the pose (R, t)
and the model points x; simultaneously. Equivalently, we estimate the coordinates
of the model points in the object reference frame, the scene points y;, which are

sometimes referred to as the structure. We denote the noisy observation y; of y; as
(3.10) yi =Yyi+ R¢,,

which has a covariance matrix Xy, = R¥g, R. The modeling error measured in the

object space for a scene point y; is thus
(311) S/,'—y,' ZRii-{-t—yi.
The imaging error for y; is given by

(3.12) u; — w(yi),
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where

(3.13) w(yi) = (zi/ 2, vi/ ),

is a predicted image point given y,. It is the difference between the observed image
point 4; and the projection of the estimated scene point y; on the normalized image
plane. The objective function for estimating the pose and the structure can be written
as
(3.14)
f(R,t,y:)

= 2 (R%: +t = yi) B! (R%: + t = yi) + D (8 = w(y:)) T3 (& — m(ys)

= fmod(R’ t,yi) + fimg(yi)3

where fr..4 and fim, are shorthands for the first and the second terms in the objective
function which represent 3D modeling error and 2D imaging error, respectively.
Minimizing the objective function (3.14) directly over R,t and y; involves search-
ing in a parameter space with very high dimension (3n+6). We can reduce the search
space by the subspace decomposition techniques [67,11]. The basic idea is to decouple

the pose and structure by representing the scene point y; in terms of (R, t) such that
(3.15) nin f(R,t,y:) = minmin f(R, t,y)
= min f(R,t,y7(R, t))
= ming(R, t),
where
(3.16) yi(R,t) = arg min,, f(R,t,y;).

The problem becomes a minimization of g(R,t) over the pose only. Classical op-
timization techniques like the Gauss-Newton method, or the Levenberg-Marquardt

method as introduced in Section 2.4 can be used.
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The remaining problem becomes finding the solution to y*(R,t). It is difficult
since fimg is nonlinear. Note f,.,q4 is a quadratic function of y; for fixed R and t. If

fimg can be approximated by a quadratic function of y; such as

(3.17) > (7 —yi)' Bz — yi)

then the overall linear minimum variance estimator y?(R,t) of y; for fixed R and t
is given by
(3'18) y:(R’t) = Zzi(zii + Ez,')—lyi + ES’;’(ES'.' + EZ.')—lzi
=yi+ ES’&(ES';‘ + Ez‘.)_l(zi - S’z)
The covariance matrix of y*(R,t) is given by

(3'19) Yy = 25’;‘(22.‘ + 25’.’)-125’."

The next section is devoted to the topic of approximating fimg by (3.17). Since
this involves finding a 3D scene point z; corresponding the image point {1;, we refer

to this approximation as scene reconstruction.

3.3 Scene Reconstruction and Error Fusion

In order to find a quadratic approximation (3.17) to fimg, we linearize 7 (y;) around
Vi to give

(3.20) w(y:) ~ m(¥;) + 81;;%{)()’5 - Vi),

where the Jacobian of m at y; = (zf,y!, 2!)t is

) (30 —=

ay; 0 1 __¥%_

o @)

The optimal y; based on the above approximation should satisfy

(3.22) u; — w(yi) + aggi)(i’i —-yi)=0.
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Figure 3.2: Imaging error measured in image space and object space.

Solving for y; using (3.2), (3.3), and (3.14), and designating the solution as z; =
z;(R,t), we have

(3.23)
. - 87T(S’i)t — 871’(5’,) — 871’(5’,’)t 1/~ .
=y 4+ (22! ! 1 POt (P i
where z; has the covariance matrix
L, 0w 07 (F)
3.24 Y, = (7 + =2 w1yt
(3.2 =z + G0 g 220,

For the case that Xy, and Xg, are isometric, (3.23) can be simplified by orthogo-
nally projecting ¥ to the backprojection line of @; as in [15]:

(3.25) z; = A(;)¥:
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where
. u? wu oy
(3.26) Alw;) = :t: =77 i? — [ww o w,
u; v; 1
(3.27) vi = (u}, 1) = (ui,v;, 1)

Note that A is a projection operator. Here, z; represents the closest point to ¥; on

the backprojection line of @1;. The covariance matrix of z; is given by

(3.28)
_ 0AW)Y: ., 0A®)Y:" | A(I)Yi, DAY
Ezi N a)’i Ey'. By,- + Bu,- zui 8u,~

t
—_ A(ﬁz)zi,A(ﬁz)t+ (Bgs‘l;)yt ng‘l-)yt> Eﬁi (3135:‘1:)5,1 3%5:;)5,1>

A(qy), %Egil and @;_S%l can all be precomputed to improve the efficiency.

The difference z; — y; can be considered as an error in object space backprojected
from the imaging error ; — w(y;). If we use (3.25) to compute z;, it is the difference
between a scene point y; and its orthogonal projection on the backprojection line of
the image point u;. By backprojecting imaging error to object space, the modeling
error and the imaging error can be fused into covariance matrices (3.24) and (3.28)
both measured in object space.

Note that all points that lie along the backprojection line from @; would give small

imaging error relative to ;. In this sense, trying to find points to fit the hypothesized

scene points ¥; can be considered as disambiguating the backprojection process.

3.4 Choice of Reconstruction Methods

Having fin, be approximated by a quadratic function in the form of (3.17), where z;
is obtained by (3.20) or (3.25), y*(R, t) can be computed using (3.18). The objective

function of pose and structure can now be converted to the objective function of
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pose only. It is no more difficult than the original pose estimation problem where
models are exact. Furthermore, the error measures of modeling and imaging can be
propagated to that of the structure.

We should keep in mind that the pose and the structure are not completely de-
coupled as expected by using subspace decomposition, since z; is approximated by
linearization or orthogonal projection. The resulting nonlinear objective function
g(R,t) = f(R,t,y"(R,t)) can only be solved by iterative methods which require
another linearization or other approximation.

One major disadvantage of (3.20) is that it uses Jacobian of & which depends
on (R,t). If a first-order or higher minimization algorithm is applied, it will in
effect compute the second-order derivatives with respect to (R, t), which tend to be
destabilizing when the initial guess for (R, t) is bad.

On the other hand, when (3.25) is used, z; depends linearly on y; and hence
(R,t). When a first-order algorithm is used to minimize g(R,t), only the first-order
derivatives with with respect to (R, t) are taken. Therefore, we will mainly use (3.25)

in the rest of the dissertation.



Chapter 4

Alternating Subspace Minimization

In this chapter, we introduce a special subspace decomposition technique, called al-
ternating subspace minimization to solve the pose and structure estimation problem
introduced in Chapter 3. We also cover the issues on scaling the structure and ini-

tializing the iterative algorithm.

4.1 Alternating Subspace Minimization

The subspace decomposition method (3.15)(3.16) depends on the accuracy of the
linearization around y; = RX; + t (3.23). To make the dependency of f;,, on (R,t)
explicit, the corresponding linearized objective function in (3.17) can be written as
(4.1) fimg(yis By t) = D _(yi — 2R, 1)) B (yi — z( R, 1)),
and the best scene point estimate y* is computed using (3.18).

By fixing y; = y7, fmod(R, t,Yy:) is an objective function of an absolute orientation
problem for (R, t):
(4.2) Frod(Ry 6 y7) = Y (R%: +t — y7){(Sy, + Ty H(RXi +t —y]).

1

The error that such an absolute orientation problem has to deal with is a 3 - D error

27
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Figure 4.1: Alternating subspace minimization for pose estimation.

that is a vector sum of modeling error and structure error caused by imaging error
(or imaging error backprojected into 3 - D object space, see Figure 3.2).

We can see that f,..4(R,t;y;) and fimg(¥i; R, t) are complementary. Both solve
for the parameters that are to be fixed in their counterparts. A simple interaction
between the pose and the structure is by alternatively minimizing fmod for the pose
and fim, for the structure. This can be considered as simultaneously optimizing the
pose and the structure by coordinate relaxation. Note that the computation of the
structure is linear with complexity no more than a function evaluation, and the pose
can be solved in closed-form.

Let (R, t(*)) and ygk) be the kth estimate of the pose and the structure, respec-
tively. The Alternating Subspace Minimization (ASM) method proposed above can

be described as

(43)  (BY,t®) = arg ming, frnoa (R, t; 1Y)
(absolute orientation phase)
(4.4) yi™) = arg miny, (fing(yi; R, 600) + froa(RO, 49; y,)

(reconstruction phase)
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or more elegantly as the clocked objective function !

(4.5)
}%ntin. f(R?t7yi) = I%ltn fmod(th;yi) S I%%n(fimg(yt'; R7t) + fmod(R’t;yi))

) ’y'
where the covariance matrix X o of yfk) is computed using (3.24) or (3.28) with
Vi = R¥-U%; + t-1), Note that Ey(k) includes contribution from previous pose
estimate (R(*~1) t%-1) and the model point %; through ¥; = R*D%; + t(:=1 ag

well as from the corresponding image coordinate ;.

