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Abstract.

This paper is concerned with model inference problems and algorithms. A model inference problem is an
abstraction of the problem faced by a scientist, working in some domain under some fixed conceptual
framework, performing experiments and trying to find a theory capable of explaining their results. In this
abstraction the domain of inquiry is the domain of some unknown model M for a given first order language L,
experiments are tests of the truth of sentences of L in M, and the goal is to find a set of true hypotheses that
imply all true testable sentences.

The main result of this paper is a general, incremental algorithm for solving model inference problems,
which is based on the Popperian methodology of conjectures and refutations [Popper 59, Popper 68]. The
algorithm can be shown to identify in the limit [Gold 67] any model in a family of complexity classes of
models, it is the most powerful of its kind, and is flexible enough to have been successfully implemented for
several concrete domains.

This mode! inference algorithm has two tunable parameters: one determines how complicated the structure
of hypotheses is; the other, how complex derivations from the hypotheses can be. Together they determine the
class of models that can be inductively inferred in the limit by the algorithm. On the one hand they can be set
so that the model inference algorithm can identify in the limit any model with complexity bounded by any
fixed recursive function. On the other hand they can be set so that the algorithm, appropriately implemented,
can infer axiomatizations of concrete models from a small number of facts in a practical amount of time. The
performance of the Model Inference System demonstrates this.

The Model Inference System is based on this model inference algorithm, specialized to infer theories in
Horn form. It has been implemented in the programming language Prolog [Pereira et al. 78). Asanexample,
in the domain of arithmetic, the system inferred the set of axioms described in Figure 1-1 below from 36 facts
in 27 seconds CPU time. The system has discovered an axiomatization for dense partial order with end
points. It has successfully synthesized logic programs [Kowalski 79a] for simple list-processing tasks such as
append, reverse and most of the examples described in Summers’ thesis [Summers 76]. It has also synthesized
logic programs for satisfiability of boolean formulas, binary tree inclusion, binary tree isomorphism and
others.

As part of the general algorithm, an algorithm for backtracing contradictions was discovered. This
algorithm is applicable whenever a contradiction occurs between some conjectured theory and the facts. By
testing a finite number of ground atoms for their truth in the model the algorithm can trace back a source for
this contradiction, namely a false hypothesis, and can demonstrate its falsity by constructing a
counterexample to it. The existence of such an algorithm seems to be relevant to the philosophical discussion
on the refutability of scientific theories [Harding 76], and specialized to Horn theories may be a practical aid
for the debugging of logic programs.



1. Introduction.
This paper is concerned with the following type of problem:

Suppose we can acquire factual knowledge about a certain domain, which is governed by some
unknown rules, or theory, and assume that a language adequate for expressing these rules is given.
How can we discover these rules or theory from this factual knowledge?

A problem like this is faced by a scientist that is working in some domain under a fixed conceptual framework,
performing experiments and trying to find a theory true of the domain and capable of explaining their results.
A Model Inference Problem is an abstraction of this setting. In this section we explain the model inference
problem via examples. These examples suggest possible applications for algorithms that can solve model
inference problems. We discuss the relation of this work to problems of scientific discovery, and give an
overview of the paper.

1.1. Some Model Inference Problems.

An example of a model inference problem is illustrated in Figure 1-1. The domain of inquiry is the Integers,
and the given first order language contains one constant 0, the successor function X', and three predicates:
X<Y for X is less than or equal to Y, plus(X,Y,Z) for X plus Y is Z and times(X,Y,Z) for X times Y is Z.
Assume we can test whether these relations hold between concrete numbers, i.e. , we can test ground
(variable-free) atoms such as 0<0™, plus(0',0’,0") and times(0”,0”,0"") for their truth in M. In this setting,
the model inference problem is to find a finite set of sentences that are true of arithmetic and imply all true
ground atoms. Figure 1-1 shows such a set of sentences. We use the back arrow = to stand for “is implied
by”. The sentence P— Q & R is read “Pis implied by the conjunction of Qand R™.

Figure 1-1: Inferring Arithmetic.
The Domalin: integers.

The Language: 0-zero
X' - the successor of X
X<Y - X is less than orequaito Y
plus(X,Y,Z) - XplusYisZ
times(X,Y,Z) - XtimesYisZ

Examples of facts: 0<0' is true
plus(0,0°,0) is false
times(0”,0",0"") is true

Theory: X<X
X<Y' - X<Y

plus(X,0,X)
pius(X,Y'.Z’) — plus(X.,Y,2)

times(X,0,0)
times(X,Y'.Z) —times(X,Y,W) & plus(W,X,2)

Note that we do not need to discover all the properties of the functions and predicates involved to solve this
model inference problem. In particular, the above set of axioms does not contain axioms for associativity of
addition, transitivity of the ordering relation, etc.. If T'is a set of sentences true in M that implies all ground
atoms of L true in M then T'is called an aromic-complete axiomatization of M. The set of sentences in Figure
1-1 is an atomic complete axiomatization of arithmetic. It has been inferred by the Model Inference System
from 36 facts in 27 CPU seconds (see Appendix I, page 41).



We distinguish two types of sentences in the first order language L: observational sentences, which
correspond to descriptions of experimental results, and hypotheses, which can serve as explanations for these
results. The scientist’s domain of inquiry is the domain of some unknown model M of L. Experiments
performed in this domain are tests of observational sentences for their truth in M. Facts are statements of the
results of such experiments. A model inference problem corresponds to the problem of scientific discovery:

Given the ability 1o perform experiments in some unknown model M, find a finite set of
hypotheses, true in M, that imply all true observational sentences.

It should be noted that the assumption that the hypothesis language is fixed avoids of one of the major
problems in scientific discovery, which is the invention of a new conceptual scheme. In Kuhnian terminology
{Kuhn 70], the model inference problem resembles more the puzzle-solving activity of “normal science”, than
the search for new conceptual schemes that is characteristic of “paradigm shift” periods.

Another model inference problem is illustrated in Figure 1-2. In this example the domain of inquiry is the
set of binary strings, and the first order language contains one unary predicate in(X), two successor functions
0(X) and 1(X) and one constant A that denotes the null string. In this language the term (1(0(0(1(A)))))
denotes the string 1001, and 1(0(X)) denotes a string whose prefix is 10. Parentheses are usually omitted. We
assume the ability to test whether concrete strings are in some unknown set, and our goal is to find a finite set
of true sentences that imply in(S) for every string S in this set and ~in(S) for any other binary string.

Figure 1-2: Inferring A Formal Language.
The Domalin: Binary Strings.

The Language: A - the null string
0(X) - concatenating 0 to X
1(X) - concatenating 1 to X
in(X) - X has an even number of 0's and an even number of 1's

Examples of facts: in(0011) is true
in(011) is false
in(01011) is false
in(010100) is true

Theory: in(A)
In(00X) — in(X)
~in(0X) —in(X)
in(11X) —in(X)
~in(01X) — in(X)
~in(1X) —in(X)
~in(11X) — in(0X) & ~in(X)
~in(01X) — in(0X) & ~in(X)
~in(1X) — in(0X) & ~in(X)
~in(10X) — in(1X) & ~in(0X) & ~in(X)
~in(00X) — in(1X) & ~in(0X) & ~in(X)
in(10X) — ~in(1X) & ~in(0X) & ~in(X)
~in(00X) — ~in(1X) & ~in(0X) & ~in(X)
g in(01X) — ~in(1X) & ~in(0X) & ~in(X)

If the unknown set is simple enough (to be more precise, if and only if it is regular [Angluin & Hoover 80]),
then there is such a finite set of axioms in this language. If T'is a set of sentences true in M such that for every
ground atom PeL, T implies P if P is true in M and ~P otherwise, then T is called a ground-complete
axiomatization of M. Figure 1-2 shows a ground complete axiomatization of the set of strings with an even



data, and suggested that the conjectural status of scientific theories be recognized. The validity of science can
be based on the fact that if its theories are false then eventually they will be refuted, although in case they are
true they can not, in general, be confirmed beyond any doubt.

Popper’s approach to the Problem of Induction yields some procedural recommendations for scientific
activity. Popper suggests that theoretical scientific activity should be aimed towards producing simple and
casily refutable theories which account for the already known data, while the experimental activity should be
aimed towards gathering new data with a potential for refuting these proposed theories. Popper claims that
this interplay between the theoretical and experimental activity, between the conjectures and the refutations,
might lead to some kind of convergence to the truth.

The concept of verisimilitude [Popper 68] was invented in an attempt to measure and compare this ‘truth-
likeness’ of competing scientific theories. Informally, the verisimilitude of a set of hypotheses T is greater or
equal to the verisimilitude of T if T implies as many true observational sentences as T; and no more false
observational sentences then T,. One can systematically assign to theories numerical values that measure their
verisimilitude. For convenience these values range between 0 and 1. Under such a measure, a true theory that
implies all true observational sentences has verisimilitude 1, and both contradictory and tautologous theories
have verisimilitude 0. The process of scientific discovery can be viewed as a everlasting attempt to increase the
verisimilitude of its theories.

The concept of verisimilitude is useful for comparing competing rheories. However, in order to evaluate
and compare competing merhodologies of scientific discovery, or inductive inference algorithms, it seems that
the focus should be on the scientific discovery process, or algorithm, rather than on single theories. One way
of evaluating and characterizing the power of inductive inference algorithms was suggested by Gold [Gold
65], and termed identification in the limit. The rationale behind this concept is very similar to the the
Popperian one: a finite number of facts about a model can not in general determine it uniquely among all
possible models, and since inductive inference algorithms and scientists always base their conjectures on a
finite number of facts, both of them are bound to make mistakes. In some sense this is the crux of Popper’s
thesis. The most one can expect of an inductive inference algorithm is that after examining a finite number of
facts about the model, and making a finite number of wrong conjectures, such an algorithm will correctly
conjecture a finite set of hypotheses true in the model, which imply all true observational sentences. Insuch a
case we say that the algorithm identifies the model in the limit. Note that such a set of hypotheses is of
verisimilitude 1, and an inductive inference algorithm cannot, in general, determine whether it actually has
found such a set of hypotheses. The notion of identification in the limit has proven to be fruitful in the
recursion- and complexity-theoretic work on inductive inference [Gold 67, Blum & Blum 75, Case & Smith
81}

1.3. Overview of the Paper.

In Section 2 we define more precisely the notions of model inference problem and algorithm. Then,
following the approach of [Blum & Blum 75}, we examine the complexity of model inference problems.
Section 3 defines the class of h-easy models, for some recursive function h, and describes an enumerative
algorithm that can identify in the limit any h-easy model for a fixed A. It is shown that if an inductive inference
algorithm satisfies a simple sufficiency requirement, namely that its current conjecture always accounts for the
currently known facts, such an algorithm can identify in the limit only h-casy models. These results establish
an upper bound on the power of any sufficient inductive inference algorithm, and show that this bound is
realizable.

This general complexity theoretic approach is applicable to any computational model, however, and does
not make use of any special properties of logic. Motivated by this analysis, we develop some logic-specific
algorithms and concepts that can support the construction of more efficient, incremental, inference algorithms
that take better advantage of the semantic and syntactic properties of logic. In developing the incremental



additional control information should be specified. See [Kowalski 79a] for an introduction to logic
programming, [Van Emden & Kowalski 76] for discussion of the operational and denotational semantics of
logic programs, [Kowalski 79b] for an elaboration of the distinction between the logic component and the
control component of an algorithm, and the Prolog manual [Pereira et al. 78] for details of a concrete
implementation of a logic based programming language.

In our setting, if the hypothesis language is restricted to Horn clauses, then an atomic-complete
axiomatization of a model is a logic program for computing the predicates in L. Figure 1-3 shows two such
programs. In this example, the language L contains the two place function symbol [X]Y] (the Prolog list
constructor, the equivalent of the LISP function cons), the constant [] (Prolog’s nil) and the two predicates
append(X.Y,Z) and reverse(X,Y). The model M for this language is defined as follows: the elements of M
are all lists constructed from [X]Y] and []; the atom append(X,Y,Z) is true in M just in case the list Z is the
result of appending the list X to the list Y, e.g. append([a,b,c],[d,e],[a,b,c,d,e]); the atom reverse(X,Y) is
true in M just in case that the list Y is the reverse of the list X, ¢.g. reverse([a,b,c},[c,b.a]). The Horn clauses
in Figure 1-3 are an atomic-complete axiomatization of the model thus defined.

As its turns out, these clauses are also Prolog programs for computing append and reverse. For example,
to compute the result of appending the lists [a,b] and [c,d,e], the goal —append([a,b].[c.d,e].X) is given to
the Prolog interpreter loaded with the above program, which returns the binding X = [a,b,c,d,e]. The Model
Inference System synthesized the logic program for append in 11 CPU seconds from 34 facts, and a similar
program for reverse from 13 facts in 6 CPU seconds (see page 42). More examples of logic programs are
given throughout this paper, and the details of their synthesis from examples can be found in Appendix 1.

Some of the work in Artificial Intelligence on concept-learning tasks can also be restated as model inference
problems. For example, the problem of learning the concept of an arch [Winston 75] from descriptions of
arches and non-arches can be restated as follows: the domain of inquiry is all objects built out of blocks. The
language contains predicates like block(X), column(X), on(X,Y), arch(X,Y,Z). The inductive inference
problem is to find a finite set of sentences that can decide which of these compound objects are arches, given
examples of arches and non-arches. One such set of sentences was suggested by Kowalski [Kowalski 79a]:

arch(X,Y.Z) — block(X) & column(Y) & column(Z) & on(X,Y) & on(X,Z)

coiumn(X) — block(X)
column(stack(X,Y)) — block(X) & column(Y) & on(X,Y)

on(X,stack(Y,Z)) —on(X.,Y)
From this set of sentences, given that the following are true,

block(a) on(a,b)

block(b) on(b,c)

biock(c) on(a,d)

biock(d) on(d.e)

block(e) on(e.f)

block(f)

one can prove that arch(a,stack(b,c).stack{(d,stack(e.f))). In general, one can decide from these axioms
whether a scene is an instance of the arch concept, and it secems reasonable to say that by acquiring such
axioms one learns this concept.

1.2. Relation to Problems of Scientific Discovery.

Any interesting solution to a model inference problem must come to terms with a preliminary problem, that
is the Problem of Induction, which goes back to the philosopher David Hume. The problem of induction is
that a finite amount of factual data can never establish beyond doubt a theory with infinitely many
consequences. An attractive solution to this problem was suggested by the philosopher Karl R. Popper
[Popper 59]. Popper accepted Hume’s claim of the unprovability of general scientific theories from factual



number of 0’s and an even number of 1's. This particular axiomatization was generated from the 4-state
acceptor for this set by the algorithm of Angluin and Hoover. An older version of the Model Inference
System inferred a more concise ground-complete axiomatization of this set in 3 minutes CPU time from 64
facts (page 38). The axioms discovered by the system contained only one atom in their condition, as opposed
to two and three in some of the axioms above. This behavior of the algorithm suggested that any regular set
has such a ground-complete axiomatization, a result that will be described elsewhere [Angluin & Shapiro 81].

The following is an atomic-complete axiomatization of the same regular set. Comparing it with the
axiomatization in Figure 1-2 might help to clarify the distinction between an atomic-complete and a ground-
complete axiomatization of a model. The Model Inference System came up with this axiomatization in 28
CPU seconds and after reading in 35 facts (page 40).

in(A)

in(00X) — in(X)
in(11X) = in(X)
in(010X) — in(1X)
in(011X) — in(0X)
in(100X) = in(1X)
in(101X) — in(0X)

The problem of inductively inferring regular sets was investigated by Gold and Angluin [Gold 67, Gold
78, Angluin 78], among others. It has served both as a motivation and a test case for the development of the
model inference algorithm and system.

A third type of inductive inference problem that naturally fits in our framework is taken from the domain of
automatic programming, and is usually termed program synthesis from examples [Green et al. 74, Summers
76, Summers 77, Bierman 78]. The task is to inductively infer a program, given examples of its input-output
behavior. This task can be restated as a model inference problem, and in this case the programs to be inferred
are logic programs.

