Real-Time Vision-Based
Robot Localization

Greg Hager

Research Report YALEU/DCS/RR-868
September 1991




Real-Time Vision—B%ased Robot Localization

Sami Atiya
Fakultit fiir Informatik der Universitat Karlsruhe (TH)
Institut fir Algorithmen und Kognitive Systeme
and
Fraunhofer-Institut fiir Informations- und Datenverarbeitung
Fraunhoferstr.1
D-7500 Karlsruhe 1

Greg Hager
Department of Computer Science
Yale University
P.O. Box 2158 Yale Station
New Haven, CT 06520-2158

_ Abstract

This article describes an algorithm for determining robot location from visual landmarks.
This algorithm determines both the correspondence between observed landmarks (in this case
vertical edges in the environment) and a stored map, and computes the location of the robot
using those correspondences. The primary advantages of this algorithm are its use of a
single geometric tolerance to describe observation error, its ability to recognize ambiguous
sets of correspondences, its ability to compute bounds on the error in localization, and fast
execution. The current version of the algorithm has been implemented and tested on a
mobile robot system. In several hundred trials the algorithm has never failed, and computes
location accurate to within a centimeter in less than half a second. ’




1 Introduction

The determination of observer location from sensory data is a central problem in many robotics
applications. This problem is particularly difficult for systems that must estimate their location
in complex environments using imprecise, unreliable, and incomplete sensor data. In many
cases, it is also important to compute an accurate indication of localization error. For example,
mating, docking, navigating in a confined space or going through a small opening require precise
relative location information. If an estimate of robot location is too far from the correct value,
planning errors or costly collisions may tesult. Conversely, the accuracy of localization may
depend on the velocity of the observer and therefore affect the time needed or the path used to
travel between points in the environment.

A solution to the localization problem involves determining what is being observed and where
it is observed from. Although localization systems employ a wide variety of sensors and sensor
processing algorithms, nearly all can be broken down into the following basic components: a
means for detecting features in sensor data which may correspond to structures in the environ-
ment (hereafter referred as landmarks) used for localization, a method for matching observed
features with a map of known landmarks, and a method for computing location and localization
error from the matches. Detection and matching, often the most computationally expensive and
error prone components of the system, can be simplified by using active emitters or artificial pat-
terns [18]. However, in many cases it is cumbersome and expensive to lay out a sufficient number
of well-calibrated artificial targets. Instead, most mobile systems employ common features com-
puted from visual, acoustic, or laser-based depth information. Consequently, one of the major
difficulties in mobile robot localization is to quickly and reliably establish the correspondence
between observed features and known landmarks.

There are three basic approaches to solving the matching problem reported in the literature.
First, if the location of the observing system and the identity of the observed features is a
priori unknown, then the matching problem becomes one of geometric constraint satisfaction.
Sugihara [37] has studied the problem of determining robot position from features detected
in a single camera image, and Krotkov [22] extends this work with an analysis of the effects
of observation uncertainty. The crux of both methods is an efficient algorithm for exploiting
geometric invariants to match observed features to known landmarks.

A second approach assumes prior knowledge of location and a model of robot motion can be
“used to predict the appearance and/or location of landmarks. Many authors, including [2; 9; 24;
35] describe systems based on this approach. Briefly, a running estimate of location computed
by an extended Kalman filter [12] is used to predict the appearance of points, lines or surfaces
(the landmarks) in the environment. These landmarks are projected into the image domain and
surrounded by “validation regions” derived from the error covariance terms of the Kalman filter.
An observed feature falling into a validation region is matched to the landmark used to generate
the region. Data on the matched pairs is fed back into an extended Kalman filter to update the
robot location. Methods for handling ambiguous and missing matches are also described.

Finally, a third approach assumes that the features themselves can be tracked over time in
the image domain. In this case, features and landmarks need only be matched once at the very
beginning and are available for computing location (or motion or scene structure depending on




the problem formulation) as long as the features stay in view [10; 20; 39).

Despite the quantity of work described above, there are still several problems that remain to
be solved. The success of methods relying on using prior location estimates or tracking to com-
pute location ultimately rely on an initial match of observed features to known landmarks. Later
matching depends on maintaining good localization information and accurate error estimates.
Thus, the problem of matching using no prior location information is crucial for initialization, for
independently verifying the consistency of matches over time, and for reinitializing the system
if localization information degrades or fails altogether.

None of the matching methods using no prior information reported in the literature provide
a completely satisfactory treatment of observation error. The work reported by Sugihara [37]
assumes that observations are error-free. Krotkov [21] suggests means for making the algorithm
less sensitive to observation error, but fails to provide a complete analysis or proof of correctness.
Neither author adequately addresses the issues involved with errors in the locations of the
landmarks in the map. They also do not analyze the effects of observing false positives—
detecting features that do not correspond to a known landmark, although this is very common
in mobile robot applications.

Location estimates are usually computed using optimization techniques, e.g. least squares,
or using statistical considerations, e.g. the extended Kalman filter. In both cases, a quanti-
tative estimate of localization error relies on making distributional assumptions about sensing
errors. Furthermore, the extended Kalman filter employs a linearization. If the location esti-
mate is guaranteed to remain close to the correct value, the linearization is usually well-behaved.
However, in circumstances where this is not true the extended Kalman filter may exhibit poor
convergence and unreliable error estimates [17]. Consequently, reliable operation must be veri-
fied through simulation or extensive testing, and filter parameters can require time-consuming
empirical tuning.

This article presents an alternative formulation of the localization problem in which the error
in sensor observations is represented by a tolerance. Both the matching problem, with or without
prior location information, and the location estimation problem are formulated using this error
model. This setting of the problem does not require strong distributional assuimptions about
sensing errors or a particular structural form (e.g. linear) for the observing system. Bounded
errors lead to a natural representation of location as the complete set of locations consistent
with observed data. This set provides a quantitative description of localization error.

This problem formulation leads to a set-based algorithm for solving the matching problem
and computing the location of a mobile robot in typical indoor environments. The primary
features of this algorithm are:

e It runs very quickly—the current version requires less than 0.5 seconds on a Sun-4/280! to
identify up to 5 landmarks and compute robot location and bounds on localization error.

o It treats errors using tolerances, thereby avoiding the difficult issues surrounding the dis-
tributional modeling required to employ statistical techniques.

1Sun is a trademark of Sun Inc.




e It computes both robot location and a geometric, worse-case accuracy that is derived from
a single empirically determined observation tolerance.

o It determines when matching ambiguities arise that make it impossible to solve the problem
uniquely. »

These algorithms have been integrated into a working, vision-based, mobile robot navigation
system that has been tested in many hundred simulated and real trials.

The remainder of this article is organized as follows. The next section introduces the basic
concepts of set-based estimation methods and reviews previous work in this area. In Section 3
the localization problem is formulated using set-based concepts. Section 4 describes a solution
to the stated problem and presents an analysis of its complexity as well as its limitations.
Section 5 describes a mobile robot system and presents the results of numerous simulations and
experimental trials. Section 6 describes several extensions to the basic algorithm that permit
the use of odometric information, tolerate uncertainty in landmark location, and increase the
speed of matching using heuristics. The final section discusses these results and describes a set
of problems to be addressed in future research.