4.2 Solutions to the Absolute Orientation Phase

The ASM method solves the pose and structure estimation problem in two phases:
the absolute orientation phase and the reconstruction phase. The reconstruction
phase is simply a linear operation on each point. In the absolute orientation phase,
an absolute orientation problem is solved based an estimate of the scene points to
get a better pose estimate. Since such an absolute orientation step is one iteration
among many others, it is not necessary to solve it perfectly. A important guideline for
choosing an appropriate absolute orientation solution is that it must be noniterative.

The absolute orientation phase in the kth step of the ASM iterations involves

minimizing the following objective function:

(4.6) Frot(R,t537) = So(R%: +t =y (R + £ —yP),

where 3; = ¥y, + X . Recall that 3y, = R¥g R'. The dependence of Xy, on the
pose to be estimated make closed-form solutions impossible. Fortunately, we can find

a good approximation by

(4.7) ¥y, ~ REDs (RE-D)

1 An objective function f(z,y), to be optimized by coordinate descent on z and y, can be repre-
sented as a two-phase clocked objective function [51] f(Z,y) @ f(z, J), where « is clamped or fixed
(denoted as z) in the phase for coorinate descent on y, and vice versa.
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where the unknown rotation R is replaced by previous estimate of the rotation R*-1),

Even with the approximation in (4.7), minimizing (4.6) is still a difficult problem
since it is a matrix-weighted least squares. The matrix weights prohibit utilization of
the orthonormality of the rotation matrix to simplify the dependency of the objective
function on R. An exact closed-form solution is not possible unless the orthonormality
constraint on rotation is dropped, in which case the problem becomes a linear least
squares problem. The solution comprises a 3-by-3 matrix for rotation and a 3 vector
for translation. The extra degrees of freedom due to the lack of the orthonormality
constraint may result in non-orthonormal matrix which can be improved by finding
a rotation matrix that best fits the 3-by-3 matrix. The linear solution faces the same
problem encountered by linear methods for pose estimation described in Section 2.5.
The difference is that in our method, the linear solutions are computed progressively
from previous results, and the final solutions are much more accurate and stable than
one-shot linear solutions. For the matrix-weighted solution, the linear method of
Weng et. al. [67] is used.

If the absolute orientation problem is presented as an equally-weighted or a scalar-
weighted least squares, we can find closed-form solutions with the orthonormality
constraint fully considered. This requires simplification of the matrix weights, or the
covariance matrices. Assume that image error for each image coordinate is identical.
Notice that the scene point ¥; is estimated from the image coordinates ;. Since
error in a scene point due to error in the corresponding image coordinate is roughly
proportional to the depth of the scene point, the covariance matrix of yfk) can be

approximated as

(4.8) B, ~ (dF )l

1

k-1)

where a is some constant, and df-k_l) is the depth of y§ If imaging error is

dominant over modeling error, or the model is exact, the absolute orientation problem
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can be formulated as a scalar-weighted least squares

. 1 .
(4.9) Fmod( R, 15y = 21: WHR&' +t—yP2

Similar weighting schemes were used in [54,43]. In case that no prior knowledge of

noise is available, we may want to use a plain equally-weighted least squares
(4.10) Froa( Rt y(Y) = SO IIR%: + £ =y

For scalar-weighted cases, we follow the absolute orientation solution in [63] to solve

for the rotation and the translation (see Appendix B).

4.3 Ambiguity in the Scale of the Structure

The centroid-coincidence theorem [67] states that if (R*,t*) minimizes (4.6), then the
centroids of y; = y(k) and R*X; + t* should coincide

(4.11) ¥y=RX+t",
where y and X can be matrix-weighted centroids

(4.12) yES =Y 5y, k€)Y Bk

Since the optimal translation t* can be determined by the centroid of the structure

and the rotation as:
(4.13) t* =y — R*%,
it is clear that the ASM method effectively optimizes over only R and y; as:

(4.14) R¥) = arg ming fmod(R,}—’(k) - Rx; yz(k))

(4.15) y** = arg ming, fimg(yi; B®, 5 — RPR) + froa(R®, 5 — R¥x;y,)
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where
(4.16) tF) = g% _ pWx,

Note that R* does not change if y; is replaced by z; = sy;, where s is some positive
number, in the approximate matrix-weighted solution for R* presented in [67]. On
the other hand, fim, has no preference to any one in the family of {sy;|s > 0}, since
sy: and y; project to the same image coordinate. In practice, finm, is linearized using
previous pose estimate. Assume that y(k) and z,(-k) are two sequences of intermediate

,(k) at the kth iteration, then yfkﬂ)

scene points computed using (3.25), and zgk) = sy

and zgkﬂ) are computed by

(4.17) y& D = A(1)(R(%: - %) +7W)
and

(4.18) 25 = A()(R(%; — %) + 20)

=y 4 (s = DA(R)y®
(k)

This suggests that the impact of an overall scaling of y;"’ at a certain time step k&
propagates persistently to the next iteration. The effect can visualized as a shallow
and narrow valley along the dimension of y; at each R. Consequently, the algorithm
can be slowly convergent as it descends along the shallow valley, and will very probably
stop at some incorrectly scaled y;. This, in turn, results in incorrect translation t*
computed using (4.13).

This problem can be solved by optimizing an additional scale factor in the absolute

orientation phase.

4.4 Optimizing Scale

By introducing a scale factor s for correcting the scale of y;, (4.6) becomes

(419) Z(Ri, +t - syi)tEi‘l(Riq +t— Syi).

)
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The optimal scale is given by [36]
iyi — 9)'BR(%: — %)
ilyi = 9)Z7 (i - 9)
Horn presented two least solutions to the scale in the cases for equally-weighted

least squares [35,36]: The first one is

Sy — §)'R(% — %)
.2 =
(4:21) L S e

obtained by minimizing the following objective function

(4.20)

(4.22) 2NRE: = %) = s(yi = 9)I1%,

and the second one is

i 1% — x||?
Yillyi — ¥l

obtained by minimizing the following objective function

(4.23) 83 =

(4.24) S - R(%: — %) — v/5(y: - 9)|I%.
-7

Both objective functions are equally-weighted least squares which imply that 7, are in-
dependently and identically distributed and are isotropic with ¥; = ¢?I,i = 1,...,n.
The results can be easily extend to scalar-weighted cases.

The second solution is favored by Horn for two reasons. First, it is determined
without the knowledge of the rotation R, and therefore the overall pose and scale
solutions can be computed in a non-iterative manner. Second, it is symmetrical in
the sense that if we switch the roles of X; and y;, the resulting scale factor s} is equal
to 1/s;. On the other hand, when the first approach is used instead, s is usually not
equal to 1/s;. For this reason, we call (4.21) the asymmetrical solution, and (4.23)
the symmetrical solution. In our pose and structure estimation framework where both
the model points and the scene points are noisy, the symmetry property is especially

desirable.
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In the presence of noise, the scale of the perturbed scene points will usually larger
than the unperturbed ones. The objective function with an additional scale variable
(4.19) favors smaller scale factor, that is, the resulting scale factor tries to shrink the
scene points. Under some simplified conditions, we will show that the deviation from
the optimal solution is very sharply distributed around some small value.

The scale of a 3D point set can be defined as “Mean Squares of the Deviations
from the Centroid” (MSDC). For example, the MSDCs of the model and the estimated

structure are

(4.25) MSDC(%) & = 3 i - I,
(4.26) MSDC(y;) & -71; > llyi - 31,
(4.27)

respectively, where X and ¥ are equally-weighted centroids. The symmetrical solution

of scale factor can be rewritten as

_ | MSDC(x,)
(4.28) 83 = m,

that is, it is a square root ratio of the scale of the model to the scale of the estimated

structure.

4.5 Probabilistic Analysis of Deviation in Scale

In our framework of pose and structure estimation, 5; is not identically distributed
and non-isotropic. In order to facilitate mathematical analysis, we consider a simpler

case that 7, is non-isotropic but identical Gaussian, that is
(4.29) syi=Rx;+t+m;,, 1= 1,...,n, T]iNN(O,E,‘),

where ; = ¥,7 = 1,...,n. Let the variances of the three components of noise, or

the three diagonal elements of ¥ be o2, 0'3, and o2, respectively.
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Based on our assumption on noise vectors 7m;, we try to find how the symmet-
rical scale solution s, deviates from the true scale factor s, which can be optimally
estimated using (4.20).

The true scale of the scene points can be represented by s> MSDC(¥;), which can

be further decomposed as

(4.30) s* MSDC(¥:)

:%Z IR%: +t +m; — (R% +t + )|
= MSDC(%,) +2.- (m; — ) A% — %) + + 3 n, = ],

where 2 3°.(n; —)' R(X; —X) is an estimate of the trace of the cross-covariance matrix
of n; and RX;. It tends to cancel out since 1; and RX; are uncorrelated. We can safely
assume it to be zero. The scale of the structure after corrections deviates from the

scale of the model by an amount of
1 _
(4.31) S =23 i -

The properties of the distribution of S? can be found as follows.

