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1l. Introduction

Consider the NxN system of linear equations
(1) Mx=b,

where the coefficient matrix M is large, sparse, and nonsymmetric.

Assume that M can be factored in the form
M=LDU,

where L is a lower triangular matrix, D is a diagonal matrix, and U is a
unit upper triangular matrix. Such systems arise frequently in
scientific computation, e.g., in finite difference and finite element
approximations to non-self-adjoint elliptic boundary value problems. In
this report, we present a package of efficient, reliable,
well-documented, and portable FORTRAN subroutines for solving these

systems. See [3] for a corresponding package for symmetric problems.

Direct methods for solving (l) are generally variatioms of Gaussian
elimination. We form the LDU decomposition of A, and successively solve

the triangular systems
(2) Ly=b, Dz=y, Ux= z.

When M is large (N >> 1), (dense) Gaussian elimination is prohibitively
expensive in terms of both the work (™ 2/3 N3 multiplies) and storage
(N2 words) required. But, since M is sparse, most entries of M, L, and

U are zero and there are significant advantages to factoring M without
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storing or operating on these zeroes. Recently, a number of
implementations of sparse Gaussian elimination have appeared based on

this idea, cf., [2, 6, 7, 8].

In section 2, we describe the scheme used for storing sparse
matrices, while, in section 3, we give an overview of the package from
the point of view of the user; for further details of the algorithms
employed, see [4, 5]. In section 4, we illustrate the performance of
the package on a typical model problem. Listings of the three sets of
subroutines for factoring and solving the class of sparse nonsymmetric
systems under consideration appear in Appendices 1, 2, and 3. These
three sets of subroutines have different storage schemes and basically
trade-off run-time efficiency for storage. Appendix 4 contains a test
driver which sets up a problem and calls all three sets of subroutines

for solution. A sample output appears as Appendix 5.

.




2. Sparse Matrix Storage Schemes

Since the coefficient ﬁatrix M and the triangular factors L and U
are large and sparse, it is inefficient to store them as dense matrices.
The package has two schemes for storing sparse matrices, called the
"uncompressed storage scheme" and the "compressed storage scheme." The
input matrix M is always stored using the first of these, while the
triangular factors L and U may be stored using either one, depending on
which subroutines are used. The subroutine NDRV uses the "uncompressed
storage scheme" for L and U while the subroutines TDRV and CDRV use the

"compressed storage scheme."

The uncompressed storage scheme has been used previously in various
forms, cf. [l, 6]. To use it to store the input matrix M requires
three one-dimensional arrays: 1IA, JA, and‘A. The nonzero entries of M
are stored row-by-row in the REAL array A. To identify the individual
nonzero entries in a row, we need to know in which column each entry
lies. The INTEGER array JA contains the column indices which correspond
to the nonzero entries of M, i.e., if A(K) = M(I,J), then JA(K) = J. In
addition, we need to know where each row starts and how long it is. The
INTEGER array IA contains the index positions in JA and A where the rows
of M begin, i.e., if M(I,J) is the first (leftmost) entry of the I-th
row and A(K) = M(1,J), then IA(I) = K. Moreover, IA(N+l) is defined as
the index in JA and A of the first location following the last element
in the last row. Thus, the number of entries in the I-th row is given

by IA(I+l) - IA(I), the nonzero entries of the I-th row are stored




consecutively in

A(TIA(I)), A(TIA(L)+1l), ..., A(IA(I+1)-1),
and the corresponding column indices are stored consecutively in

JA(IA(L)), JA(IA(I)+1), ..., JA(IA(I+l)-1).

For example, the 5x5 matrix

I. 0. 2. 0. O.
0. 3. 0. 0. O.
M = 0. 4. 5. 6. 0.
0. 0. 0. 7. O.

0. 0' O. 8. 9.

is stored as

IA|] 1 3 4 7 8 10
JA|]l 1 3 2 2 3 4 4 & 5

A ' 1. 2. 3. 4. 5. 6. 7. 8. 9. L]

The overhead in this storage scheme is the storage required for the
INTEGER arrays IA and JA. But since IA has N+l entries and JA has one
entry for each element of A, the total overhead is approximately equal

to the number of nonzero entries in M.
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The triangular matrices L and U are stored in basically the same
fashion using the arrays IL, JL, L and IU, JU, U respectively, except
that the diagonal entries are not stored in these arrays. The diagonal
entries of L and U are known to be ones and are not stored and the array
D is used to store the reciprocals of the diagonal entries of the

diagonal matrix D.

In certain situations, where storage is at a premium, it is
essential to reduce storage overhead, even at the cost of decreased
runtime efficiency. This can be done by storing L and U with the more
complex compressed storage scheme. This scheme incurs more operational
overhead than the uncompressed storage scheme, but in many important
cases the storage requirement can be substantially reduced. For a

detailed description, see [4, 5, 9].
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3. A Sparse Nonsymmetric Matrix Package

The package consists of a test driver, three driver subroutines,
and eight subroutines (see Figure 1). The three drivers (subroutines
NDRV, TDRV, and CDRV) are specific implementation designs which ,
illustrate the space-time tradeoff mentioned in section 2. The test
driver (subroutine NSTST) sets up a model sparse nonsymmetric system of
linear equations and calls each of the three driver subroutines to solve
the linear system. In the remainder of this section, we describe each
of these subroutines in somewhat greater detail. The codes themselves
are extensively documented; for further details about the algorithms

- employed see [4, 5].

-Figure 1: A schematic overview of the sparse symmetric matrix package
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Our basic design for the implementation of sparse elimination
follows that of Chang [l], which has proved to be especially robust.
The first implementation, NDRV, is designed for speed. It uses the
uncompressed storage scheme for M, L, and U because of the smaller
operational overhead associated with it. We break the computation up
into three distinct phases: symbolic factorization (subroutine NSF),
numeric factorization and the solution for one right-hand side
(subroutine NNF), and forward and back solution for additional
right-hand sides (subroutine NNS). The subroutine NSF computes the zero
structures of L and U from that of M (disregarding the numerical entries
in M). The subrou;ine NNF then uses the structural information
generated by NSF to compute the numerical entries of L and U and to

solve for one right-hand side.

The main advantage of splitting up the computation in this way is
flexibility. To solve a single system of equations, it suffices to use
NSF and NNF (PATH=1l in NDRV). It should be pointed out here that a one
line modification of NNF can be made to allow the solution of a single

system without storing L: simply comment out the line
L(I) = - LI,

as indicéted in the code. This change will yield substantial storage
savings without the loss in efficiency incurred by TDRV. To solve
several systems in which the coefficient matrices have the same zero
structure, it suffices to use NSF and NNF only once each for the first

system and then to use NNF once for each subsequent system (PATH=2 in
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NDRV). Finally, to solve several systems with the same coefficient
matrix but different right hand sides, it suffices to use NSF and NNF
only once each for the first system, and then to use NNS once for each

subsequent system (PATH=3 in NDRV).

A drawback to the multi-phase design of NDRV is that it is
necessary to store the description of the zero structures of both L and
U. By giving up some flexibility, the second implementatiqn, TDRV,
greatly reduces the storage réquirements. The entire computation is
performed inba single phase (subroutine TRK) to avoid storing either the
description or the numerical entries of L. Moreover, U is stored with
the compressed storage scheme to reduce the storage overhead. This
subroutine incurs more operational overhead than NDRV, and we lose the
ability to efficiently solve a sequence of related systems. However the
total storage requirements are usually significantly smaller (see Tables

4-6).

Finally, the third implementation, CDRV, attempts to balance the
design goals of speed, flexibility, and storage ecomomy. It splits the
computation as in NDRV to allow flexibility and efficiency, but it uses
the compressed storage scheme as in TDRV to reduce storage overhead.

