Learning k-term DNF formulas using queries and
| counterexamples

Dana Angluin * 77@ >
> 7

Yale University

August 1987

Abstract

We consider the class of propositional formulas over n variables in disjunctive normal
form with at most k terms, the k-term DNF formulas. We show that for each fixed
k > 0, there is an algorithm to learn any k-term DNF formula using equivalence and
membership queries that runs in time bounded by a polynomial in n. Dual results hold
for k-clause CNF formulas.

1 Introduction

We consider the problem of learning a propositional formula using queries to a teacher.
The class of k-term DNF formulas is the class of propositional formulas over n variables in
disjunctive normal form with at most k terms. Dually, the class of k-clause CNF formulas
is the class of CNF formulas over n variables with at most k clauses.

Pitt and Valiant [2,3] consider the problem of learning k-term DNF formulas in the
stochastic setting introduced by Valiant [4]. They show that for each k > 2 the class of
k-term DNF formulas cannot be probably approximately identified in time polynomial in
n unless RP = NP. RP is the class of sets recognizable in random polynomial time, and
NP is the class of sets recognizable in nondeterministic polynomial time. RP is a subclass
of NP, but it is unknown whether the containment is strict. Many researchers suspect that
RP and NP are unequal, so this is interpreted as a negative result about learning k-term
DNF formulas.

A straightforward adaptation of Pitt and Valiant’s proof shows that for k > 2, the k-
term DNF formulas cannot be exactly identified in time polynomial in n using equivalence
queries if P is not equal to NP. (See [1] for relationships between types of queries and
Valiant’s stochastic setting.) P is the class of sets recognizable in deterministic polynomial
time; it is a subclass of RP, and the question of strict containment is open.

The main result in this note is that if membership queries are available in addition to
equivalence queries, there is an algorithm that exactly identifies any k-term DNF formula
in time polynomial in n.

*Supported by NSF grant IRI-8404226

2 Preliminaries

2.1 Propositional formulas

Let X;i,...,X, be propositional variables. An assignment to these variables is a function
a from X;,...,X, to the set {0,1}. An assignment is extended to all propositional for-
mulas over the variables Xj,..., X, in the usual way. An assignment may be represented
compactly as an n-bit vector, with the i-th bit representing the value of a(X;).

A literal is one of the propositional variables or the negation of one of the propositional
variables, e.g., X3 or =Xg. For each 1, the complement of X; is —=X; and the complement
of =X; is X;. X; and —X; are called a complementary pair.

A termis the conjunction of a collection of literals that does not contain a complementary
pair. For example, X;-X3Xs is a term.

A disjunctive normal form formula ¢ is the disjunction of a finite sequence of terms.
For example,

X1 X3Xs + X2 X3 Xy

is a disjunctive normal form formula with two terms. By convention, the empty disjunction,
denoted 1, is assigned O by every assignment. Thus, L is the everywhere false function.
We use the abbreviation DNF for “disjunctive normal form” hereafter.

Two formulas ¢ and ¢' over the variables Xj,..., X, are equtvalent if and only if for
every assignment a to these variables, a(¢) = a(¢').

2.2 Special notation

If a is an assignment and L is a literal, let a[L] be the assignment obtained from a by
forcing the literal L to be assigned the value 0. That is, if L is X; then a[L](X;) = 0 and
a[L])(X;) = a(X;) for all § # 4. If L is =X; then a[L](X;) = 1 and a[L](X;) = a(Xj) for all
J#s.

If C = {Li,,...,Li,} is a set of literals that does not contain a complementary pair,
then we define a[C] to be the assignment obtained from a by forcing the values on each of
the literals in C to be 0. Then

a{C’] = a[L,-l] e [L,'h].

If ¢ is a DNF formula and a is any assignment satisfying ¢, then the sensitive set of a
with respect to ¢ is the set of literals L such that a[L](¢) = 0. We denote the sensitive set
of a with respect to ¢ by S(a).

2.3 Queries

Let ¢ be a DNF formula ¢ over the variables Xj,. .., X, with k or fewer terms. The goal is
to learn a formula equivalent to ¢. The variables Xj,..., X, are known, as is the value of
k. Further information about ¢ comes from two types of queries: equivalence queries and
membership queries. (The paper [1] contains a discussion of types of queries.)

A membership query proposes an assignment a to the variables Xj,..., X,. The reply

is yes if a(¢) = 1 and no if a(¢) = 0.