Figure 1-3: Inferring Logic Programs.
The Domain: Lists

The Language: [] - nil
[XY] -the“cons” of Xand Y
append(X,Y.Z) - appending XtoYisZ
reverse(X,Y) - X is the reverse of Y

Examples of facts: append([].[a],[a]) is true
append([a,b],[c,d.e],[]) is false
append([a,b],[c.d,e],[a,b,c.d,8]) is true
reverse([a).[b,a]) is fa/se
reverse([a,b,c],[c.b,a)]) is true

Theory: append([],X.X)
append([A|X],Y,[AlZ]) — append(X,Y.Z)

reverse([],[(]) .
reverse([A]X],Y) — reverse(X,Z) & append(Z,[A].Y)

A logic program is a collection of Horn clauses, which are sentences of the form P— Q1 & 0: & ... & O for
n>0, where Pand the Qs are atoms. Such a sentence is read “Pis implied by the conjunction of the Q's™, and
is interpreted procedurally “to satisfy goal P, satisfy goals Q1,(s,...,0a". A collection of Horn clauses can be
exccuted as a program, using this procedural interpretation. Usually, for such a program to be efficient,



model inference algorithm we focus on two questions:
1. How to weaken a conjecture if it is discovered to be too strong?

2. How to strengthen a conjecture if it is discovered to be too weak?

We say that a set of hypotheses is 100 strong with respect to some model M if it implies an observational
sentence false in M. We say that it is 100 weak if it does not imply an observational sentence true in M.

The Contradiction Backtracing Algorithm, described in Section 4, attempts to answer the first question. By
performing a finite sequence of experiments that test ground atoms for truth in the model, the algorithm can
trace back a source of the contradiction between the conjecture and facts, and single out a false hypothesis.

Tests of the kind performed by this algorithm are known in philosophy of science as crucial experiments.
Although their importance is recognized by most methodologies, an algorithmic way of sequencing them that
guarantees singling out a false hypothesis is a novelty. The existence of such an algorithm apparently
contradicts a claim of Duhem [Duhem 54], which simply denies its possibility. This claim was stated in
support of what later came to be known as the Duhem-Quine thesis [Harding 76] of the irrefutability of
scientific theories. The existence of the contradiction backtracing algorithm, and of a general inductive
inference algorithm that incorporates it, may renew the philosophical discussion concerning this issue of
refutability. The contradiction backtracing algorithm has applications beyond the domain of inductive
inference; we propose an application of it to the debugging of logic programs.

Once we have discovered a false hypothesis in the conjecture, the obvious action to take is to remove this
hypothesis from it. However, the resulting conjecture may be too weak to imply all the observational
sentences already known to be true. In this context the second question arises. A refinement operator,
described in Section 5, suggests how to add new hypotheses to the conjecture in order to strengthen it. The
refinement operator is a parameter in the inference algorithm that can be tuned. A more general refinement
operator results in a more powerful, though less efficient algorithm, and vice versa. The notion of
completeness of a refinement operator for a class of hypotheses is defined, and several refinement operators,
complete for different classes of hypotheses, are described. A most general refinement operator is defined and
proved to be complete for any first order language.

Based on the solutions to these two questions, a general, incremental model inference algorithm is
developed in Section 6, and proved to identify in the limit any h-casy model. Some implementations issues are
also discussed. The concluding remarks to this paper reveal why all this stuff works, and Appendix I describes
the performance of the Model Inference System, which implements the algorithm. This system will be
discussed more fully in a subsequent paper.



2. Defining the Problem.

In this section we state more precisely the model inference problem, and define the notion of a model
inference algorithm. We introduce an admissibility requirement on the observational and hypothesis
languages, which reflects Popper's requirement that theories should be refutable by facts, and discuss an
extension to the model inference problem which includes the notion of theoretical terms.

2.1. Model Inference Problems and Algorithms.
We assume that the given first order language L is in clausal form (as defined in [Robinson 65]), with
finitely many predicate and function symbols. The sentences of L are of the form

[P, Py ..., B} —{0Q1, @2y ..., &} j, k0

where the P’s and Q’s are atoms. This notation is equivalent to the standard clausal form notation where the
P’s are the positive literals and the negated Q's are the negative literals of the clause. The interpretation of
such a sentence is that the conjunction of the Qs imply the disjunction of the P’s. The Q' are called the
condition of the sentence, and the P’s the conclusion of it. An empty condition implies that a¢ Jeast one atom
in the conclusion is true. An empty conclusion implies that a// the atoms in the condition are false. {Jdenotes
the empty sentence, false in any model of L. Sentences with only one atom are called unir sentences. We do
not distinguish between the unit sentence { P}~ and the atom P, and between sentences that are equal up to
renaming of variables. Note that as in standard clausal notation all the variables that occur in a sentence are
implicitly universally quantified.

We distinguish two subsets of the sentences of L: the observational language L., and the hypothesis
language L.. We assume that OeL,c Lyc L', and that both sets are effectively decidable. Observational
sentences are sentences of L, and Aypotheses are sentences of Ly. The domain of inquiry is some model M of
L, and we assume that there is some device, called an oracle for M, that when given an observational sentence
a returns ‘true’ if a is true in M, ‘false’ otherwise. The operation of giving an input to the oracle and reading
the answer is called an experiment in M. Facts about the domain M are pairs of the form <a,V>, describing
results of experiments, where aeL, is an observational sentence and Ve{true false} is the truth value of ain M.
The set of observational sentences true in a model M is denoted LY. We assume some complete derivation
procedure, and use T p {T|+ p} to denote that p is {is not} derivable from T. For a set of sentences S, T} S if
T} p for every peS, T+ S otherwise.

Definition 2.1: Let L, and Ly be subsets of L such that JeL,c Lyc L, and Ma model of L. A set
of sentences T c Ly is an L.-complete axiomatization of M if and only if T'is true in Mand T LY.

We can now define more precisely a Model Inference Problem:

Suppose we are given a first order language L and two subsets of it as defined above, an
observational language L. and a hypothesis language L. In addition, assume that we are given an
oracle for some unknown model M of L. The Model Inference Problem is to find a finite
L.-complete axiomatization of M.

An algorithm for solving a model inference problem is called a mode! inference algorithm. We make more
precise the notion of such an algorithm, adapting the definitions of Gold and the Blums [Gold 65, Blum &
Blum 75]. An enumeration of a model M is an infinite sequence Fy, Fz, F,... where each Fi is a fact about M
and every sentence a of L, occurs in a fact Fi=<a,V> for some i>0. A model inference algorithm is an
algorithm that reads an enumeration of a model for a given observational language L., one fact at a time, and

'We use L to denote both the set of non-logical symbols of the first order language and the set of sentences generated
from these symbols. Also, throughout the paper, A c B means that A is a subset of, or equal to, B,and A ¢ B meansthat A
is a strict subset of B.



once in a while produces as output a finite set of sentences of the hypothesis language Ly, called the conjecture
of the algorithm.

A model inference algorithm is said to converge in the limit given an enumeration of a model if eventually
the algorithm outputs some conjecture and never again outputs a different conjecture. A model inference
algorithm is said to identify a model M in the limit if it converges on every enumeration of M to a conjecture
which is an L.complete axiomatization of M. Given an enumeration of a model M one can simulate an
oracle for M and vice versa, so we do not distinguish between these notions in the abstract treatment of the
problem. However, as will be apparent in the following, the ability to make experiments may result in a
considerable speedup in the inference process, so the concrete algorithms usually assume that an oracle for M
is given.

2.2. An Admissibility Requirement.

In order for a model inference problem to be solvable by a model inference algorithm, an admissibility
requirement must be made on L, and Ly, which essentially says that L. contains enough information to refute
any false theory that ‘attempts’ to be L.complete. The admissibility requirement reflects Popper’s
methodological requirement that theories should be refutable by facts.

Definition 2.2: Let L, be an observational language and and L, a hypothesis language as above.
We say that the pair <L,, Ly> is admissible if for every model M of L and every T C Ly, {aeL,|
Tt a}=L¥ implies that T'is true in M.

By the admissibility requirement every false theory in Ly that implies LY has a witness for its falsity in the
observational language L,. To see this, note that if T{- L and T is false in M, then there is an ae¢L, false in M
such that TFa. To see that this property implies admissibility of L, and Ly, assume that this property holds,
and let Tc L, be false in M. Then either T} LY or T} a for some aeL, false in M. Both cases satisfy the
admissibility requirement, which implies the admissibility of L. and L». The admissibility requirement
couples the observational language and hypothesis language together, and implies that the difference in their
expressive power should be bounded in such a way that every theory which is successful, i.c. implies all true
observational sentences and no false ones, should also be rrue. From the admissibility requirement it follows
that if L, and L, are admissible, then every Liand Lisuch that L, c Lic Lic Ly are also admissible.

There are two pairs of observational and hypothesis languages which are of interest to us. One is the
ground atoms of L as the observational language, with the Horn sentences of L as the hypothesis language.
For this pair an L,complete axiomatization of M is called an aromic-complete axiomatization. Another is
the ground unit sentences of L as the observational language, with L as the hypothesis language. For this pair
an L.complete axiomatization of M is called a ground-complete axiomatization. Before showing the
admissibility of these pairs, we show that the pair <{atoms of L}, L> is inadmissible. A propositional
example suffices. Assume that L contains three atoms P,Q and R. Choose a model M for L in which Pand Q
are false, R is true. Then L¥={—{R}}, and the set of consequences of T={{R}—{P,Q)—} restricted to L, is
equal to LY, but T is false in M. This example and the following two theorems give some insight into the
intimate connection between Horn sentences and atomic-complete theories. See also [Van Emden &
Kowalski 76] for a discussion of this issue.

Theorem 2.3: Let L be a first order language, L.={ground atoms of L} and L,={Horn sentences of
L}. Then the pair <L., L.> is admissible.

Proof: Assume that T L, is false in M and T} LY. We show that L, has a witness for the falsity
of T. Since T is false there is a sentence p={P}—{Q:, Q...., Qu}e T false in M, which implies that p has
a ground instance p’={P}—{Q", 0", ..., Q":} false in M (sce definitions on page 15). Such a sentence
is false only if 0’1, 0%, ..., Q' are trueand P'is false. Since T+ LY, it follows that T} Q" for I<i<n.
Since peT it follows that T| P, which is a false observational sentences. Therefore this pair is
admissible. B



10

Theorem 2.4: Let L be a first order language, L.={ground unit sentences of L} and Ly=L. Then
the pair <L,, L»> is admissible.

Proof: The analogous proof holds. Assume that T'c Ly is false in M and T} Ly'. Since T is false
there is a sentence p={ Py, Pi,..., Pa}—{Q1, Q1,..., Ou}eT false in M, which implies that p has a ground
instance p'={P", Py,..., P)n}={Q", Q%,..., @1}, false in Ma. Such a sentence is false only if
0".Q%,...,Q% are true and P, P,...,P'n are false. Since TH LY, T {Q'} for I<icn and T+ —{P'}
for I<icm. Since peT it follows that T is inconsistent, hence it implies every sentence of L, in
particular TH 0O, which is a false observational sentence. B

2.3. Incorporating Theoretical Terms.

The admissibility requirement is a necessary, not a sufficient condition for the solvability of a model
inference problem. For example, if our domain is the standard model of arithmetic, the first order language L
is the language of arithmetic as above and we choose L=Ly=L,, then the pair <L,, L»>> is admissible, but Go-
del’s second incompleteness theorem shows that there is no finite consistent set of axioms in L that implies
every sentence of L true of arithmetic.

In the case of arithmetic, enriching the hypothesis language L would not make this model inference problem
solvable; there are cases, however, in which the unsolvability of the problem is the result of the weakness of the
expressive power of the hypothesis language. For example, assume that L is the language of binary strings
described in Figure 1-2 (page 3), with one unary predicate symbol in(X), and that the unknown set to be
inferred is all palindromes over 0 and 1. A string S is a palindrome if it is the reversal of itself. Since the set of
palindromes is not regular, the result of Angluin and Hoover [Angluin & Hoover 80] shows that there is no
finite set of sentences in this language that is true of palindromes and imply in(S) for every palindrome S.

Intuitively speaking, to understand the concept of a palindrome one must know first the concept of string
reversal, and without having this concept or being able to simulate this operation in some way, a person would
never succeed in learning the concept of a palindrome just from examples of palindromes and
non-palindromes. Terms that denote such concepts, which serve as an aid to the construction of an hypothesis
but are not directly observable in the world are called in the literature of philosophy of science theoretical
terms. 1f we include in the hypothesis language L, the predicates append and reverse as theoretical terms,
then the task of inferring of an atomic-complete axiomatization of palindromes becomes not just solvable, but
easy, since the following axiom suffices

in(X) — reverse(X,X)
and reverse can be axiomatized using append, as shown in Figure 1-3 (page 4).

However, if all we see in the world are strings that are in and out of some unknown set, there is no way for
us to infer from examples the corresponding axiomatizations of append and reverse. In such a setting, the
least we have to assume is that the intended interpretations of append and reverse are known to, or built
into, the inference algorithm as “theoretical concepts™. The way to incorporate the notion of theoretical
predicates into the model inference problem is to require them to have some fixed interpretation, known to the
inference algorithm, and assume that this interpretation holds in the unknown model M. We will not formally
develop this idea here, though a reference to it is made in the discussion of the refutability of scientific
hypotheses (Section 4.2). This concludes the presentation of the model inference problem.
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3. The Complexity of Model Inference Problems.

Two inductive inference problems closely related to the model inference problem have been given a
considerable amount of attention in the literature: one is the problem of inductively inferring a program for
enumerating a recursively enumerable set, given information on whether elements are in or out of that set
[Gold 65, Gold 67, Klette and Weihagen 80); another is the problem of inductively inferring a program for
computing a recursive function, given the values of that function {Gold 65, Blum & Blum 75]. Gold [Gold
65] has shown that there is no general effective procedure that solves these problems for all recursively
enumerable sets or all recursive functions. The Blums [Blum & Blum 75] describe algorithms that solve the
latter problem, given that the functions to be identified are easy to compute under some complexity measure.
They also show that under certain assumptions, the algorithms they describe establish an upper bound on the
power of any inference algorithm.

The results of the Blums suggest that the natural classes of objects to be inductively inferred in the limit are
complexity classes. In this section we obtain a similar result for the model inference problem. The class of
h-easy models with respect to some recursive function h is defined, and a simple, though inefficient algorithm
that can infer in the limit any h-casy model is described. It is shown that if an inductive inference algorithm
satisfies a simple sufficiency requirement, namely that its current conjecture always accounts for the currently
known facts, then the algorithm can identify only h-easy models, for some recursive function h. This
establishes an upper bound on the power of any such inductive inference algorithm.

The enumerative inference algorithm described in this section does not take full advantage of the semantic
and syntactic properties of first order logic, and a similar enumerative algorithm can be implemented within
almost any other computational model. Methods for speeding up the inference procedure that take advantage
of properties of logic are described in the following sections.

3.1. An Enumerative Algorithm.

We assume some admissible pair <Lo,Lv>. Let a1,a2,03,... be a fixed effective enumeration of all sentences
of Lo, T1, T, T,... afixed effective enumeration of all finite sets of sentences of Ln, and M a model for L. We
use Th o {T} a} to denote that T can {cannot} derive a in n derivation steps or less, and assume that for any
finite set of sentences T'c L and any n>0, the set of sentences derivable from T in n derivation steps is
computable and finite. We also assume that the derivation procedure is monotonic, that is, if T p then
T u{q}t p, for any p, g and T. One example of such a proof procedure is resolution [Robinson 65]. In the
following more concrete discussion we assume that resolution is our proof procedure. This choice is
immaterial, however, to the more abstract results of this section.

Algorithm 1 implements the following simple idea: hold to your conjecture as long as it you think it agrees
with the known facts. Once you have discovered that it does not, search by enumeration for the next
conjecture which you think does. Since the check whether a conjecture agrees with a fact is in general
undecidable, choose a priori some fixed bound on the time you are going to spend performing this check on
any given fact.

