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Abstract

Suppose that f is computed by a constant depth circuit with 2™ AND-,
OR-, and NOT-gates, and m magority-gates. We prove that f is computed by
a constant depth circuit with 2 AND-, OR-, and NOT-gates, and a single
majority-gate, which is at the root.

One consequence is that if f is computed by an ACP circuit plus polylog
majority-gates, then f is computed by a probabilistic perceptron having polylog
order. Another consequence is that if f agrees with the parity function on three-
fourths of all inputs, then f cannot be computed by a constant depth circuit
with 27" AND-, OR-, and NOT-gates, and n°()) majority-gates.

1. Introduction

One of the goals of complexity theory is to find ways to reduce the use of one resource.
Typically this entails a modest increase in some other resources.

Recently, quasipolynomial size circuits have been the setting for unexpected re-
source tradeoffs [1, 2, 16, 7, 14, 5]. In this paper we show how to reduce the number
of majority-gates in many kinds of quasipolynomial size circuits from polylog down
to 1.

For example, consider constant-depth quasipolynomial-size circuits that consist
of AND-, OR-, NOT-, and majority-gates. We show how to reduce the number of
majority-gates from m to 1, while increasing the number of other gates by 2mpelylegn
and increasing the depth by 2. As a corollary we convert such circuits to perceptrons
having small order. As another corollary, we unify several known lower bounds 4, 15,
9, 13] for computing parity with constant depth circuits, proving that if a bounded
depth circuit consisting of AND-, OR-, NOT-, and majority-gates computes parity
correctly on three-fourths of all inputs, then the circuit must have exponential size or
a polynomial number of majority-gates. '
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Our result is an exponential improvement on the bounds in [6]. The proof uses
the low-degree polynomials developed in that paper and an observation of Fortnow
and Reingold [8] in a nontrivial way.

We also show how to reduce the number of symmetric gates in many kinds of
quasipolynomial size circuits from O(loglogn) down to 1. Consider constant-depth
quasipolynomial size circuits that consist of AND-, OR-, NOT-, and MOD,,-gates
and symmetric gates. We show how to reduce the number of symmetric gates from
m to 1, while increasing the number of other gates by 22" Po¥1°8™ and increasing the
depth by 1. The proof uses base-B representation as in [11]. As a corollary we extend
results of [16, 7] on ACC, showing that any function computed by a constant-depth,
quasipolynomial-size circuit consisting of AND-, OR-, NOT-, and MOD,,-gates and
O(loglog n) symmetric gates is in fact computed by a depth 2, quasipolynomial size
circuit with a symmetric gate at the root and AND-gates having polylog fanin at the
bottom level.

Our results for decision problems contrast with those of Amir et al [3] who showed
in broad generality that extra oracle gates do help to compute additional functions.

2. Representing Boolean functions

Boolean values are often represented as elements of {0,1}, 0 denoting false, and 1
denoting true. They can also be represented as elements of {—1,1}, —1 denoting false
and 1 denoting true. Real polynomials or rational functions in either representation
can be converted to the other without affecting the degree.

A majority-gate outputs true if more than half of the inputs are true. By standard
techniques, we will assume that it is never the case that exactly half of the inputs to
a majority-gate are true.

In the first representation, the majority function is

1 if Sz > 1in,
MAJ(:cl,...,a:n)={ 0 ifgx,-<§z.

In the second representation,

MAJ(z1,...,z,) = sgn(d_ z:).

A threshold-gate computes a weighted sum of the inputs and tests whether the
sum is greater than a threshold. In circuits, a threshold-gate with integer weights
can be simulated by a majority-gate, because we can use parallel wires to simulate
weights. Thus our results for circuits with majority-gates hold as well for circuits with
threshold gates having bounded integral weights. The results for threshold circuits
will not be stated explicitly.




3. Approximations

Rational approximations were developed by Newman [10]. Low-degree rational ap-
proximations are an important tool, which was applied to threshold circuit lower
bounds by Paturi and Saks [12]. In order to prove upper bounds, we [6] observed
that the small integral coefficients are also important.

Definition 1. A real-valued function g(z1,...,z,) approzrimates a function f(zy,...,,)
with error € if for all zy,..., 2, in the domain of f, |g(z1,...,2,) = f(21,...,2,)| < €

Lemma 2 ([6]). MAJ(z1,...2,) can be approzimated with error € by a rational func-

tion g(z1,...,2,) having degree O(lognlog (1/€)) and integer coefficients bounded by
20(10g2 nlog(1/¢)) .