An equivalence query proposes a DNF formula ¢' over the variables Xj,..., X, with at
most k terms. The reply is yes if ¢' is equivalent to ¢. The reply is no if ¢' is not equivalent
to ¢, and in this case the reply also contains an assignment a such that a(¢) # a(¢'). The
assignment a is called a counterezample because it witnesses the inequivalence of ¢' to the
unknown formula ¢.

"The goal of the learning algorithm is to find a DNF formula over the variables X3, ..., X,
with at most k terms that is equivalent to ¢. An algorithm that accomplishes this is said to
perform ezact identification. One strategy is to enumerate k-term DNF formulas and use
equivalence queries to find one equivalent to ¢, but in general this strategy will not run in
time polynomial in n.

3 Thecasek=1

There is a simple algorithm in case ¢ consists of at most one term, which we describe here
to help motivate the general algorithm.

The learning algorithm first tests the constant false function, 1, using an equivalence
query. If the reply is yes, the algorithm outputs L and halts. If the reply is no, then a
counterexample a is also returned. Then we know that ¢ consists of one term ¢ and a(t) = 1.

Then the algorithm determines the sensitive set, S(a), of a with respect to ¢ by using
membership queries. In particular, for each literal L such that a(L) = 1, the algorithm does
a membership query to determine whether a[L](¢) = 0. It then outputs the term ¢ that is
the conjunction of all the literals in S(a).

We claim that t' is equal to ¢t. Consider any literal L in t. When this literal is assigned
the value O, the term ¢ and therefore the formula ¢ are also assigned the value 0. Hence
every literal in ¢ is in S(a).

Conversely, suppose L is a literal not in ¢. If the complement of L is also not in ¢, then
the value of a[L] is equal to the value of a on all the literals in ¢, so a[L](¢) = 1. If the
complement of L is in ¢, then the value of a is already 0 on L, so a[L] is equal to a, and
a[L)(#) = 1. In either case, L is not in S(a). Thus, the literals in ¢ are precisely those in ¢'.

This algorithm makes a maximum of one equivalence query and n membership queries,
and clearly runs in time polynomial in n. If we try simply to extend this strategy when
k > 1, we are stymied by the fact that when we change the assignment to a literal it may
affect several terms, obscuring the effect of the change. However, a slightly more complex
generalization works.

4 Main result
This section is devoted to a proof of the following.

Theorem 1 Let k > 0. There is an algorithm that ezactly identifies any k-term DNF
formula over n variables using equivalence and membership queries that runs in time poly-
nomial in n.

We first develop a little more machinery.

4.1 Nonredundancy

Let
¢=ti+...+1

be a k-term DNF formula over the n variables Xj, ..., X,,. We say ¢ is redundant if for some
i, the formula ¢' obtained from ¢ by removing ¢; is equivalent to ¢. If ¢ is not redundant,
it is nonredundant.

Lemma 2 Suppose the formula ¢ 1is nonredundant. Then for each 1, there exists an as-
signment a; to X1,...,X, such that a;(t;) = 1 but for each j # ¢, a;(t;) = 0. That is, a;
satisfies term t; and none of the rest of the terms.

Suppose that for some 1, for every assignment a such that a(t;) = 1 there is some j # ¢
such that a(t;) = 1. Then let ¢' be obtained from ¢ by removing term t;. Clearly, for every
assignment a, if a(¢') = 1 then a(¢) = 1.

Conversely, if a is any assignment such that a(¢) = 1, then for some j, a(t;) =1. If j # ¢
then a(¢') = 1. If j = 1, then there is some h # i such that a(ts) = 1, so also a(¢') = 1.
Hence for every assignment a, a(¢) = a(¢'). Thus the two formulas are equivalent and ¢ is
redundant, contrary to hypothesis. This proves Lemma 2.

4.2 Discriminants

A discriminant of a DNF formula gives us a way of focusing on a single term of the formula.
Let k > 1 and define the index set

Iy ={(i,5): 1< i#j <k}

Note that I; is empty if k = 1. Let ¢ be a DNF formula with k terms. A discriminant for
¢ is an indexed collection of literals L;; for (1, 7) € I} such that

1. For every (t,7) € Ix, Ly; is a literal that is in ¢; and not in ¢;.

2. If t; and ¢; contain a complementary pair of literals, then L;; and Lj; are a comple-
mentary pair of literals.

3. For each ¢ =1,...,k, the set {Lj; : j # 1} does not contain a complementary pair.

For each 1, let L;. denote the set of literals {L;; : j # ¢}. Analogously, let L.; denote
the set of literals {Lj; : j # 1}. Then L. is a subset of the literals of ¢;, and condition (3)
above states that L.; does not contain a complementary pair. By convention, the empty
collection of literals is a discriminant for a DNF formula with one term.