The rows and columns of the original matrix M can be reordered (e.g., to
reduce fillin or ensure numerical stability) before calling CDRV. If no
reordering is done, then set R(I)=C(I)=IC(I) = I for I=l,...,N. The

solution Z is returned in the original order. If the columns have been

reordered (i.e., C(I).NE.I for some I), then CDRV will call a subroutine
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NROC which rearranges each row of JA and A, leaving the rows in the
orginal order, but placing the elements of each row in increasing order
with respect to the new ordering. 1f PATH.NE.l, then NROC is assumed to

have been called already.

To solve a single system of equations, it suffices to use NROC (if
the columns of M have been reordered), NSFC, and NNFC (PATH=1 in CDRV).
It should be pointed out here that a omne line modification of NNFC can
be made to alloﬁ the solution of a single system without storing L:

simply comment out the line
L(IRL(I)) = - LKI,

as indicated in the code. This change will yield substantial storage
savings without the loss in efficiency incurred in TDRV. To solve
several systems in which the coefficient matrices have the same zero
structure, it suffices to use NROC, NSFC, and NNFC only once each for
the first system and then to use NNFC once for each subsequent system
(PATH=2 in CDRV). Finally, to solve several systems with the same
coefficient matrix but different right hand sides, it suffices to use
NROC, NSFC, and NNFC only once each for the first system, and then to

use NNSC once for each subsequent system (PATH=3 in CDRV).

The test driver (program NSTST) is used to verify the performance
of the package on a particular computer system, and may be used as a
guide to understanding how to use the package. It generates the

coefficient matrix for a nonsymmetric five-point difference equation on
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a 3x3 grid and chooses the right-hand side so that the solution vector x
is (1,2,3,4,5,6,7,8,9) (see Appendix 4). The grid points are given in
the natural row-by-row ordering. At each stage the values of all
relevant variables are printed out, and a sample output appears as

Appendix 5.
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4. Performance

One of the most important aspects of any package is its performance
in terms of both the time and storage required to solve a typical
problem. In Tables 1-6, we present the time and storage required to
solve a nonsymmetric five-point difference equation on an nxn grid for
several values of n. These computations were performed in single

precision on an IBM 370/158 using the FORTRAN IV Level H Extended

compiler.
Table 1: Times for 5-point operator on a 20x20 mesh

| | I | I

Code | NSF(C) | NNF(C) | sec/* | NNS(C) | Total
| | | |
| I | [ I

NDRV | 0.213 | 0.560 | 9.978 | 0.063 | 0.773
I | | I I
I I | I I

TDRV | | | 15.561 | | 0.873
| I I I |
I | I | I

CDRV | 0.267 | 0.790 | 14.077 | 0.087 | 1.057
I I I | I
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Table 2: Times for 5-point operator on a 30x30 mesh
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Table 4: Storage for 5-point operator on a 20x20 mesh
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Storage for 5-point operator on a 40x40 mesh

Table 6
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Appendix 1 7/31/77

Subroutines for Solving Sparse Nonsymmetric Systems
of Linear Equations (Uncompressed Pointer Storage)

**%* Subroutine NDRV
*x* Driver for subroutines for solving sparse nonsymmetric systems of

linear equations (uncompressed pointer storage)

SUBROUTINE NDRV
* (N, R,C,IC, 1A,JA,A, B, Z, NSP,ISP,RSP,ESP, PATH, FLAG)

PARAMETERS
Class abbreviations are --
n - INTEGER variable
f - REAL variable
v - supplies a VALUE to the driver
r - returns a RESULT from the driver
i - used INTERNALly by the driver
a - ARRAY

Parameter

The nonzero entries of the coefficient matrix M are stored
row-by-row in the array A. To identify the individual nonzero
entries in each row, we need to know in which column each entry
lies. The column indices which correspond to the nonzero entries
of M are stored in the array JA; i.e., if A(K) = M(I,J), then
JA(K) = J. In addition, we need to know where each row starts and
how long it is. The index positions in JA and A where the rows of
M begin are stored in the array IA; i.e., if M(I,J) is the first
nonzero entry (stored) in the I-th row and A(K) = M(I,J), then
IA(I) = K. Moreover, the index in JA and A of the first location
following the last element in the last row is stored in IA(N+l).
Thus, the number of entries in the I-th row is given by
IA(I+l) - IA(1), the nonzero entries of the I-th row are stored
consecutively in

A(TIA(1)), A(IA(I)+1), ..., A(IA(I+1)-1),
and the corresponding column indices are stored consecutively in
JA(IA(L)), JA(TA(I)+l), ..., JA(IA(I+1)-1).
For example, the 5 by 5 matrix
(1. 0. 2. 0. 0.)
(0. 3. 0. 0. 0.)
M= (0. 4 5. 6. 0.)
(0. 0. 0. 7. 0.)
(0. 0. 0. 8. 9.)
would be stored as
l1 2 3 4 5 6 7 8 9

1
4 4 5
.« 7. 8. 9. .

[
>
-
N Www

4
2
3

E ol SN
w W oo

0
4
. 2. 3. 6

| N - number of variables/equations.

| A - nonzero entries of the coefficient matrix M, stored
| ; by rows.

| Size = number of nonzero entries in M.

| 1A - pointers to delimit the rows in A.



[sNeNeEoNNoNesNoNoNeNoNoNoNeoNoNoNoNsNe o Ns Ns NN s Es N2 s N2 s Ne 2 K2 N2 K2 K22 s R 2 K N2 Ko e He Ko N2 K2 e Ne Re e N2 Re 2 R e N2 N X o)

Size = N+l.

|
nva | JA - column numbers corresponding to the elements of A.
| Size = size of A.
fva | B - right-hand side b; B and Z can the same array.
| Size = N.
fra | Z - solution x; B and Z can be the same array.
| Size = N.

The rows and columns of the original matrix M can be
reordered (e.g., to reduce fillin or ensure numerical stability)
before calling the driver. If no reordering is dome, then set

R(I) = C(I) = IC(I) = I for I=l,...,N. The solution Z is returned

nva

nva

nva

nv

ar

in the original order.

IC(C(I)) =1 for I=1,...,N.
Size = N.

| R -~ ordering of the rows of M.

| Size = N.

| C -~ ordering of the columns of M.

| Size = N.

| 1IC - inverse of the ordering of the columns of M; i.e.,
|

|

The solution of the system of linear equations is divided into

three stages --

NSF == The matrix M is processed symbolically to determine where
fillin will occur during the numeric factorization.

NNF -- The matrix M is factored numerically into the product LDU
of a unit lower triangular matrix L, a diagonal matrix D,
and a unit upper triangular matrix U, and the system
Mx = b 1is solved.

NNS -- The linear system Mx = b is solved using the LDU
factorization from NNF.

For several systems whose coefficient matrices have the same
nonzero structure, NSF need be done only once (for the first
system); then NNF is done once for each additional system. For
several systems with the same coefficient matrix, NSF and NNF need
be done only once (for the first system); then NNS is done once
for each additional right-hand side.

| PATH - path specification; values and their meanings are --
| perform NSF and NNF.

| 2 perform NNF only (NSF is assumed to have been

| done in a manner compatible with the storage

| allocation used in the driver).

| 3 perform NNS only (NSF and NNF are assumed to

] have been done in a manner compatible with the
| storage allocation used in the driver).

Various errors are detected by the driver and the individual
subroutines.