Definition 3.
o The norm of a polynomial is the sum of the absolute values of its coefficients.

e The norm of a rational function is the norm of its numerator plus the norm of
its denominator.

This definition of norm will be robust enough for our purposes because changing from
the {0,1} representation of Boolean values to the {—1,1} representation changes the
norm of a degree d rational function by a factor of only O(2¢).

Note that the value of a polynomial over {0,1}* or over {—1,1}* is bounded by
its norm. We need the following obvious corollary to the lemma of [6]:

Lemma 4. Let n be any natural number. MAJ(z,,...x,) can be approzimated with
error € by a rational function g(z,...,z,) having norm 200es’ nlog(1/¢)

Proof:  The number of monomials in a polynomial with n variables and degree d
is (”jd). Therefore the numerator and the denominator of the rational function in

Lemma 2 contain n@(legnlog(1/e)) monomials, which is 20(g” nlog(1/¢)) The coefficients
are also 20(log2nlog(1/e))- ]

4. Eliminating majority-gates

Let G be any set of gates that includes unbounded fanin AND-gates. Let
TCg(depth d, size s, majorities m) denote the class of circuits consisting of gates
in G and majority-gates with depth d, size s, and m majority-gates. Let Cg(depth d,
size s) denote TCg(depth d, size s, majorities 0).




Theorem 5. Suppose that f is in TCg(depth d, size s, majorities m). Then f is in
TCq(depth d + 2, size 2™(OUog)*™** ' maiorities 1), where the majority-gate is at the
root.

Taking G = {AND, OR,NOT} and d = O(1), this exponentially improves the size
bound of [6].
We extend the upper bounds of [14, 5].

Corollary 6. Let G = {AND,OR,NOT}. Every function in TCg(depth O(1),
size quasipolynomial, majorities polylog) is computable by a probabilistic perceptron
having polylog order.

We unify some lower bounds of [4], [15, 9] and [13].

Corollary 7. Let G = {AND,OR,NOT}. If f agrees with parity on three-fourths of
2
all inputs in {0,1}" then f is not in TCg(depth d, size gnHe) majorities n°(1/9)),

Let sgn(z) denote the signum function: —1ifz < 0,1ifz >0, 0if z = 0.

Proof of theorem: It will be convenient to assume that f’s arguments are
in {0,1} and that f’s result is in {—1,1}. Let f : {0,1}* — {-=1,1} belong to
TCg(depth d, size s, majorities m). We will show that f = sgn(p(fi,..., f¢)) where
p has norm 2m(C08)*** and £, ..., f; belong to Cg(depth d, size s). (In fact if
we view the original circuit as a DAG, f,..., f; are some of its subgraphs.) That
proves the theorem, because products can be computed by AND-gates when inputs
are represented in {0,1}.

Let TCg(depth d, size s, majorities m, level k) denote the class of TCg(depth d,
size s, majorities m) circuits with majority-gates on only levels 0 through k, where
level 0 is the root. If f is computed by a TCg(depth d, size s, majorities m, level k)
circuit we will construct p and fi,..., f¢ such that f = sgn(p(fi,...,fe)), p is a
polynomial whose norm is bounded by some function N,(k), and fi,..., f; belong to
Cg(depth d, size s). We will find a recurrence for Ny(k), and show that N,(k) =
9m(0(logs))***! ' The theorem follows from that bound, taking k = d.

Consider a function f computed by a circuit with majority-gates only on levels 0
through k. We compute f by summing, over all sequences of possible outputs for the
majority-gates on level k, (a) the value of f given those outputs (in (a) we use —1
for false and 1 for true) multiplied by (b) the AND of the corresponding majorities
or their complement (in (b) we use 0 for false and 1 for true).

Each term in (a) is the sign of a polynomial p of Cg(depth d, size s) functions,
where the norm of p is bounded by N,(k — 1).

Suppose that there are ¢t majority-gates at level k. Then ¢t < k. The terms in (b)
are products of exactly ¢ factors, each of which is either a majority or its complement.
Let € = 1/(m(2™Np(k—1)+1)). Each majority has at most s inputs, so it can be ap-
proximated within error € by a rational function whose norm is 20((1og” s)(m-+log Np(k-1))),
by Lemma 4.



If a majority-gate is approximated within € by the rational function r, then its
complement is approximated within e by the rational function 1 — r, which has the
same denominator as r. If r is as in the previous paragraph, then the norm of 1 — r
is also 20((log? s)(m+log Np(k—-1)))

We approximate each term in (b) by the product of the rational functions that
approximate the corresponding majorities or their complements. The error is at most
(1+¢€)*—-1<(14¢€)™—1. Furthermore the denominator is the same for each term
because r and 1 — r have the same denominator.