Lemma 3 If ¢ ts a nonredundant DNF formula with k > 1 terms then a discriminant
ezists for ¢. :

Since ¢ is not redundant, for each ¢ = 1,.. .,k there exists an assignment a; that satisfies
t; but satisfies no other term of ¢, by Lemma 2. We describe how to construct a discriminant

for ¢.

For each pair (1,7) € I, if t; and t; contain a complementary pair of literals, say X},
and —X), then let L;; be the member of this pair that appears in ¢; and Lj; be the member
of this pair that appears in t;. Note that a;(L;;) = 1 because a;(t;) = 1, s0 a;(L;;) =0

Otherwise, let L;; be any literal in the term t; such that a;(L,;) = 0. There must be at
- least one such, since a;(t;) = 0. The literal L;; cannot appear in t; since a;(t;) = 1.

Finally, note that for each ¢ = 1,...,k, the set L,; contains only literals that are assigned
the value O by a;, and so cannot contain a complementary pair. This proves Lemma 3.

The key lemma on the use of a discriminant is the following.

Lemma 4 Let k > 1. Let ¢ = t; + ...+ t; be a nonredundant DNF formula and let
Li;,(4,7) € I be a discriminant for ¢. For anyi =1,...,k, let a be any assignment such
that a[L.|(t;) = 1. Then the literals in t; are precisely those in L;, U S(a[L.q)).

By the definition of a discriminant, L.; does not contain a complementary pair of literals,
so the assignment a[L.;] is well defined. By hypothesis, a[L,;] assigns 1 to t;. If j # ¢ then
tj contains a literal from L.;, so a[L.;](t;) = 0. In particular, a[L.;](#) = 1, so the sensitive
set of a[L.;] with respect to ¢ is well defined.

Let L be any literal in L;, U S(a[L.;]). Clearly if L is in L;, then it is in ¢;, so assume L
is in S(a[L.]). This means that a[L.][L](¢) = 0, so a[L.][L](t;) = 0. But a[L.](t:) = 1,
so L must be in ¢;. Thus the literals in L;, U S(a[L.;]) are a subset of the literals of ;.

Conversely, suppose L is a literal in ¢;. If L is in L;, then L is in the union of L.
and S (a[L,,,-]), so assume L is not in L;,. We prove that L is in S(a[L.;]) by showing that
alL.J[L)() =

Since L is in t,, a[L.][L](t;) = 0. Suppose j # i. We know a[L.;(¢;) = 0, and we need
to show a[L.][L](t;) = 0. We consider three cases, as follows.

If t; and t; contain no complementary pair of lltera.ls, then since L is in t;, the comple-
ment of L is not in t;, so a[L.|[L](t;) =0

If ¢; and ¢; contain exactly one complementary pair of literals, then they are L;; and
Lji, by the definition of a discriminant. Since L is not in Ly, it is not equal to L;;, and the
complement of L is not in ¢;, so a[L.|[L](t;) =0

Finally, if ¢; and t; contain more than one pair of complementary literals, then since
a[L,](t;) = 1, a[L.;] must assign O to at least two distinct literals of t;, namely, the
complements of the literals in t;. Thus, a[L.;][L], which changes the value of a[L.,;] on only
one variable, cannot assign 1 to all the literals of ¢;, so a[L.][L](t;) =0

Hence in each of the three cases, a[L.;][L](t;) = 0, and this holds for an arbitrary
J # 1, so a[L,;][L](¢) = 0, and L is in S(a[L.;]). Thus the literals of ; are a subset of
L« U S(a[L.]). This completes the proof of Lemma 4.

4.3 The main subprocedure

The learning algorithm will enumerate possible discriminants for the unknown formula and
* try them out. The subprocedure TRY takes as input the value of k > 1 and an indexed set
of literals, L;; for (1,5) € I;. It assumes that this is a discriminant for ¢ and attempts to
learn ¢ using it. The returned value is either a formula equivalent to ¢ or the special value
faal.

—y

The subprocedure TRY

1. Initialize T to be the empty set. Initialize J to be the set {1,2,...,k}. Then repeat
steps (2) through (8) until a value is returned.

2. Let ¢' be the disjunction of the terms in T, and use an equivalence query to test
@' for equivalence with ¢. If they are equivalent, return the value ¢'. If they are
inequivalent, then let a be the counterexample returned.

If T already contains k terms, return the value fazl.

Use membership queries to find the least ¢+ € J such that a[L.;](¢) = 1.
If there is no such value 1, return the value fail.

Remove 1 from J.