In order to characterize the set of models Algorithm 1 can infer in the limit we need some
complexity-theoretic tools and definitions; see [Machtey & Young 78] for a more complete exposition of
these. We associate with each set of axioms T} a step counting function ®;, where ®.(i) = min{n| il a}.
This function is a partial recursive function, and the reader can verify that the set of step counting functions
®,,0,,®;,... constitutes a complexity measure over the set of characteristic functions ¢1,¢2,¢3,... defined by

{1 if Tg}'d.

e(i) = )
{ undefined otherwise.

A finite set of sentences T is called h-easy if its L, consequences are easy to derive modulo a total recursive
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4. Refuting Hypotheses with Crucial Experiments.

One major source of the infeasibility of Algorithm 1 is its global nature. Whenever it finds that a set of
sentences is not an axiomatization of the model it simply discards it and searches through all finite sets of
sentences until it finds the next plausible conjecture. In this section we address the first problem that must be
solved to develop an incremental inference algorithm. That is, what to do in case the current conjecture is
discovered to be 100 strong, i.c., implies a false observational sentence. In such a case one can conclude that at
least one of the hypotheses is false. An algorithm is developed that can detect a false hypotheses in a
conjecture with false observational conclusions. This algorithm is called the contradiction backtracing
algorithm, since it can trace a contradiction between a conjecture and the facts back to its source, which is a
false hypothesis. The relevance of this algorithm to the philosophical question of refutability of scientific
theories is discussed, and its application to debugging logic programs is illustrated.

4.1. The Contradiction Backtracing Algorithm.

Crucial experiments are experiments that have a potential to decide between competing scientific theories.
A successful crucial experiment can eliminate at least one of the competing theories by providing a
counterexample to one of its predictions. The important role of crucial experiments in scientific progress is
recognized by most schools of philosophy of science. However, there were strong arguments for their limited
power as well. As the philosopher Pierre Duhem said, “the only thing the experiment teaches us is that among
the propositions used there is at least one error; but where this error lies is just what it does not tell us”
[Duhem 54]. Even Popper, the major advocate of refutations as the vehicle for progress in science says “...it
has to be admitted that we can often test only a large chunk of theoretical system, and sometimes perhaps only
the whole system, and that, in these cases, it is a sheer guesswork which of its ingredients should be held
responsible for any falsification™ [Popper 68].

The contradiction backtracing algorithm overcomes, in some sense, this limitation. Although one crucial
experiment can, in general, refute only a collection of hypotheses, the contradiction backtracing algorithm
suggest a way of sequencing crucial experiments, which guarantees singling out a unique false hypothesis.
This method tells us exactly where the error lies, and does not involve any guesswork. The sequencing method
is dynamic, that is, the sequence of experiments to be performed can not determined a priori; rather, the
outcome of every new experiment suggests its successor, the last of which unambiguously points to a false
hypothesis. In addition, the collected results of these experiments provide a counterexample to the refuted
hypothesis, that is, a sentence which logically follows from the hypothesis and was experimentally determined
to be false:

The contradiction backtracing algorithm can be applied whenever a contradiction is derived between some
hypotheses and the facts. Its input is an ordered resolution tree of the empty sentence (Jfrom a set of
hypotheses and true observational sentences S. The algorithm assumes that an oracle for M, that can tell the
truth of all ground atoms of L, is given. The algorithm performs a finite number of experiments in M,
bounded by the depth of the derivation tree, and outputs an hypothesis peS which is false in M.

We first demonstrate what the algorithm does on a propositional calculus example, illustrated in Figure 4-1.
In this example S={{P}~{Q, R}, {Q}—{R}, —{P}, {R}-).

Figure 4-1: Backtracing Contradictions in Propositional Logic.

{P}—{Q.R} {Q}—{R}
—{P} {P}~{R}

—{R} {R}-

~

o
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the n* fact the condition of the while loop will be satisfied, and the value of k will be increased.
Hence after examining a finite number of facts Algorithm 1 will discard all of the conjectures T, for
k<k0. On the other hand, if the algorithm ever conjectures Ty it will never again output a different
conjecture, since Tio is true in M and derives every a, true in M in h(i) steps. Therefore after
examining a finite number of facts the algorithm will conjecture Tio, and never again output a
different conjecture. B

3.2. A Bound on the Power of Sufficient Algorithms.

Algorithm | shows that for any recursive function 4 there is an inductive inference algorithm that can
identify in the limit every h-easy model. In this section we show that if an inductive inference algorithm is
sufficient it can identify in the limit only h-easy models, for some fixed recursive function A. By this we
establish an upper bound on the power of any such algorithm.

Definition 3.3: A set of sentences T is said to be sufficient for the facts F\,F,....F. if for every
fact Fi=<a,rrue>, I<i<n, T implies a. An inductive inference algorithm is said to be sufficienr if
whenever it is applied to an enumeration (Fy,Fa,... ) of some model M and reads the the (n+1)" fact,
for some n>0, the last conjecture the algorithm outputs is sufficient for Fi,F,...,Fa.

Algorithm 1 described above is sufficient. This property seems to be a reasonable requirement of an
inference algorithm, although the Blums' paper describes some powerful inference algorithms that do not
satisfy it. The next theorem shows that if we require an inference algorithm to be sufficient, then h-easy
models are all it can infer.

Theorem 3.4: Let I be a sufficient inductive inference algorithm for a language L. Then thereisa
total recursive function h uniform in I such that if I can identify a model M of L then M is h-easy.

Proof: By the following Lemma 3.5 there is a sufficient algorithm I’ uniform in 1, such that I' is as
powerful as I, and will eventually read in all the facts.

Let S(n) be the set of all consistent finite sequences of facts of the form
0=(<a;, V1> Lay, V2,....<an, Voo>) that do not include the empty sentence. For every 0eS(n) define
170] to be the index of the last conjecture algorithm I’ outputs after reading the facts in o in that
order, and before reading the (n+1)™ fact. 17o0] is well defined and computable since I’ eventually
reads in all the facts.

Since I'is sufficient, for every 0eS(n) and for every fact Fi=<a,frue> in o, if k=1To] then T\ } a, in
some finite number of steps, and therefore @y(n) is defined and finite for all i such that Vi=true,
O<i<n. We choose the complexity bound A to be

h(n) = max{®i(n)| k=1T0], 0eS(n), V.=1rue}

The sequences in S(n) do not contain the empty sentence, therefore for every n there is a 0eS(n) for
which V.=true, hence h is total and recursive. We now show that every model that I’ can infer in the
limit is h-casy. Let M be such a model, and apply I’ to its enumeration <e),V:>,<a,V2>,... . Since
I' can identify M, after reading n facts for a sufficiently large n it will converge to some L.-complete
axiomatization T, of M. By the definition of A it follows that for a sufficiently large n, ®;(n)<h(n),
and therefore Mis h-casy. B

Lemma 8.5: Let 1 be a sufficient inductive inference algorithm. Then there is a sufficient
inductive inference algorithm I' uniform in I such that I’ is as powerful as ] and eventually reads in all
the facts.

Proof: The lemma follows from Minicozzi’s union theorem along the same line of argument as in
the proof of Theorem 3 in [Blum & Blum 75]. ®

This completes the complexity analysis of the model inference problem.
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Algorithm 1: An Enumerative Model Inference Algorithm.

Let A be a total recursive function.
set Staue to {{J}, St to {}and k to 0.
repeat
read the next fact Fo=<a,V>.
add a to Sv. .
while there is an aeStue such that Ty
or there is an a;eSin. such that T k) a; do
setk to k+1.
output 7.
forever.

function A, that is ®«(n)<h(n) for almost every (that is, for all except a finite number of) n>0 such that Tt an.
A model M is h-easy if there is a k>0 such that T, is an h-easy L.complete axiomatization of M. If M is
h-easy then Algorithm | can infer M in the limit, that is after examining some finite number of facts, the
current conjecture T, of the algorithm is an Li-complete axiomatization of the model, and subsequently this
conjecture does not change. In other words,

Theorem 3.1: Let h be a total recursive function and Man h-casy model of L. Then Algorithm 1
identifies M in the limit.

In order to prove the theorem, we need the following lemma, which says that if a model has a finite
L.complete axiomatization that behaves badly (complexity-wise) on a finite number of L. sentences then
there exists another finite L,~complete axiomatization of M that does better on all these anomalous cases, and
does at least as well on all the others.

Lemma 3.2: Let M be an h-easy model for some total recursive function 4. Then there is a k such
that

1. T\ is truein M.

2. ®y(n)<h(n) for all n>0 such that a is true in M.

Proof: Since M is h-easy there is a k1 such that T}, is a finite L,<complete axiomatization of M,
and ®,i(n)<h(n) for almost every n>0. To find a k that satisfies both conditions patch T\, by adding
to it the sentences a; for every i>0 such that a; is true in M and & (1)>A().

The finite set of sentences thus defined is in Ly, since Loc L. Let k2 be the index of this set of
sentences. Since Ti; is an Locomplete axiomatization of M, and Ty, was obtained from T, by
adding only sentences true in M, then T\; is also an L.complete axiomatization of M. We know
that ®u2(n)<®ui(n) for all n, since T, c Ti2. Furthermore, for every i such that ®,(i)>A(i), ®ix(1)=1,
since the corresponding sentence is in T\;. Therefore k2 satisfies both conditions.

Proof of Theorem 3.1: Let k0 be the smallest k such that
I. Txistruein M,

2. ®(n)<h(n) for all n>0 for which a. is true in M.
Such a k exists by the Lemma 3.2.

Any T\ such that k<k0 does not satisfy at least one of these conditions. If T\ does not satisfy
condition 2 then there is an n>0 such that T, [k a» for some a, true in M. If T, satisfies condition 2
but not condition 1 then by the admissibility requirement on Ly and L, there is some an false in M
such that Ti|- aai. Choose n to be the minimal n>n1 such that T aai. In either case after reading
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The algorithm starts from the root J, and iteratively tests the atoms resolved upon. If the atom is true in M
it chooses the left subtree, otherwise the right subtree, until it reaches a leaf. The hypothesis in the leaf is
guaranteed to be false in M. In the illustrated example, assume that the hypothesis { P}—{Q, R} is false, which
means that Rand Qare true in M and Pis false. The algorithm first tests whether Ris true in M, and since, by
our assumption, it is true, it chooses the left subtree. Next it tests P, finding that it is false in the model, and
chooses the right branch. Finally it tests Q, finds it to be true, chooses the left branch which leads to a leaf,
outputs the hypothesis { P}—{Q,R} which is false in M and terminates.

Note that the answer to one experiment determines the next experiment. Also, the number of experiments
is exactly the depth of the leaf reached, and the combined results of these experiments constitutes a
counterexample to the hypothesis in that leaf. If some of the leaves contain true observational sentences
(rather than hypotheses), the number of experiments needed may be smaller.

In the propositional case one can detect a false hypothesis simply by testing all the atoms that appear in the
leaves for their truth in M. This simpleminded procedure might increase the number of experiments needed by
an exponential factor, but in principle it can perform the same task. In the predicate calculus case the task is
more difficult. A universally quantified hypothesis can not be effectively tested over an infinite domain, but if
it is false then it has a false ground instance. The simpleminded procedure in the predicate calculus case is to
systematically instantiate the hypotheses over increasing portions of the domain, and test all the ground
instances generated (assuming they are all in L) until a counterexample to an hypothesis, i.c. a false instance
of it, is discovered. This algorithm is guaranteed to halt since at least one of the hypotheses in the leaves is
false, and such an hypothesis has a false instance that is a result of instantiating it over a finite domain. This
approach is, however, clearly infeasible.

The contradiction backtracing algorithm for a first order language is based on the same idea of detecting a
false hypothesis by systematically constructing a counterexample to it. However the way this counterexample
is constructed is slightly more involved. Before describing the algorithm some terminology concerning
resolution needs to be made more precise. We follow Robinson [Robinson 65] in these matters. A
substitution is a finite set (possibly empty) of pairs of the form V/t where V is a variable and t is a term, none of
these variables are the same. For any substitution 8={V1/t1,Va/ta,...,Vn/ta} and expression s, the expression s6
is the result of replacing each occurance of the variable V,in s, I<i<n by the term t,. If t=56 for a substitution 6
then t is called an inszance of s. If S is a set of expressions then S6={s@| s¢S}. If two sentences are instances of
one another they are equal up to renaming variables, and unless indicated otherwise, we do not distinguish
between them.

Let 6 be a substitution. A finite non-empty set of atoms S is unifiable by 6 if S6 is a singleton. If
6,={t:/V1,12/Va,....tn/Va} and 8; are two substitutions, then 6,°6,=61 U 8 where 63 is the set of all elements of 6,
whose variables are not among Vs,...,Vaand 8i={t8: | I<i<n, t6;#V)}. It can be shown that for any string s and
two substitutions 8 and 65, the equality (58,)82=5(6,°6:) holds. A substitution 8 is a most general unifier of S if
6 is a unifier for S, and for any other unifier 8; for S there is a substitution 8; such that 6=6,°6,. Robinson
describes an algorithm that computes the most general unifier of any set, if it exists. Paterson and Wegman
[Paterson & Wegman 76] describe such an algorithm that operates in linear time.

Definition 4.1: Let A—B, C—D be two sentences of L, R; ¢ B, R; ¢ C. If the sets R; and R; have
a most general unifier 8, {P}=R;6=R.0 then [A U(C-R2)—(B-R;)u D)@ is a resolvent of A—B and
C~—D, and P is the atom resolved upon. The process of generating a resolvent is called resolution,
with A—B as the left component and C—D as the right component of the resolution.

The contradiction backtracing algorithm constructs a counterexample piecewise, and performs only
experiments which are relevant for finding such a counterexample. This introduces a further complication
into the algorithm. Since in the predicate calculus case the atom P resolved upon need not be ground, one
cannot always test its truth directly with the oracle for M. The solution to this problem is to instantiate Pto a
ground atom before giving it to the oracle. The choice of how to instantiate Pis arbitrary, but once it has been
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made all further experiments should be done with the same substitutions, in order for their results to
constitute a counterexample to the hypothesis reached in the leaf.

Algorithm 2: Backtracing Contradiction with Crucial Experiments.
Input: An oracle for a model M, and an ordered binary tree of sentences with the following properties:
1. The root is the empty sentence.

2. Every leaf is either an hypothesis or an observational sentence true
in M, and no two leaves share a variable.

3. Every node which is not a leaf is a binary resolvent of its sons,
where the left son is the left component and the right son is the
right component of the resolution.

Output: An hypothesis that occurs in a leaf of the resolution tree and is false in M.

The Algorithm: Set k to 0, Np to the root of the tree and 6, to {}.
while Ny is not a leaf do
Let Pbe the atom resolved upon at N; with a most general unifier 6.
Choose a substitution ' that instantiates P§i to a ground atom PFx.
Set Gx+1 t0 6°6,°0".
Test whether Py is true in M.
case Py is
true: Set Ni+1 to the left son of Ni.
Jfalse: Set Ni+ to the right son of Ni.
Setktok+l.
Output Ni.

The following is an example of the use of the contradiction backtracing by a model inference algorithm. It
occurs while the algorithm is trying to infer a finite axiomatization of the relation < over the natural numbers,
generated by the constant 0 and the successor function $(X). Assume that the algorithm already conjectured
the hypotheses O<X— and —$(X)<0, and encountered the fact <s(0)<s(s(0)),rrue>. It suggested the
hypothesis $(X)<Y—X<Y, so together with the hypothesis O<X— the sentence $(0)<8(s(0))— can be derived.
However, after adding the new hypothesis the derivation in Figure 4-2 can also be constructed. So let us apply
the contradiction backtracing algorithm to it to see which of the three hypotheses involved is detected to be
false.

Figure 4-2: Backtracing Contradictions in Predicate Logic.