The reference frame for the model can be rotated such that each of the three
components of noise vectors is an independently distributed Gaussian, that is, a
Gaussian with a diagonal covariance matrix. Assume that the Gaussian distribution

1s not singular. Since X is symmetric and positive definite, it can be decomposed as
(4.32) Y = AYAY,

where A is orthonormal, and X' = diag(c?, 07, 02). Note that tr & = ol+oltol =
0'3+0'Z+0'Z = tr 3.
The noise vector ¢; = (i, Cio, Gia)? defined in the new reference frame is related

to 7; in the old reference frame by

(433) Ci = A—lnia Ci ~ N(Oa 2/),
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or
(4'34) G~ N(O’ 03’)’ Giz ~ N(0> JZ')’ Giz ~ N(O’ Jzz’)'

Let S2,, Sy2, and S?% be the sample variances of the three components of noise in

the new reference frame, then we have
1 _ 1 -
(4.35) §t =2 lmi—all* = =3 0I¢ — CI* =53 + 55 + 5%

nS2 n52/ n 2, .
It is well known that ?S‘i, —#, and 7Sf- are all x*(n — 1), from which we have
z’ yl 2!

(4.36) E(s2) =210z o252y = 2" Lo,
(4.37) B(S%) =2102 o(52) = 2" Lo,
(4.38) E(S%) =" 102 o2(s52) = 2" Lot
The p.d.f. of each one of them is

(4.39) p(z) = e 25 e

which has the mode at z = 2-252, where z represents one of S2, S% and S?

z'

and o?

is one of o2/, 02, ahd ol

Figure 4.2 shows plots of p(z) for n = 10 and 5 different ¢ from 0.1 to 0.5 in
0.1 step. We can see that p(z) becomes much sharper and much closer to zero as o
decreases.

The expected value of S? is

(4.40) B(SH)="""ty,
n
and the variance is
-1
(4.41) o?(S?) = 2"n2 (ok + ot + o4
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Figure 4.2: Plots of p(z) for n = 10 and o = 0.1,0.2,0.3,0.4, and 0.5.

The maximum likelihood estimate of S? is

-3
(62 40l +0%) = - tr X,
n

n—23

(4.42)

and consequently the maximum likelihood estimate of s is

,, (n=3)trX®
(443) J(S“’) AT

where s; is the symmetrical solution to the scale factor computed using (4.28).

As expected, s; is generally smaller than the true scale factor s with the presence
of noise. The mean and the mode of the deviation S? is about the same size as the
variance of the error in structure while the variance is about the sum of the squares
of the structure variance divided by the number of points. S? becomes much more
sharply distributed around a value much closer to zero as the variance of structure
decreases. For this reason, we can use s as the correcting scale factor in the absolute

orientation phase.
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4.6 Initialization: A Weak-Perspective Approxi-

mation

Since the ASM method is iterative, it requires an initial guess. Unlike other methods,
the initial guess for the ASM method is presented in the form of an initial set of scene
points, not an initial pose. While it takes some specific prior knowledge to find a good
initial guess for the pose, a good initial guess for scene points can just be the image
vectors themselves, which form a plane parallel to the image plane. The scaling step
described in Section 4.4 can automatically normalize the scale. This is equivalent to
assuming the scene points to have the same depth initially. We show that the initial
pose found by the initialization scheme described above is a pose solution under the
weak-perspective projection model.

Previous work using weak-perspective has mostly focused on analytical methods
using a minimal number of feature correspondences (e.g. 3 points). In this context,
the problem is usually interpreted as purely algebraic or geometrical. Here, we formu-
late the problem as a least squares problem. Under the weak-perspective projection

imaging model, we have the following relation for each model point %;

(444) Stl; = I‘if(,‘ + 1

(4.45) st = ri%; + by,

where s is a positive scale. Weak-perspective projection is valid when the depths of
all 3D scene points are roughly the same. Let’s call this depth the principle depth. If
(i, 9;) is on the normalized image plane (2’ = 1) as defined in Chapter 2, then it is
clear that s is the principle depth. Determining the scale s under weak-perspective
projection can be interpreted as choosing an appropriate principle depth. In analytical
methods, the principle depth is chosen as the depth of one of a minimal number of

model points. Using the least squares approach, the principle depth can be chosen as
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the one that minimizes its deviation from the depths of the scene points

(4.46) Y (rixi +1t3 — )2

The whole imaging process can be visualized in two stages: in the first stage, all scene
points are orthogonally projected to a plane z = s (called the principle plane) parallel
to the image plane, and in the second stage, all the planar points on the principle
plane are perspectively projected to the normalized image plane.

We also need to minimize the square of the image error
(4.47) Yol(ri%i 4 ¢ — s11)? + (ch% + £y — s1;)?

Combining (4.46) and (4.47), and weighting them equally, we have the following

least squares objective function
(4.48) Y IIR%: +t — sV

This is the objective function (4.10) with the additional constraint that all scene
points have the same depth. The scale factor s can be found using the symmetrical

solution (4.23) which does not require knowledge of the pose.



Chapter 5

Performance Evaluation

In this chapter, the theory and the algorithm, as well as the software implementation

are evaluated using different test strategies.

5.1 Statistical Correctness and Optimality

After the least-squares objective function is formulated using the minimum variance
principle described in Section 3.1, the original estimation problem becomes an opti-
mization problem. Since the problem is nonlinear, we need approximations such as
linearization or coordinate relaxation to solve the problem iteratively.

It may seem that we only need to be concerned about how to reach the optimal
or at least a locally optimal solution. However, in addition to the approximations

employed to develop iterative algorithms, there are at least two other approximations:
e using Jacobians to calculate covariance matrices (3.7).

* using either linearization (3.20) or orthogonal projection (3.25) for backprojec-

tion.

The former is a statistical simplification while the latter is a geometrical approxima-

tion. Both are employed to derive the objective function itself. We not only want the

40
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compuitational method to be able find good solutions, but also require the objective
function to be statistically correct.

We validate and evaluate both our objective function and the associated optimiza-
tion method on artificially generated input data with known pose solution as well as

controlled statistical characteristics. Two kinds of evaluation methods are employed:

e Testing our algorithm on a random population in a specific problem setting
to see whether the output of the algorithm is distributed as predicted by the
theory. The focus is on the statistical correctness of our 3D-2D error fusion

scheme.

e Comparing our algorithm to others in a large population of different problem
settings to see the relative optimality of the pose solutions. The focus is on the

performance of the ASM method.

Data Generation Protocol The protocol for generating input data used through-
out this chapter is introduced as follows:

The data is generated according to the following control parameters: number of
points N, signal-to-noise ratios in 3D modeling (SNR.04) and 2D imaging (SNR;n,,),
and percentage of outliers (PO).

A set of N 3D model points x; = (z;,y:,2:)" are generated uniformly within a
box defined by z;, y:;, zz € [-5,5]. Gaussian noise N(0, o) is added to the three
components of x; to generate the perturbed model points %X;. The variance o is related
to SNRmod by SNRoq = —201og(o/10) dB. Accordingly, the covariance matrix of X;
is 0 1343.

In order to generate a 3D rotation R, a unit quaternion is uniformly selected from
a unit 4-sphere. The resulting distribution of 3D rotations is also uniform [14]. For
translation t, ¢; and ¢, are uniformly selected from [5, 15], and #; from [20,50]. The
set of 3D scene points ¥; = RX; + t are generated using the selected R and t.
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A fraction (= PO) of the 3D points are selected as outliers. Each of these points
¥i = (&, 3}, 2)" is replaced by another 3D point (z},y}, 27)!, 2; = 2!, where z7 and y*
are uniformly distributed within [t; — 5,¢, + 5] and [t; — 5, + 5], respectively.

The 3D model points x; are projected onto the normalized image plane (z=1)
to produce image points u;. Gaussian noise N(0, ') is added to both coordinates
of the image points to generate the perturbed image points ;, where the variance,
o', is related to SNR;m, by SNRyn, = —201log(o’/0.3) dB (the image size is roughly

10/35 ~ 0.3). Accordingly, the covariance matrix of ; is ¢/ 5xs.

5.2 Statistical Validation

Two hypothesis tests are used:

T1 Variance test with known mean. The purpose is to measure only the correctness

of the covariance propergation scheme introduced in Chapter 3.

T2 Mean-and-variance test. The purpose is to measure the correctness of both the
output, appearing as the mean of the output distribution, and its uncertainty

measure (the covariance)

Since pose and structure are coupled, we can simply test on the estimated structure
Y = z; computed using (3.23) or (3.25) (only the latter is tested in our experiments).
The purpose of our statistical validation tests is to verify whether y is distributed as
predicted by (3.25) and (3.28).

In the following discussion we will use the following definitions of the sample mean

¥ and the sample covariance S:
_ 1 &
Yy=- Z Yi
n k=1

and
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Figure 5.1: Empirical and theoretical distributions of T1 test statistic. Here, the
theoretical null distribution, plotted in dashed line, is xs. The histogram of the
empirical null distribution, plotted in solid line, is obtained by computing the T
statistic using 500 trials.

where the sample size is n. and the kth sample of y is written as y,, which is computed

from X; using (3.25) (see Section 3.3).