FLAG - error flag; values and their meanings are --
0 No Errors Detected
N+K  Null Row in A -- Row =K
2N+  Duplicate Entry in A -- Row =K

3N+K Insufficient Storage in NSF -- Row =K
4N+1 Insufficient Storage in NNF

S5N+K  Null Pivot -- Row =K

6N+K  Insufficient Storage in NSF -- Row =K



IN+1 Insufficient Storage in NNF
8N+K Zero Pivot =- Row =K
10N+1 Insufficient Storage in NDRV
1IN+l Illegal PATH Specification

Working storage is needed for the factored form of the matrix
M plus various temporary vectors. The arrays ISP and RSP should be
the same; integer storage is allocated from the beginning of ISP
and real storage from the end of RSP.

symbolic factorization (NSF), then ESP is set to the
amount of excess storage provided (negative if
jnsufficient storage was available to perform the
numeric factorization (NNF)).

nv | NSP - declared dimension of ISP and RSP; NSP generally must
| be larger than 5N+3 + 2K (where K = (number of
| nonzero entries in M)).
nvira | ISP - integer working storage divided up into various arrays
| needed by the subroutines; ISP and RSP should be
| the same array.
| Size = NSP.
fvira | RSP - real working storage divided up into various arrays
| needed by the subroutines; ISP and RSP should be
| the same array.
| Size = NSP.
nr | ESP - if sufficient storage was available to perform the
|
|
|
|

OOOOOQOOOOOOGOOOOOOOOOOOOOO

INTEGER R(1), C(l), IC(l), IA(1), JA(1), ISP(l), ESP,
* PATH, FLAG, Q, IM, D, U, ROW, TMP, UMAX
REAL A(l), B(1l), z(l), RSP(l)
C
IF (PATH.LT.1 .OR. PATH.GI.3) GO TO 111
C **kkk%x Ipnitialize and divide up temporary storage kkkkkkhkkkrkhkhik
IL =1
IU = IL + N+l
JL = 1U + N+l
FLAG = 0
C
C #%%xxk% Call NSF if flag is set kkkhkkkkkhkhhkhrkkkrkhkhkhhkhhhkkhrhhhk
IF (PATH.GT.1l) GO TO 2
IM = NSP - N
Q =IM - (N+l)
MAX = Q - JL
IF (MAX.LT.0) GO TO 110
JLMAX = MAX/2
JUTMP = JL + JLMAX
JUMAX = Q - JUIMP

CALL NSF
* (N, R, IC, IA, JA,
* ISP(IL), ISP(JL), JLMAX, ISP(I1U), ISP (JUTMP), JUMAX,
* RSP(Q), RSP(IM), FLAG)

IF (FLAG.NE.O) GO TO 100
C *##*kkx Move JU next to JL kkkhhKRERARKERRRKRRRIRRIRIRKARIRRIRKRTR*X

JLMAX = ISP(IL#N)-1

JU = JL + JLMAX

JUMAX = ISP(IUHN)-1

IF (JUMAX.LE.O0) GO TO 2

DO 1 J=1,JUMAX

1 ISP (JU+J-1) = ISP(JUTMP+J-1)



C
C **k*** (Call remaining subroutines
2 JLMAX = ISP(IL#N)-1
JU =JL + JLMAX
JUMAX = ISP(IU#N)-1
L = JU + JUMAX

IMAX = JLMAX
D =L + LMAX
Uu =D +N

ROW = NSP - N

TMP = ROW - N

UMAX = TMP - U
ESP = UMAX - JUMAX

IF (PATH.GT.2) GO TO 3
CALL NNF

(N, R, C, IC,

* ¥ ¥ ¥

RSP(ROW), RSP(TMP),
IF (FLAG.NE.0) GO TO 100
RETURN

3 CALL NNS
(N, R, C,
ISP(IL), ISP(JL), RSP(L),

* % ¥ F

Z, B,
RETURN

RSP(TMP)) .

C
C ** ERROR:

100
C **

110

RETURN

ERROR: "Insufficient Storage
FLAG = 10*®N + 1
RETURN

ERROR:
FLAG = 11*N + 1
RETURN
END

C **
111

1A, JA, A,
ISP(IL), ISP(JL), RSP(L), LMAX,

ISP(IU), ISP(JU), RSP(U), UMAX,
FLAG)

IspP(1U), ISP(JU), RSP(U),

Je Je Je e Je e e % e e ke e gk ke K ek g de do e Kk Kk de ek ke k

Z, B,
RSP(D),

RSP(D),

Error Detected in NSF, NNF, or NNS

Illegal PATH Specification
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YALE SPARSE MATRIX PACKAGE - NONSYMMETRIC CODES
SOLVING THE SYSTEM OF EQUATIONS Mx = b
(UNCOMPRESSED POINTER STORAGE)

1. SUBROUTINE NAMES
Subroutine names are of the form Nxx where --

(1) the first letter is N for nonsymmetric matrices;

(2) the second letter is either S for symbolic processing or N
for numeric processing;

(3) the third letter is either F for factorization or S for
solution.

I1. CALLING SEQUENCES

The coefficient matrix can be processed by an ordering routine
(e.g., to reduce fillin or ensure numerical stability) before using
the remaining subroutines. If no reordering is dome, then set
R(I) = C(I) = 1C(I1) =1 for I=l,...,N. The calling sequence is ==

( (matrix ordering))

NSF  (symbolic factorization to determine where fillim will
occur during numeric factorization)

NNF  (numeric factorization into product LDU of unit lower
triangular matrix L, diagonal matrix D, and unit upper
triangular matrix U, and solution of linear system)

NNS (solution of linear system for additional right-hand
side using LDU factorization from NNF)

I11. STORAGE OF SPARSE MATRICES 8
The nonzero entries of the coefficient matrix M are stored
row-by-row in the array A. To identify the individual nonzero
entries in each row, we need to know in which column each entry
lies. The column indices which correspond to the nonzero entries
of M are stored in the array JA; i.e., if A(K) = M(1,J), then
JA(K) = J. In addition, we need to know where each row starts and
how long it is. The index positions in JA and A where the rows of
M begin are stored in the array IA; i.e., if M(I,J) is the first
nonzero entry (stored) in the I-th row and A(K) = M(I,J), then
IA(I) = K. Moreover, the index in JA and A of the first location
following the last element in the last row is stored in IA(N+l).
Thus, the number of entries in the I-th row is given by
IA(I+l) - IA(I), the nonzero entries of the I-th row are stored
consecutively in
A(IA(L)), A(TA(I)+1), «.., A(TIA(I+1)-1),
and the corresponding column indices are stored comsecutively in
JA(IA(L)), JACIA(I)+1), «.., JACIA(I41)-1).
For example, the 5 by 5 matrix
(1. 0. 2. 0. 0.)
(.0. 3. 0. 0. 0.)
M= (0. 4 5. 6. 0.)
(0. 0. 0. 7. 0.)
( 0. 0. 0. 8. 9.)
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Class

would be stored as

1 2 3 4 5 6 7 8 9
IAJ1 3 4 7 810
JA |1l 3 2 2 3 4 4 4 5

Al l. 2, 3. 4. 5. 6. 7. 8. 9. .
The strict triangular portions of the matrices L and U are

stored in the same fashion using the arrays IL, JL, L and
10, JU, U respectively. The diagonal entries of L and U are
assumed to be equal to one and are not stored. The array D
contains the reciprocals of the diagonal entries of the matrix D.

IV. ADDITIONAL STORAGE SAVINGS

In NSF, R and IC can be the same array in the calling
sequence if no reordering of the coefficient matrix has been done.

In NNF, R, C and IC can all be the same array if no reordering
has been done. If only the rows have been reordered, themn C and IC
can be the same array. If the row and column orderings are the
same, then R and C can be the same array. Z and ROW can be the
same array.