—s(Z)<0 s(X)<Y—X<Y

—X<0 O<W—
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The atom resolved upon at the root is 0<0. The oracle is called on O<0 and answers ‘true’, so the left branch
is chosen, N, is set to —X<0 and 8, to {X/0}. The atom resolved upon at N, is 8(X)<0, and (8(X)<0)8, is
8{0)<0. The oracle answers on this test ‘false’, the right branch is chosen with 8.={Y/0}*6,={X/0,Y/0}, and the
Jeaf N;=8(X)<Y—X<Y is detected to be false. The counterexample constituted by the results of the
experiments is 8(0)<0—0<0, which is also N:8.. Note that not every ground instance of the hypothesis
8(X)<Y—X<Y is false. For example the substitution {X/0,Y/8(0)} yields the ground instance
8{0)<s(0)—0<s(0) which is true.

Before demonstrating the correctness of the algorithm, let us define more precisely how results of
experiments can constitute a counterexample to an hypothesis. We say that a sentence A*—B’ subsumes the
sentence A—B if there is a substitution 6 such that A'6 Cc A and B8 ¢ B, or, in short, (A—~B"8 ¢ (A—B) (see
Section 5.3 for a more thorough treatment of subsumption). Assume that the ground atoms P, P;,..., P were
tested. Let B be the subset of the atoms {P, Ps,..., A} found to be true in M, A the subset found false in M.
Then the ground sentence A—B is false in M, and similarly for every sentence which subsumes it. Insuch a
case A—B is refered to as the counterexample to p via 8 constituted by the outcome of testing Py, P,,..., Px.

Lemma 4.2: Let M be a model of L, T an ordered binary resolution tree of the empty sentence
from sentences of L. If we apply algorithm 2 to T and the sentence N, is reached after testing the
ground atoms P;,.. P, then N, is false in M and the outcome of these tests constitute a
counterexample to N; via 6;.

Proof: The proof is by induction on k, the number of tests. If k=0 then No=0J, which is false in M
and 60={}. The counterexample constituted by no experiments to [6; is also the empty sentence.

Inductively assume that Algorithm 2 tested the ground atoms P,.., P, reached node N,, and the
outcome of the tests constitutes a counterexample A—B to the sentence N,=(A'—B") via the
substitution 6;. Let P be the atom resolved upon at Ni, where the left son of Ny is A;—B; UR,, the
right son of Ni is A; UR;—B;, the sets R; and R; have a most general unifier 8 such that
R;6=R:0={P}and A'—-B'=(A; U A;—B, U B,)8.

A-B;UR; A;UR-B;

N

N|=A"‘B’=((A1 U Az)“(Bx U Bz))a

Assume that P8, is instantiated with a substitution 8’ to a ground atom Pi.y, 6x+: is set to 6°6,°6",
and Py., is tested in M. There are two cases:

Case 1. P..;is true in M. Then algorithm 2 sets Ni.; to the left son of N, which is A;—B; UR,. By
the inductive assumption A—B is false in M. Since Py.. is true in M the sentence A—B U { P,.1} is also
false in M. Since (A;=B;)8 C Ny, the inclusion (A;—B,)86,8°=(A;—B/)6;.: C Ni6,8' holds, and N,6,8"
is equal to Nuf, since the latter is ground. Together with the fact that N8, C (A—B) one can
conclude that (A;—B;)6:.;: C(A—B). Also, since Ri0=P and P6:8’=P..; then R 6i.;=Pi.1, and
therefore Ny.16ke1=(A;+B; UR1)bre: C(A—B U {Pra1})

In other words, Ni.: subsumes A—B U { Py.1} via 6y.1, therefore Ni., is false in M and the outcome
of testing P,,..., Pi.1 constitutes a counterexample to Ni.; via the substitution 6;.,.

Case 2: P,., is false in M. The symmetric argument applies. B

The following theorem is an immediate corollary of Lemma 4.2:

Theorem 4.3: Let M be a model of L, T an ordered binary resolution tree of the empty sentence
from sentences of L. If the depth of T is n then algorithm 2 applied to T performs no more than n
experiments in M and outputs an hypothesis p false in M. B
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4.2. On The Refutability of Scientific Hypotheses.

Detecting a false hypothesis in a refuted theory seems to be a rather difficult task, and it was even claimed
by the philosopher Pierre Duhem to be impossible, since “The physicist can never subject an isolated
hypothesis to an experimental test, but only a whole group of hypothesis™ [Duhem 54]. I review Duhem'’s
argument and relate it to the assumptions on which the contradiction backtracing algorithm operates.
Essentially, Duhem's argument against the possibility of such uniquely falsifying experiments has two
components: a logical component and an epistemological one. The logical component of Duhem’s argument
is that “The only thing the experiment teaches us is that among the propositions used there is at least one
error; but where this error lies is just what it does not tell us. The physicist may declare that this error is
contained in exactly the proposition he wishes to refute, but is he sure it is not in another proposition? If he is,
he accepts implicitly the accuracy of all the other propositions he has used, and the validity of his conclusion is
as great as the validity of his confidence.”

This claim of Duhem is true of one crucial experiment. However, as demonstrated by the contradiction
backtracing algorithm, once such a contradiction between the facts and the theory is discovered, one can
algorithmically decide which additional experiments to perform, so their results will single out a false
hypothesis in the refuted theory. In addition, Duhem argues that when a contradiction occurs between the
hypotheses and the facts one can conclude that a certain hypothesis is false only by implicitly accepting the
accuracy of all other hypotheses used in the derivation. The contradiction backtracing algorithm refutes this
claim, by demonstrating that one can conclude the falsity of an hypothesis just by accepting the accuracy of
factual judgements concerning ground (variable-free) atoms only, that is, sentences which refer to concrete
objects and events.

The epistemological component of Duhem's argument is that even factual judgements concerning concrete
objects and events do involve some theoretical assumptions: “the physicist who carries out an experiment, or
gives a report of one, implicitly recognizes the accuracy of a whole group of theories”. An extension to the
model inference problem that incorporates the notion of theoretical terms (more precisely, theoretical
predicates), was discussed in Section 2.3. The contradiction backtracing algorithm is applicable to this
extension as well. Informally, the way the contradiction backtracing algorithm tests ground atoms in the
model is as follows: if the predicate in the atoms to be tested is observational, then it can be tested directly in
the model. Otherwise we assume that the algorithm has some built in knowledge about the theoretical
predicates it uses, and using this knowledge it can decide whether the ground atoms is true or not. In both
cases the contradiction backtracing algorithm leads to an hypothesis false in the model. More formally, the
assumption is that for every ground atom P=p(t, ta,..., t1) of L, either PeL, or p is a theoretical predicate with
a fixed interpretation, known to the inductive inference algorithm.

To summarize the discussion of Duhem’s argument, it seems that the existence of the contradiction
backtracing algorithm refutes the logical component of his argument:

1. That crucial experiments can refute only a collection of hypotheses.

2. That in order to refute an hypothesis, one has to accept the truth of other hypothesis.
The epistemological component of Duhem’s argument still holds, however, if one rejects the possibility of
factoring the terms used in scientific theories into theoretical terms and observational terms, as defined here.

4.3. An Application: Debugging Logic Programs.

The idea of contradiction backtracing can be readily applied to the debugging of logic programs. If a logic
program computes the wrong input-output relation, or returns the wrong input on a given output, there is at
least one clause in this program that is false under the intended interpretation of its predicates. As an
example, from the following program for computing the subsequence relation over lists

subsequence([].[}])

subsequence(L1,[X]L2]) — subsequence(L1,L2).
subsequence([XL1),[YIL2]) — subsequence(L1,L2)
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one can compute that subsequence([a,b,c).[a,a,c,d]). Under the intended interpretation of the predicate
subsequence(X,Y), that is, X is a subsequence of Y, the third clause of the program is false, and the following
is a counterexample to it which shows that:

subsequence([b],[a]) — subsequence([].{])
The ‘bug’in this clause causes the program to accept any list L1 as a subsequence of any other list L2, provided
that L1 is not longer then L2. Applying the contradiction backtracing algorithm to the computation (proof)
of subsequence([a],[b]), it will first test subsequence([].[]), find it to be true, then test
subsequence([a],[b]), find it to be false, and provide the above counterexample to the third clause of
subsequence. The reader is encouraged to find a correct logic program for subsequence. A solution is
provided on page 24.

In the following we describe a Prolog program that implements the contradiction backtracing algorithm,
for the case where the hypotheses are Horn clauses, the observational language contains all atoms, and the
oracle is the user. We provide an annotated listing of a session with this program, in which a user is
attempting to debug a faulty quicksort program.

The method of collecting substitutions in a resolution proof, used by the contradiction backtracing
algorithm, was suggested first by Green [Green 69]. His goal was to construct an answer to a question formed
as a logical sentence, by proving this sentence from hypotheses and collecting the substitutions used in the
proof. Prolog uses the very same idea, except that the sentence to be proved is always of the form —A and the
hypotheses are restricted to be Horn clauses. Since the Prolog interpreter automatically maintains all the
substitutions as the resolution proof progresses, it is extremely simple to implement the contradiction
backtracing algorithm in it. Figure 4-3 contains a full listing of such an implementation. A similar
implementation is incorporated in the Model Inference System.

Figure 4-3: A Prolog Program for Backtracing Contradictions.

backtrace((P,Q),CE) — {, backtrace(P,CE), backtrace(Q,CE).
backtrace(P,CE) — clause(P,Q), backtrace(Q,CE), resolve((P—Q),CE).
backtrace(P,CE) — P.

resolve({(P—Q).(P—Q)) — var(CE), !, ask(P.,V), ( V=false, CE=(P—Q) ; V=true ).
resolve((P—Q),CE).

ask(P,V) —recorded(fact,(P,V)), \.
ask(P,V) —repeat, write(P), put(63), nl, read(V), (V=true ; V=false), record(fact,(P,V)), !.

For a given atom Atom false in the intended model M, the procedure first tries to construct a proof of
Atom, and if it succeeds it returns an instance of a false hypothesis CE (for CounterExample) used in the
derivation of Atom. The reader is referred to the Prolog manual [Pereira et al. 78] for details concerning
Prolog. In particular note that the internal representation of a sentence {P}—{0:,0:,...,0x} is
P—(Q4,(Q2,(...,Qn)...)), and of { P} is P—true.

The procedure backtrace is a simple Prolog interpreter, augmented with a call to resolve after any
successful use of a clause. A call backtrace(Atom,CE) first constructs a proof of the atom Atom, if such a
proof exists and while ‘popping’ back from the recursive construction of the proof it calls resolve(P—Q,CE)
at each step of the proof that introduces a clause P—Q. The underlying logic of resolve is quite involved. The
critical idea is that the first call to resolve((P—Q),CE) in which P is false unifies the variable CE with the
clause P—Q. The correctness of this idea is argued inductively as follows: If Q=true, and P is false then the
clause P—Q is false, and backtrace returns a false clause in the variable CE. Inductively assume that in all
previous calls to resolve, made when backtrace was returning from the recursive construction of the proof,
the atom resolved upon P was tested and was found true. Then the condition Q is true. Therefore if P is now
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tested and is found false then the clause P—Q is false, the variable CE is unified with P—Q and backtrace
returns an instance of a false clause. All the fine points in the proof of Lemma 4.2, raised by the need to collect
the substitutions used in the construction of the proof and the construction of the counterexample, are taken
care of automatically by the unification procedure and the scheme of shared variables built into Prolog.

The following is an execution trace of a user running the program in Figure 4-3, attempting to debug a the
following quicksort program. The quicksort program we start with contains several bugs, some trivial and
some more subtle.

gsort([X|L],LO) — partition(L,X,L1,L2), qsort(L1,L3), gsort(L2,L4), append(L3,L4,L0).
asort([].[]).

partition([X]L],Y,L1,[XL2]) — partition(L,Y,L1,L2).
partition([XIL],Y,[X]L1),L2) — X<, partition(L,Y,L1,L2).
partition([],X,[]1.[])-

append([X]L1],L2,L3) — append(L1;L2,L3).
append([].L,L).

In order to debug a program, we need to know its intended interpretation. gsort(X,Y) is true just in case Y
is the list X sorted. partition(L,X,L1,L2) is true if L1 contains the elements of L less than or equalto X and L2
those elements of L which are greater than X. append(X,Y,Z) is true if the list Z is the result of appending the
list X to the list Y. In the following trace of execution, lines beginning with {* were typed by the user, and the
rest is the system’s output. We try to execute this quicksort program,

| 7- gsort([2,1.2].X).

X=]
and get an incorrect result. So we call backtrace, which prompts us with queries on the truth of atoms, on
which we answer ‘true’ or ‘false’, according to the above interpretation of qsort, partition and append.

| 7- backtrace(gsort([2,1,2).X).CE).
partition([],2,(].[])?

|: true.

partition([2],2,(].[2])?

|: false.

X=],

CE = (partition([2],2,[].[2]) — partition([].2,[].]))
Backtrace returned a counterexample to the first clause of partition, which is false since its condition is true
while its conclusion is false. The obvious error is that the X> Y check is omitted. We patch this clause by
adding the check,

partition([XIL],Y,L1,[XIL2)) — X>Y, partition(L,Y,L1,L2).
and try the new program.

| ?- qsort([2,1,2],X).

X=]
Since it still returns a wrong answer, we call backtrace again.

| 7- backtrace(qsort([2,1,2].X),CE).
partition([2],2,(2].[])?

[: true.

partition([1,2},2.{1.2].[])?

| true.

partition({],1,{].[})?

|: true.
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partition([2],1,[).[2))?
|: true.

qsort([].[])?
|: true.

append([1.{}.[1)?
|: true.

qsort([2],[])?
| false.

X=[l,
CE = (qsort([2],[]) — partition({],2.[].[]), asort([1.]). gsort([].(1). append([1.[1.[]))

Now CE is bound to a counterexample to the main clause of qsort itself. It is clear that all the subgoals to
qsort([2].[]) returned correct answers, we simply forgot to include the element on which the partition was
done in the final result. So we do that, by modifying the call to append:

qsort([XL],LO) — partition(L,X,L1,L2), gsort(L1,L3), qsort(L2,L4), append([XL3],L4,L0).
Note that qsort([]),[]) was tested by the algorithm several times, but since after the first test the fact
<qsort([].[]).true> was recorded in the data base, the user was bothered with this question only once. As the
debugging process progresses, the data base has more facts about the procedures being debugged, and the user
intervenes less and less in the process. This incremental behavior of the algorithm might prove very useful in
debugging larger systems. We try qQsort again.

} ?-qsort({2,1,2],X).
X=[]

yes
| ?- backtrace(qsort([2,1,2).X),CE).

append([2],[].[])?
|: talse.

X=],

CE = (append([2],(].[]) — append([].[].[]))
and the obvious bug in append is discovered. Note that a program can be debugged as a whole, and there is
no need to finish debugging sub-procedures before debugging the main procedure. We correct the first clause
of append

append([XL1).L2,[XL3]) — append(L1,L2,L3).
and try again

| 7- qsort([2,1.2],X).
X=[2,1,2]
yes

| 7- backtrace(qsort({2,1,2),X),CE).
append([2],[].[2])?

|: true.

gsort([2]).[2))?

|: true.

append([].[2].{2])?

|: true.

append([1].[2].[1.2])?

|:true. -
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qsort([1,2],[1,2])?

|: true.
append([1.2].].[1.2])?

}: true.
append([2,1.2],[],[2.1,2])?
{:true.
qsort([2,1.2},[2,1,2])?

|: faise.

X=[212], )
CE [= (qso]rt([2.1.2].[2.1,2])- partition([1,2],2,[1,2],[]). gsort([1.2].[1.2]), gsort([].[]).
append([2,1.2],[].[2,1.2]))
Here it is a little bit harder to see what is wrong, but looking at the clause of qsort we just corrected reveals
that we corrected it wrongly. The element on which the partition was done was added to the final result, but in
the wrong place: in the head of the list of the numbers smaller then it, instead of in the head of the list of the

larger numbers. This can be corrected easily

gsort([XL],LO) — partition(L,X,L1,L2), gsort(L1,L3), qsort(L2,L4), append(L3,[X]L4],LO).
We try qsort again

| ?- qsort([2,1,2],X).
X=[1,2.2]

yes
| 7- qsort([5,2,45,3,24,543,2,3,1],X).