Use membership queries to determine the set S(a[L.]).

A T A A

Let t be the conjunction of all the literals in L;, U S(a[L.;]), and add the term ¢ to 7.

The following lemma says that if the subprocedure TRY is given a correct discriminant
for ¢, it will return a formula equivalent to ¢.

Lemma 5 Let k > 1. Let ¢ =t; +...+ ty be a nonredundant DNF formula. Suppose L;;
for (1,7) € I; is a discriminant for ¢. Then the subprocedure TRY will return a k-term
DNF formula equivalent to ¢.

If k = 1, then ¢ consists of one term, and the empty collection of literals is a discriminant
for ¢, with L;. and L,; both equal to the empty set. It is not difficult to verify that in this
case TRY reduces to the algorithm described in Section 3 for k = 1, and therefore returns
é.

So, assume that k > 2. We show by induction that each iteration of steps (2) through
(8) correctly discovers another term of ¢. The induction hypothesis is that T contains a
subset of the terms of ¢, and J contains the indices of the terms of ¢ that are not in T'.
This is true after the initialization step, since T is empty, and J contains the numbers 1
through k. '

If T contains k terms at the beginning of the iteration, it must contain all the terms of
¢, so TRY will discover that ¢' is equivalent to ¢ and return ¢'. If T contains fewer than k
terms, then since ¢ is nonredundant ¢' cannot be equivalent to ¢, so there will be another
iteration. Since |T| < k, the value fasl will not be returned in step (3).

The counterexample @ must be a positive one, that is, a(¢') = 0 and a(¢) = 1. Let 5 be
the least integer such that a(t;) = 1. Clearly j is still in J, since ¢; is not in T. Since none
of the literals in L,; are in t;, a[L.;](t;) = 1. Thus the search in step (4) will succeed in
finding some ¢ € J such that a[L.;](¢) = 1. In particular, 1 < j.

Then TRY goes on to compute S(a[L.;]) and places in T the term t that is the con-
junction of the literals in L;. and S(a[L.;]), which by Lemma 4, is just the term t;. It also
removes ¢ from J. Thus the induction hypothesis is preserved by this iteration.

Hence at each iteration TRY correctly discovers another term of ¢, and must therefore
halt and output a formula equal to ¢ up to rearrangement of terms after k iterations. This
proves Lemma 5.

We now analyze the running time of TRY.

Lemma 6 The subprocedure TRY makes at most k + 1 equivalence queries, at most kn +
" k(k+1)/2 membership queries, and runs in time polynomial in n and k.

There are at most k iterations of the steps (2) through (8), so there are at most k + 1
equivalence queries. Each iteration may make at most |J| membership queries to find a
value of ¢ in step (4) and at most n membership queries to determine the set S(a[L.;]) in
step (7), for a total of at most kn + k(k + 1)/2 membership queries. A straightforward
implementation clearly runs in time polynomial in n and k, proving Lemma 6.

4.4 The learning algorithm

The value of k and the variables Xj,..., X, are known to the learning algorithm, and there
is an unknown k-term DNF formula ¢. The goal is to find a k-term DNF formula equivalent
to ¢ by using equivalence and membership queries.

The learning algorithm

1. The learnixfg algorithm makes an equivalence query with L. If the reply is yes, it
outputs L and halts.

2. Otherwise, for each r = 1,...,k, it enumerates every indexed sequence of literals L;;
for (1,7) € I, and calls TRY with inputs r and L;; for (i,5) € I,. If TRY returns a
formula ¢, then the learning algorithm outputs ¢' and halts. Otherwise, the returned
value is fail, and the learning algorithm continues.

If the subprocedure returns a formula ¢', then it is a DNF formula with at most k terms
that is equivalent to ¢, so the correctness of the learning algorithm is immediate.

To see that it must eventually halt, note that for some r > 0, ¢ is equivalent to a
nonredundant DNF formula ¢" with r terms. If r = 0 then ¢ is equivalent to L and the
learning algorithm outputs | and halts after the first query.

If r > 1 then since ¢" is nonredundant, there is a discriminant L;; for (1,5) € I, by
Lemma 3. If the TRY is called with r and this discriminant for ¢" as input, it will return
a DNF formula with r terms equivalent to ¢", by Lemma 5. Hence the learning algorithm
must halt, since if it hasn’t halted before, it will certainly halt after it calls TRY on this
input.

How many collections of literals indexed by I, are there? There are 2n choices of literals,
and r(r — 1) pairs in the index set, so there are (2n)"("~1) collections of literals indexed by
I,. Summing over r, we find that there are no more than k(2n)*(*~1) collections of literals
enumerated by the learning algorithm.