In NNS, R and C can be the same array if no reordering has
been done or if the row and column orderings are the same. Z and B
can be the same array; however, then B will be destroyed.

v. PARAMETERS
Following is a list of parameters to the programs. Names are
uniform among the various subroutines. Class abbreviations are =--
n - INTEGER variable
- REAL variable
- supplies a VALUE to a subroutine
~ returns a RESULT from a subroutine
used INTERNALly by a subroutine
ARRAY

La)

[0 o R
1

Parameter

fva

fva

nva

fvra

=]
2]

nva

nva

nvra

|

| A - nonzero entries of the coefficient matrix M, stored
| by rows.

| Size = number of nonzero entries in M.
| B - right-hand side b.

| Size = N,

| C - ordering of the columns of M.

| Size = N.

| D - reciprocals of the diagonal entries of the matrix D.
| Size = N.

| FLAG - error flag; values and their meanings are —-

| 0 No Errors Detected

| N+K  Null Row in A =- Row =K

| 2N4K  Duplicate Entry in A ~-- Row =K

| 3N+K Insufficient Storage for JL -- Row =K

| 4N+l  Insufficient Storage for L

| SN+K  Null Pivot =-- Row =K

| 6N+K  Insufficient Storage for JU -- Row =K

| N+l  Insufficient Storage for U

| 8N+K  Zero Pivot -- Row =K

| 1A - pointers to delimit the rows in A.

| Size = N+l.

| 1C - inverse of the ordering of the columns of M; i.e.,
| IC(C(I) = 1 for I=l,...N.

| Size = N.

| IL - pointers to delimit the rows in L.

| Size = N+l.



Caovra | IU - pointers to delimit the rows in U.

c | Size = N+l.

C nva | Ja - column numbers corresponding to the elements of A.

c | Size = size of A.

C nvra | JL - column numbers corresponding to the elements of L.

c | Size = JLMAX.

C nv | JLMAX - declared dimension of JL; JLMAX must be larger than
(9 | the number of nonzero entries in the strict lower
C | triangle of M plus fillin (IL(N+l)-1 after NSF).
C nvra | JU - column numbers corresponding to the elements of U.

C | Size = JUMAX.

C nv | JUMAX - declared dimension of JU; JUMAX must be larger than
C | the number of nonzero entries in the strict upper
c | triangle of M plus fillin (IU(N+l)-1 after NSF).
C fvra | L - nonzero entries in the strict lower triangular portion
c | of the matrix L, stored by rows.

c | Size = LMAX

C nv | LMAX - declared dimension of L; LMAX must be larger than

c | the number of nonzero entries in the strict lower
c | . triangle of M plus fillin (IL(N+l1)-1 after NSF).
C nv | N - number of variables/equations.

Cnva | R - ordering of the rows of M.

C ] Size = N.

C fvra | U - nonzero entries in the strict upper triangular portion
C | of the matrix U, stored by rows.

c | Size = UMAX.

C nv | UMAX - declared dimension of U; UMAX must be larger than

C | the number of nonzero entries in the strict upper
c | triangle of M plus fillin (IU(N+l)-1 after NSF).
C fra | 2z - solution x.

c | Size = N.

c

c

c

c

C*** Subroutine NSF

Cx**x Symbolic LDU-factorization of a nonsymmetric sparse matrix
c (uncompressed pointer storage)
c
SUBROUTINE NSF

* (N, R,IC, IA,JA, IL,JL,JLMAX, IU,JU,JUMAX, Q, IM, FLAG)
c
[o Input variables: N, R,IC, IA,JA, JLMAX, JUMAX.
(o} Output variables: IL,JL, IU,JU, FLAG.
C
C Parameters used internally:
C nia | Q - suppose M’ is the result of reordering M; if
c | processing of the Kth row of M’ (hence the Kth rows
C | of L and U) is being done, then Q(J) is initially
C | nonzero if M’(K,J) is nonzero; since values need
C | not be stored, each entry points to the next
C | nonzero; for example, if N=9 and the 5th row of
c | M’ is
c | 0xx0x00x0,
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then Q will initially be

a35a8aalda22 (a - arti: rary);
Q(N+l) points to the first nonzero in the row and
the last nonzero points to N+l; as the algorithm
proceeds, other elements of Q are inserted in the
list because of fillin.
Size = N+l.

M - at each step in the factorization, IM(I) is the last
element in the Ith row of U which needs to be
considered in computing fillin.

Size = N.

=]
-
Y

Internal variables--
JLPTR - points to the last position used in JL.
JUPTR - points to the last position used in JU.

INTEGER R(l), IC(l), TIA(l), JA(l), IL(l), JL(l),
* 1u(l), Ju(l), Q(l), 1IM(1), FLAG, M, VJ

kkkk**x Initialize pointers H*xkkkkkkkkkkikikhkihhihkkkkkihhhhhkkkiikkk
JLPIR =0
IL(L) =1
JUPIR = 0
IU(l) =1

*kkkkk  For each row of L and U %kkkkkkikkhkiihkkikhikkkkhsiddkhhkik
DO 10 K=1,N
kkkkkk Set Q to the reordered row of A *kkkkkkkkkkkkkkkkkkkkkkkkkkk
Q(N+l) = N+1
JMIN = IA(R(K))
JMAX = IA(R(K)+1) -1
IF (JMIN.GT.JMAX) GO TO 101
DO 2 J=JMIN, MAX
VJ = IC(JA(J))
@M = N+l
1 M= QM
™ = QM)
IF (QM.LT.VJ) GO TO 1
IF (QM.EQ.VJ) GO TO 102

QM) =vJ
Q(VJ) = QM
2 CONT INUE
*kk***x For each entry in the lower triangle **kkkkkkkkkkkkkkkkkkkkk
I =N+l
3 I =Q()

IF (I.GE.K) GO TO 7
*kxkkx [ (K,I) will be nonzero, so add it to JL *kkxkkkxkkkkkkkikkikkk
JLPTR = JLPIR+1
IF (JLPTR.GI.JLMAX) GO TO 103
JL(JLPIR) =1
@M =1




C #*a&*kx Ingpect Ith row for fillin, adjust IM if possible *¥kkkkkkkik
JMIN = IU(I)
JMAX = IM(I)
IF (JMIN.GT.JMAX) GO TO 6
DO 5 J=JMIN, JMAX
Vi = Ju@J)
IF (VJ.EQ.K) IM(I) =J
4 M=QM
@ = QM)
IF (QM.LT.VJ) GO TO &
IF (QM.EQ.VJ) GO TO 5

QM) = VJ
Q(VJ) = QM
=V

5 CONT INUE

6 GO TO 3

C #**kakk  Check for null pivot RRkKkkRkRAKKAKARRAKARKRKRRKKRKRERRRRRAR

7 IF (I.NE.K) GO TO 105
C *kkkkx Remaining elements of Q define structure of U(K, ) kkkkkkkik
8 1 =Q(I)
IF (1.GT.N) GO TO 9
JUPTR = JUPTR+l
IF (JUPTR.GI.JUMAX) GO TO 106
JU(JUPIR) = 1
GO TO 8
(o] kkkkkk Get ready for ngxt row ****_*********************************
9 IM(K) = JUPTR
IL(K+1) = JLPTR+]

10 IU(K+1) = JUPTR+1
c
FLAG = 0
RETURN
c

C *% ERROR: Null Row in A
101 FLAG = N + R(K)
RETURN
C %% ERROR: Duplicate Entry in A
102 FLAG = 2*N + R(K)
RETURN
C ** ERROR: Insufficient Storage for JL
103 FLAG = 3% + K :
RETURN
C ** ERROR: Null Pivot
105 FLAG = 5™W + K
RETURN
C ** ERROR: Insufficient Storage for JU
106 FLAG = 6*N + K
RETURN
END
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C*** Subroutine NNF
C#*%* Numeric LDU-factorization of sparse nonsymmetric matrix and

c solution of system of linear equations (uncompressed pointer
C storage) !
Cc
SUBROUTINE NNF
* (N, R,C,IC, IA,JA,A, Z, B, IL,JL,L,LMAX, D, 1U, Ju, U, UMAX,
* ROW, TMP, FLAG)
C
C Input variables: N, R,C,IC, IA,JA,A, B, IL,JL,LMAX, IU,JU,UMAX
C Output variables: Z, L,D,U, FLA
c
c Parameters used internally:
C fia | ROW =~ holds intermediate values in calculation of L, D, U.
C | Size = N. '
C fia | TMP - holds new right-hand side b’ for solution of the
C | equation Ux = b“.
C | Size = N.
C
INTEGER R(1l), C(l), IC(l), TIA(l), JA(L),
* IL(1), JL(l), LMAX, 1IU(l), JU(l), UMAX, FLAG
REAL A(1), z(1), B(l), L(1), D(1), U(l), ROW(L), T™MP(l), LI
c
C **%kkkx Check storage *kRkdkkkdkkikkihhhhhikikisdkhhkhikikkdihikkikkikkkk
IF (IL(N+l)-1 .GT.. IMAX) GO TO 104
IF (IU(N+l)-1 .GT. UMAX) GO TO 107
C
C *kkkkk For each row Hkkkkkkikddkidiek i diedkdd ik ks kkkkkkkk
DO 10 K=l,N
C *%k*k* GSet the initial structure Of ROW k&kkdkkdkidkk ki kkkkkkkk
JMIN = IL(K)