X =[1,2,2,3,3,5,24,45,543]

yes

and it works!!! The final quicksort program, after debugging, is the following:
gsort([XL],LO) — partition(L,X,L1,L2), gsort(L1,L3), qgsort(L2,L4), append(L3,[X]L4].LO).
asort([].[D.

partition([X|L],Y,L1,0{L2]) = X> Y, partition(L,Y.L1,L2).
partition([XL],Y,[X]L1].L2) — X< Y, partition(L,Y,L1,L2).
partition([].X.[].[]).

append([X|L1],L2,{X]L3]) — append(L1,L2,L3).
append([],L.L).

At least two additional facilities are needed to make a debugger based on contradiction backtracing
practical. First, there should be a way for the user to correct wrong facts he or she typed in. Second, the
contradiction backtracing algorithm can be applied only in case a call to a program succeeds, but with a
wrong answer. If the call simply fails, another approach is necessary. The following section suggests an
approach as to how to add clauses to a logic program in case it fails, but other approaches, based on
modifying existing clauses rather than adding new ones might be more practical for such a debugging task.
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5. Refining Refuted Hypotheses.

Recall the two questions presented on page 6. The contradiction backtracing algorithm solves the first one
by detecting a false hypothesis in a too strong conjecture. Removing such an hypothesis from a conjecture
might result in a roo weak conjecture; this section addresses the question of how to strengthen such a
conjecture. For this task we devise refinement operators over the sentences of L. Intuitively speaking, a
refinement operator suggests a logically weaker plausible replacement to a refuted hypothesis. It can be used
in an incremental inductive inference algorithm in the following way: whenever a counterexample to an
hypothesis is discovered, modify the refuted conjecture by removing this hypothesis. If the resulting
conjecture is too weak, strengthen it by adding other hypotheses, selected from refinements of this and
previously refuted hypotheses.

In the following we develop the notions of refinemen:t and refinement operator. The completeness of a
refinement operator for a given hypothesis language is defined, and examples are provided of different
refinement operators, complete for different classes of hypotheses languages. Properties of the refinement
graph induced by a refinement operator on the sentences of L, are discussed, and a most general refinement
operator, which is complete for any first order language L, is described.

5.1. Refinement Operators.

We assume some structural complexity measure size, which is a function from sentences of L to natural
numbers, with the property that for every n>0 the set of sentences of size n is finite. For any set of sentences S
and any n>0, define S(n) to be the set {peS| size(p)<n).

Definition 5.1: Let L be a first order language, p and g sentences of L. We say that g is a
refinement of p if p implies g and size(p)<¢size(q).

Definition 5.2: A refinement operator p is a mapping from sentences of L to subsets of their
refinements, such that for any peL and any n>0 the set p(p)(n), that is, the set p(p) restricted to
sentences of size<n, is computable.

A refinement operator over L induces a partial order <o over L, with the empty sentence [ as a minimal
clement: a finite sequence of sentences p=po,p1,....p»=q such that p...ep(p,) is called a finite total p-chain; we
say that p<,q if there is a finite total p-chain from p to g; we say that p<,q if p<oq and g&sp. The relation <o
generalizes to sets of sentences. We say that for any two sets of sentences T,S ¢ L, T<,S if for every geS there
is a sentence peT such that p<eq. For any sentence p, the set {geL | p<oq} is denoted by p*(p). The set p*(0D)
is denoted by p°.

Definition 5.3: Let S c L be a set of sentences that includes the empty sentence J. A refinement
operator p over L is said to be complete for S if p*=S.

Recall the intended use of a refinement operator: when an hypothesis is refuted, the inference algorithm
scarches for a replacement to it among its refinements. Therefore the refinement operator incorporated by
such an algorithm is required to be complete for the hypothesis language L,. Below are examples of concrete
refinement operators used by the Model Inference System, which are complete for different classes of
hypotheses languages.

Following [Reynolds 70] we define a relation —, and consider the operator p, defined by pi(p)={q| p—qjl.
Let peL be a sentence, then p—q if one of the following holds:

I. p=0 and g=a(X1,Xa,...,Xn), for some n-place predicate symbol a of L, n>0, and X1,Xa,...,X1 are n
distinct variables.

2. p=P for some atom P, g=P{U/V], where U and V are distinct variables occuring in P.

3. p=P for some atom P, and g=P{V/f(X1,Xa,...,Xn)} for some n-place function symbol f of L, n>0,
where V is a variable that occurs in Pand X1,Xa,....Xn are distinct variables not occuring in P.
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In the following we adopt Reynolds’ definition [Reynolds 70] of the size of a sentence as our concrete
structural complexity measure over L: the size of a sentence p, size(p), is the number of symbol occurrences in
p (excluding punctuation symbols) minus the number of distinct variables occuring in p. We show that piis a
refinement operator with respect to this measure.

Theorem 5.4: p: is a refinement operator over L, complete for the atoms of L.

Proof: For any two sentences p and g, if ¢ is an instance of p then p}q. By the definition of a
size of a sentence, if gepi(p) then size(q)=size(p)+1, hence p; is a mapping from sentences to their
refinements. It is clear from the definition of p: that for any peL the set pi(p) is computable and
finite, hence the set pi(p)(n) is computable for any n>0, therefore p; is a refinement operator.

Theorem 4 in [Reynolds 70] shows that for any atom geL there exists a finite total p;-chain from
Oto g. This establishes the completeness of the refinement operator for the atoms of L. 8

Axiom systems that contain only atoms are relatively trivial. However, a slight generalization of p: results
in a refinement operator which is complete for a language rich enough to axiomatize some of the examples
given above, such as < and plus over integers and append over lists.

Definition 5.5: Let p and p' be two refinement operators over L. We say that p’ is more general
thanpif p* Cp™.

Consider the following generalization of p1. Let peL be a sentence. Then gepx(p) if one of the following
holds:

1. gepi(p).

2. p=a(tyta....tn) for some n-place predicate symbol a and terms tita...ta, and
g=a(ts,ta,...,tn)—a(X1,Xa,...,Xn), where Xy,Xa,...,Xn are distinct variables such that X; occurs in t,
for 1<i<n.

Reynolds termed sentences of the form {P}—{Q} transformations. We call transformations that satisfy
condition 2. above contexi-free transformations. Some non-trivial predicates have an atomic complete
axiomatization via atoms and context-free transformations, and the Model Inference System used the
refinement operator p; to infer them. These predicates include: the order relation and addition over integers,
generated by 0 and the successor function X',

X<X
X<Y' - X<Y

plus(0,X,X)
plus(X',Y,Z') — pius(X,Y,Z)
the prefix, suffix and subsequence relations over lists, generated by the empty list [] and the list constructor

xy],

prefix([],X)
prefix([AIX],[A]Y]) — prefix(X,Y)

sutfix(X,X)
suttix(X,[AY]) — sutfix(X,Y)

subsequence([].X)

subsequence([Al X],[A]Y]) — subsequence(X,Y)

subsequence(X,[A]Y]) — subsequence(X,Y)
concatenation relations over lists,

append([].X.X)

append([A|X],Y.[AZ]) — append(X,Y.Z)

conc([1.X,[X])
conc([{AIX).Y,[AlZ)) —conc(X,Y.2)
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and the subtree relation for binary trees, generated by t(X,Y) and some constants.

subtree(X,X)
subtree(X,t(Y,Z)) — subtree(X,Y)
subtree(X,t(Y,2)) — subtree(X,2)

Theorem 5.6: p; is a refinement operator over L, complete for the atoms and context-free
transformations of L.

~ Proof: For any two sentences p and g, such that p={P}~ and g¢={P}—{Q], pFaq and
size(p)<size(q), hence p; is a mapping from sentences to their refinements. Forany peL the set px(p)
is finite, hence the set p2(p)}(n) is computable for any n>0, therefore p; is a refinement operator.

The previous theorem shows that p; is complete for the atoms of L. Hence for any context-free
transformation {P}—{Q} there is a finite total pi~chain from O to { P}—, which is also a p;~chain. By
the definition of p2, ({P}—{Q))ep:({P}—). Hence there exists a finite total p;~chain from Clto
{P}—{Q}, which establishes the completeness of p, for the atoms and context-free transformations of
LB

There are two simple generalizations of context-free transformations; we introduce them here through
examples, and leave it to the reader to define a complete refinement operator for them. Such refinement
operators were used by the Model Inference System to infer axiomatizations such as the examples below. The
first is multiple context-free Horn sentences, with which we can axiomatize predicates like dense partial order,
with O and 1 as endpoint and m(X,Y) interpreted as a point between X and Y,

0<X

X<1

X<X

m(X,Y)<X — Y<X

m(X,Y)<Y — X<Y

m(X,Y)<Z — X<Z, Y<Z
binary tree isomorphism

isomorphic(X,X)

isomorphic(t(X1,Y1),t{X2,Y2)) — isomorphic(X1,X2), isomorphic(¥Y1,Y2)

isomorphic(t(X1,Y1),t(X2,Y2)) — isomorphic(X1,Y2), isomorphic(Y1,X2)
and satisfiability of boolean formulas over true and faise.

satis(true)

satis(and(X,Y)) — satis(X), satis(Y)
satis(or(X,Y)) — satis(X)
satis(or(X,Y)) — satis(Y)
satis(not(X)) — unsatis(X)

unsatis(faise)

unsatis(or(X,Y)) — unsatis(X), unsatis(Y)
unsatis(and(X,Y)) — unsatis(X)
unsatis(and(X,Y)) — unsatis(Y)
unsatis(not(X)) — satis(X)

The second generalization of context-free transformations is term-free transformations with auxiliary
predicate. Within this class one can axiomatize, among others, multiplication and exponentiation,

times(0,X,0)
times(X',Y,Z) — times(X,Y,W), plus(Y,W,2)

exponent(0,X,0)

exponent(X',0,0")

exponent(X,Y',.Z) — exponent(X,Y,W), times(W,X,Z)
list reversal,

reverse([},[])
reverse([A X},Y) — reverse(X,Z), conc(Z,A.Y)
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the subset relation,

subset([].X)

subset([AlX],Y) — subset(X,Y), member(A,Y)
and insertion sort

sort((].[])
sort([AIX],Y) — sort(X,2), insert(A,2,Y)

insert(A.[].[A])

insert(A.[B|X],[A.BIX]) — A<B

insert(A,[BIX],[B]Y]) = B<A, insert(A.X,Y)
[Angluin & Shapiro 81] will report on a fuller characterization of the expressive power of these classes of
axioms.

5.2. Refinement Graphs.

For any first order language L, a refinment operator p over L induces a refinement graph Go(p*,E). This is
a directed, acyclic graph, where the vertices are the sentences of p*, and there is an edge (p,@)¢E if and only if
qep(p) and pep*. The graph is acyclic since (p,q@)¢E implies that size(p)<size(q). Let p and g be two sentences
in p*. A path in Go from p to q is a finite sequence of sentences p=po, P1,..., Pa=q such that (pipi.1)eE for
O<i<n. Note that a path in G, is exactly a finite total p~chain. We say that q is reachable from p in G, if there
is a pathfrom p to q in Go; p is the predecessor of q if (p,q)¢E, and in such a case g the successor of p.

The following are some properties of Go:
1. A sentence q is reachable in G, from a sentence pep* if and only if p<sq, and therefore only if

prq.
2. The empty sentence O is not reachable from any pep®.
3. Every pep® is reachable from O.

4. 1f a sentence pep” is true in a model M for L, then all its successors in Gy are also true in M; if p is
false in M, then all its predecessors in G, are false in M.

For any given model M for L, we define the set of minimal sentences with respect to <o which are true in M.

Definition 5.7: Let M be a model of L, and p a refinement operator over L. A sentence pep® is
called a source sentence of the model M with respect to p if p is true in M and every sentence gep*
such that g<op is false in M. The set of source sentences of M with respect to p is called the source
set of the model M, and is denoted L}.

By the definition of a source sentence, pep* is a source sentence if all sentences in every path from the empty
sentence O to p in G, are false in M. An infinite sequence of sentences po,p1,... is called an infinite ascending
(or descending) p~chain if p<epus: (o1 pisi<op;) for i30. Since gep(p) implies that size(p)<size(q) there are no
infinite descending p~chains in L. Hence for every peL the set {q| g<op} is finite, and for every sentence pep*
true in M which is not a source sentence there is a source sentence q such that g<p,p. The source set of a model
has the following property:

Theorem 5.8: Let L be a first order language, M a model of L, TJeL,c Ly c L and p a refinement
operator over L which is complete for L. If Lu(ko) contains a finite L.complete axiomatization of
M, for some ko>0, then L}'(ko) is also such an axiomatization.

Proof: Let Tc Ly be a finite L.complete axiomatization of M, ko the maximal size of any
sentence in T. If T is not a subset of L}'(ko), then there is a sentences peT which is not a source
sentence. By definition of a source set of a model, there is a source sentence geL} (ko) such that
g<pp.
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Replace pin Tby g. Since g<op it follows that g} p. Since g is true in M and T'is an Locomplete
axiomatization of M the resulting set of sentences is also an L.-complete axiomatization of M.
Repeat the replacement step until all the sentences in the resulting axiomatization T are source
sentences. T is a finite L.complete axiomatization of M and a subset of LY (ko). Since L} (ko) is
finite and is true in M, it follows that L}(ko) is also a finite L,-complete axiomatization of M. @&

Note that if T; and T: are finite sets of sentences such that T><, T}, then there exists some j such that T; | T5,
and therefore if M is an h-easy model of L, then the source set of M contains an h“easy finite L.complete
axiomatization of M, for h'(nj=h(n)+j. However, for the correctness of the following inductive inference
algorithm, p has to satisfy a stronger requirement:

Definition 5.9: A refinement operator p is said to be conservative with respect to |- if for any two
finite sets of sentences T: and T: such that Ti<,T: and any peL, T:}s p implies that T, |5 p.

If the proof procedure is resolution [Robinson 65] and T' subsumes T, then T:fs Oimplies that T |50,
and because resolution proofs are by way of contradiction, for any peL, T} p implies that T}z p. Since for
all the refinement operators p described in this paper the relation < is a subset of the subsumption relation,
they are all conservative with respect to resolution.

Corollary 5.10: Under the same assumption as Theorem 5.8, if p is conservative with respect to
I, h is a total recursive and T c Lu(ko) is a finite L.-complete h-easy axiomatization of M for some
ko>0, then L}'(ko) is also such an axiomatization.

5.3. A Most General Refinement Operator.

In this section we define, for any given first order language L, an operator p, and prove it to be a refinement
operator complete for L, that is p*=L. The existence of a most general refinement operator is interesting
mostly for theoretical reasons. In practice, some information on the structure of the set of hypotheses to be
inferred is usually known. In such a case we always prefer a less general refinement operator which is
complete for this class, to guarantee more efficient inference of the models of interest.

In the following, a partial order <, is defined for any first order L, with Cas the minimal element. A
refinement operator p. is defined, and a sketch of an algorithm for computing it is provided. Theorem 5.14
states that p, is complete for L, and is the main result of this section. To establish this result we develop some
logical tools, and prove (Theorem 5.17) that <5, is equal to <.

We begin with some definitions. A sentence p=A,;—B, subsumes a sentence g=A;—B; via a substitution 6 if
A0 Cc A;and Bi8 c B;, orin short (A;—B,)8 c A;—B;. Define p==q to stand for p subsumes g and g subsumes
p. The relation == is an equivalence relation; we use [p] to denote the equivalence class of p under it. The
subsumption relation induces a partial ordering on the set of equivalence classes of L with the empty sentence
D as a minimal element. Also, if p subsumes q then p|- q. For example, the sentences {pius(X,Y".Z’)}— and
{plus(X,Y",Z'),plus(X,Y' W)}— are equivalent; they both subsume the sentences
{plus(X,Y".Z")}—{plus(Z,Y,Z’)} and {plus(X,0',X')}—, and are subsumed by {plus(X,Y,Z)}—. Note that p
subsumes q does not imply size(p)<size(q), hence there is no refinement operator p such that p<q if and only
if p subsumes q. Plotkin [Plotkin 71a] gives examples of infinitely strictly descending chains under
subsumption, a property that <, can not have. The subsumption relation can be extended to sets: for any two
sets of sentences S and T, S subsumes T if for every ge T there exists peS such that p subsumes q.