Notation and Terminology: The remainder of this article uses the following notational
conventions. The closed interval from a to b, @ < b is written [a,b]. If @ and b are vectors in ®7,
a; < b;, i=1...n then [a,b] = [a1,b1] X ... X [an,bs] is @ closed “box” in £". Point-valued and
interval-valued variables are distinguished by writing the latter in bold-face type. For example,
if z € R, it is possible to write z € = = [z, %], indicating that a real vector x falls within
some real interval vector = with lower vector z and upper vector Z. A point value, z, occurring
in expressions with interval values should be thought of as the degenerate interval z = [z, z].
Two special interval operators are the width function w(z) = T — z; and the center function
o(z) = (T + z)/2. Finally, the evaluation of a function h : 8* — ®™, on interval arguments is
defined as

h(z) = {y|y = h(z), € z}.

A methédbiogy for developing explicit expressions for functions evaluated on interval arguments
may be found in [1; 28].

2 The Manipulation of Set-Based Uncertainties

Set-based approaches to estimation assume that all information about an unknown quantity is
represented by a set of values consistent with observation and other internal system constraints.
Though not as actively pursued as its statistical counterpart, set-based methods have been
continually developed and applied over the past three decades. The originating works in set-
based estimation discuss the problems of state estimation and prediction of linear systems (65
34; 38]. More recent work extending the set-based paradigm to a wider variety of estimation
problems includes [4; 27; 33] and our own work [14; 15; 16].

A central concept of set-based theories is the combination of information via intersection.
With reference to Figure 1, if both set A and set B are known to contain the true value of some
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* Figure 1: Combining information via intersection.

parameter, then AN B must also contain that value. As more and more independent constraints
are added to the problem (for example, by continued observation), it is reasonable to expect
the intersection of the corresponding sets to grow smaller and smaller, providing a tighter and
tighter bound on the unknown quantity. Returning to the diagram, if C is also supposed to
contain the correct parameters, then, as it is disjoint from A N B, at least one of A, B,or C
must be in error. This indicates some structural assumption used to construct A, B, or C has
been violated. Uncertainty sets can be transformed by projecting every point in the uncertainty
set. For example, suppose it is known that d = f(a) + b. Then the correct transformation of
sets Aand Bis D = {d|d= f(a)+b, a€ A,be B}.

Three set representations discussed in the literature are: convex hulls described by support
functions, polygonal regions, and elliptical regions. Support functions [38] have the advantage
of mathematical generality and elegance, but do not generally lead to computationally tractable
algorithms. Polygonal representations take advantage of the fact that the linear transformation
of a convex polytope, and the intersection of two convex polytopes again results in a convex
polytope [27]. However, the number of vertices describing the intersection of two polytopes is
often larger than the number of vertices of either of the operands. Hence, repeated intersection
can lead to an excessive computational burden. Elliptical regions are also closed under linear
transformations. Moreover, the bounding ellipse for the intersection of two ellipses both be
calculated algebraically in fixed time. Consequently, a theory of elliptical sets applied to linear

measurement and dynamic systems can be thought of as a set-based analog to the classical
Kalman filter [34]. :

Both elliptical and polyhedral representations share many of the same advantages and dis-
advantages of the Kalman filter. Updated estimates and their errors can be computed and
manipulated easily and efficiently as long as all transformations involved are affine. However,
if any of the transformations involved are nonlinear, then the computed bounding set is no
longer guaranteed to contain the true solution. Consequently, as with the Kalman filter, appli-
cations involving nonlinear transformation of estimates may require extensive empirical tuning
and verification to ensure consistent, correct performance of these set-based methods.

The problems discussed in this paper lead naturally to polygonal uncertainty sets. However,
these sets are approximated by rectanglés (in two dimensions) or boxes (in three dimensions)
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Figure 2: The evolution of set intersections over time.

when information is combined. This interval-based representation requires a fixed number of
minimum and maximum operations to compute the intersection, and general nonlinear transfor-
mations of uncertainty sets can be computed using interval arithmetic [28]. One of the results
of this article is to show that, by careful consideration of all of the problem constraints, it is
possible to compute effective bounding intervals for robot location in spite of the nonlinearities
involved in the problem.

2.1 The Convergence of Set-Based Methods

In principle, set-based methods make no assumptions about the statistical nature of errors.
However, in practice, most observation errors are time-varying to some degree. In such cases,
repeated intersection over time leads to increasingly tighter bounds on the unknown quantity.
For example, by straightforward manipulation the system z = = + v, v € [—1, 1], yields the
constraint z € [2;,—1,z;+1] for each i. Given the sequence of observations 10,9.5,10.5,9.1,10.1,
the final value must fall in the interval

[max(9,8.5,9.5,8.1,9.1), min(11,10.5,11.5,10.1,11.1)] = [9.5, 10.1].

Figure 2 illustrates the sequence of intervals, and their intersection. Assuming v varies within its
uncertainty interval, the intersection will never be empty and will become continually smaller.
More generally, the following properties hold:

Let X1, X5,...X, be a sequence of independent random variables such that

e X, € [0—ag,0+b;], and

e for any 6§ > 0, there is an ¢ > 0 such that P(X; < 0 —a; + §) > € and
P(X; > 0+ b; — §) > ¢ (the distribution places mass around the endpoints of
the interval). :




Let S, = ﬂ[X,- —b;, X; + a;]. Then

1=1
1. Foralln > 0,60 € S,.

2. Forany ¢ > 0, lim P(w(S») > ¢) — O as n — oo. (the sequence of sets converges
in probability [7]).

Proof

Since X; € [0 — a;,0 + b;], by algebraic manipulation X; —b; < 6 < X; + a;. Let
= ma.x(X1 —bl,Xz—bz,. ..,Xn—bn) and u = min(X1 +(11,X2+02,. . .,Xn+an)].
By definition, it follows that S, = [I,u],1 < 6 < u, and hence § € Sn.

Next, note that w(S,) = u — l. Consequently,

P(w(Sp)>¢)= HP(O—a;-i—cSX,' <0+b;-¢c)< H(1—2€)= (1-2¢)"
=1 =1
for some 0 < € < 0.5. Hence 0 < 1 — 2¢ < 1, and therefore lim(1 — 2¢)* — 0 as
n — oo.

From the final expression, it is also clear that the rate of convergence towards small intervals
depends on the likelihood of the observed quantities taking values near the endpoints of their
associated tolerance interval. Convergence is slowest for random variables with a large concen-
tration of probability mass near 8, and swift for those that often take values near the endpoints
of their set of support.

An immediate consequence of the above is the following:

Let X1,X3,...X, be a sequence of random variables as above and let f be a con-
tinuous function defined on U?-,[6 — ai — b, 0 + a; + b;]. Then

1. f(8) e 57 = ﬁ f([Xi = bi, Xi + ai]).

=1
2. For any ¢ > 0, lim P(w(Sf) > ¢) — 0 as n — co.
3. 0 € {a]| f(a) € S£}.

In other words, convergence is preserved under continuous transformations. Furthermore, if f1
is also a continuous function then the uncertainty interval on 6 is a closed interval.