JMAX = IL(K+l) - 1
IF (JMIN.GT.JMAX) GO TO 2
C  *kkix% Tf L(K,M) .NE. 0, ROW(M)mQ #iidkddidededdsiihiiikiisddkihkkkik

DO 1 J=JMIN, JMAX

1 ROW(JL(J)) = 0
2 ROW(K) = 0
JMIN = IU(K)

JMAX = TU(K+l) - 1
IF (JMIN.GT.JMAX) GO TO 4
C  **kkix Tf U(K,M) .NE. O, ROW(M)=0Q ekdissksdkssdskiohiiikk ki krk

DO 3 J=JMIN, JMAX

3 ROW(JU(J)) = 0
4 JMIN = IA(R(K)) :
JMAX = TA(R(K)+1) - 1 : .

C *%kkk*x Set ROW to Kth row of reordered A Hkikkikkikimikiiiidkkkikkskkk
DO 5 J=JMIN, JMAX
5 ROW(IC(JA(J))) = AQJ)
C % &k dedode Initializ_e SUM ********************************************* N

SUM = B(R(K))




C *kkkk% Assign the Kth row of L and adjust ROW, SUM kkkkkhkkhhkkrkkrk

IMIN = IL(K)
IMAX = IL(K+l) = 1
IF (IMIN.GT.IMAX) GO TO 8
DO 7 I=IMIN,IMAX
L1 = - ROW(JL(I))

¢ *kkkkkk If L is not required, then comment out the following line **

6
7

L(I1) = = LI

SUM = SUM + LI * TMP(JL(I))
JMIN = IUQIL(I))

JMAX = IUQJL(I)+1) -1

IF (JMIN.GT.JMAX) GO TO 7

DO 6 J=IJMIN, MAX
ROW(JU(J)) = ROW(JU(J)) + LI *U@)
CONTINUE

C  hkkkkk Assign diagonal D and Kth row of U, set TMP(K) ®kkkkkkkkkiik

9
10
C

IF (ROW(K).EQ.0) GO TO 108 .
DK = 1 / ROW(K) v
D(K) = DK .
TMP(K) = SUM * DK
JMIN = IU(K)
JMAX = JU(K+1) = 1
IF (JMIN.GT.JMAX) GO TO 10
DO 9 J=JMIN, MAX
U(J) = ROW(JU(J)) * DK
CONT INUE

C  Fekkkkk Solve Ux = TMP by back substitution hkkhkhkhkhkkkdkhkhkhkhkkkkk

11
12

13

(4

K=N
DO 13 I=1,N
SUM = TMP(K)
JMIN = IU(K)
JMAX = IU(K+l) - 1
IF (JMIN.GT.JMAX) GO TO 12
DO 11 J=JMIN, JMAX
SUM = SWM - U(J) * TMP(JU(J))

TMP(K) = SIM
Z(C(K)) = s
K = K-1
FLAG = 0
RETURN

C ** ERROR: Insufficient Storage for L

104

FLAG = 4" + 1
RETURN

C ** ERROR: Insufficient Storage for U

107

FLAG = 7% + 1
RETURN

C ** ERROR: Zero Pivot

108

FLAG = 8™ +K
RETURN
END
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c

*** Subroutine NNS
*

** Numeric solution of a sparse nonsymmetric system of linear

*

fia

equations given LDU-factorization (uncompressed pointer storage)

SUBROUTINE NNS
(N, R,C, IL,JL,L, D, IU,JU,U, Z, B, TMP)

Input variables: N, R,C, IL,JL,L, D, IU,JU,U, B
Output variables: 2Z

Parameters used internally:

| TMP - holds new right-hand side b’ for solution of the
| equation Ux = b”.

] Size = N.

INTEGER R(1), C(1l), IL(1), JL(l), IU(1l), JU(l)
REAL L(1), D(1), U(l), z(1), B(l), TMP(l)

*%kkk** Solve LDy = b by forward substitution ®kkkxkkkkkkkkkkkkkkik

1
2

DO 2 K=1,N
SUM = B(R(K))
JMIN = IL(K)
JMAX = IL(K+l) - 1
IF (JMIN.GT.JMAX) GO TO 2
DO 1 J=JMIN, JMAX
SUM = SUM - L(J) * TMP(JL(J))
TMP(K) = SUM * D (K)

*%kk**% Solve Ux = y by back substitution *&kkkkkkkkkkkkkkkkrkkkkk

S w

K=N
DO 5 I=1,N
SUM = TMP(K)
JMIN = IU(K)
JMAX = TU(K+l) - 1
IF (JMIN.GT.JMAX) GO TO 4
DO 3 J=JMIN, JMAX
SUM = SUM - U(J) * TMP(JU(J))

TMP(K) = SUM

Z(C(K)) = stM

K = K-1
RETURN

END
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Appendix 2 7/31/77

Subroutines for Solving Sparse Nonsymmetric Systems
of Linear Equations (Track Nonzeroes Dynamically)

Cx** Subroutine TDRV
C*** Driver for subroutine for sclving sparse nonsymmetric systems of

C
c

OOOOOOOOOOOOC)OOGOOOOOQOOOOOOOOOOOOOOOOOOOOOOOOO0

Class

linear equations (track nonzeroes dynamically)

SUBROUTINE TDRV
* (N, R,IC, IA,JA,A, B, Z, NSP,ISP,RSP,ESP, FLAG)

PARAMETERS

Class abbreviations are --

INTEGER variable

REAL variable

supplies a VALUE to the driver
returns a RESULT from the driver
used INTERNALly by the driver

- ARRAY

o
LI I |

[ I TR )
]

Parameter

The nonzero entries of the coefficient matrix M are stored
row-by-row in the array A. To identify the individual nonzero
entries in each row, we need to know in which column each entry
lies. The column indices which correspond to the nonzero entries
of M are stored in the array JA; 1i.e., if A(K) = M(1,J), then
JA(K) = J. In addition, we need to know where each row starts and
how long it is. The index positions in JA and A where the rows of
M begin are stored in the array IA; i.e., if M(I,J) is the first
nonzero entry (stored) in the I-th row and A(K) = M(I,J), then
JA(I) = K. Moreover, the index in JA and A of the first location
following the last element in the last row is stored in IA(N+l).
Thus, the number of entries in the I-th row is given by

"JA(I+1) - IA(1), the nonzero entries of the I-th row are stored

consecutively in
A(IA(I)), A(IA(I)+1), ..., A(TIA(I+1)-1),
and the corresponding column indices are stored consecutively in
JA(IA(L)), JA(TA(I)+L), «oey JA(IA(I+1)-1).
For example, the 5 by 5 matrix
(1. 0. 2. 0. 0.)

(0. 3. 0. 0. 0.)
M= (0. 4. 5. 6. 0.)
(0. 0.0.7.0.)
(0. 0. 0. 8 9.)

would be stored as
|1 2 3 4 5 6 7 8 9

IAll 3 4 7 810
JA |l 3 2 2 3 4 4 4 5
All. 2. 3. 4. 5. 6. 7. 8. 9. .
nv | N - number of variables/equations.
fva | A - nonzero entries of the coefficient matrix M, stored
| by rows.
| Size = number of nonzero entries in M.
nva | 1A - pointers to delimit the rows in A.
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nva

fva

fra

Size = N+l.