The following definitions and results are by Plotkin. [Plotkin 70, Plotkin 71b, Plotkin 71a]. A set of atoms
S is said to be reducedif S c S’and S==S’ implies that S=S". In other words, S is reduced if it is not equivalent
to a proper subset of itself. A sentence p=A—B is reduced if both A and B are reduced. Asit turns out, if both
pand q are reduced and p==q then p and g are equal up to renaming variables. Plotkin describes an algorithm
that, given a sentence p, computes a reduced sentence g such that p2=g. This algorithm can be used to test
sentences for their equivalence. In this section, ‘a sentence’ will mean ‘a reduced representative of the



28

equivalence class of this sentence’.

Definition 5.11: A substitution 8 is said to decrease a set of atoms S if|S8<S]|. A substitution is
said to decrease a sentence p=A—B if it decreases either A or B. ‘

Definition 5.12: Let p and q be two sentences of L. Then p<.q if there exists a substitution 6 that
does not decrease p, and pf c q.

- By the definition of <., p<.q implies that p subsumes g, but not vice versa. Note that p<,p via the empty
substitution, and p<.q and g<.p implies that p is equal to q up to renaming of variables. The relation <, is
transitive, since p\6, C p; via a non-decreasing substitution 8, and p:6: C p: via a non-decreasing substitution
0 implies that 8:°6; is non-decreasing for p: and pi18:°8:C ps. Also note that O<.p for every pel via the
empty substitution. Hence <, is a partial order on the (equivalence classes of) sentences of L, with Oas a
minimal element. From the above definitions it is clear that for two reduced sentences p and g, p<.q implies
size(p)<size(q). Therefore under <, there are no infinite strictly descending chains.

Let Pand Q be atoms of L and U a set of atoms or a sentence. We say that P is more general than Q with
respect to U if there exists a substitution 8 such that PA=Q and U8=U. Let A—B be a reduced sentence. We
say that P is a most general atom such that A—B U { P} is reduced if for any atom Q such that Q is more general
than P with respect to A—B, the sentence A—B U {Q} is not reduced. Similarly for A U { P}—B.

Ddfinition 5.13: Let p=A—B be a reduced sentence of L. Then geps(p) if exactly one of the
following holds:
1. g=p8, where 8={V/W} does not decrease p and both variables V and W occur in p.

2. @=p#8, where 6={V/t(X,,...,.Xa)} does not decrease p, f is an n-place function symbol, V occurs
in p and every X,, I<i<n, is a distinct variable that does not occur in p.

3.q=A U {P}—B, where Pis a most general atom with respect to A—B for which A U {P}—B is
reduced.

4. g=A—B U { P}, where P is a most general atom with respect to A—B for which A—B U {P} is
reduced.

Theorem 5.14: p, is a complete refinement operator over L.

Proof: If qep«(p) then p subsumes g, and therefore p}-g. Both substitutions in cases 1 and 2 are
non-decreasing, and they increase the size of p by exactly 1. Incases 3and 4 anatom is added to the
sentence without changing the rest of it, hence gep.(p) implies size(p)<size(q), therefore p, is a
mapping from sentences to their refinements.

It is clear that cases 1 and 2 hold only for finitely many sentences g, but in general there are
infinitely many atoms P that satisfy cases 3 and 4. In the following we describe an effective
procedure for finding all such atoms of size less than some fixed bound, hence the set p(PXYn) is
computable, therefore p, is a refinement operator over L.

Theorem 5.17 shows that if p<.q then there is a finite total p,-chain from p to q. Since O<.q for
any sentence gel it follows that p, is complete for L. @

We sketch an algorithm for computing the set p(pXn), given a sentence p and n>0, then proceed to prove
that p, is complete. Computing non-reducing substitutions as in cases ! and 2 is straightforward, and only
finitely many sentences can be generated by these operations. For cases 3 and 4 one has to find a most general
atom P with respect to A—B, the sentence to be refined, such that the resulting sentence A U {P}—B (or
A=B U {P))is reduced. This setis in general infinite. For example, for the sentence

P(X.2)}—={p(X.H(Y)).p(f(Y).2)}
any of the following infinite list of atoms

PHX).HY)). p(H(H(X)).H(Y)). pUH(X).H(H(YD)). DUFH(X)).H(H(YI))....
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satisfy case 4 in the definition of p,. However, all such atoms of size<k can be systematically generated in the
in the following way: choose an atom a&(X1,Xa,...,Xn), where & is an n-place predicate symbol of L and
X1,Xa,...,Xn are distinct variables not occuring in A—B. Successively choose a variable V that occurs in P and
perform one of the following operations:

1. Choose a variable U that occurs in P but notin A—B, and set Pto P{V/U}.

2. Choose an n-place function symbol f for n>0 and set P to P{V/f(Z,.....Z,)}, where Z,, I<i<n are
variables that do not occur in Porin A—B.

3. Choose a variable U that occurs in A—B, and set Pto P{V/U}.
until either A U {P}—B is reduced, or size( P)>k. If the second condition holds, then fail. Otherwise, verify that
the sentence A U {Q]—B is not reduced, for any atom Q such that 0— P via a substitution that does not change
A=B. If so, return P.

Note that each of the results of applying operations 1 and 2 to an atom P is an atom P such that P~ P, and
in such a case size(P")=size(P)+1. Operations 3 can be performed only finitely many times, bounded by the
number of variables in A—B. Hence the algorithm terminated on every computation path. Since operations |
and 2 are sufficient to generate all atoms of L, up to renaming variables, we are guaranteed that every atom of
size<n will be generated by this procedure. Operation 3 provides the mechanism for the appropriate renaming
of the variables in P. Therefore the set of atoms generated by the successful computations of this algorithm is
the required set.

The following two lemmas and theorem establish that p, is complete for L.

Lemma 5.15: Let p and g be two sentences such that p6=q for some substitution 8 that does not
decrease p. Then there is a finite total p.—chain from p to q.

Proof: This lemma is a generalization of Theorem 4 in Reynolds’ paper. Examination of the
proof of this theorem shows that it can be applied to p and p# to obtain such a finite total chain. B

Lemma 5.16: Let p=A;—B; and g=A,—B; be two reduced sentences such that p c g. Then there
is a finite total p.~chain from p to q.

Proof: The proof is by induction on n, the sum of the number of atoms in the difference sets Ax-A;
and B:-B:. If n=0 then p=q and the empty chain satisfies the lemma. Assume that the lemma is true
for some n>0, and that there are n+1 atoms in A;-A; and B;-B;. Let P bean atom in A;-A;, and A}
be A:-{P} (The symmetric argument applies to Pe(B:-B:) in case A:=A;). By the inductive
assumption there is a total p.~chain p=po,pi,....p;i=A2-{ P}=B: from p to A}—B..

If Pis a most general atom with respect to Ai—B; such that Aju {P}—B; is reduced, then by
definition of p., (A2—B1)ep.(Ai—B:), and the lemma is proved. Otherwise there is an atom @ such
that Q is more general than P with respect to A3—B;, and A3 U {Q]}—B; is reduced. Let P be the most
general such atom. By definition of po, (AU {P’}~B:2)ep(Ai—B;). By the choice of P there is a
substitution 8 such that (Aiu {P}—B:)8=(A:u {P}—B:;)8=A;—B;. This implies that 6 does not
decrease AjuU{P’}—B;, hence by Lemma 5.15 there is a finite total pechain pj«; pj.2,....px, Where
Di=(A3u{Fj—B;) and pi=Aju{P}—B;=A;—B.. Therefore the finite total p.,<chain
PoL 1y sDixPit1,... Dx satisfies the lemma. B

Theorem 5.17: g<.p if and only if p<s.q.

Proof: If p<s.q then there exists a finite total p.<chain p=po.pi,....p»=q such that pi.ep.(p), for
O<i<n. By definition of p., for every i, O<i<n, there is a non-decreasing substitution (possibly empty)
6:such that pif; C p..,. Hence p<pi.; for O<i<n, and by transitivity of <, it follows that p<.g.

If p<.q then there is a substitution # such that pcg. By Lemma 5.15 there is a finite total
pochain p=po,pi,....;«=p8. By Lemma 5.16 there is a finite total p.chain pf=p;.pi«,...Pn=q, 0
DoD1,...PrPis1,.... P 15 & finite total p.chain from p to ¢, and p<oqg. B

This establishes that p, is a most general refinement operator, complete for any first order language L.
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6. A General, Incremental Model Inference Algorithm.

The method used by the enumerative Algorithm 1 can be viewed as a simpleminded implementation of the
Popperian idea of choosing the simplest explanatory conjecture, and holding to it until it is discovered to
disagree with some fact. When this happens, one has to look for a replacement to this conjecture, preferably
the next simplest conjecture that agrees with the facts. The implementation of this idea in Algorithm 1 is,
however, clearly infeasible. A much better implementation can be carricd out if, instead of throwing away the
old conjecture and looking for a new one from scratch, one can make local modifications to the old set of
hypotheses and adapt it to cope with new facts. This section describes how, using the contradiction
backtracing algorithm and a refinement operator, one can locally modify conjectures to agree with new facts,
and obtain a model inference algorithm that progresses in a piecewise, incremental way. Figure 6-1 sketches
such an algorithm.

Figure 6-1: Layout for an Incremental Model Inference Algorithm.
Set T'to {O}.
repeat
read the next fact.
repeat
while the conjecture T'is too strong do
apply the contradiction backtracing algorithm,
and remove from T the refuted hypothesis.
while the conjecture is too weak do
add to T refinements of previously refuted hypotheses.
until the conjecture T is neither too strong nor too weak
(with respect to the facts read so far).
forever.

The question whether a conjecture is too strong or too weak is in general undecidable, and we can only
approximate it by some resource-bounded computation. Incorporating some fixed recursive function A as the
bound on the complexity of derivations results in an algorithm capable of inferring in the limit any h-casy
model. Since an algorithm based on this layout is sufficient (see Definition 3.3}, Theorem 3.4 (page 13) assures
us that such an algorithm can infer in the limit only h-easy models, for some fixed recursive function h, and
hence it is the most powerful of its kind.

This algorithm raises another question: which refinements should be added when the theory is too weak?
As it turns out, the precise way this idea is implemented is immaterial to the correctness of the algorithm, as
long as it is ‘exhaustive’ in some natural way. In practice, however, this question is crucial, and good
heuristics for ordering the addition of refinements to the conjecture may result in a considerable speedup in
the convergence of the algorithm.

In the rest of this section we describe a more detailed version of this algorithm, and show that it can infer in |

the limit any h-easy model. A discussion of some implementation issues follows.

6.1. Approximating the Source Set of a Model.

Corollary 5.10 (page 27) suggests that the right place to look for an L.~complete axiomatization of a model
is in its source set. The source set of a model is, in general, infinite. We show a way of approximating it to any
required degree.

Let Go(Ly,E) be the refinement graph of some refinement operator p, which is complete for Lv. A marking
m of Gp is a set of sentences of L, thought of as marked ‘false’. A marking m of G» is a consistent marking if

-
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for any g marked ‘false’and any peLs such that p<oq, p is also marked ‘false’. A marking m is consistent with
M if it is a consistent marking, and every sentence p marked ‘false" is false in M.

Definition 6.1: Let m be a consistent marking of Go. A sentence pep® is called a source sentence
of the marking m if p is not marked ‘false’and every sentence gep* such that g<pp is marked ‘false’ in
m. The set of source sentences of a marking m is called the source set of the marking® m, and is
denoted L7.

If a marking m is consistent with a model M, then L7, the source set of the marking is an approximation of
LY, the source set of the model. Before quantifying this notion of approximation, we show that if m is a
consistent marking, then the set LZ(k) is computable for any k»0. To see this, consider some sentence peL. If
p is marked ‘false’ or size(p)>k then p¢L5(k). Otherwise consider all sentences @ such that (g, p)eE. There are
only finitely many of them. If all of them are marked ‘false’ then peL?, otherwise p¢L7.

Lemma 6.2: Let p be a refinement operator over L complete for Ly, Go(Ly,E) the refinement
graph of p, M a model of L and m a marking of G» consistent with M. Then for any k>0,

(k)(pr(k) If, in addition, every sentence of Lu(k) which is false in M is marked ‘false’, then
L3(k)=L2(k). If all false sentences of L are marked ‘false’then L3=LY.

Proof: Under the assumptions of the lemma, L3<o{p} for any sentence peLs true in M, by the
definition of L7. In pamcular if size(p)<k, for some k>0, then L7(k)<o{p}. Since L} is true in M, it
follows that LE(k)<e L} (k).

Assume, in addition, that every sentence of Ly(k) false in M is marked ‘false’. By definition of L5,
it follows that L3(k) is true in M. Since L}'<o{p} for any p true in M, it follows that LY (k)<L (k).
We claim that together with the fact that L3(k)<oL}'(k), the equality L(k)=L}(k) follows. Clearly if
B(k)=L}(k) for all k>0, then LE=L}'.

Proof of the claim: Let p be a sentence in L} (k) Since L3(k)<oL}(k), there is some qeL3(k)
such that g<op. Since L3'(k)<oL5(k), there is p'eL'(k) such that p'<sq. By the transmvny of NG i
follows that p'<ep. By definition of the source set of a model, it is impossible that p'<sp, hence p' =p,
which implies that p=q. The symmetric argument applies to a sentence p in L3(k), and together they
prove the claim. @

6.2. An Incremental Algorithm.

With these notions we can now describe the algorithm. Algorithm 3 assumes that <L,, L,> is an admissible
pair of languages, p is a refinement operator complete for L, conservative with respect to resolution,
a;,a,0;,... afixed effective enumeration of all sentences of L., F,F;,F;,... an enumeration of some model M
of L and A a total recursive function.

We prove that under these assumptions, the following theorem holds:
Theorem 6.3: If M is an h-easy model for L, then Algorithm 3 identifies M in the limit.
A model inference algorithm is said to identify a model in the limit if, after reading in a fact F, for some n>0,
it outputs an L,-complete axiomatization of M, and never again outputs a different conjecture. We prove that

Algorithm 3 identifies M in the limit by showing that if ko is the minimal k for which L¥(ko) is a finite
L.complete h-easy axiomatization of M, then Algorithm 3 eventually increases k up to ko and does not

*The source set of a marking is closely related to the set G of most general patterns that do not match negative instances,
in Mitchell's Version Spaces Algorithm [Mitchell 78).
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Algorithm 3: An Incremental Model Inference Algorithm.
set k t0 0, Stane to {0} and Sine to {}.

mark O ‘false’. T
repeat
read the next fact F,.=<a,V>and add a to Sv. -
repeat

while L7(k) k a for some €St do
apply the contradiction backtracing algorithm
and mark the refuted hypothesis ‘false’.
while L7(k) ;) ai for some aieSie do
increase k by 1.
until neither of the while loops is entered.
output Lz'(k).
forever.

increase it further, and that L3(ko) converges pointwise’ to L} (ko). To do so we establish the following facts
about the algorithm, assuming it is applied to an enumeration of an A-easy model:
o If L}(ko) is an L.-complete, h-easy axiomatization of M, then it does not increase k beyond ko.

o If ko is the minimal k for which L5(ko) is an h-easy L.-complete axiomatization of M, then it
increases k up to, at least, ko.

o If k is increased up to, and no more than, ko, then L3(ko) pointwise converge to L}'(ko).
Together these facts prove Theorem 6.3.

Lemma 6.4: Any marking m made by Algorithm 3 applied to an enumeration of a model M is
consistent with M.