The function f is then approximated by taking the sum of the 2™ terms (a) times
(b). Since each term in (a) is bounded by N,(k — 1), the error in approximating f
is bounded by 2™ N,(k — 1)((1 + €)™ — 1), which is less than 1 by Lemma 8 (proved
below) with N = N,(k — 1), so the approximation has the same sign as f.

Recall that all the rational functions used in the approximation have the same
denominator. We obtain a polynomial that has the same sign as f by multiplying
by the square of that common denominator. If N, bounds the norm of the rational
functions and N,(k — 1) bounds the norm of the polynomials p used for (a) then
2™ Np(k — 1)N? bounds the norm of the resulting polynomial, so

Np(k) < 2mNp(k _ 1)20((log2 s)(m-Hong(k—l))).
Furthermore, we have N,(0) < s. An easy induction shows that
Np(k) — 2(m+logs)(0(logs))2k — 2m(0(logs))2""'1 .

0

Lemma 8. Let e=1/(m(2™N +1)). Then 2"N((1+¢)™ —1) < 1.

Proof:  For all real y, 1 +y < e¥, with equality holding iff y = 0. By inverting
that inequality and letting y = —1/(1 + z) where z > 0, we obtain

1 1 1
141 7 = (em(+s) )™ 1 m
+1/z > e = (e ™ > ( +m(z+1))

Letting £ = 2™ N, we have
2"N((14+¢™—-1)<2™N(1+2"N1-1)=1,

as claimed. O

5. Eliminating Symmetric Gates

By applying some simple techniques developed by Papadimitriou and Zachos [11]
in the study of #P, we will show how to reduce the number of symmetric gates in
circuits to 1. Let SYMMCg(depth d, size s, symmetrics m) denote the class of circuits
consisting of gates in G' and symmetric gates with depth d, size s, and m symmetric
gates. (In this section G' need not contain unbounded fanin AND-gates.)
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Theorem 9. Suppose that f is in SYMMCg(depth d, size s, symmetrics m). Then
f is in SYMMCg(depth d + 1, size s*”" 2, symmetrics 1), where the symmetric gate
is at the root.

Proof:  Consider any circuit C' with m symmetric gates, g1, ..., gmn where the depth
of g;—; is at least as great as the depth of g; for ¢« = 2,...,m. Trying all possible
output values for g¢q,...,¢:-1 we find that g; computes a symmetric function of one
of 2i=1 subcircuits of C. Doing so for all ¢, we see that it is sufficient to evaluate
2™ — 1 symmetric functions of subcircuits of C' and to evaluate a subcircuit of C
in the case that there is not a symmetric gate at the root. A fortiori, it suffices to
evaluate 2™ symmetric functions of subcircuits of g. Let M = 2™, and let zo,...,znp
respectively denote the sum of the inputs to each of those symmetric functions. All
of these numbers can be encoded into a single number, X = ¥ z;B*, where B is
any number larger than each of the z;’s; taking B = s suffices. X may be computed
by a single symmetric gate whose inputs are BM*! — 1 subcircuits of C. The size of
the resulting circuit is

s(BMH — 1) = 5(s¥" 1 — 1) < s¥7 12
a

We extend the results of [16, 7] on ACC.

Corollary 10. Let G = {AND,OR,NOT,MOD,,}. Then every function in
SYMMCg(depth O(1), size quasipolynomial, symmetrics O(loglogn)) is computable
in depth two by a quasipolynomial size circuit with a symmetric gate at the root and
polylog-fanin AND-gates at the leaves.

6. Extensions

When we eliminate majority-gates, it is notable that unbounded-fanin AND-gates are
not always required. The fanin of the AND-gates at the second level of the simulating
circuits is bounded by the degree of the polynomial associated with the construction.
Furthermore, we have noted that the subcircuits which feed into those AND-gates
are subgraphs of the original circuit. Our size bounds are at most squared if we make
separate copies of the inputs to those AND-gates. Therefore, all of our results about
majority-gates go through for formulas as well as for circuits. Our results about
symmetric gates go through directly for formulas.

Our results also apply to circuits and formulas with threshold gates having small
weights. Some authors specify polynomial-bounded weights. A more general way of
requiring small weights is to define the circuit size to be the number of wires plus
the sum of all weights. Then our results go through for threshold gates in place
of majority gates, because we may convert such threshold gates directly to rational
functions with the same norm and degree bounds as in Lemma 4.
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