I

| JA - column numbers corresponding to the elements of A.
| Size = size of A.

| B - right-hand side b; B and Z can the same array.

| Size = N.

| 2 - solution x; B and Z can be the same array.

| Size = N.

The rows and columns of the original matrix M can be

reordered (e.g., to reduce fillin or ensure numerical stability)
before calling the driver. If no reordering is done, then set
R(I) = C(I) = IC(I) = I for I=l,...,N. The solution Z is returned

in the original order.
nva | R - ordering of the rows of M.
| Size = N.
nva | 1C - inverse of the ordering of the columns of M; i.e.,
| IC(C(1)) = 1 for I=l,...,N, where C is the
| ordering of the columns of M.
] Size = N.
Various errors are detected by the driver and the individual
subroutines.
nr FLAG - error flag; values and their meanings are --

0 No Errors Detected

N+K Null Row in A == Row =K

2N#K  Duplicate Entry in A -- Row =K
S5N+K  Null Pivot -- Row =K

8N+K Zero Pivot =-- Row =K
10N+l  Insufficient Storage in TDRV
12N+K  Insufficient Storage in TRK

Working storage is needed for the factored form of the matrix

M plus various temporary vectors. The arrays ISP and RSP should be
the same; integer storage is allocated from the beginning of ISP
and real storage from the end of RSP.

nv

nvira

fvira

nr

z

wn

o
]

declared dimension of ISP and RSP; NSP generally must
be larger than 6N+2 + 2*K (where K = (number of
nonzero entries in the upper triangle of M)).

|

|

|

| ISP - integer working storage divided up into various arrays
| needed by the subroutines; ISP and RSP should be
| the same array.

| Size = NSP.

| RSP - real working storage divided up into various arrays
| needed by the subroutines; ISP and RSP should be
| the same array.

| Size = NSP.

| ESP - if NSP is sufficiently large to allocate space, then
I

ESP is set to the amount of excess storage provided.

INTEGER R(1l), IC(l), IA(l), JA(l), ISP(l), ESP, FLAG,
U, ROW, TMP, Q
REAL A(l), B(l), 2z(1), RSP(l)

T



c
C *xkkx* Injtialize and divide up temporary storage *kkkkkkkkkkkkkkkx
1JU = 1
IU =1IJU + N
Q =1IU + N+l
IM =Q + N+1
JU =IM + N
U =Ju
ROW = NSP - N
TMP = ROW - N
MAX = TMP - JU
IF (MAX.LT.0) GO TO 110
C
C *kkkkx  Call zero-tracking Subroutine H*RkkkkkkkkkkkkkkkkkkkkRk®skkk
FLAG = 0
CALL TRK
* (N, R, IC, IA, JA, A, Z, B,
* Isp(1Ju), 1SP(JU), ISP(IU), RSP(U), MAX,
* ISP(Q), ISP(IM), RSP(ROW), RSP(TMP), FLAG, ESP)
IF (FLAG.NE.O) GO TO 100
RETURN
c
C ** ERROR: Error Detected in TRK
100 RETURN
C ** ERROR: Insufficient Storage
110 FLAG = 10 + 1
RETURN
END
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YALE SPARSE MATRIX PACKAGE - ZERO-TRACKING CODE
SOLVING THE SYSTEM OF EQUATIONS Mx = b

I. SUBROUTINE NAMES
TRK performs an LDU-decomposition of the matrix M, without
storing L or D, and solves the linear system of equations.

II. CALLING SEQUENCES
The coefficient matrix can be processed by an ordering routine
(e.g., to reduce fillin or ensure numerical stability) before using
the remaining subroutines. If no reordering is done, then set
R(I) = C(I) = IC(I) = I for I=l,...,N. The calling sequence is --
( (matrix ordering))
TRK  (solution of linear system of equations)
(If several systems with the same coefficient matrix but different
right-hand sides or several systems whose coefficient matrices have
the same nonzero structure are to be solved, and sufficient space
is available, other subroutines should be used.)

III. STORAGE OF SPARSE MATRICES
The nonzero entries of the coefficient matrix M are stored
row-by-row in the array A. To identify the individual nonzero
entries in each row, we need to know in which column each entry
lies. The column indices which correspond to the nonzero entries
of M are stored in the array JA; i.e., if A(K) = M(I,J), then
JA(K) = J. In additiomn, we need to know where each row starts and
how long it is. The index positions in JA and A where the rows of
M begin are stored in the array IA; i.e., if M(I,J) is the first
nonzero entry (stored) in the I-th row and A(K) = M(I,J), then
IA(I) = K. Moreover, the index in JA and A of the first location
following the last element in the last row is stored in IA(N+l).
Thus, the number of entries in the I-th row is given by
IA(I+l) - IA(I), the nonzero entries of the I-th row are stored
consecutively in
A(IA(I)), A(IA(I)+1), ..., A(TA(I+1)-1),
and the corresponding column indices are stored consecutively in
JA(IA(I)), JA(TIA(I)+1), ..., JA(IA(I+l)-1).
For example, the 5 by 5 matrix
(1. 0. 2. 0. 0.)
(0. 3. 0. 0. 0.)
M= (0. 4. 5. 6. 0.)
(0. 0. 0. 7. 0.)
(0. 0. 0. 8. 9.)
would be stored as
1L 2 3 4 5 6 7 8 9

e

IA |1 3 4 7 810
JA Il 3 2 2 3 4 4 4 5
Al l. 2. 3. 4.5.6. 7. 8. 9. .

The strict upper triangular portion of the matrix U is stored
in a similar fashion using the arrays 1U, JU, U, except that an
additional array IJU is used to compress storage of JU by allowing
some of the column indices to be used for more than one row.

IJU(K) points to the starting location in JU of entries for the Kth
row. Compression in JU occurs in two ways. First, if a row I was

merged into the current row K, and the number of elements merged in
from (the tail portion of) row I is the same as the final length of
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row K, then the Kth row and the tail of row I are identical and
IJU(K) may point to the start of the tail. Second, if some tail
portion of the (K-1)st row is identical to the head of the Kth row,
then IJU(K) may point to the start of that tail portion. For
example, the nonzero structure of the strict upper triangular part
of the matrix

do

o

cooo
ocoocoaA
-0 oo X X X
NP A OX X

Hooao

would be represented as

w0
»
(V]
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1V. ADDITIONAL STORAGE SAVINGS

JU and U should be the same array. TRK fills JU from the
beginning of the array and U from the end of the array.

R and IC can be the same array in the calling sequence if no
reordering of the coefficient matrix has been dome. Z and ROW can
be the same array.

v. PARAMETERS

) Following is a list of parameters to TRK. Class abbreviations
are --

- INTEGER variable

REAL variable

supplies a VALUE to a subroutine

returns a RESULT from a subroutine

used INTERNALly by a subroutine

- ARRAY

[ I IR o O -]
]

Class | Parameter

-

fva

fva

nr

nr

ava

nva

A - nonzero entries of the coefficient matrix M, stored
by rows.
Size = number of nonzero entries in M.

right-hand side b.
Size = N.

if enough storage was provided for JU and U, then ESP
is set to amount of excess storage provided.

FLAG error flag; values and their meanings are --

|

|

|

| B
|

|

|

|

| 0 No Errors Detected
|

|

|

|

|

|

|

|

|

ESP

N+K Null Row in A -- Row =K

2N4K  Duplicate Entry in A -- Row =K

5N4+K  Null Pivot =- Row =K

8N+K Zero Pivot =-- Row =K

12N4+K  Insufficient Storage for JU/U =-- Row =K
pointers to delimit the rows in A.
 Size = N+l. ..
inverse of the ordering of the columns of M; 1i.e.,

1IC(C(1)) = I for I=l,...N, where C is the

1A

IC



ordering of the columns of M.