Proof: We prove the lemma by induction on the number of marks. In the initial marking only
O s marked ‘false’. Since no edge (¢,0) is in E this marking is consistent, and since [l is false in any
model, this marking is consistent with M. A sentence is marked ‘false’ by the algorithm only if it is
refuted by the contradiction backtracing algorithm. Assume that at some stage the marking of Go is
consistent with M, and a sentence peL? is refuted by the contradiction backtracing algorithm. By
definition of L7, a sentence p is in L? only if every sentence geLy such that (g,p)eE is also marked
‘false’, hence by the definition of a consistent marking, the marking of p in Gy as ‘false’ is consistent.
By the correctness of the contradiction backtracing algorithm this marking is consistent with M. &

Lemma 6.5: If Algorithm 3 is applied to an enumeration of a model M, and L2'(ko) is an h-easy
L.~complete axiomatization of M, then the algorithm increases k up to no more than ko.

Proof: By Lemma 6.4, any marking of the graph G» made by the algorithm is consistent with M.
Together with Lemma 6.2 this implies that for any k>0, L3(k)<,L¥(k). Since p is conservative with
respect to resolution, after increasing k up to ko the condition of the second while loop can not be
satisfied again, therefore k cannot be increased beyond ko. @

*A sequence of sets S1,52,Ss,... is said to converge pointwise to a set S if and only if for every aeS there is an n; such that -
aeS, for every n>n;, and for every a¢S there is an n; such that a¢S, for every n>n,, -
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Lemma 6.6: Algorithm 3 applied to an enumeration of an h-casy model M eventually reads in all
the facts.

Proof: We show that if M is an h-easy model, then the inner repeat loop terminates on every new
fact. Assume a new fact F, is read, for some n>0; we count the total number of times the two while
loops can be executed.

Since M is an h-casy model of L, it has some finite L.-complete h-casy axiomatization. Let T be
such an axiomatization of M, that is, for any sentence ae LY. 7' a.. Let ko be the maximum size
of any sentence of T. Since p is conservative with respect to resolution, by corollary 5.10, L} (ko) is
also an h-easy L.~complete axiomatization of M.

By Lemma 6.5, k is not increased beyond ko, hence the second while loop can be executed only
finitely many times. Since La(ko) is finite, at any given time L3(k) ¢ Ly(ko), and every iteration of the
first while loop marks at least one sentence of Ly(ko) ‘faise’, it follows that the first while loop can
be executed only finitely many times. Hence any iteration of the inner repeat loop terminates, and it
is executed for only finitely many iterations. B

Almost the same argument shows that Algorithm 3 reads in all the facts when applied to an enumeration of
any model. The reason is that at any given point the set of Sin. of true observational sentences define an
h-casy (almost everywhere false) model of L.

Lemma 6.7: If for some ko>0, Algonthm 3 increases k up to and no more than ko, then L7 (ko)
converges in the limit pointwise to L} (ko).

Proof: By Lemma 6.2 it is sufficient to prove that for any sentence peLs of size<ko, if p is false in
M then eventually it will be marked ‘faise’. We show that if LZ(ko) contains a false sentence (that is,

B (ko) L} (ko)), then eventually the contradiction backtracing algorithm will be applied, and some
sentence peL5(ko) will be marked ‘false’. Since for any marking m, L5(ko) ¢ Lu(ko) and the latter is
finite, this process can happen only finitely many times, and eventually all false sentence in Li(ko)
will be marked.

Consider some marking m made by the algorithm, after k is increased up to ko. If L8(ko)=L5' (ko)
the lemma holds, so assume, by way of contradiction, that LZ (ko) contains a false sentence, and m
does not change anymore. Since LB(ko)<sL}'(ko) and L}'(ko) is an L.complete axiomatization of M,
it follows that L¥(ko)} LY, where LY is the set of observational sentences true in M. By the
admissibility requirement (page 9), LZ(ko) has a witness for its falsity aieL, for some i>0, that is,
Lp(ko) frai for some j>0, and a is false in M. Let n=max{i,j}. Then L5(ko)}s ., and after reading the
n® fact F,, the set S, contains a.. At this point the condition of the first while loop is satisfied, the
contradiction backtracing algorithm is called, refuting some peLf(ko), which results in marking p
Yaise’, in contradiction to the assumption that m does not change. Therefore L5 (ko) pointwise
converges to L}(ko). B

Lemma 6.8: If ko is the minimal k for which L5(ko) is an h-easy L.complete axiomatization of
M, then Algorithm 3 increases k up to at least ko.

Proof: Assume, by way of contradiction, that Algorithm 3 applied to an enumeration of an h-easy
model M increases k up to, and no more than, some k' for which L}k’ is not an h-easy
axiomatization of M. By Lemma 6.7, L3(k") pointwise converges to L}'(k"). Since, by choice of k',
L¥(k") is not an h-casy L.complete axiomatization of M, there is an ajeL,, for some j>0, such that
L¥ (k") k) a;. Let n be the least index i such that the algorithm increases k up to k’ before reading F,,
and let no be max{n,j}. Then after reading the no™ fact, a;eS:n. and k=k’, hence the condition of the
second while loop is satisfied, and k is increased beyond k’, in contradiction to our assumpuon
Hence k is increased up to, at least, ko, and the lemma is proved. B

Proof of Theorem 6.3: Let M be an h-casy model of L, ko the minimal k>0 such that L. (ko) is an
h-easy, L.complete axiomatization of M. Such a ko exits by corollary 5.10. Assume that Algorithm
3isapplied to an enumeration of M.
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By Lemmas 6.5 and 6.8, algorithm 3 increases k up to, and no more than, ko. By Lemma 6.7
L?(ko) pointwise converges to Li(ko). Since L}(ko) is finite, there is some n>0 such that after
Algorithm 3 reads in the n* fact, L3(k)=L}(ko), and both m and k do not change anymore. Hence
after reading in the n" fact Algorithm 3 outputs an h-easy L.-complete axiomatization of M, and
never again output a different conjecture. In other words, Algorithm 3 identifies M in the limit. B

‘By proving Theorem 6.3 we have established that Algorithm 3 is as powerful as Algorithm 1, and, since
Algorithm 3 is sufficient, Theorem 3.4 says that it is the most powerful of its kind.

6.3. Some Implementation Issues.
The specialization of Algorithm 3 to the inference of Horn theories and its implementation in Prolog will be
discussed in a future paper. Here we just point out the major issues involved in such an endeavor.

One issue that has to to be addressed to implement the algorithm efficiently is how to compute quickly the
effect of adding or removing hypotheses from the conjecture. The problem is to find an efficient way to test
whether the removal of an hypothesis from the conjecture (by marking it ‘false’), results in the unprovability of
some sentence in S, previously provable from the hypotheses, and to test whether the addition of an
hypotheses to the conjecture (by increasing k) results in some sentence in Sque, previously unprovable from the
hypotheses, now being provable under the current complexity bound.

The first of these questions can be solved by maintaining logical dependencies between the hypotheses and
the facts, that is, recording which hypotheses one used in the derivations of which facts (see [Charniak et al.
80] for an ensemble of implementation techniques for this task). I do not know of a general efficient solution
to the second question, which avoids trying again to prove all the sentences in Snu, although The Model
Inference System incorporates some heuristics that apply in case the hypotheses are Horn clauses.

Optimizing the number of hypotheses in the conjecture is another problem to be solved. The model
inference algorithm is guaranteed to minimize the maximal size of the hypotheses in the conjecture. The
conjecture may contain many superfluous hypotheses that do not increase its logical power. This behavior
also may influence the efficiency of the algorithm, since the complexity of the tests in the condition of the
while loops grows with the number of hypotheses in the conjecture. There is a simple algorithm to locally
optimize the conjecture, in case the hypotheses are Horn clauses. The version of the Model Inference System
on which the statistics were made does not yet incorporate the full optimizer, so the reader can find, in some
cases, superfluous hypotheses in the final conjecture produced by it.

Another issue to be addressed is the amount of information the oracle (user) is allowed to supply the system.
For example, if the system knows that in the predicate sort(X,Y) to be inferred the type of the variables is “list
of integers™, the generation of many syntactically correct but semantically wrong axioms can be avoided by
the refinement operator. Type specification is not yet incorporated in the Model Inference System.

There are many heuristics that can improve the efficiency of the model inference algorithm, in terms of time
and the number of facts needed for convergence. For example, if the pair of hypotheses language and
observational language is decidable, i.e., the question whether T} a is decidable for any T'c Ly and any aeL.,
then the complexity bound h can be ignored. In case La contains Horn sentences of restricted form (such asall
the classes described in Section 5) and the proof procedure is backward chaining (a restricted form of
resolution, used by Prolog), a simple test for duplicate occurrences of goals on the stack will do. These and
related topics will be discussed more fully in a future paper.
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7. Concluding Remarks.

This paper has presented a general, incremental algorithm that infers theories from facts. Its theoretical
analysis shows that it is comparable to some of the most powerful algorithms known from the
complexity-theoretic approach to inductive inference. Its implementation surpasses existing systems for
inductive inference and program synthesis from examples. 1 believe that these encouraging results where
made possible through using first order logic as the underlying model of computation.

. Here are some of the reasons for the success of logic as a media for inductive inference:

Logic has natural semantics. 1f a Turing Machine computes an incorrect result on a certain input, there is
no sense in which one of the transitions in its finite control is “wrong”. For every such candidate to be a
“wrong™ transition, one can always patch the Turing Machine without changing this transition, so it will
behave correctly on this input. On the other hand, if a set of logical axioms has a false conclusion, there is a
natural sense in which at least one of the axioms is strictly false. This fact enables the existence of error
detecting algorithms such as the contradiction backtracing algorithm.

Logic has an intimate relation between its syntax and semantics. For example, replacing a variable by a
term, or unifying two variables in a sentence, always results in a logically weaker (or equivalent) sentence. The
same is true for adding atoms to the condition or the conclusion of a sentence. This is the reason why there are
natural ways to weaken the logical (computational) power of a refuted hypothesis, or, in other words, why
natural and easy-to-compute refinement operators exist.

Logic is monotonic and modular. Altering an axiomatization by adding or removing axioms has clear
effects on the expressive (computational) power of this axiomatization: if you add axioms you have more
consequences (input-output relations); if you remove axioms you have fewer consequences (input-output
relations). There are not many practical programming languages for which such syntactic alterations to a
program have predictable effects on what it computes.

As a programming language, logic features separation of logic and control. It seems that one of the reasons
for the efficiency of the Model Inference System is that it infers only the “logic component” of a program
[Kowalski 79b], and leaves the “control component” unspecified. The logic component of a program
contains more than its specification, as the differences between the quicksort logic program (page 22) and the
insertion sort program (page 26) show. The task of imposing control on a logic program is similar to the task
of program optimization. The problems of program optimization and program synthesis from examples are
hard enough by themselves to justify refraining from solving them simultaneously. We propose separating the
task of synthesizing efficient programs from examples to two sub-tasks: inference of (sometimes inefficient)
programs from examples, and program optimization. Such a division of labor is easier to carry out if the
optimization task is a mapping between well defined classes of objects. Such is the case with the mapping
induced by imposing control on logic programs.

As a programming language, logic features equivalence of program and data. Logical facts can readily be
part of the logic program to be inferred. This sense of equivalence is stronger than the one used to describe
other programming languages, like Lisp. This equivalence has not been used, so far, in the mode! inference
algorithm or in the Model Inference System, in order to focus on the more theoretical issues of inductive
inference. However, in a system which interacts more gracefully with the user, in the spirit of McCarthy's
Advice Taker [McCarthy 63], such a property might prove to be extremely useful. Such a system would be
oriented not only to the inference of theories from facts but also to the interactive creation, acquisition and
debugging of theories from human advice. A uniform language for specifying “low level” details (truth of
ground atoms), and “high level” advice (proposed hypotheses) would enable devising algorithms and systems
that treat uniformly all human advice.
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1. Performance of the Model Inference System

The Model Inference System is implemented in the programming language Prolog [Pereira et al. 78]. It was
developed hand in hand with the algorithms, problems in the former motivating improvements in the later.
The system has had four stable incarnations so far. The first inferred ground complete axiomatizations of
regular sets; the second inferred atomic complete axiomatizations of such sets; and the third inferred atomic
complete axiomatizations of a first order language with an arbitrary alphabet, provided the axioms were
context-free transformations. The fourth incarnation of the system enabled the inclusion of more general
refinement operators, and could infer multiple context-free Horn sentences and term-free transformations
with auxiliary predicate. So far it has succeeded in inferring atomic complete axiomatizations of dense partial
order with endpoints, binary tree isomorphism, list reversal and list subset, multiplication and exponentiation,
and satisfiability of boolean formulas.

A fifth implementation is on its way, featuring the possibility of concurrent inference of arbitrarily many
programs; typing specification, to be used by the refinement operators to restrict the generation of
semantically wrong hypotheses; an algorithm that locally optimizes the conjecture, and improved heuristics
for adding hypotheses and minimizing the number of queries (experiments).

Following are examples of application of the different incarnations of the system, with some relevant
statistics. In the first two incarnations the programs were all interpreted under the Edinburgh Prolog-10
interpreter version 1.32. In the third and fourth the programs were compiled using the in-core compiler of the
Edinburgh Prolog-10 version 3. The computer is a DECsystem-2060, running Prolog-10 under the
compatibility package PA1050. In the following, the running time in CPU seconds measured the time the
system took to converge to a correct and sufficient axiomatization of the intended model. The decision to
terminate the inference process was made by me, since it is an inherent property of an inductive inference
algorithm that ir can never tell whether it has converged. Note that since this decision was subjective, there
may be some errors in the axiomatization below (I am aware of one). The reader is encouraged to find them.
Facts are the number of facts read therein, and hypotheses generated is the number of hypotheses generated
by the refinement operator during the inference.

In the earlier versions of the system it would simply go through all possible atoms, in increasing order of
complexity, asking the user (or a built-in oracle for the model, when the user was tired) whether they are true
in the model. The inefficiency of this approach became more evident as the models got more and more
complex, since true atoms are scarce in such models. Therefore in later versions of the system the user is
capable of specifying some initial set of facts about the models, hence these implementations were more “fact
efficient™.

1.1 Inferring Regular Sets.

The first order language for this task consisted of the two predicates in(X) and out(X). The terms of the
language were the null string A, and strings constructed from a variable or A and the successor functions 0(X)
and 1(X). For convenience these where simulated by lists of 0’s and 1s. The hypotheses language contained
Horn clauses, where the only structural restriction on them was that the size of the terms in the condition
would not exceed the size of the term in the conclusion. This restriction releases us from a need to impose
complexity bound on the size of the proofs. In the following axiomatizations, the number associated with an
axiom is its sequential number in the order the axioms were generated by the refinement operator.

Inferring Ground Complete Axiomatizations of Regular Sets.

Strings of even number of 1’s and even number of 0’s.

157 CPU seconds, 64 facts, 613 hypotheses generated.
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(in(A) — true), 3

(out(0) —true), 9

(out(1) — true), 23
(out(0X) —in(X)), 12
(in(00) - true), 37
(out(0X) —in(1X)), 14
(in(11) — true), 76
(out(1X) —in(X)), 26
(in(00X) — in(X)), 40
(out(00X) — out(X)), 52
(out(01X) — in(X)), 171
(out(01X) — in(0X)), 173
(out(11X) — out(X)), 91
(in(01X) — in(10X)), 191
(out(1X) —in(0X)), 28
(in(10X) —in(01X)), 70
{out(10X) — out(01X)), 289
(in(11X) —in(X)), 79
(in(010X) — in(001X)), 219
(in(011X) — in(0X)), 305

Strings of even parity.

16 CPU seconds, 20 facts, 102 hypotheses generated.

(in(A) — true), 3

(in(0) —true), 9
(out(1) —true), 23
(in(0X) = in(X)), 12
(out(0X) — out(X)), 20
(out(1X) —in(X)), 26
(in(1X) — out(X)), 34

Strings that contain 11 as a substring.