The following facts make a connection to optimal estimation techniques:

Let 6 be a uniformly distributed random variable on the interval [a,b], and let
X1,X2,...,Xn be a sequence of independent random variables each having a con-
ditional distribution f(X;|#) that is uniform on the interval [§ — a;,8 4 b;], ¢ =
1,2,...,n. Define I = max(a,X; — by, X2 — b2,..., X — by), and u = min(d, X1 +
ay, X2+ as,...,Xn + ayp). Then




1. f(8| Xa,...,Xy) is also uniform on the interval [I, u].

2. The minimum mean square estimator of 8 is the conditional mean

E[6| X1, X2, ..., Xn] = (I +u)/2.

In short, combining information via intersection corresponds to computing Bayes’ Theorem
for uniform prior and conditional (sampling) distributions. Choosing the center of the interval
remaining after combining information via intersection corresponds to the minimum mean square
estimate under the same assumptions.

Though all of the preceding analysis has been done for scalar quantities, the results extend
to vectors of random variables with only minor modifications. Hence, in many ways set-based
methods provide a simple, viable form of robust estimation. They can be used to estimate
unknown quantities to a high degree of accuracy using very weak statistical assumptions and
no distributional information about the behavior of observation errors. Moreover, many appli-
cations are naturally described in terms of uncertainty sets. For example, a robot moving to a
prearranged point for loading requires that the set of possible robot locations falls within the
tolerances on the loading apparatus. If this requirement is fulfilled, then no docking error is
possible, otherwise additional sensing must be done to reduce the localization error of the robot.

3 Localization Problem Formulation

Following Krotkov [22] and Sugihara [37],let py, p2, . . . Pr denote the positions of fixed landmarks
or beacons expressed in a fixed two-dimensional world coordinate system W. Let T = (z,y,0)
parameterize the location of a local robot coordinate system R with respect to W. It is assumed
that multiple images of landmarks are available, and the image-image correspondence can be
solved. Let o = (0',0") denote the horizontal position of a vertical edge in two camera images
which are labeled “left” and “right”, and let 0y, 02, . ..,0m denote a series of these observations.
The imaging of points by the camera in a coordinate system C is described using a linear
spatial transformation °Ty = STR"Tw followed by a nonlinear imaging transformation I(-)
which computes both the left and right image locations. Unless otherwise noted, all positional
quantities (including robot location) will be expressed in millimeters and all angles will be
expressed in degrees.

A correspondence between an observation o; and a world point p; is a tuple A = (o0;,p;), and
a labeling A is a set of such correspondences. A labeling is consistent if each observation is in
correspondence with no more than one feature in the world coordinate frame.

In the ideal case where the camera rﬁodel, the world map, and sensor observation of land-
marks are all error free, the localization problem can be precisely stated as:

Problem 0: Given n points p1,ps,...,Pn i @ world coordinate system and m
observations o0y, 02, .. .,0, taken at two camera positions with known relative rela-
tionship, determine if there is a unique, consistent labeling A and fixed pose I' such
that o; = I(°Tw(T)p;) for all (0;,p;) € A.




In practice, errors in edge localization and landmark position must be accommodated and
observations that have no corresponding landmark in the map must be culled. To accommodate
the former, an observation tolerance, ¢ € ®2, and landmark position tolerances §; € R 1=
1,2,...,n are introduced. The interpretation of € is a maximal error in sensor measurement, and
_likewise §; is a maximal error in the absolute position of landmark i. Define p; = [p; — 6;, p: + 6,
and o; = [0; — €,0; + €.

In the nonideal case considered here, the localization problem is divided into two separate
subproblems:

Problem 1: Given n point location intervals py,p,,...,p, in a world coordinate
system and m observation intervals o1,03,...,0m taken at two camera positions
with known relative relationship, determine if there is a unique, consistent labeling
A so that for some fixed location T,

I(°Tw(T)p;) N o; # 0

for all (o;,p;) € A.

Problem 2: Given a labeling A as described above, determine the complete set of
robot positions, P, consistent with A—that is, compute the set

P = {T | I(°Tw(T)p;) N o; # 0 for all (0i,p;) € A}

The first problem is a qualitative determination of what is being viewed and is hereafter
referred to as the labeling problem. The second problem is the quantitative determination of
where the viewer is located, and is hereafter referred to as the location estimation problem.

4 A Set-Based Solution

The approach used to solve the labeling problem is to transform both observed data and stored
map points into a representation that is invariant to translation and rotation, and thereby
permits direct comparison of observed and stored landmarks. Once the correct point corre-
spondences are known, the location estimation problem can be solved directly. The original
motivation for this approach came from [32] where the labeling of star fields was done from
sighting data, but similar ideas appear in many other sources [8; 13; 19; 25].

In overview, note that any three non-colinear points in the plane determine a triangle with
three angles @, 3,7 and three sides L, R, B of length I, r,b, respectively (see Figure 3). These
six values are translation and rotation invariant, and therefore independent of the coordinate
frame in which the points are expressed. Hence, these quantities can be directly compared
to determine if two triplets of points lie in the same geometric configuration relative to one
another. Furthermore, by computing the range of lengths and angles resulting from observation
error tolerances this comparison can be made tolerant to observation errors.
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Figure 3: Triangle labeling conventions.

Thus, an algorithm for determining the solution to Problem 1 is to store a list of angles
and distances between the points in a map of the environment. At runtime the same quantities
are computed for every combination of three stereo data pairs and the results, now encoded as
intervals on angles and distances, are compared with the network of known landmarks. From
this comparison, it is possible to determine all consistent pairings of point triples, henceforth
referred to as matches. The matches determine a consistent labeling that is then used to compute
a set of locations known to contain the robot.

The matching process will now be described in complete detail. This solution assumes that
landmark positions (though not observations) are error-free (§; = 0). The modifications required
to handle landmark position errors are presented in Section 6.

4.1 Computing Correspondences
Imaging Model and Calibration Camera imaging is modeled in four stages following [23]:

1. A geometric transformation e = °Tp depending on six parameters describing the spatial
transform ¢Ty,

2. the perspective transformation of the point e = (Z, ¥c, z.) into undistorted image coordi-

nates
uy | _ | zc—b
N @

depending on the focal length f and a baseline parameter b,

3. A mapping of (u,,v,) into the radially distorted point (ud,v4) depending on the distortion
coefficient k: '

Ud 2 Uy 2 2 2
= ;i R =wuj s 2
[Ud] 1+\/1—-4nR2|:17u] tut @)




4. A conversion from the image coordinates (ugq,v4) to pixel coordinates (u,v) depending on
image center (cy,¢,) and scale factors (sy,sy):

U = ug/Sy + Cu; v = vg/Sy + Cy. (3)

The transform ¢Ty describes the camera at the origin. Step 2 states that the camera, trans-
lation is parallel to the imaging plane and directed along the z axis, so motions only require
adjustment by a known offset b. Significant departures from parallel may require incorporating
rotations into this expression. The focal length of the camera is taken to be that given by the
manufacturer and the remaining 11 calibration parameters are determined by observing a known
constellation of points and performing nonlinear least squares regression.