Size = N.

IJu - pointers to the first element in each row in JU, used

to compress storage in JU.

Size = N.

1U - pointers to delimit the rows in U.

Size = N+l.

JA - column numbers corresponding to the elements of A.

Size = size of A.

Ju - column numbers corresponding to the elements of U;
JU and U should be the same array.
Size = MAX.

declared dimension of JU and U; MAX must be larger
than the size of U (the number of nonzero entries
in the strict upper triangle of M plus fillin) plus
the size of JU (the size of U minus compression).

N - number of variables/equations.

R - ordering of the rows of M.

Size = N.

U - nonzero entries in the strict upper triangular portion

of U, stored by rows; JU and U should be the same

array.

Size = MAX.

Z - solution x.

Size = N.

nia

nia

nva

nia

nv

nv
nva

fia

fra

TR R
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C*** Sybroutine TRK
C*** Numerical solution of sparse nonsymmetric system of linear
c equations (track zeroes dynamically)

SUBROUTINE TRK
* (N, R,IC, IA,JA,A, Z, B, IJU,JU,IU,U,MAX,
* Q, IM, ROW, TMP, FLAG, ESP)

Input variables: N, R,IC, IA,JA,A, B, MAX
Output variables: Z, FLAG

Parameters used internally:
nia | Q - suppose M° is the result of reordering M; if
| processing of the Kth row of M’ (hence the Kth rows
of L and U) is being done, then Q(J) is initially
nonzero if M“(K,J) is nonzero; since values need
not be stored, each entry points to the next
nonzero; for example, if N=9 and the 5th row of
M’ is
0xx0x00x0O0,
then Q will initially be
a35a8aallda?2 (a - arbitrary);
Q(N+l) points to the first nonzero in the row and
the last nonzero points to N+l; as the algorithm
proceeds, other elements of Q are inserted in the
list because of fillin.
Size = N+l.

IM - at each step in the factorization, IM(I) is the last
element of the Ith row of U which needs to be
considered in computing fillin.

Size = N.

nia
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C fia | ROW - holds intermediate values in calculation of U.
| Size = N.
fia | TMP - holds new right-hand side b’ for solution of the
| equation Ux = b’.
|

Size = N.

[« Koz N2 N2l

INTEGER R(1), IC(1), IA(1l), JA(1),
* 1Ju(l), Ju(l), IU(l), Q(), (1), FLAG, ESP, v, ™M
REAL A(l), z(1), B(1), U(l), ROW(l), T™P(1)

a0

kkkkkx Initialize kkkkkkkhkkrkRRhRRRRRRRARRRIRRI KRR KA RRRR*RKR kR KK *
JUMIN = 1
JUMAX = 0
IU(l) = MAX

C *&kk** For each row kkkkkkkhrkRRkkrrAkRkkkkhkrkkkkkkkhkhkhhhrhkhkhkk
DO 20 K=1,N
C *&kkk%x Initialize Q and ROW to the Kth row of reordered A *kkkkkikk
LUK = 0
Q(N+1) = N+l
JMIN = IA(R(K))
JMAX = IA(R(K)+1) - 1
IF (JMIN.GI.JMAX) GO TO 101
DO 2 J=JMIN, JMAX
vJ = IC(JA(J))
@ = N+l
1 M=QM
Q= Q()
IF (QM.LT.VJ) GO TO 1
IF (QM.EQ.VJ) GO TO 102
LUK = LUK+l
QM) = VJ
Q(VJ) = QM
ROW(VJ) = A(J)
2 CONTINUE

C **xxx% Link through Q Ak kkRARARRARRRARKRRAIXARARAARKRARIRI XA RE IR K
IMAX = 0
1JU(K) = JUMAX
I = N+l
3 1 =Q(I)
LUK = LUK-1
IF (I.GE.K) GO TO 8
@M =1
JMIN = I1JU(I)
JMAX = IM(I)
LUL =0
IF (JMIN.GT.JMAX) GO TO 7
C **k%kkx and find nonzero structure of Kth row of L and U *k&kkkkkkkik
DO 5 J=IJMIN, JMAX
V] = JU(J)
IF (VJ.GT.K) LUIL = LUI+]
4 M=QM
@ =Q(M
IF (QM.LT.VJ) GO TO 4
IF (QM.EQ.VJ) GO TO 5
LUK = LUK+l
QM) =VJ
Q(VJ) = QM
ROW(VJ) = O
®™ =V
5 CONT INUE



C  kkkkkk  Adjust IJU and IM Hkkkkkskssddkkdkdkkidhidddhnindn ik kit
JTMP = JMAX - LUIL
IF (LUI.LE.LMAX) GO TO 6

IMAX = LUIL

IJU(K) = JIMP+l
6 IF (JTMP.LT.JMIN) GO TO 7

IF (JU(JTMP).EQ.K) IM(I) = JTMP
7 GO TO 3

C
C *x%%*x*x See if JU storage can be compressed *kxkkkkkkkkikkkkikkkkkhkk
8 IF (I.NE.K) GO TO 105
IF (LUK.EQ.LMAX) GO TO 14
IF (JUMIN.GT.JUMAX) GO TO 12
I =Q(K)
DO 9 JMIN=JUMIN, JUMAX
IF (JU(JMIN)-I) 9, 10, 12

9 CONTINUE
GO TO 12
10 IJU(K) = JMIN

DO 11 J=JMIN, JUMAX
IF (JU(J).NE.I) GO TO 12
I =q(I)
IF (I.GT.N) GO TO 14
11 CONTINUE
JUMAX = JMIN -1
C **k%xk% . Store pointers in JU *kkkkkkkkkkkkkkkkkkkkkkkhhhkkihkhhkkkkir
12 JUMIN = JUMAX + -1
JUMAX = JUMAX + LUK
IF (JUMAX.GT.IU(K)) GO TO 112
I =K
DO 13 J=JUMIN, JUMAX
I =0q()
13 JuJ) = 1
IJU(K) = JUMIN
14 IU(K+l) = IU(K) - LUK
IF (JUMAX.GT.IU(K+l)) GO TO 112
IM(K) = IJU(K) + LUK - 1

C **x*** Calculate numerical values for Kth row *kkkkkkkkkkkkkkkkkkkk
SUM = B(R(K))
I = N+l
15 I =0Q()
IF (I.GE.K) GO TO 18
AKI = - ROW(I)
SUM = SUM + AKI * TMP(I)
JMIN = IU(I+1) + 1
JMAX = IU(I)
IF (JMIN.GT.JMAX) GO TO 17
MU = IJU(I) - JMIN
DO 16 J=JMIN, IMAX
16 ROW(JU(MU+J)) = ROW(JU(MU+J)) + AKI * U(J)
17 GO TO 15



C *%k**% Store values in TMP and U HkkkkkkkkkkkkkkkkhrrrRARARRARRARAR
18 IF (ROW(K).EQ.0) GO TO 108
DK = 1 / ROW(K)
TMP(K) = SUM * DK
JMIN = IU(K+l) + 1
JMAX = IU(K)
IF (JMIN.GT.JMAX) GO TO 20
MU = IJU(K) - JMIN
DO 19 J=JMIN, JMAX

19 U(J) = ROW(JU(MU+J)) * DK
20 CONTINUE
ESP = IU(N+l) - JUMAX
c
C %%xkkkk Solve Ux = TMP by back substitution Fhkkkkkkkkikkkkkkkhikkk
K=N
DO 23 I=1,N
SUM = TMP(K)
JMIN = IU(K+l) + 1
JMAX = IU(K)
IF (JMIN.GT.JMAX) GO TO 22
MU = IJU(K) - JMIN
DO 21 J=JMIN, JMAX
21 SUM = SUM - U(J) * TMP(JU(MU+J))
22 TMP(K) = SIM
23 K = K-1
DO 24 K=1,N
24 Z(K) = TMP(IC(K))
c
FLAG =0
RETURN
C