41 CPU seconds, 50 facts, 141 hypotheses generated.

(out(A) —true), 3
(out(1) —true), 8
(in(11X) — true), 18
(out(0) — true), 23
(out(0X) — out(X)), 27
(in(0X) — in(X)), 45
(out(10) — true), 72
(out(10X) — out(X)), 76
(in(1X) = in(X)), 19

Strings that contain 11 or 00 as a substring.

25 CPU seconds, 31 facts, 188 hypotheses generated.

(out(A) — true), 3
(out(0) —true), 8
(in(00X) — true), 17
(out(1) — true), 23
(in(11X) - true), 32
(in(0X) —in(X)), 19
(out(10) — true), 67
(in(1X) = in(X})), 33
(out(10X) — out(0X)), 79
~ (out(01X) — out(1X)), 49
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Strings that are of even number of ones or contain 00 as a substring.

64 CPU seconds, 69 facts, 383 hypotheses generated.
(in(A) — true), 3
(in(0) — true). 8
(in(00X) — true), 10
(out(1) — true), 23
(in(1X) — out(X)), 34
(in(0X) — in(X)), 12
(out(10) — true), 73
(in(100X) — true), 93
(out(01) — true), 37
{out(01X) —out(1X)), 49
(in(11X) — in(X)), 53
(out(11X) — out(X)), 111
(in(10X) — in(01X)), 98
(out(101X) — out(X)), 175

Inferring Atomic Complete Axiomatizations of Regular Sets.

The inefficiency of inferring ground complete axiomatizations of regular sets was due not so much to the
algorithm as to the fact that I was looking at the wrong problem. Logical theories are essentially
non-deterministic computational devices. A non-deterministic Turing machine has the privilege of succeeding
in a computation only when it is accepting a string. For rejecting a string it merely has to fail to accept it, and
there is no need for it to explicitly succeed in a rejecting computation, a requirement that a ground complete
theory of a set has to satisfy. This consideration naturally led to the reformulation of the regular set inference
problem: find an atomic complete axiomatization of the intended model, that is an set of axioms that prove
in(s) for every s in the intended regular set, and fail to prove in(s) for strings that are not in that set. The first
order language for this task consists of only one predicate in(X), with the same terms as before.

The results of the previous application of the system suggested that regular sets can be axiomatized with
transformations only. Therefore the hypothesis language was restricted to such axioms. Applying the system
to the inference of atomiccomplete axiomatizations of the regular sets as before led to remarkable
improvements in the running time of the system, the number of facts needed and the number and complexity
of the axioms found.

Strings of even number of 1’s and even number of 0’s.

28 CPU seconds, 35 facts, 75 hypotheses generated.

(in(A) — true), 4
(in(00X) —in(X)), 13
(in(11X) — in(X)), 19
(in(010X) —in(1X)), 41
(in(011X) — in(0X)), 48
(in(100X) — in(1X)), 61
(in(101X) — in(0X)), 67

Strings of even parity.

8 CPU seconds, 17 facts, 29 hypotheses generated.

(in(A) —true), 4
(in(0X) — in(X)), 5
(in(11X) —in(X)), 24
(in(10X) — in(1X)), 15
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Strings that contain 11 as a substring.

11 CPU seconds, 35 facts, 12 hypotheses generated.
(in(11X) — true), 7

(in(0X) — in(X)), 9
(in(1X) —in(X)). 5

- Strings that contain 11 or 00 as a substring.

14 CPU seconds, 52 facts, 12 hypotheses generated.
(in(00X) — true), 6
(in(11X) — true), 11
(in(0X) — in(X)), 5
(in(1X) —in(X)), 9

Strings that are of even number of ones or contain 00 as a substring.

10 CPU seconds, 18 facts, 24 hypotheses generated.
(in(A) ~— true), 4
(in(0X) — in(X)), 5
(in(00X) — true), 6
(in(100X) — true), 16
(in(11X) —in(X)), 19
(in(10X) — in(1X)), 15

1.2 Inferring Atomic Complete Axiomatizations of Simple Models.

In the first two stages of the development of the system described above, the first order language used by the
system was fixed. In the third stage the language became part of the input to the system. The input is the
function and constant symbols of L, and the predicate P(X1,X2,...,Xs) to be inferred. This version used the
refinement operator p; (page 24), which is complete for atoms and context-free transformations. The fourth
version incorporated some more general refinement operators, which were complete for multiple context-free
Horn sentences and term-free transformations with auxiliary predicate. In case the system inferred an
axiomatization that uses an auxiliary predicate (such as times, which uses plus), the predicate to be used was
also specified in the input. The statistics below are on the performance of this version. The two numbers
following the axioms are their sequential numbers as they were generated by the refinement operator, and the
number of refinement operations needed to generate them.

Arithmetic.
Ordering Relation.

le(X,Y) — X is less than orequal to Y.

2 CPU seconds, 10 facts, 14 hypotheses generated.
(le(X,s(Y)) —te(X,Y)), 10, 2
(le(X,X) — true), 1, 1
(le(0,X) — true), 2, 1

Addition.

plus(X,Y,Z) — X plus Yis Z.
5 CPU seconds, 13 facts, 67 hypotheses generated.
(plus(X,X,0) — true), 11, 1

(plus(0,.X,X) — true), 14, 1
(plus(s(X),Y.s(Z)) — plus(X,Y,2)).52,3
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Multiplication, using addition.

times(X,Y,Z) — Xtimes Yis Z.

20 CPU seconds, 13 facts, 205 hypotheses generated.
(times(0,X,0) — true), 12, 1
(times(s(X),Y,Z) —times(X,Y,W),plus(W.Y,2)), 61,2

Exponentiation, using multiplication.

exp(X,Y,Z) — Xtothe Yis Z.
28 CPU seconds, 18 facts, 252 hypotheses generated.
(exp(X,8(Y).Z) — exp(X.Y W) times(W,X,Z)), 129, 2

(exp(X,0,8(0)) — true), 78,2
(exp(0.8(X).0) — true), 148, 2

Dense Partial Order with Endpoints.

Partial ordering.

le(X,Y) — Xtoless than orequalto Y.
10 CPU seconds, 60 facts, 61 hypotheses generated.
Note: m(X,Y) is interpreted as some point between Xand Y.
(te(X,X) — true), 7, 1
(le(X,m(X,1)) — true), 21,3
(le(X.1) — true), 5, 1
(te(0,X) —true), 1,1
(le(m(X,Y).Z) — le(Y,2),1e(X.2)), 57, 4
{le(m(X,Y),Y) —le(X,Y)), 56, 3
(le(m(X.Y),X) — ie(Y,X)), 58, 3
{le(m(X,0),X) — true), 49, 3

List Processing Programs.
Member.

member(X,Y) — Xis a member of the list Y.
2 CPU seconds, 23 facts, 13 hypotheses generated.

{member(X,[Y1Z]) — member(X,Z)), 6,3
(member(X,[XY]) —true), 7,3
Prefix.

prefix(X,Y) — Xis a prefix of Y.
4 CPU seconds, 17 facts, 52 hypotheses generated.

(prefix([],X) — true), 1,1
(pretix([XY)}.[X2Z]) — pretix(Y,Z)), 50,5
Suffix.

suffix(X,Y) — Xis a suffix of Y.
3 CPU seconds, 17 facts, 26 hypotheses generated.
(suttix(X,[Y1Z]) — suffix(X.Z)), 19, 3

(suffix(X,X) — true), 5, 1
(suffix([],X) — true), 1,1
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Subsequence.

subsequence(X.Y) — Xis a subsequence of Y.

8 CPU seconds, 50 facts, 63 hypotheses generated.
(subsequence(X,[Y|Z]) — subsequence(X,2)), 22, 3
(subsequence(X,[Y|X]) — true), 20, 3
(subsequence([],X) — true), 1, 1
(subsequence([XY],[XZ]) — subsequence(Y,Z)), 51,5
(subsequence([X],[X]Y]) —true), 45, 5

Subset, using member.

subset(X,Y) — X is a subset of Y.

31 CPU seconds, 82 facts, 152 hypotheses generated.
(subset(X,[Y]Z]) — subset(X,Z)), 34, 3
(subset(X,[Y]X]) —true), 32, 3
(subset({],X) — true), 1, 1 \

(subset([X]Y],Z) — subset(Y,Z),member(X,Z)), 113, 3
(subset([XY).[XZ]) — subset(Y,Z)), 103, 5
(subset([X],[XY]) — true), 97,5

Append.

append(X,Y,Z) — Z is the result of appending X to Y.
10 CPU seconds, 33 facts, 106 hypotheses generated.

(append(X,[].X) — true), 12, 1
(append([].X,X) — true), 11, 1
(append([XY].Z,[X{W]) — append(Y,ZW)), 99, 5

Conc.

conc(X,Y,Z) — Z is the result of cdncatenating the symbol Y to the list X.
7 CPU seconds, 29 facts, 66 hypotheses generated.

(conc([].X,[X]):-true), 26, 3

(conc([XY].Z,[XW]):-conc(Y.Z,W).true), 64, 5

Reverse, using conc.

reverse(X,Y) — X is the reverse of Y.
6 CPU seconds, 13 facts, 104 hypotheses generated.

Note: The axiomatization of reverse using append (page 4) is not term-free, hence could not be inferred
using the refinement operators currently implemented.

(reverse([].[]) — true), 6, 1
(reverse([X]Y],Z) — reverse(Y,U),conc(U,X,2)), 32, 3

Last.

last(X,Y) — X is the last element in the list Y.
4 CPU seconds, 12 facts, 18 hypotheses generated.

(last(X,[X]) — true), 17,3
(last(X,[Y]Z]) — last(X,2)), 8, 3

Double every second element.

dbli2nd(X,Y) — Y is the list X, where every other element occurs twice.
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(dbi2nd([}.[]) — true), 6, 1
(dbi2nd({X,Y1Z].[X.Y.Y]W]) — dbi2nd(Z,W)), 222, 11
(dbi2nd([X],[Y]) — true), 97,5

Iota, or tails.

iota(X,Y) — Y is the list of tails of X.
18 CPU seconds, 30 facts, 149 hypotheses generated.

(iota([].[]) — true), 6, 1
(iota([XIY].[[XIY]|Z]) — iota(Y.2)), 100, 7
(iota([XY].[[XZ]]) — iota(Y.2)), 87,7

Pack, or one level flatten, using append.

pack(X,Y) — Y is the list of elements of the lists of X.
9 CPU seconds, 24 facts, 105 hypotheses generated.

(pack(X,[]) — true), 3, 1
(pack([XY].2) — pack(Y,W),append(X,W.,Z)), 36,3

Oddp.

Oddp(X) — X is of odd length.
3 CPU seconds, 13 facts, 17 hypotheses generated.

(oddp([X.Y|Z]) — oddp(Z)), 14,5
(oddp([X]) — true), 5.3

Pair.

pair(X,Y,Z) — Z is a list of pairs of elements of Xand Y.
62 CPU seconds, 61 facts, 226 hypotheses generated.

(pair(X,[}.X) —true), 16, 1
(pair([X Y).[ZW].[p(X,Z)|U]) — pair(Y,W,U)), 211,9

Unlabeled Binary tree predicates

Subtree relation.

subtree(X,Y) — Xisa subtree of Y.
9 CPU seconds, 40 facts, 32 hypotheses generated.
Note: t(X,Y) is interpreted as a binary tree whose left subtree is X and whose right subtree is Y.
(subtree(X,t(Y,Z)) — subtree(X,Y)), 23,3
(subtree(X,t(X,Y)) — true), 20, 3
(subtree(X,t(Y.Z)) — subtree(X,Z2)), 24, 3
(subtree(X,t(Y, X)) — true), 21,3
(subtree(X,X) — true), 5, 1
(subtree(0,X) — true), 1, 1

Tree isomorphism.

isotree(X,Y) — Xisisomorphicto Y.
20 CPU seconds, 110 facts, 117 hypotheses generated.
Note: t(X,Y) is interpreted as a binary tree whose left subtree is X and whose right subtree is Y.
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(isotree(X,X) — true), 5, 1

(isotree(t(X,Y).t(Z,W)) — isotree(Y,W),isotree(X,Z)), 108, 6
(isotree(t(X.Y).t(Z,Y)) — isotree(X,2)), 103, 5
(isotree(t(X,Y),t(Z,W)) — isotree(Y,2),isotree(X,W)), 41, 6
(isotree(t(X.Y).t(Z,X)) — isotree(Y,Z)), 44, 5
(isotree(t(X,Y).t(Y.2)) —isotree(X,2)), 38, 5
(isotree(t(X,Y),t(Y.X)) — true), 35,5

Satisfiability of Boolean Formulas.
Satisfiability, using unsatisfiability.

satis(X) — X is satisfiable.
10 CPU seconds, 40 facts, 66 hypotheses generated.

(satis(1) — true), 2, 1

(satis(not(X)) — unsatis(X)), 14, 3
(satis(not(0)) — true), 7, 2 ’
(satis(and(X,Y)) — satis(Y),satis(X)), 54, 4
(satis(and(1,X)) — true), 39, 3
(satis(or(X,Y)) — satis(X)), 33, 3
(satis(or(X,Y)) — satis(Y)), 35,3
(satis(or(X,1)) —true), 28, 3
(satis(or(1,X)) —true), 23, 3

Insatisfiability, using satisfiability.

unsatis(X) — X is unsatisfiable.
10 CPU seconds, 45 facts, 67 hypotheses generated.

(unsatis(0) — true), 1, 1

(unsatis(not(X)) — satis(X)), 14, 3
(unsatis(not(1)) — true), 8, 2

(unsatis(and(X,Y)) — unsatis(X)), 63, 3
(unsatis(and(X,Y)) — unsatis(Y)), 65, 3
(unsatis(and(X,0)) — true), 57,3
(unsatis(and(0,X)) — true), 52,3
(unsatis(or(X,Y)) — unsatis(Y),unsatis(X)), 39, 4
(unsatis(or(0,0)) — true), 38,3
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11. Glossary of Symbols.
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the empty sentence
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observational sentences
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the null string

refinement operators

partial order induced by p

the refinements of p generated by p
the transitive closure of p under p
the transitive closure of CJunder p
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a partial order defined on sentences
a first order language
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observational sentences true in M
a model

the source set of a model

a marking

the source set of a marking
sentences

sets of sentences

sets of atoms

predicates

terms

variables

complexity bound
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III. A Useless Lemma.

During the attempts to prove that p, (defined in section 5.3) is a most general refinement operator, I proved
the following lemma. This lemma turned out not to be of any use in the proof. However, since I worked so
hard to find its right formulation, and then to prove it, I feel the paper will not be complete without it.

Lemma 7.1: Let S'=SU{P} be a set of atoms such that S is reduced and P¢S. Then S’ is not
reduced if and only if exactly one of the following holds:

1. There is a substitution 8 and an atom QeS such that Q0=P, P9=Pand S0 c S™-{Q}.

2. There is substitution 8 such that P8¢S and S8 c S, or, in other words, S9c S.

Proof: The ifdirection is a straightforward application of the definition of a reduced set: if one of
the cases holds for some substitution 8 then S'8 ¢ S*, and S’ is not reduced.

To prove the only if direction, assume that SuU{P} is not reduced. Then there there is a
substitution @ such that S'8 ¢ S°. There are two cases:

Case 1: P=P8" for some k>0. Since $'0 G S’implies $'¢* ¢ S', at least one atom QeS is mapped into
P by 6", that is Q6"=P, otherwise S8" ¢ S, in contradiction to the assumption that S is reduced The
substitution 8" satisfies the first clause of the lemma.

Case 2: P#P8" for all k>0. If no QS is mapped into P by 8, that is Q6% P for all QeS, then 6
satisfies the second clause of the lemma. Otherwise, let 01,0;,...,Q. be all the atoms in S mapped into
P by some multiple of 8, that is, 0i8*=P for some k>0. For every such atom Q, k; is the only
multiple of § by which it is mapped into P, otherwise there is a k such that P§*=P, contrary to the
assumption of this case. Let k = max{ky,ka,....k.}*1. Then P¢S'6* hence S'6“c S, and the second
clause of the lemma holds. @
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