5.2.1 Variance test with known mean

The variance test with known mean T1 can be formally described as:

(5.1) Hy: =3, p=p,,
(5.2) Hi: S 4%,

The known mean p, is computed by
(5.3) #, = Rx; +t,

where (R, t) is the true pose and x; is the unperturbed model point.
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Let

n

(5.4) C=3 (W)Y —m) =(n~ DS+ @ — )@ — )" .

k=1

The likelihood ratio criterion for testing Hy is

(5-5) A= (e/n)2|OSFH ™2 exp(— tr(CE5)/2)
and the test statistic is

(5.6) T = -2log ),

which is x?-distributed with 6 degree of freedom:

(5.7) T ~ X2

The result is a specialization to more general result in [3] page 249, 434, 436 with

the dimension of the random variable set to 3.

5.2.2 Mean-and-variance test
The mean-and-variance hypothesis test T2 can be formally described as:

(5.8) Hy: ¥ =%, and p = p,,
(5.9) Hy: E#3%p and p # py.

The hypothesized mean and covariance, Mo and 3o, are computed using (3.25) and
(3.28) using the pose solution computed for the first data sample.
Let

(5.10) B=(n-1)S.

The likelihood ratio criterion for testing Hy is

(5.11)
A= (e/n)"*IBEF " exp (~[te(BE") + n(F — 1o)'S5 (3 - y))/2) ,
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Figure 5.2: Empirical and theoretical distributions of T2 test statistic. Here, the
theoretical null distribution, plotted in dashed line, is xo. The histogram of the
empirical null distribution, plotted in solid line, is obtained by computing the T
statistic using 500 trials.
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and the test statistic is

(5.12) T = —2log A
which is x*-distributed with 9 degree-of-freedom
(5.13) T ~ x2.

The result is a specialization to more general result in (3] page 442 with the

dimension of the random variable set to 3.

5.2.3 Results and discussions

More general treatment of mean and variance tests is detailed in (3] and summarized
in [42)].

Each hypothesis test is repeated in five hundred trials in order to compute an
empirical distribution for the test statistic. In each trial, one hundred samples are
generated to compute the test statistic. The control parameters for generating sam-
ples are: N = 20, SNR,,.4 = 60, SNRi, = 80, and PO = 0. 95 percent of the trials
are passed with 0.05 level of significance.

The empirical distributions are binned into thirty intervals. The resulting his-
tograms for the 7th scene points are shown in Figure 5.1 and Figure 5.2. As we
can see, the empirical distributions fit the corresponding x? distributions very well.

Similar results can be seen for other scene points.

5.3 Performance Comparison

In the following section, we will investigate the properties of the ASM method in
comparison to other techniques based on experimental results. For this purpose,
we design a set of standard comparison tests on synthetic data with varying noise,

percentages of outliers and numbers of model points.



CHAPTER 5. PERFORMANCE EVALUATION 47

5.3.1 Standard comparison experiments

The following four standard experiments were conducted on the generated input data:

C1

C2

C3

C4

Set N = 20, PO = 0, SNR,,,4 = 70 dB. Record the log errors of rotation and
translation against SNR;n, (30 dB-70 dB in 10 dB step). The purpose is to

measure how well the tested methods resist imaging error.

Set N = 20, SNR;n; = 60 dB, SNR,,,¢ = 70 dB. Record the log errors of
rotation and translation against PO (5 %-25 % in 5 % step). The purpose is to

see how well the tested methods tolerate outliers.

Set PO = 0, SNR;,; = 50 dB, SNR,,,a = 70 dB. Record the log errors of
rotation and translation against N (10 to 50 by step of 10). The purpose is to
investigate how the performance can be improved by increasing the number of

model points.

Set N = 20, PO = 0, SNR;,, = 70 dB. Record the log errors of rotation and
translation against SNRy,0q (30 dB-70 dB in 10 dB step). The purpose is to

measure how well the tested methods resist modeling error.

To assess the performance of the methods, we measure the mean errors in rotation

and translation of 1,000 trials for each setting of the control parameters. All the

comparisons were conducted on a Silicon Graphics IRIS Indigo with a MIPS R4400

processor.

5.3.2 Error measures for 3D rotations

The error measure for translation is straightforward since a 3-vector has a natural

Euclidean norm. The error measure for rotation depends on its representation. When

represented by Euler angles, there is no natural norm for 3D rotation. A commonly

used error measure is the average of the absolute errors for each Euler angle. When
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the rotation is represented by a unit quaternion, the rotation error can be represented

by quaternion error. The difference between any two unit quaternions ¢, q’ is

(5.14) lg —q'lI> =2(1 - q’¢")

using the law of cosines. Note that every unit quaternion g, and its negation —gq

represent the same 3D rotation. Therefore, the error between ¢ and q’ can be uniquely
defined by

(5.15) 1-|q'q'| € [0,1].

An important advantage of this error measure is that it is independent of coordinate
system. We will use average Euler angle error most of time because it is most intuitive,

and will use quaternion error when appropriate.

5.3.3 Results and Discussions
Importance of scale optimization

Although the scaling step in the absolute orientation phase is only a reasonable ap-
proximation, it significantly improves the convergence rate and the accuracy of the
solution. A similar approach, referred to as the initial approximation algorithm, was
proposed by Haralick et al. [15]. It uses an equally-weighted least squares solution
in the absolute orientation phase. This algorithm converges very slowly as reported
by the authors. The major difference of their work from ours is that the scale opti-
mization is not utilized to help pull out the correct pose solution. We compare the
ASM method with and without the scaling step. Both methods are initialized using
the weak-perspective approximation.

Figure 5.3 shows the average numbers of iterations of both methods with error
bars of the population of individual estimation errors. It is clear that ASM without
scaling coverges slowly as discussed in Section 4.3. Figures 5.5, 5.7, and 5.8 show that

ASM without scaling does sometimes produce better rotation results while the results
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Figure 5.3: Comparing average numbers of iterations used by ASM with and without
scaling for Experiment C1. Each point in the plot represents 1,000 trials.
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Figure 5.4: Result of Experiment C1 for comparing ASM with and without scal-
ing. The rotation error is represented by log quaternion error to emphasize the
log-linearity. Each point in the plot represents 1,000 trials.
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Figure 5.5: Result of Experiment C1 for comparing ASM with and without scaling.
Only log rotation error (average Euler angle error) is shown. Each point in the plot

represents 1,000 trials.
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Figure 5.6: Result of Experiment C2 for comparing ASM with and without scaling.
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Figure 5.8: Result of Experiment C4 for comparing ASM with and without scaling.
Error is in log scale. Each point in the plot represents 1,000 trials.

for the translation are consistently and significantly worse than ASM with scaling.
These results together confirm the fact that scale optimization effectively removes the
ambiguity in the scale of the scene points, and consequently improves dramatically
the rate of convergence as well as the accuracy of the translation.

Figure 5.9 compares experimentally the uncorrected scale factor computed using
(4.28) and the corrected one computed using (4.43) against SNR (5 dB-70 dB in 5 dB
step). The resulting points are disturbed by isotropic Gaussian noise with o related
to SNR by o = 10 x 1075, Ideally, the computed scale factor should be equal to
one. In practice, the scale of the scene points expands due to noise, and make the
scale factor smaller than one. The asymmetrical solution causes significantly more
shrinkage than the symmetrical solution. After the correction by (4.43), the scale is
consistently close to one.

Figure 5.11 and Figure 5.10 demonstrate a typical run of ASM with and without
scaling. The scene points are initialized with the same depth. We can see that the
scene points computed by both methods have very similar orientation as early as in
the second iteration. The scaling step pushes the scene points to the correct scale
at the 5th iteration. On the other hand, the scene points without scaling move very

slowly towards the correct locations although their orientation is almost correct.
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Figure 5.9: Corrected and uncorrected scale factors computed for different SNR.

Linear methods and ASM

As mentioned in Section 4.2, when a matrix-wighted least squares solution is required,
the absolute orientation phase can only be solved approximately by ignoring the
orthonormality constraint on the rotation matrix. This raises a question: since it
uses a linear solution in the inner loop, why not directly uses the linear methods for
pose estimation?

We will now compare ASM and two linear methods (PTM and RAC) described
in Section 2.5. According to Section 2.5, the two linear methods PTM and RAC can
only consider 2D imaging error. By solving only 3 to 6 iterations linearly along with
orthonormalization, we will see that ASM clearly outerperforms linear pose estimation
methods in the comparison tests, as shown in Figures 5.12, 5.14 and 5.15, including
the cases when 2D imaging error is dominant (Experiment C1, Figure 5.12). In the
presence of outliers, linear methods broke down, while the ASM method still produces
reasonable results, as indicated by Figure 5.13.