Stereo-Based Position Determination Imaging geometry is reduced to 2 dimensions by
assuming that vertical edges are imaged at a fixed height y. = 0 corresponding to the scan line
V= Cye

Let 0" = (u,v)" be the image of a vertical edge at the origin position of the camera and
o' = (u,v)! be the image of the same vertical edge at a distance b from the origin. Expression
(3) can be inverted to get distorted image coordinates (ug,vq). Then, the distortion-corrected
image coordinates (uy,v,)" and (uy,u,)' are computed by inverting (2) giving

Uy | 1 ug | . 2 _ . 2,.2
Sorli] e

Using (1) the (planar) location e = (z, z.) of an observed point in the camera coordinate system
can be computed as:

bf zZcuy, . (5)

Ze= ———
r o ql?
Uy — Uy

Under the assumption that image distortion is locally constant, perturbing uj and ufi in
the above expression yields a diamond-like area defined by the four points computed from all
combinations of ] & € and uﬁ + € [26; 36]. The region enclosed by this polytope, henceforth
referred to as a stereo region, contains all possible locations for the observed point up to sensing
error.

Transformation To Triangles For any three given points, p;,pj, and p, define I = p; — pj,
R = pi — p;, and B = pi — p;. The six vector of lengths and angles describing this triangle are
given by:
- L] ]
l
7 IR
| Bll
> 2 =. = -1 R'L
Sk cos™ [t
-1[_B-R
cos™ | ity

-1 L-B

b Leos™ [idifen)

<o

<R ™R

10




In the ideal case, this is a redundant description as a triangle is determined by any combination of
three values including at least one length. Due to observation errors, there is a family of triangles
consistent with any given triplet of stereo regions. This family is represented by determining
intervals on angle and length as follows.

Given two regions a and b, the maximum possible distance between points in a and points
in b occurs on the vertices defining the regions. Hence, determining this value is straightforward
and requires 4 * 4 operations. The minimum possible distance also occurs at vertices except
when a perpendicular to a segment of one region can be made to pass through a vertex of the
other region. To solve for minimum distance let by be a vertex of region b and a; and aj, J #1
be two adjacent vertices of region a. The minimum distance between the point by and the line
a; + Ma; — a;) is given by:

s o (br—ai)-(a;—ai)

llaj — aill®

If )\ falls between 0 and 1, the minimum distance corresponding to that value of ) is used,
otherwise the minimum distance is given by ||bx — asl| if A < 0 and |lbx — a;|| otherwise. The
above expression is computed for all combinations of vertices taken from a and segments taken b
and vice versa (4 * 4 * 2 operations), and the minimum of those values is the minimum distance
sought.

Given three stereo regions a, b and ¢, the minimum angle between a—b and c—b occurs at the
extreme points of all three regions,? while the maximum angle sometimes occurs at the extreme
points and sometimes occurs by choosing two vertices of @ and ¢ and a point along a segment
forming the region b. Let a; and c; be vertices of regions a and ¢ respectively, and by and b be
two adjacent vertices of region b. Define s; = a; — (bk 4+ A(bi— b)) and 53 = ¢j — (b + A(bi —bk))-
Then, the latter maximization problem is

1| S1°82 _
max cos [——————] =

llsalllls2]l

the above equivalence holding for interior angles.

min 52
X lsallllsall’

Appendix A derives the closed-form solution. Because of the complexity of this solution a
faster approximation is used to compute the maximal angle. For regions a, b, and ¢ with the
angle situated at b, the angle between the vertices of a and ¢ for each endpoint and midpoint
of the segments comprising b is computed (4¥4*8 evaluations). The maximum and minimum of
these values comprise the upper and lower bounds on angle, respectively.

By carrying out these computations for stereo regions a, b, and ¢, a closed interval Sgp.c
consisting of six components can be computed. Three points pi, pj, and px are consistent with
regions a, b and c¢ if S;jk € Sap,c- (Recall boldface type is used to distinguish between point
values and interval quantities as in the above expression.)

Searching For Matches Each interval of lengths and angles computed from observed data
will be consistent with some collection of triangles computed from map points. The crucial point

2The only exception is when a single line passes through all three regions, a case that is easy to check for.
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of designing a good algorithm is to make the search for these matches as fast as possible.

The approach taken here is to construct six lists of ordered pairs from six vectors describing
triangles of landmarks in the map. The first element of an ordered pair is an angle or length and
the second member is a pointer to the six vector that the angle or length came from. The lists
are sorted on the value component. The sorted list can be searched quickly to isolate a range
of values contained within an angle or length interval, and the pointers are used to mark the
associated six vectors. Only vectors that are marked six times are consistent with an interval
six vector of angles and lengths.

In detail, an algorithm for finding matches works as follows:

Initialization:
e For each unique grouping® of map points, compute (the point) S; ;x and add it to a list
M. Call the final length of this list g.

e Let M;; denote the ith element of the jth vector in_ M. For each element M;;, 7=1,...,¢
and i, 1 = 1...6, add the pair (M, ) to a list L'.

e Sort the elements of each L on the first (value) component yielding six lists of pairs of
indices and values sorted on value.

Runtime: For each triplet of observed stereo pairs 0q, 03, 0c,

e Compute (the interval) S, 3. = [/,u] encoding the permissible range of the six triangle
parameters for the given tolerance e.

e For each coordinate 1 =1,...,6

— Find the first index r such that the value field of Li_, is smaller than [;.
— Find the first index s such that the value field of L, is larger than u;.

— For each (vj,k;) = Lt

%, 1 < j <s,mark My; as found.

o For each §; ;1 € M that has been marked six times, add ((0a, p:), (05, P, (0cs Pk)) to A.

To illustrate, suppose that the map consists of four landmarks. These landmarks are repre-
sented by a list, M, consisting of four triangles:

G~ 1[2]|3] 4| 5 | 6 | #found
Si2a| 1 [55]60]65]100[107] 95 1
S124] 2 [40]60]80] 100 153 | 134 1
S134] 3 [60[70{50] 95 | 84 | 134 2
S234] 4 [30]90 (60| 107 | 84 | 153 3

3Triangles that are merely a permutation of map points indices pi, p;, Pk corresponding to a relabeling of the
triangle axes are redundant.
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A triple of observed points characterized by an interval vector with a = (11, u1] = [25,46],
B = [z, uz) = [65,91] and 7 = [I3, u3] = [50, 65] leads to lists L*, L? and L3 with values of r and
s as noted:

a | index B | index ~ | index
r|30 4 60 1 r| 50 3
40 2 60 2 60 4
55 1 r| 70 3 s | 65 1
60 3 90 4 80 2

The lists for the remaining 3 components are similar and are not shown.

Marking the referenced entries between r and s from each table leads to the counts noted
in the final column of the list M. To this point only S234 can be consistent with the observed
data as it is marked three times. The process continues for the remaining three components,
and only those members of M marked 6 times are chosen.

4.2 Choosing A Labeling

The set of matched pairs computed by the previously described algorithm can be sorted into ¢
maximal consistent categories Aj,Az...Ac € A. A category A; is called a labeling of size n if
A; places n observations in correspondence with n landmarks. Ideally, ¢ = 1 and there is no
labeling ambiguity. In practice, ambiguities do arise. For example, the following is a consistent
partitioning of matches:

A A A3
01, 02,03 <> P1,P2,P3 | 01,02,03 <= P1,P2,P4 | 01,02,03 <= P1,P2,P5
01, 02,04 <= P1,DP2,P4 01,02,04 < P1,D2,P4

01, 03,04 <= P1,P3,P4
02,03,04 <= D2,P3,P4

Because of correspondence conflicts, the matches in A and in Aj are not consistent with each

_other or with those in A;. Aj is of size 3 while both A; and As are of size 4. Only Ay contains
the correct number of matches for a labeling of size 4 (4 matching triangles). Does this mean
A, is the correct match? The answer depends on a number of factors.