Thus the learning algorithm must terminate after at most k(2n)*(*~1) calls to TRY,
and each of these takes time bounded by a polynomial in n and k. Hence the total time
used by the learning algorithm is bounded by a polynomial in n, with an O(k?) term in the
exponent. This concludes the proof of Theorem 1.

5 An example
- To illustrate the learning algorithm, consider the formula
¢ =X1-X: X3+ X1 X4+ X2 X5.

This is a nonredundant formula, and one discriminant for it is

Liz = X;
Ly = X4
Lis = -X;
Ly = X,
Lys = X4
Lss = Xs.

To check that this is a legal discriminant for ¢, note that for each pair (4,5) € I, L;j is in
t; and not in ¢;. Also, t; and t3 contain a complementary pair of literals, ~Xs and X3, and
the values of L3 and L3; are a complementary pair. Finally, note that

L*l = {X2 3 X4}
L*2 {XS}
L = {-X;, X4}

Thus for no ¢ does L,; contain a complementary pair of literals.
We now illustrate a run of TRY with inputs k = 3 and this discriminant for ¢. Initially
the set T of terms is empty and J = {1,2,3}.
The subprocedure tests L for equivalence to ¢ and receives the reply no and a coun-
terexample, say
ay = 1010.

The search in step (4) begins with the least element of J, namely 1, and forms the assignment
a1[Ls] = 1010,

which is equal to a; because a; is already 0 on X; and X4. Next is a (superfluous) mem-
bership query to find that

a1[Lal(¢) = 1.
Thus the search in step (4) succeeds with ¢ = 1, and J is set to {2,3}.

Membership queries are used to determine that

0010(¢) = O
1110(¢) = 1
1000(¢) = O
1011(¢) 1.

Thus S(a1[L.1]) = {X1,Xs}. Since Ly, = {-X3, X3}, the term
t=X1-X:X3

is added to T.
The next iteration starts with an equivalence query with the formula

¢ = X1-X2Xs.
The reply is no, and a counterexample is returned, say
az = 0111.
The search in step (4) takes the least element of J, now 2, and forms
' a3[L,2] = 0101.

A membership query shows that az[L.2](¢) = 0, so the search moves to the next element of
J, namely 3. A membership query with

az [L,;s] = 0110

shows that a[L.s](¢) = 1, so the search succeeds with { = 3. Then 3 is removed from J,
leaving J = {2}.
Then membership queries are done to determine that
1110(¢) =
0010(¢)
0100(4)
0111(¢)

Thus S(az[L.s]) = {X2,Xs}. Since L3, = {X3, X3}, the term

I

= O O =

t=X2X3

is added to T, which now is {X;-X2X3, X2X3}.
The next iteration does an equivalence query with the formula

¢' = X1-X2 X3+ X2 X3
and the reply is no and a counterexample is returned, say

az = 1101.

The search in step (4) begins with the least (and only) element of J, now 2, and calculates
as[L*zl = 1101.

A (superfluous) membership query determines that as|[L.2](¢) = 1, so the search succeeds
with 2. Then 2 is removed from J, which is now empty.
Membership queries are used to determine

0101(¢) = 0
1001(¢) = 1
1111(4) = 1
1100(¢) = O.
Thus, S(as[L«2]) = {X1, X4}, and Ly, = {X4}, so the term
t=X1X4

is added to T.
At the next iteration, the equivalence query is with the formula

¢ = X1-X2 X3 + X2 X3 + X1 X4,
to which the reply is yes, and this is the formula returned by TRY.

6 Remarks

By logical duality, there is an algorithm to learn k-clause CNF formulas over n variables
using equivalence and membership queries that runs in time bounded by a polynomial in
n.

The algorithm described above contains numerous redundancies that should be elimi-
nated if it is to be implemented. (Which is not out of the question for small k.)

The paper [1] claimed that the k-term DNF formulas are exactly identifiable in time
polynomial in n using equivalence and subset queries, although the proof given did not
support the claim. The result in this note supersedes that claim.

References

[1] D. Angluin. Types of queries for concept learning. Technical Report, Yale University
Computer Science Dept., TR-479, 1986.

[2] M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learnability of boolean formulae.
In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
pages 285-295, ACM, 1987.

[3] L. Pitt and L. Valiant. Computational limitations on learning from ezamples. Technical
Report, Harvard University, Center for Research in Computing Technology, TR-05-86,
1986.

[4] L. G. Valiant. A theory of the learnable. C. ACM, 27:1134-1142, 1984.

10

— v