This result will show that even with imperfectly reconstructed structure, the ab-
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Figure 5.10: The intermediate scene points at iteration 1, 2, 5, and 12 of a typical
run of ASM with scaling.
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run of ASM without scaling.
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Figure 5.13: Result of Experiment C2 for comparing linear methods and ASM. Error
is in log scale. Each point in the plot represents 1,000 trials.

solute orientation phase of ASM is still able to find good intermediate linear solutions
that lead to the correct one, and demonstrates the advantage of solving the pose esti-
mation problem by simultaneous absolute orientation and scene reconstruction even

if the absolute orientation phases are solved linearly.

Classical methods and ASM

The methods tested here are ASM, a linear method using the Projective Transform
Matrix (PTM) formulation, and a classical method using Levenberg-Marquardt (LM)
minimization. An implementation of LM (called LMDIF) in MINPACK (a public

domain package from Argonne National Laboratory) is used in our experiments. LM
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starts from the initial solutions provided by PTM. This combination is an example of

two-step methods that combine linear methods and classical nonlinear optimizations.

Figure 5.16 shows the average running times and number of iterations of the

methods we tested against the number of model points. These times are measured

for SNRim; = 60 dB and PO = 0. ASM is clearly much more efficient than LM,

having about the same performance as LM without outliers (see Figures 5.17, 5.19

and 5.20). It significantly outperforms LM in the presence of outliers as shown by
Figure 5.18.
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Chapter 6

Robust Estimation

6.1 Outlier Process and Robust Estimation

The algorithms we developed in this dissertation are all least squares methods, which
are well-known to be sensitive to outliers. The goal of robust methods is to remove
or lessen the effect of outliers [38]. In Iteratively Reweighted Least Squares (IRLS),
methods, this is done by assigning zero or small weight to potential outliers, which
can be considered as deciding whether an observation is an outlier or not, although
such decision may be a fuzzy one. OQutlier processes, introduced and related to robust
estimators in [7], can be used to represent such a decision. They are a generalization of
line processes used in surface interpolation [8] for introducing discontinuity wherever
continuity assumption is not valid. Outlier processes serve to break the Gaussian
assumption implicit in least square methods when such an assumption is insufficient
to model the observed data.

An objective function for robust estimation can be formulated as
(6.1) f(ri) =3 plrizo) = 32 ¢(rk; 0),

where p(-) (or ¢(+)) is a robust estimator (also called the object function), and r; is the

residual for the ith observation. The scale parameter or shape parameter o controls

39
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the scale or the shape of the object function. Equation (6.1) can be converted to an

objective function with outlier processes as
(6.2) flry Ai) = 3 Ard + YU (Aj;0)

and vice versa, where 0 < A; < 1,2 = 1,--- ,n is an outlier process, and ¥(-) is a
penalty function on A; to prevent treating all residuals as outliers and ensure that
the minimization of f(r;, A;) is equivalent to that of f(r;). Computing A; can be
thought of as deciding whether r; is an outlier: A; = 0 means r; is an outlier and
A; = 1 otherwise. We will see in the following that o determines the “crispness” of
the outlier process.

According to [7], given an object function ¢(-), the penalty function ¥(-) on A;

can be determined as
(6.3) U(Ai;0) = ¢(p(Ai50)) — Aip(Ai; 0),

where ¢ = ¢'$‘1. Conversely, given an outlier process A; and the associated penalty

function ¥(-), the object function is
= 2 .
(6.4) p(ri;o) = ogl/rilfgl(Air’ + V(A 0)).

Assume that the parameter vector 8 is to be estimated from the set of residuals

ri = r(8). Equation (6.1) and Equation (6.2) can be rewritten as
(6.5) f(8) = Xi:p(n(f)); a)

and

(6.6) f(6,4;) = ZA,'T?(B) + E V(A 0),

respectively.
With the above formulation, robust estimation becomes a computational prob-

lem of minimizing the objective function (6.6) with respect to 8 and A;. Applying
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the alternative subspace minimization technique to Equation (6.6) on the  and A;

subspaces yields

U (ALY, o)

2gtk)y 4 V(AT o) _
(6’7) 7'1 (0 ) + a‘/‘l1 07
a(k+1)
(k+1) o o(ke1)y Ori(8777)
AfDr(g0+0) T 0,

which is an IRLS algorithm. Using Equation (6.3) to solve for A,(-kH), we have

(6.9 Al _ A0(0i0)
’ r(0W)

b)

which is the standard reweighting equation used in robust M-estimation.

6.2 A Continuation Method for Robust Estima-
tion

We have left out the estimation of the scale parameter o in the IRLS algorithm
(6.7). It is reasonable to assume that the residuals have a contaminated Gaussian
distribution, or using the outlier-process formulation, a Gaussian distribution with
outlier processes to break the connections of outlier observations to the Gaussian. The
scale parameter o is the standard deviation of the underlying Gaussian distribution
of the residuals. A robust estimate of o can be computed from the median of the

absolute residuals using:
(6.9) o™ = 1.4286 median;|r¥)|.

This comes from the fact that the median of the absolute values of a large sample
from a unit-variance one-dimensional Gaussian distribution is 1/1.4826 [58].

On the other hand, controlling o can be considered as a computational technique
for non-convex minimization of the objective function (6.5) or its outlier process

equivalent (6.6). The scale parameter o can be exploited to construct a local convex
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Figure 6.1: Plots of the penalty function 202z (logz — 1) for o = 0.1, 0.3, 0.5, 0.7, 0.9.

approximation to the objective function which can be readily minimized. For suffi-
ciently large o, the objective function is convex and has a single local minimum. From
this point we start the search for the global maximum of the objective function with
a slightly smaller o, and the process repeats until the scale-adjusted objective func-
tion is very close to the original non-convex function. Such techniques are generally
referred as continuation methods, or Graduated Non-Convexity (GNC) methods.

If we choose to use the Welsch estimator [7] p(r;;0) = 1 —e™"/29”  then the penalty
function for the corresponding outlier process A; is ¥(Ai;0) = 20%A;(log A; — 1).
Robust estimation of 8 can be formulated as that of minimizing
(6.10) Y (1 — emmi®)/2%

or equivalently
(6.11) Y Air}(8)+ 202y Ai(log A; — 1).

Using the IRLS algorithm formulated in Equation (6.7), the outlier process A; can
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Figure 6.2: Plots of the soft-delta function e=*°/2°” for ¢ = 0.1, 0.3, 0.5, 0.7, 0.9.

be computed by
(6.12) Ay = e 02

which gives a fuzzy decision (A; between 0 and 1) whether r; is an outlier. The scale
parameter o can be thought of controlling the fuzziness (or crispness) of the outlier
processes. As 0 — 0, A; becomes a binary variable. On the other extreme, when
o = 00, A; = 1 meaning that the outlier process accepts the point correspondence
without questioning. Leclerc [44] considered using a decreasing sequence of o on the
Welsch estimator as embedding the Dirac-delta function &(r) into a scale space. In
this aspect, the fuzzy outlier process (6.12) can be called a soft delta function.

We will use this algorithm has a skeleton method for robust absolute orientation
and pose estimation. Our ASM algorithm and the Levenberg-Marquardt algorithm

are used as the kernel in the inner loop.
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6.3 Experiments

6.3.1 Absolute orientation

Assume a set of 3D model points x;,7 = 1,...n, and a set of corresponding 3D
scene points y; including potential outliers. The parameter vector to be estimated is

0 = (R, t). Ideally, each pair of model point and scene point is related by
(6'13) y: = Bx; + t.

Given noisy observations X; and ¥;, a deviation from the ideal case, or a residual is

defined as the Mahalanobis distance:
(6.14) r2(R,t) = (RX; + t — §:)'S7 Y (RX; 4+ t — §,),

where ¥; = Rz R' + X5..

If we choose to use the Welsch or the Leclerc estimator, R and t can be solved
robustly using the following objective function
(615) Z(l _ e—-r?(R,t)/2az)’

which is equivalent to
(6.16) D ATHR,t) +20° S (Ailog A; — Ay),

where A; are outlier processes.

The IRLS method Equation (6.7) is used in the inner loop of the continuation
method described in Section 6.2.

We compare robust and non-robust absolute orientation methods using the syn-
thetic data generated using the protocol described in Section 5.3. A fraction of the
point correspondences are replaced by outliers. The rotation errors and the transla-
tion errors plotted against increasing percentages of outliers are summarized in Figure

6.3. We can see that the robust method produces much more accurate results for data
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Figure 6.3: Comparing robust and non-robust absolute orientation methods against
increasing percentages of outliers.

with up to 25% outliers. On the other hand, the results computed using non-robust
method, with rotation errors greater than 5 degree, become useless even with as little

as 5% outliers.

6.3.2 Object pose estimation

Most work on robust pose estimation uses classical methods as kernels of IRLS or
other modified least squares methods for outlier rejection. It is assumed that a good
initial guess is available so that a large portion of outliers can be detected by the first
reweighting, and the following iterations will start with a reasonable assignment of
weights. In the cases where good initial approximate solutions are not available, the
kernel has to deal with large residuals caused by outliers. Methods that focus only
on good local convergence, like the Gauss-Newton method, will certainly fail. More
robust methods like the Levenberg-Marquardt method actually become a steepest de-
scent method, and hence are very slow to converge. Classical optimization methods
for the most part are designed for solving general problems. A specialized optimiza-
tion method that exploits the inherent structure of the problem may better solve the
problem, especially in the presence of noise and outliers.