There are two types of matching failure to consider: irue failure—returning an incorrect
labeling, and ambiguity failure—returning no response because there is no unique labeling. The
latter is not a catastrophic occurrence—in fact it is common and unavoidable. The former is

cause for serious concern.

True failure cannot happen under the following assumptions:

1. When an observed landmark can be matched to a map landmark the algorithm does so
(the algorithm is correct and complete).
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2. A labeling is accepted only when there is no other consistent labeling.
3. Any image of the world contains at least three landmarks.

4. The sensor always detects landmarks when they are present.

To verify this claim, suppose that at least one non-landmark point is observed, and that an
error results. Then there are n observed points that result in a unique labeling. At least 3 of
these points must be correctly matched. Hence, any point that is incorrectly matched must lie
within a stereo diamond of a true landmark. But, since all true landmarks are observed, these
landmarks must also be present. But these landmarks combined with the correctly matched
points form a competing consistent labeling. This is a contradiction, so the assumption must
have been false, and no labeling errors are possible.

In practice, assumptions 3 and 4 are nearly impossible to guarantee, and so a true failure
can occur. In addition, if there are consistent labelings, but one possibility establishes more
correspondences, then that labeling has a high likelihood of being correct. Hence, it is not
unreasonable to violate assumption 2. By defining the likelihood of the sensor detecting false
positives (landmarks that are not there) and false negatives (missing landmarks that are there)
it is possible to determine the probability of failure for a given map, and a given robot location.
Unfortunately, this probability can only be computed by simulation or by Monte-Carlo methods,
and may vary widely for different maps, and different robot positions. However, several general
rules can be stated:

1. The larger the number of correspondences in a labeling, the higher the reliability of that
labeling: larger labelings place more constraints on the individual correspondences, and
thereby reduce the likelihood that some spurious observations were able to satisfy all
constraints.

2. The fewer observations matched by competing consistent labelings, the higher the match
reliability: for example, suppose labeling a establishes 5 correspondences, and a competing
labeling, b, establishes 3. Then a must contain at least two false positives to be in error.
If b matched 4 observations, then a need contain only one false positive to be incorrect.

3. The more landmarks in the map, the lower the labeling reliability: more landmarks in
the map lead to more possibilities for a spurious measurement to be consistent with a
landmark.

4. The larger the uncertainty intervals on angles and lengths, the lower the labeling reliabil-
ity: larger uncertainty intervals provide less stringent matching conditions, and raise the
likelihood of a chance match between a false positive and a landmark.

Hence, an algorithm designer can determine the reliability of labelings by choosing two
parameters: the minimum size of an acceptable labeling and the minimal size difference between
the two largest labelings. For example, the vision sensing used in the robot system described in
Section 5 almost never misses a detectable landmark though false positives occur quite often.
Requiring labelings of at least four correspondences, and accepting any labeling that is larger
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than all competing labelings (a size difference of only 1) has proved sufficient for very reliable
operation.

It is possible that the stored map itself is ambiguous—that is, it contains constellations of
landmarks that are indistinguishable (or nearly so) from one another. Such redundancies lead to
ambiguous labelings and slightly increase the probability of true failure. The obvious solution is
to inspect the list of triangle representations generated from the map, and to enforce a minimal
level of separation among the entries.

In summary, by careful choice of landmarks, good engineering of the detection algorithm,
and simulation analysis of the labeling algorithm, it is possible to reduce the probability of
true failure to very low levels. Further means of ensuring correct labeling by using temporal
continuity are presented in Section 6.

4.3 Determining Robot Position

Given a labeling, a point estimate of location can be computed using least squares. The solution
can be derived in closed form, can be computed quickly, and usually delivers good estimates.
However, least squares does not give a concrete error determination relative to the original
observation error tolerance. This section discusses computing bounds on localization error by
approximating the solution set P (as defined in Problem 2 of Section 2) by an enclosing interval
onT.

Given two observed points e; and e; corresponding to p; and p; in the world coordinate sys-
tem, it is possible to compute robot position by: determining the rotation that makes segments
between p; and p; and e; and e; parallel, and then determining the translation that causes
the endpoints of the rotated segments to overlap. By examining the extreme values of the

above quantities on the stereo regions, it is possible to calculate the extreme values of computed
position.

The maximal and minimal angles consistent with stereo regions a and b occur when a segment
of length d = ||p; — p;|| is placed such that one endpoint falls on a vertex a; of region a and the
other falls on a segment (b — b;) of region b or the dual case. This intersection is determined
by solving the equation ||b; + A(bx — b;) — a;|| = d for A and keeping those A such that A elo,1].
Defining r = p; — pi, t = b; — a;, and s = b — bj, for all consistent solutions, the angle of the
observed line, the line in the world system, and their difference are computed as

| ty + Asy> (ry)
— e ——— - — = - . 6
0, = atan (tz The. ) 04 = atan v ) 6=20,—04 (6)

For each pair of matched stereo regions the algorithm computes up to 32 (2 % 4 * 4) values
of 8, and then forms the minimal interval @ containing all 32 values. The intersection of the
computed intervals over all matched pairs yields 6*.

Given a stereo region a;, it is straightforward to compute a bounding interval with compo-
nents s; and t; for that region. Then by using interval arithmetic [1; 28], the intervals on robot
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translation can be computed as:

T; = pig+sin(6*)t; — cos(6%)s;,
Y; = piy— sin(6%)s; — cos(6%)t; (7

where p; = (pi,z, Pi,y) is the match for region a;. Again, the intersection of these sets computed
for all regions yields * and y*.

Based on the discussion in Section 2, if the observation errors are stochastic, then combination
of multiple samples of the same scene may further reduce the size of these intervals. In the
absence of approximation errors, and assuming independence of observations, the size of these
intervals will tend toward zero in the limit. This point is further discussed in Section 5.

4.4 Analysis of Solution Compléxity

As before, let n be the number of map points, and m be the number of observed points. The
offline portion of the algorithm consumes O(n®log(n)) time to compute and sort all triangle
parameters. However, this is only done once and stored as a compiled table of size O(n®) that
is read in at runtime.

At runtime, the search for the lower and upper point of an interval takes O(log(n)). The worst
case of the marking phase would be if all map triangles were consistent with an observed triangle,
yielding O(n®) marking operations. Thus, the worst case complexity is O(m3(n®+log(n))). The
algorithm used to partition ¢ matched triangles is O(c?). In the worst case, there are O(m®n3)
matches, so this could take up to O(m®n®) comparisons. The determination of robot location
requires, in the worst case, O(m?) computations to determine 6* and O(m) computations to
determine position.

In order to place these results in perspective, Sugihara [37] reports a labeling complexity
of O(n®) for the ideal case (no observation error) using a fixed number (4) points observed
from a fixed location with a camera (only monocular information is available). There is no final
partitioning step in the case of ambiguity. Under the same conditions, the runtime complexity of
the above algorithm is O(log(n))—the time needed to search the lists. The additional algorithm
complexity can be attributed to the effects of observation uncertainty and labeling ambiguity.

In practice, the worst case limits are never even approached. By keeping information about
the minimal and maximal marked values, marking and scanning can be done very efficiently
and are never carried out over the entire array. Furthermore, these operations are very cheap.
Partitioning the matches need only be done if the set of possible matches is small enough
to generate a unique solution. For example, if 5 observed points generate 200 matches, then
elementary combinatorics shows that no unique labeling could be found. No partitioning needs
to be done.

An implementation of this algorithm on a Sun IV yields the following timing figures when
processing five observed landmarks with 40 stored landmarks:
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Figure 4: The University of Karlsruhe robot KAMRO with the slider stereo apparatus.

Stereo Solution < 0.02 sec
Interval Calculation 0.20 sec
Labeling Solution 0.20 sec
Position Determination 0.07 sec
Total 0.49 sec

For 25 stored landmarks, the labeling timing drops to under 0.066 seconds.

Algorithm optimization would probably decrease these values by a factor of two. Further-
more, there are many opportunities for parallelism. The table lookups can be carried out using
parallel hardware, and the marking handled by independently addressable bits. It is reasonable
to assume that hardware could also be designed to partition matches. Other means of decreasing
execution time are discussed in Section 6.2. ’

5 Experimental Results

The correspondence and localization algorithms have been implemented and tested on a mo-
bile robot system under development at the University of Karlsruhe in coorporation with the
Fraunhofer-Institut fiir Informations- und Datenverarbeitung in Karlsruhe, Germany [31].

The vision system consists of a CCD-camera (resolution 780 by 580 pixels with an 8mm
objective) mounted on a controllable slider (positioning precision to 0.02mm). The camera is
connected to the VISTA real-time image processing system [30]. This system is in turn connected
to an ethernet, and sends information about images (the positions of vertical stripes) to a Sun
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Figure 5: “Band image” image processing steps. Left, the actual scene; middle, the “band
image”; and right, the processed image.

4/280 computer. The slider system is mounted on the Karlsruhe mobile robot (KAMRO) [31]
pictured in Figure 4. '

The camera was calibrated using the procedure described in Section 4. In justification of
the second order image distortion model, the distortion coefficient for this lens was calculated
to range between -0.094 and -0.1112. Without this coefficient, the error in stereo calculation is
equivalent to an observation error of several pixels. If this error is neglected the distortion of
edges near the edge of the field of view of the camera results in the rejection of matches that are
correct. Accounting for this error by using a larger tolerance would cause the number of false
matches to grow quite large, leading to ambiguous matches in many cases.

The notion of image continuity [3; 29] is used to follow the path of a vertical stripe from
left to right as the slider moves a pre-set distance. Using the VISTA system, small image slices
are taken with the slider in motion. The resulting “band image” is processed with a low-pass
(smoothing) and high-pass (differentiation) operator followed by a non-maximal suppression. A
line is fit to contiguous patches of pixels, and the coordinates of intersection with the upper and
lower edges of the image are used in the stereo calculation. Figure 5 shows a “typical” scene,
the resulting “band image,” and the filtered and thresholded image.

The error in observation was determined by taking several time series of data and looking
at the data spread. Under the assumption that the maximal observation errors are symmetri- -
cally distributed about the “true” value, the required tolerance can be read directly from the
histogram. Figure 6 shows two representative frequency histograms of x (vertical) position in
the image. In all cases, the error was up to and including one half pixel. The effects of the slider
maximal error of 0.02mm considered to act on a point observed at a distance of one meter lead to .
a 0.02 pixel error in image coordinates. Finally, due to the approximation used to compute the
maximal angle, and the possibility of other small model errors, the observation error tolerance
was inflated slightly to 0.55 pixels.

5.1 Simulation Tests
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Figure 6: Two data histograms showing the frequency distribution of the horizontal position of
two vertical stripes in an image.
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Figure 7: A map of the navigation testing area. Each room is approximately five meters by five
meters in size. The small circles indicate landmarks used in simulation experiments.
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Figure 8: A graph of the ratio of computed matches to expected matches as a function of
observation error in two simulations.

Several simulations have been performed to examine the robustness of the labeling algorithm
to errors in choosing the observation tolerance parameter e. In general, the performance of
the algorithm can vary greatly depending on the geometry of the observed landmarks. The
following two cases show the “typical” behavior of the algorithm, and its performance in adverse
circumstances.

Simulation 1: The robot position was chosen randomly from the interval z = 560 + 100,
y = 20+ 100, § = —26 + 2 (position 1 of Figure 7). At each position, the observation of
the landmarks (drawn slightly larger) in the viewing cone of the robot from this position was
simulated with uniformly varying error in the range of £0.55 pixels. In both cases, the ratio of
the actual number of matches to the ideal number of matches was computed. In Figure 8, the
left graph shows the mean of this ratio as a function of the tolerance € used in the algorithm.
In this case, the number of matches was relatively insensitive to the choice of error tolerance.
Choosing the tolerance in a range of 0.15-pixels (30%) about the correct value leads to a match
ratio within 5% of optimal (1.0). Moreover, the labeling was correct in all cases up to € = 1.3,
more than 200% of the correct value.

Simulation 2: The robot position was chosen randomly from the interval z = 2500 £ 100,
y = —200 + 100, § = 90 + 2 (position 2 of Figure 7). At each position, the observation of
the landmarks (drawn slightly larger) in the viewing cone of the robot from this position was
simulated with uniformly varying error in the range of +0.55 pixels. Figure 8 shows the mean
of the ratio between the number of computed matches and the ideal number of matches as a
function of the observation tolerance €. In this case, because of the large distance from the
observed landmarks and structural ambiguities in the stored map even the nearly correct value
of € = 0.5 leads to 4.7 times more matches than the ideal case. However, even with this explosive
growth the correct labeling was found for all values of € up to 0.8. By slightly modifying the
stored map (removing some ambiguities) the correct labeling was found up to € = 1.1.

These tests are by no means conclusive, but they suggest that the exact choice of € is not
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Figure 9: The actual time evolution of the maximal error in robot localization: z component
(left) and y component (right).

crucial to good algorithm performance, provided a sufficient number of landmarks (in this case,
five) are observed. Choosing the smallest value known to be correct will improve algorithm
performance in marginal cases.

5.2 Experiments With Real Data

A typical image taken in the test room may contain from zero to approximately seven observed
vertical edges. On the average, the images contain five vertical edges, zero or one of which is a
false detection. If the number of observed edges is less than three, then the algorithm cannot
be run (a minimum of three points is required to describe a triangle). Unless the observed
landmarks are very close (within about a meter), a minimum of four observed stripes is required
to provide some labeling redundancy. If the robot does not see a scene with four stripes, there
is an error-handling procedure that rotates the robot a small amount and takes another image.
This process continues until a satisfactory labeling is found.

Experiment 1: As discussed in Section 2, if the errors in observation across time are
stochastic and independent then continued observation of the same scene will drive the maximal
error in positioning (the size of the tolerance intervals on the position parameters) toward zero.