Recall that the ASM method requires a scaling step. In robust estimation, we
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Figure 6.4: Comparing robust pose estimation methods using ASM and LM.

need a robust measure for scales. Define the robust MSDCs for %X; and ¥; as

(6.17) MSDC(%;) % \/E, A |x, —XP
and

(6.13) MSDC(y;) & \/ Li AZ|YA— S'P’
where the robust centroids are

Experiment C2 in Section 5.3 was performed for the robust IRLS algorithm [38]
using the Welsch estimator [9] with the scale-space continuation technique described
in Section 6.2. Both ASM and LM were used in the IRLS inner loop.

As shown in Figure 6.4, ASM performs about the same as LM when used as
an IRLS kernel. However, Figure 6.5 and 6.6 show that ASM makes IRLS more
efficient. Notice that in Experiment C2, no prior initial approximate solution is
given to the pose estimation methods. OQutlier rejection is totally based on the given

point correspondences.

6.3.3 Hand-eye calibration

Given the 3D coordinates of the model points and their corresponding camera pro-

jections, we compute the rotation and translation that relate the coordinate frame of
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Figure 6.5: Average running times of the robust pose estimation methods. We choose

PO = 20%.
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a robot arm to that of a camera.

Experimental setting

Our experimental setting for hand-eye calibration consists of a Zebra Zero robot arm,
a Cohu camera with an 8 mm lens, a Sony XC-77 camera with a 12.5 mm lens, and
two Imaging Technologies digitizers attached to a Sun Sparc II workstation via a
Solflower SBus-VME adapter. The size of the video image received from the cameras
is 640-by-480. The intrinsic parameters of both cameras were determined offline using
Tsai’s two-step method [61].

The physical conditions are shown in Figure 6.7. The Sony XC-77 (middle, bot-
tom) was positioned nearly aligned with the robot coordinate system and was tuned
to have sharp images. The Cohu (left, top) was positioned more to the side, and de-
livered more defocused images. Data was acquired by moving the arm to 35 positions,
and at each position compiling a data pair consisting of the absolute coordinates of
a feature in the robot frame (computed from the robot inverse kinematics), and the
image coordinates of the feature provided by tracking the lower right corner of the
floppy disk. * This process was repeated 5 times to obtain 5 datasets for each camera.

Another 5 datasets for each camera were obtained by adding one outlier.

Results and discussion

The results of the calibration methods are compared by computing object space error
which is determined by comparing the reference points to their orthogonal projections
on the respective lines of sight. The results for the five trials for both cameras are
plotted in Figure 6.10.

Non-robust methods were tested on the outlier-free datasets. It turned out that
the results given by the two-step methods are very close to those given by ASM,
so only the ASM results are plotted. Given that the two-step methods required

!The tracking system is more fully described in [28].
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Figure 6.7: The experimental setup showing the positions of the two cameras relative
to the robot arm.

Figure 6.8: An image from the cameras showing the tracking used to generate image
feature point data.
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Figure 6.9: The projections of 35 model points as seen through: (left) Cohu camera
and (right) Sony camera.

several times as long to converge (see Figure 6.5), ASM would clearly be preferred
in these circumstances. The linear methods used in the simulation were used in this
experiment. It is clear that ASM is more stable and accurate than the linear method.

The robust IRLS algorithm in Equation (6.7) using ASM was applied to the
datasets with one extra outlier. It is interesting to note that the robust method
discovered another outlier in the second dataset for each camera. The reason for that
outlier was that the Zebra Zero robot arm reached its joint limit when generating the
second dataset.

One difference between the simulations and these tests is that the errors in the
model points are significant (on the order of up to a centimeter). Despite these €errors,

ASM appears to compute an accurate transformation.
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Chapter 7

Model Matching

7.1 From Robust Estimation to Model Matching

Model matching and robust pose estimation are usually considered as two successive
stages of problem solving. Model matching finds the correct correspondence between
two feature sets. In pose estimation, the pose is computed from the feature corre-
spondence assumed to be available from model matching.

The popular hypothesis-and-test paradigm of model matching [5,40,46] actually
relies on efficient and accurate pose estimation to solve for the correspondence. It
hypothesizes (estimates) the object pose which is most consistent with a given partial
correspondence, and seeks supporting or negating evidence by comparing the data to
the object transformed by the estimated pose. When matching is done, the correct
pose is also found.

On the other hand, pose estimation has to take into account the problem of pos-
sible matching errors which introduce outliers in the point correspondences. Qutlier
rejection in robust methods can actually be considered as a further stage of corre-
spondence solving.

It turns out that model matching and robust pose estimation have a considerable

amount of overlap in functionalities. We present a new problem solving scheme that

72
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better integrates the model matching stage and the pose estimation stage. In terms
of robust methods, it can be considered as aggressive, since it not only tries to deny
incorrect matches, but also tries to establish the correct ones. In terms of model
matching, it is robust, since the correspondence result is gradually improved and

verified with respect to the pose.

7.2 Correspondence Processes

Within the outlier rejection framework, when a scene feature is treated as an outlier,
it is considered as unidentifiable and should be discarded. However, it is probable
that such a scene feature actually comes from another model feature. We generalize
outlier processes to correspondence processes A;, such that each object feature can
have more than one candidate scene feature and vice versa. The candidates can be
selected with respect to feature attributes, such as color or grey level. In the most
general case, in which the matching is purely location-based, a residual r;;, and a
correspondence process A;, are associated with each pair of object and scene points
(Xi,¥a),i=1,...,mya=1,...,n. A, = 1 means that y, is identified with the model
point x;. Otherwise, y, should be considered as a spurious outlier, or coming from
some model point other than x;. If the Welsch estimator is used again, the problems of
model matching and pose estimation can be integrated into a single objective function
using the algebraic transformation techniques described in [53]
(7.1) ZA,‘GT‘?G(O) + 202 Z(A,'a log Aja — A,'a),
or
(7.2) 31— emmal®)/25%),

As stated in [7], the outlier process formulations provide the advantage of be-

ing able to exploit interactions among outlier processes. This is especially true for
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correspondence processes. We wish that the set of correspondence processes provide

feasible interpretation which satisfies the following criterion:

Each scene feature is either identified with one and only one object feature
or is considered as a spurious outlier. Each object feature either appears
as one and only one scene feature or is considered deleted from the scene.

Mathematically, this criterion can be written as a set of constraints on the corre-

spondence matrix A = (A;,):

(7.3) Y AL <1 (column constraint)
(7.4) ZA;G <1 (row constraint), and
(7.5) A € 0,1  (integrality constraint).

When 3; Ai, = 0, the model point x; is said to be missing. Similarly, when

> a Aia = 0, the scene point y, is said to be spurious.

7.3 A Continuation Method for Model Matching

The same robust IRIS algorithm described in Chapter 6 can be readily applied. The
same continuation method developed in Section 6.2 for robust estimation can be easily
adapted to model matching. Specifically, if we define T = 202 as a temperature, and
call the matching objective functions energy functions, the continuation method can
be referred to as deterministic annealing [55,59,70], which is a computational tech-
nique developed for solving combinatorial optimization problems with 0-1 variables.

At each fixed scale o, minimizing objective function (7.1) subject to constraints
(7.3), (7.4) and (7.5) on A can be done in two phases. In the first phase, A is deter-
mined using (6.7), and the feasible-interpretation constraint is satisfied by iterative
projective scaling (IPS) [56,22], where row-column normalization is repeatedly applied
to A until it converges. In the second phase, A is fixed, and the problem becomes a

weighted least-squares problem.
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On the other hand, when the constraints are not enforced, the objective function

favors
(7.6) Y An~n

with some sufficiently small o, which implies that there are approximately n matches
among all possible matches. Mjolsness [52] has shown that Equation (7.2) can be

derived from

(7.7 3 Aurk(6)
by approximately enforcing the constraint that
(7.5) > A=,

which is referred to as the multinomial constraint. An advantage of using (7.8) is
that we do not have to deal with spurious or missing features explicitly; they are
modeled by empty rows or columns of the A matrix. While this constraint is weaker,
we can argue that it is a good approximation to real matching constraints. An
entropy argument in favor of this constraint is that among matrices satisfying (7.8),
the vast majority have low occupancy for most rows and columns. There is also an
energy argument: multiple assignments are allowed but discouraged by the equivalent
objective function (7.2) unless r;, and rj,,4 # j, or 1y, and ry,a # b happen to be
very close (within o) to each other. So (7.8) is plausible as the sole constraint on A.