To test this idea, the robot was programmed to continually observe, compute location sets,
and to combine the estimates over time. Figure 9 shows the rate of convergence of the intervals
toward a single point. Figure 10 shows the ezpected rate of convergence over time when observing
the same scene with observation error distributed uniformly in the range [—0.5,0.5].

On this trial the initial localization accuracy is consistent with simulation, though the con-
vergence is much faster than expected. Based on the results in Section 2, even a uniform error
distribution appears to be an optimistic assumption for this data. This experiment was carried
out to 1000 observations, however the accuracy was not reduced after the 86th observation. The
final accuracy of the solution was 0.5 millimeters in z position, 3.3 millimeters in y position,
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Figure 10: The simulated time evolution of the maximal error in robot localization: z component
(left) and y component (right).

and 0.07 degrees of orientation. Hand measurements verified that the error in location estima-
tion was less than one centimeter—approximately the expected level of accuracy relative to the
possible systematic errors in calibration. Recomputation of the camera calibration reduced this
error to a few millimeters.

Experiment 2: The complete system has been tested by point to point navigation in the
two rooms shown in Figure 7. In particular, to move from room to room includes navigating
the door opening which required a positioning precision of 3 cm. This particular path has been
tested well over 100 times without failure suggesting that the error in positioning is less than
0.5 cm.

6 Extensions

This section describes three extensions to the basic localization algorithm. First, the matching
algorithm is extended to allow for uncertain absolute landmark locations. Second, a linear time
algorithm for recognizing matches is described. Finally, a method for integrating information
across time is presented

6.1 Algorithm Modifications for Landmark Uncertainty

The algorithm in Section 4.1 represents landmark positions as single points. In fact the location
of landmarks will often be slightly in error. Hence, the robustness of the labeling and localization
algorithms is increased by treating landmarks as intervals. In addition, the use of interval-based
landmarks provides the basis for map learning. Newly observed landmarks can be added to the
map as large intervals, and these intervals refined as the landmarks are continually reobserved.

The major difficulty in extending the labeling algorithm to intervals on landmark positions

22




is that triples of three landmarks must be represented by intervals on angles and lengths. The
labeling algorithm must determine if the interval of values for a map triangle intersects the
interval of values for an observed triangle. However, intervals cannot be totally ordered, and
hence the search and marking phase of the labeling algorithm does not apply. It is possible
to construct a search and marking algorithm for interval landmarks that has exactly the same
computational complexity as the algorithm for point-based landmarks, but the space complexity
of that algorithm is O(n®). Thus, it is practical only for very small maps.

An O(n®) space complexity solution to the labeling problem that allows uncertainty on
landmark position proceeds as follows:

e For each of the three angles and lengths, make two lists of value/pointer pairs sorted by
lower and upper value, respectively.

¢ Given the ranges of angles and length for an observed triangle pair, search for the first value
in each list of lower values that is less than or equal to the upper value of the corresponding
observed triangle value. Mark this and all smaller entries.

Likewise, find the first value in the list of upper values that is no smaller than the lower
value of the corresponding observed triangle value. Mark this and all larger entries.

e After this has been done for all six triangle parameters, take only those values that have
been marked twelve times. '

It is easy to show that this algorithm is correct: it finds the exact set of landmark triples that
match an observed triple of points. Its primary drawback is the excessive number of marking
operations.

The number of marking operations can be reduced by noting that the error tolerance on
map points should be small in order for the labeling algorithm to work efficiently. Consequently,
the range of angles and lengths computed from triples of map points will often be quite small.
Suppose that the maximum size of any interval on @ = [y, a,] is w. Then any interval that
intersects a must have a lower value in the range [ — w, ], and likewise any interval that
intersects @ must have an upper value in the range [o, @, +w]. Using this information, the final
labeling algorithm can be described as follows:

Initialization:
e For each unique grouping of map points, compute (the interval) S; ;x (using the methods
described in Section 4.1) and add it to a list M. Call the final length of this list g.

e For each element M; = [l,u], j = 1,...,q,foreach 7, 1 =1...6, add the pair (l;,7) to a
list L' and the pair (u;,5) to a list U*

o Sort the elements of each L* and U*, i = 1,...,6 on the first (value) component yielding
twelve lists of pairs of indices and values sorted on value.

o Determine the maximal width of each of the six components of elements in M. Call this
vector W.
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Runtime: For each triplet of observed stereo pairs o,, 03, 0,

e Compute (the interval) Sgp. = [! ,u] encoding the permissible range of the six triangle
parameters for the given tolerance e.

e For each coordinate : = 1,...,6

— Find the first index r, such that the value field of Lf.u is no larger than u;.

— Find the first index r; such that the value field of Lil_l is smaller than [; — W;.
— For each (vj,k;) = L}, r < j < ry, mark My, as found.

— Find the first index s; such that the value field of Ujl is no smaller than ;.

— Find the first index s, such that the value field of U ,, is larger than u; + W;.

— For each (vj,k;) = U}, 51 < j < sy, mark My, as found.

e For each S;,j,k € M that has been marked twelve times, add ({04, p:), (05, P;), (0c, Pk)) to
A.

Matches are disambiguated as before. Likewise, robot position is computed as described
in Section 4.3 except that (6) and (7) must be modified to account for landmark position
uncertainty. This is easily accomplished by using interval arithmetic [28].

This algorithm has been tested on simulated and real data with landmark uncertainty of
5 mm. There was no noticeable degradation of the labeling algorithm performance, and the
increase in the size of the robot location interval was minimal. However, the speed of the
algorithm decreased due to a larger number of triangles found to be consistent with observed
data.

6.2 A Faster Partitioning Algorithm

As noted before, the major bottleneck in labeling, particularly when the landmarks are repre-
sented as intervals, is partitioning the matches. Instead of partitioning the matches, it is possible
to construct a match matriz with m rows and n columns, where the entry in row 7 and column j
indicates a match between observed feature i and map landmark j. For the example of Section
4.2, the match matrix is:

6 0000
06 000
00311
00040

For m observations to be labeled, the following conditions must hold:

1. Each observation must be matched in (m — 1)(m — 2)/2 triangles. In other words, exactly
one value in each row must attain or exceed this threshold.
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2. The above condition must hold for m rows.

3. The maxima must occur in m different columns.

If these conditions are fulfilled, then the matches for the rows with a member that passed
the threshold value are chosen. Otherwise, the number of assumed correct landmarks is reduced
by 1, and the process repeated. This continues until some row contains more than one value
exceeding the threshold, indicating an ambiguity that cannot be resolved using this algorithm.

This algorithm is an approximation: it can miss unique labelings and can also commit
labeling errors, though both cases, in particular the latter, are highly unlikely. For example, the
following example shows a labeling that would be missed:

A Ag A3 A4

01, 02,03 <> D1,P2,P3 | 01,02,03 <= P2,P1,P4 | 01,02,04 < P2,P3,P4 | 01,03,04 < P2,P3,P5

01, 02,04 <= D1, P2, P4

01, 03, 04 <= D1, P3, P4

02, 03,04 <= P2, D3, P4

The match matrix is:

OO W
OO W W
(=2 =
-0 O
- o oo

In this case, the algorithm will indicate that the correct correspondence for observation 1 is
ambiguous, even though this is not strictly the case. In general, many similar constellations of
landmarks in the map lead to this type of error.

The following six matches lead to a labeling error:

01,02,03 <= P1,P2,P3 01,02,03 < P1,P2,P4 01,02,03 <= P1,P2,Ps5
01, 03,04 — DP6,P4,DP5 01,03,04 <= DP7,P4,P5 01,03, 04 < P8, P1,DP5

The match matrix is:

30000111
030000O0O0TO
10131000
0 000 3 00O

The correspondences 0, <=> py, 0 <= P2, 03 <= P4, 04 <> ps, would be chosen. In
general, for such an error to happen one triple of observed points must be matched in several
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ways, all the time keeping one or two elements of the match fixed. In order for this to happen,
the map must contain several nearly ambiguous pairs, or the uncertainty on the observations
must be quite high. Conversely, the uncertainty cannot be so large that an ambiguity arises.
The conjunction of these circumstances is quite small. This case has never arisen in several tests
of the algorithm.

For ¢ matches, the time required to choose a labeling is O(c) (the list of matches must be
processed once to develop the matrix). With this algorithm, the time needed to compute a
labeling solution for the problem given in Section 4.4 drops from 0.2 sec to 0.1 sec. The time
improvements are even more significant for larger problems with 6 to 8 observed landmarks.

6.3 Using Information About Robot Motion

Location estimation often does not have to be solved from first principles. If system motions
can be modelled, prior location information can be projected using that model and combined
with new location information. One of the principle advantages of so-called “recursive” (e.g.
the Kalman filter) schemes is the use of a system dynamics model to project and combine past
information with new information.

A similar scheme is possible using interval-based uncertainties. To illustrate, assume the
only uncertainty in motion is in translation, and that it is proportional to distance travelled. If
s is a commanded speed, k is an error ratio, t is a period of time, and P = (z,v,8), then a
model for the projection of location estimates is

- +
Tist | = | T | s+ [k, £]) | O
[ y’:-H ] [ y-kl- ] ( [ ’ ]) Sln(e)
Since P is a vector of closed intervals, the above expression can be computed using interval
arithmetic.

If £ and ¢ are estimated locations at time k + ¢, then the consistent locations must be
"’;:+t =Nz, y:+t =YNYry (8)
Figure 11 depicts the results of combining motion and observation over time. The unshaded

squares represent projected locations, the shaded squares represent estimated position, and the
darkly outlined squares represent the jointly consistent regions computed by (8).

This temporal constraint also provides a means for verifying labelings. If multiple consistent
labelings are computed, but only one is consistent with the projection of the previous location,
then that labeling has a high likelihood of being correct. Likewise, if no labeling is consistent
with the previously projected location, then a labeling error is a possible cause.

7 Discussion and Future Work

The set-based matching and localization algorithms described in this article have several advan-
tages in problem areas where a bounded error model is appropriate:
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Figure 11: Updating over time. The shaded area denotes the intersection of regions consistent
with past information (solid boxes) and current estimated location (dashed boxes).

1. The model parameters are purely geometric and easily recovered by examining series of
data.

2. The algorithms are simple and fast.
3. The methodology can be proved convergent under extremely weak statistical assumptions.

4. The algorithms have a very low probability of failure, and deliver quantitative, provably
conservative bounds on localization error.

The localization algorithms are also easily parallelized as an initial implementation on a Transputer”™

network has shown. With specialized hardware, it may be possible to perform localization at
video rates.

The methods are comparable with the widely-published Kalman filter-based methods in
terms of simplicity and execution time, though they rely on a different set of assumptions. In
particular, the correspondence algorithm requires no prior location information or prior statisti-
cal assumptions. In comparison, the solutions reported in [2; 11; 10] and other related Kalman
filter-based work require a good initial solution and good statistical models to “bootstrap” the ;
data association algorithms used. '

Likewise, the computation of location deals with errors explicitly and quantitatively. Again,
since set-based estimation does not rely on strong statistical assumptions, the algorithms are
more robust than estimation methods that do rely on distributional assumptions. In general, we
believe the computation of solution setsis an important approach to robotics problems. That is,
rather than computing a single point, or a single point with some type of (often heuristic) figure
of merit, it is better to compute the complete set of possible solutions based on observation
uncertainty intervals. Many types of robotic tasks that depend on the configuration space of
the robot can be easily formulated and solved in terms of sets of locations.

All of the analysis in this article rests on the idea that correspondence is solved from first
principles at every time step. The next phase of this work includes mounting a second camera
on the robot and using feature tracking to support continuous stereo. The methods presented
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above will be used to locate features and solve the static localization problem. Thereafter,
landmarks will be tracked and a running location estimate will be computed. Both Kalman
filter and set-based methods will be tested for accuracy, suitability, and efficiency.

Furthermore, some aspects of “active” vision will be investigated. For example, if the cor-
respondence cannot be solved or localization accuracy becomes unacceptable, the system can
enlarge the stereo baseline. This will improve accuracy, although at the cost of having fewer
landmarks common to both images. In addition, a wider baseline may complicate feature track-
ing. Slowing the robot motion increases the effective sampling rate and thereby increases the
accuracy of localization without complicating correspondence or tracking. However, the task is
performed more slowly. Hence, the goal is to optimize parameters such as baseline or speed with
respect to task requirements and algorithm performance. The use of decision-theoretic methods
[5] for formalizing these notions will be investigated.
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Figure 12: Labeling conventions for determining maximum angle.
A A Closed Form Solution for Maximal Angle

Suppose A, By, By, and C are arranged as in Figure 12. The problem is to find the point B
along the line B, B, where the expression
(A“—B)°(C—B) (9)
A - B|lIC - B

attains its minimum value.

In order to simplify the problem, all points will be translated by —B; and rotated so that the
line By B, is aligned with the z axis. Under this transformation, the above expression expands
to:

(Az —z)(Cz —z) + A,Cy .
J(Az =27 + )(Ca— ) +CO)

The point B becomes (z,0) and the problem is to find the values of z that minimizes the above
expression.

Assuming neither A or C lies on the z axis, differentiating the above expression, equating it
to zero, and rearranging the terms yields the polynomial:

P = (A;+C,-22)((Az—2)% + AZ)_((C, -z)2+ChH
~((4z = 2)(Cz = 2) + A,C)[(Az — 2)((Cz — 2)* + C}) + (Cz = 2)((4z = 2) + A7)]
= [(Az ~2)Cy — (Cs = 2)Ay] [((A= = 2)* + AD)C, — ((C2 = 2)? + CDA,)
= P1P2.
Thus, the polynomial P is 0 only when P, or P; is zero. Recall both Cy and A, are positive

quantities. Under these conditions, the solution leading to P; = 0 is the case when A, C and B
are colinear. The corresponding angle is either 0 or 180 degrees.
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P, is a quadratic in z of the form az? + bz + ¢ where

a = (Cy—4y),
b = 2(A,Cs— Cys),

¢ = Cy(42+42)- 4,(C2+CY).

Solving this quadratic and simplifying leads to the final solution

z = (CyAz' - Aycz) + AyCy((Az' - Cz)z + (Ay - Cy)z).
Cy - Ay

If one of these values lies between B; and B, then substituting that value into (9) and computing
the inverse cosine yields the maximum angle. Otherwise the maximum angle results when
B = B; or B = B; in (9).
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