The correspondence process formulation has been used in 2D-2D point matching
[48]. An algebraic manipulated version of the point-matching objective function has
been applied to 2D-2D line segment matching [49]. A similar objective function is also
developed for 3D-3D model matching. For sufficiently small o, minimizing (7.2) can
be shown to be equivalent to the generalized Hough transform or template matching.
A continuation method for minimizing such an objective function can be considered

as a coarse-to-fine template matching.
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7.4 2D-2D Point Matching

Consider the problem of locating a two-dimensional “model” object that is believed to
appear in the “scene”. Assume first that both the model and the scene are represented
by a set of 2D “points” respectively, x; and y,. The problem is to recover the actual
transformation (translation and rotation) that relates the two sets of points. Following
the framework developed above, such a problem can be solved by minimizing the
following objective function
(79) f(A’ a,t) = Z AiaHRexi + t— ya”2 + 20'2 Z Aia(log Aia - 1),
where A;, = A represents the unknown correspondence, Ry is a rotation matrix with
rotation angle 8, and t is a 2D translation vector. The equivalent “robust” objective
function obtained by applying algebraic transformations to 7.9 is
(7.10) 3 (1 — eRexitt-yall?/20%)

The problem then becomes that of maximizing
(7.11) Froimt(Ryt) = 3 e IRoxitt=yalf*/20%,
which in turn can be interpreted as minimizing the Euclidean distance between two
Gaussian-blurred images containing the scene points x; and a transformed version
of the model points y,. Assuming that there is only translation between the model
and the scene, each containing 20 points, figure 7.1 demonstrates the shape of (7.11)
from coarse to fine scales for a simpler case in which only translation is applied to
the model, and the objective function becomes
(7.12) Froimt(t) =S e orlii+t-vall?
At o = 0.16, there is only one single peak. We can see that the location of this peak
falls in the convex region around the highest peak at ¢ = 0.08. As a consequence,

the latter should be very easily reached via a local search from the former. Our
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Figure 7.2: Comparing template matching (left) and optimization using the objective
function fpoins(t) (right). We use 25-by-25 (top) bins and 50-by-50 (bottom) bins for
translation. In (left), the vertical scale represents the number of votes collected at
each bin, and the horizontal scales are indexes for translation bins. The width of
each bin along either z or y direction is . In (right), the vertical scale represents the
value of fy.in:(t) at discrete points sampled at the center of each bin. The values are
normalized so that the central spike in both plots are of height 1.
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Figure 7.3: Shown here is an example of matching a 20-point model to a scene with
66.7% spurious outliers. The model is represented by circles. The set of square dots
is an instance of the model in the scene. All other dots are outliers. From left to right
are configurations at the annealing steps 1, 10, and 51, respectively.

continuation method works by decreasing o slowing so that the current highest peak
can always be reached from the location of the highest peak at previous . Hopefully,
the central peak at o = 0.02 can be reached even though there are many spurious
peaks in the original objective function. Figure 7.2 shows the relation of maximizing
froint to template matching, which maximizes

(7.13) Z Indicator((x; + tu — yao) € [—e€t, €] X[—€r, €))

over k,l, where the translation space is partitioned into a 2D array of bins. ty are
centers of the bins, and ¢; is the width of each bin. By associating the bin width with
o, optimizing a model matching objective function such as (7.11) works like template
matching.

A typical run-time behavior of the algorithm is illustrated in Figure 7.3.

7.5 2D-2D Line-Segment Matching

In many vision problems, representation of images by line segments has the advan-
tage of compactness and subpixel accuracy along the direction transverse to the line.
However, such a representation of an object may vary substantially from image to

image due to occlusions and different illumination conditions.
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7.5.1 Indexing points on line segments

The problem of matching line segments can be thought of as a point matching problem
in which each line segment is treated as a dense collection of points. Assume now that
both the scene and the model are represented by a set of line segments s; and m,,
respectively. Both the model and the scene line segments are represented by their
endpoints as s; = (p;, p;) and m, = (qq, q,,), where p;, p/, and qq, ¢/, are the endpoints
of the :th scene segment and the ath model segment, respectively. The locations of

the points on each scene segment and model segments can be parameterized as

(7.14) Xi = si(u) = pi+u(p; —p:), u€[0,1] and

(7.15) Ya=me(v) = q.+v(q, —q.), veEo1].
Now the model points and the scene points can be though of as indexed by i = (, u)
and a = (a,v). Using this indexing, we have Y o< ¥; 4 [ du and 3, « 3, I, I} dv,
where l; = ||p; — pi|| and I, = ||q, — q.]|. The point matching objective function

(7.11) can be specialized to line segment matching as the following objective function

(7.16) Frea(6,8) le / / e~ mrRoma()+t=s. P gy, g,

originally developed in [52]. Here we make a correction to the original objective
function by adding the length terms /; and I, of model and scene line segments,
respectively.

As a special case of point matching objective function, (7.16) can readily be opti-

mized by the algorithm previously developed for point matching problem.

7.5.2 Gaussian sum approximation

The finite integrals in (7.16) are simplified as infinite Gaussian integrals by approxi-

mating the box function ©(t) with a sum of three Gaussian as shown in Figure 7.4

1 if te(0,1] 3 —1)?
! ~ 3 Apex p__M
k=1 2

"

(7.17) o(t)

2
0  otherwise T
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Figure 7.4: Approximating ©(¢) by a sum of 3 Gaussian.

By numerical minimization of the Euclidean distance between these two functions of
t, the parameters may be chosen as A; = A3 = 0.800673, A, = 1.09862,

oy = o3 = 0.0929032, o, = 0.237033, ¢; = 1 — ¢3 = 0.116807, and c; = 0.5, as
computed in [52].

Using this approximation, each finite double integral in (7.16) can be replaced by

1

/+OO /+OO 6__2:2_‘!R9ma(v)+t—5i(u)“2 @(u)(‘)(’l)) du d'U ~
(7.18)

3 oo o0 - Crp—u — cr—v
Z ArA /+ /+ e 2_:'2( * )26 é( l )2e_#”Ram“(U)H"s‘(“)”Zdu dv.
k=1 - =0

Each of these nine Gaussian integrals can be done exactly. Defining
(7.19) Viaki = Si(ck) — Rom,(c) — t
(7.20) Pi = p; — Pi, 4. = Ry(q, — qu),

(7.18) becomes

3

2ol AsAioxoy
tva = = = =
(5 (0" 1 BloD) (02 + ot — 7o (By - au)?
(7.21) X exp __lV?auUz + (Viakt X Pi)?0% + (Viakt X §0)%0?

2 (o2 +piof)(o® + &of) — ofo(Pi- Ga)?
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Figure 7.5: The polygonal representation of the model is overlayed on the image from
which the line segments are extracted.

From the Gaussian sum approximation, we get a closed form objective function which

can be readily optimized to give a solution to the line segment matching problem.

7.5.3 Results and discussions

The line segment matching algorithm described in this paper was tested on scenes
captured by a CCD camera producing 640 x 480 images, which were then processed
by an edge detector. Line segments were extracted using a polygonal approximation
to the edge images. The model line segments were extracted from a scene containing
a canonically positioned model object (Figure 7.5). They were then matched to those
extracted from a scene containing differently positioned and partially occluded model

object (Figure 7.6). The result of matching is shown in Figure 7.7.

7.6 3D-3D Point Matching

Extending the robust objective function for absolute orientation (6.16), we have

(7.22) E Ai)|Rx; +t — y,||* + 202 E(A,-a log Aia — Ais).

ia ia
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Figure 7.6: The model line segments, which are transformed with the optimal param-
eter found by the matching algorithm, are overlayed on the scene image. It shows
that our algorithm has successfully located the model object in the scene.

o 3

e o
Y

\ e / \ </ /

Figure 7.7: Shows how the model line segments (gray) and the scene segments (black)
are matched. The model line segments, which are transformed with the optimal
parameter found by the matching algorithm, are overlayed on the scene line segments
with which they are matched. Most of the the endpoints and the lengths of the
line segments are different. Furthermore, one long segment frequently corresponds to
several short ones. However, our matching algorithm is robust enough to uncover the
underlying rigid transformation from the incomplete and ambiguous data.
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If the robust IRLS algorithm (6.7) and the continuation method in Section 7.3 are
used to minimize (7.22), we need to solve a doubly-weighted absolute orientation
problem
(7.23) > ARIRX: + t =y
at the (k + 1)th iteration.

We extend the dual quaterion algorithm described in Appendix A to solve for the
correspondence as well as the rotation and the translation.

Replacing the single sums over ¢ with the double sum over both ¢ and a, and the

weight w; with the correspondence process A;,, the objective function becomes
(7.24) f(r,8) = 32 AalW(r)Q(r)z; + 2W (r)'s — gl

The problem can be reformulated as minimizing

(7.25) f(r,s) =r'Cir + 8'Cys + 8'Car

subject to rir = 1, s'r = 0, where

(7.26) Cr==2" AiQ(ya) W (z:)
(7.27) Cy= %ZAMI
(7.28) Cs =2 Ai(W(x:) — Q(ya))-

All the constraint information, including the current fuzzy estimate of the correspon-
dence A is absorbed into the three 4-by-4 matrices Cy,C,,Cs in (2). The optimal
solution (r*,s*) can be found by using exactly the same method described in Ap-

pendix 2.3.

7.6.1 Experiments

A test instance for 3D point matching involves generating a random 3D point set

as a model, and then generating a test scene by applying a random transformation,
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adding noise consisting of independent Gaussian jitter and then randomly adding and
deleting points.

A set of 20 3D points for x; are generated uniformly within a box defined by
T, Yi, % € [=5,5]. In order to generate a 3D rotation R, a unit quaterion is
uniformly selected from a unit 4-sphere. The resulting distribution of 3D rotations is
also uniform [14]. For translation t, t; and ¢; are uniformly selected from [3,15], and
ta from {20, 50]. Gaussian noise N(0, o) is added to three component of each Bx;+t to
generate y;. The variance o is related to SNR,,04 by SNR0a = —20 log(c/10) dB. A
fraction (= PO,,%) of model points are missing, and a fraction (= PO, %) of spurious
points are added to scene points. The objective then is to recover the translation and
the rotation and to find the correspondence between this and the original point set.
The results are summarized in Figures 7.8 and 7.9. For each combination of (¢-PO,,-
PO,) 250 test instances were generated.

Figure 7.8 shows the results of Experiments C1 and C2 with different assumed
knowledge of correspondence. When the correspondence is assumed to be known
exactly (even if some of the points are really outliers), we use the standard absolute
orientation algorithm. When there are potential outliers presents, we use the robust
algorithm described in Chapter 6. For the case that we do not have any information
about the correspondence, we apply the point matching algorithm described in this
section.

The matching algorithm can not be better than standard algorithm when the
correspondence information given to the standard algorithm is correct, as for the
case in Figure 7.8 left (Experiment C1). However, we find that the performance of
the matching algorithm is very close to the other two algorithms, especially when
the signal-to-noise ratio is high. This shows that the matching algorithm solves the
correspondence well. Figure 7.8 right reports the case that there are some outliers in
the given correspondence. The results produced by the standard algorithm becomes
useless, while the matching algorithm performs well when the percentage of outliers is

below 10%. The reason that the robust algorithm outperforms the matching algorithm
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Figure 7.8: Results of Experiments C1 (left) and C2(right) with different assumed
knowledge of correspondence: totally known, partial known (having potential out-
liers), and unknown. Only rotation error is shown.

is that the given correspondence is not completely wrong.

In the case that the correspondence is completely unknown, the standard and the
robust algorithm fail most of the time given an arbitrarily selected correspondence,
unless the former gets the correct one, and the latter get one that is close enough.
On the other hand, Figure 7.9 shows that the matching algorithm degrades gracefully

when the percentages of missing model points and spurious scene points increase.
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Figure 7.9: Results of 3D-3D point matching. The rotation and translation errors
are averaged over correct matches. No initial guess using correspondence processes is
given to the point matching algorithm.



Chapter 8

Conclusion and Future Work

8.1 What Has Been Done

We have presented a new framework and new algorithms for online pose estimation
and model matching. It combines a descent method that exhibits both rapid conver-
gence and robustness and elegant process-based algorithms for outlier rejection and
model matching.

Unlike traditional approaches, our methods operates in 3D object space, not 2D
image space, together with a systematic error measurements and propagation frame-
work. This turned out to be the key point to the success of our methods. It is
suited to applications where initial pose is not available such as visual-servoing and
model-based recognition. The method’s efficiency also makes it a good candidate for
real-time model-based tracking of 3D objects.

The new outlier rejection and model matching framework and algorithms are
especially suited to online applications. The matching algorithm gradually improves
the solutions, so that when it is stopped in the middle, the result may still provide
useful information.

In the following, we summarize the key ingredients of our work presented in this

dissertation.

88
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Minimum variance estimation and error fusion The alternating subspace min-
imization method and the 3D object space approach cannot be successful without
appropriate error measurements and propagation. Based on the minimum variance
estimation framework, we propagate the error measures in the observations to the
estimations. For the alternating subspace minimization method which operates in
two separate phases, the subset of variables computed in each phase are treated as
observations in the other phase. The algorithm uses error measures in each phase to

appropriately weight the “intermediate” observations.

Alternating subspace minimization The subspace minimization method pro-
vides an economical computational mechanism to optimize an objective function over
variables as numerous as the observations themselves. It divides a large problems
into subproblems with fewer variables. When each subproblem can be solved easily
by itself, we can solve them alternatively. In our case, the pose estimation problem
has been decomposed into an absolute orientation problem and iteratively linearized

3D reconstruction. Both have simple and efficient solutions.

Outlier and correspondence processes Outlier and correspondence processes
model the observations using simple a Gaussian distribution with additional “pro-
cesses” to model the connection of the data to the underlying Gaussian distribution.
With this formulation, continuation methods are fully exploited, and interactions be-
tween processes are facilitated to solve the difficult problems of outlier rejection and

correspondence establishment.

8.2 Future Work

In this section, we discuss some possible extension to the work.
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Recursive motion estimation Our pose estimation algorithms can be very easily
modified to do structure-from-motion, in which the structure reconstructed using
previous frames are used as the observed model. In particular, our methods always
attach the solutions with error measures in the form of covariance matrices. Such error
measures can be propagated to next structure-from-motion computation resulting in

a Kalman-like temporal filtering scheme.

Model-based visual tracking Model-based visual tracking involves tracking a
moving object with known geometry through a video sequence on which the ob ject is
captured. The pose of the object must be constantly updated and used by a feature
tracker to capture the object in the next frame. Preliminary work has been done
in applying the proposed pose estimation method to track an object with a video

camera in real-time.

Locating and tracking articulated objects We believe that the basic pose esti-
mation for simple rigid objects can be extended to articulated objects such as human
bodies in vision-based human-computer interactions. An articulated object can be
represented by an affizment graph, in which the nodes representing individual rigid
components ;)f the articulated object are interconnected through the nodes represent-
ing relative positions and orientations between connecting components. As argued
in [46], estimating all inter-component rigid transformations is no more difficult than

estimating the single pose.
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Appendix A

Solving Absolute Orientation

Using Dual Quaternions

The absolute orientation solution in [63] is briefly described as follows:

Let the rotation and the translation be represented by a dual quaternion (r, s), r'r =
1,7's = 0, which corresponds to a screw coordinate transform [50]. Treating quater-
nions as 4-vectors, the rotation can be represented by a homogeneous transformation
matrix W(r)'Q(r) and the translation by 2W(r)*s, where r = (¢1,92,¢3,q4)" is the

quaternion for representing rotation, and

/94 3  —q2 ql\\

(A.l) W(r): —q3 {44 a1 q2
92 —q 494 g3

~q1 —q —g3 Q4)
(94 —q93 Q2 91\‘

(A.2) Q(r) — q3 q4 "‘h ‘12
—q92 q1 94 g3

\~@%1 —% —g¢ qs)
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The rotation R can be written in terms of ¢y, ¢3, g3, and g4 as

‘12 + ‘1% - ‘1% - qg 2(‘11‘12 - Q3¢I4) 2(‘11413 + Q2Q4)
(A.3) R=| Aq@+¢pa) E-ad+E-¢ 2(ee-—aq)
2(q1943 — 92q4) 2(q29s + 0191) 03 —¢F — ¢ + 3

With the dual quaternion representation, the objective function becomes
(A.4) f(r,s) = Z wil|[W(r)'Q(r)x; + 2W(r)'s — y.|®

where @; = (X;,1)" and y; = (y;,1)! are the homogeneous coordinates of the model
point X; and the scene point y;, respectively. Using the properties that Qa)b =
W(b)a and Q(a)'a = W(a)'a = (a’a)l, the objective function can be reformulated

as
(A.5) f(r,s) =r'Cir + 8'Cy8 + s'Csr

subject to r'r = 1, s'r = 0, where

(A.6) Cr= =3 wiQ(y:)' W(:)
(A.T) Cy = % Zwil
(A.8) Cs =3 wi(W(x:) — Q(u:))-

Using Lagrange multipliers for the constraints yields
(A.9) f(r,8) =r'Cir 4 8'Cas + s'Car + A (rir — 1) + Morts.

The optimal solution (*, 5*) can be found by solving for the Lagrange multipliers ¥,

and X,. r* is the eigenvector of
1
(A.10) CiC7'Cs — E(Cl + C})

with the largest eigenvalue, and s* is equal to —2C;'Csr*. »* and s* are then used

to determined the rotation and translation.




Appendix B

Fitting Orthonormal Matrices

For any 3-by-3 matrix M = (m®), m®, m®), the closest orthonormal matrix R to

M and the associated scale factor s can be found by minimizing

(B.1) IM - sR||F,

where || - || is the Frobenius norm. It can be rewritten as
3 . 3

(B.2) Y Im® — sRe|?,
1=1

where e() is the ith column vector of 3-by-3 identity matrix. This problem is equiva-
lent to solving a 4-point absolute orientation problem with an extra point correspon-

dence ((0,0,0)%(0,0,0)*) for ensuring zero translation.
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