C ** ERROR: Null Row in A
101 FLAG = N + R(K)
RETURN
C ** ERROR: Duplicate Entry in A
102 FLAG = 2*N + R(K)
- RETURN
C ** ERROR: Null Pivot
105 FLAG = 5N + K
RETURN
C ** ERROR: Zero Pivot
108 FLAG = 8*N + K
RETURN
C ** ERROR: Insufficient Storage for JU and U
112 FLAG = 12*N + K
RETURN
END



Appendix 3 7/31/77

Subroutines for Solving Sparse Nonsymmetric Systems
of Linear Equations (Compressed Pointer Storage)

aooooon

C*** Subroutine CDRV
C*** Driver for subroutinés for solving sparse nonsymmetric systems of

c linear equations (compressed pointer storage)
C
SUBROUTINE CDRV
* (N, R,C,IC, IA,JA,A, B, Z, NSP,ISP,RSP,ESP, PATH, FLAG)
PARAMETERS

Class abbreviations are--
n - INTEGER variable
f - REAL variable
- supplies a VALUE to the driver
- returns a RESULT from the driver
- used INTERNALly by the driver
- ARRAY

[ TR

Class | Parameter

<
T

|
The nonzero entries of the coefficient matrix M are stored
row-by-row in the array A. To identify the individual nonzero
entries in each row, we need to know in which column each entry
lies. The column indices which correspond to the nonzero entries
of M are stored in the array JA; i.e., if A(K) = M(I,J), then
JA(K) = J. 1In addition, we need to know where each row starts and
how long it is. The index positions in JA and A where the rows of
M begin are stored in the array IA; i.e., if M(I,J) is the first
nonzero entry (stored) in the I-th row and A(K) = M(I,J), then
IA(I) = K. Moreover, the index in JA and A of the first location
following the last element in the last row is stored in IA(N+l).
Thus, the number of entries in the I-th row is given by
IA(I+l) - IA(1), the nonzero entries of the I-th row are stored
consecutively in
A(IA(I)), A(TA(I)+l), ..., A(IA(I41)=1),
and the corresponding column indices are stored consecutively in
JA(IA(T)), JA(IA(L)+1), ..., JA(IA(I+1)-1).
For example, the 5 by 5 matrix
(1l. 0. 2. 0. 0.)
(0. 3. 0. 0. 0.)
M= (0. 4, 5. 6. 0.)
(0. 0. 0. 7. 0.)
(0. 0. 0. 8. 9.)
would be stored as
|1 2 3 4 5 6 7 8 9

IA|1 3 4 7 810
JAJ1l 3 2 2 3 4 4 &4 5
A l. 2. 3. 4. 5. 6. 7. 8. 9. .
v N - number of variables/equations.
fva A - nonzero entries of the coefficient matrix M, stored

Size = number of nonzero entries in M.
IA - pointers to delimit the rows in A.

OC’)OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOGOOOOOOOOOGOO

=}
<
»

|
|
| by rows.
|
|
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nva
fva

fra

nva

nva

nva

nv

Size = N+l.

|

| Ja - column numbers corresponding to the elements of A.
| Size = size of A.

| B - right-hand side b; B and Z can the same array.

| Size = N.

| 2 - solution x; B and Z can be the same array.

| Size = N.

The rows and columns of the original matrix M can be
reordered (e.g., to reduce fillin or ensure numerical stability)
before calling the driver. If no reordering is done, then set
R(I) = C(1) = IC(1) = I for I=l,...,N. The solution Z is returned
in the original order.

1f the columns have been reordered (i.e., C(I).NE.I for some
1), then the driver will call a subroutine (NROC) which rearranges
each row of JA and A, leaving the rows in the original order, but
placing the elements of each row in increasing order with respect
to the new ordering. If PATH.NE.l, then NROC is assumed to have
been called already.

R - ordering of the rows of M.
Size = N.

c - ordering of the columns of M.
Size = N.

-
(o]

-~ inverse of the ordering of the columns of M; 1i.e.,
IC(C(1)) =1 for I=l,...,N.
Size = N.

The solution of the system of linear equations is divided into
three stages --
NSFC —- The matrix M is processed symbolically to determine where
fillin will occur during the numeric factorization.
NNFC -- The matrix M is factored numerically into the product LDU
of a unit lower triangular matrix L, a diagonal matrix
D, and a unit upper triangular matrix U, and the system
Mx = b 1is solved.
NNSC =- The linear system Mx = b 1is solved using the LDU
factorization from NNFC.
For several systems whose coefficient matrices have the same
nonzero structure, NSFC need be done only once (for the first
system); then NNFC is done once for each additional system. For
several systems with the same coefficient matrix, NSFC and NNFC
need be done only once (for the first system); then NNSC is done
once for each additional right-hand side.

| PATH - path specification; values and their meanings are --
| 1 perform NROC, NSFC, and NNFC.

| 2 perform NNFC only (NSFC is assumed to have been
| done in a manner compatible with the storage

| allocation used in the driver).

| 3 perform NNSC only (NSFC and NNFC are assumed to
| have been done in a manner compatible with the
| storage allocation used in the driver).
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Chkkkkk

Various errors are detected by the driver and the individual

FLAG

subroutines.

- error f
0
N+K

2N+
3N+HK
4N+1
SN+K
6N+K
IN+1
SN+K
10N+1
1IN+l

lag; values and their meanings are --
No Errors Detected
Null Row in A =-- Row =K
Duplicate Entry in A =-- Row =K
Insufficient Storage in NSFC -- Row = K

Insufficient Storage in NNFC

Null Pivot =-- Row =K

Insufficient Storage in NSFC -- Row =K
Insufficient Storage in NNFC

Zero Pivot == Row =K

Insufficient Storage in CDRV

Illegal PATH Specification

Working storage is needed for the factored form of the matrix

NSP

1sp

I

I

|

I

I

I

I

| RSP
|

|

I

| ESP
I

|

I

|

integer s

- declare

M plus various temporary vectors. The arrays ISP and RSP should be
the same;
and real storage from the end of RSP.

torage is allocated from the beginning of ISP

d dimension of ISP and RSP; NSP generally must

be larger than 8N+2 + 2K (where K = (number of

nonze
- integer

ro entries in M)).
working storage divided up into various arrays

needed by the subroutines; ISP and RSP should be

the s
Size
- real wo

ame array.
= NSP.
rking storage divided up into various arrays

needed by the subroutines; ISP and RSP should be

the s

ame array.

Size = NSP.

if suff
symbo

icient storage was available to perform the
lic factorization (NSFC), then ESP is set ta

the amount of excess storage provided (negative if

insuf
numer

ficient storage was available to perform the
ic factorization (NNFC)).

INTEGER R(1l), C(l), IC(l), IA(l), JA(L), ISP(l), ESP, PATH,
FLAG, TMP, D, Q, U, RMN, ADD, UMAX
REAL A(l), B(l), z(l), RSP(l)

IF(PATH.LE.O .OR. PATH.GT.3) GO TO 111
Initialize and divide up temporary storage **kkkikkikkkkkkkkkkkk

FLAG
IL
IJL
U
1JU
IRL
JRL
JL
IRA
D
JRA
T™MP
Q
JRU
IRU

0

1
IL +N +
IJL + N
IU +N +
IJU + N
IRL + N
JRL + N
NSP + 1 -
IRA
D -N
JRA
TMP -(N +
Q -N
JRU - N

IF(JL .GE. IRU)
IF(PATH .GT. 1)

1

1

N

)

GO TO 110
GO TO 10



C

Ck*%k*xx Reorder A if necessary, call NSFC if flag is set *kkkkkdkkkkkk

Chrkkkk

10

15

Chkkkkk

20

c
C **

100
C **
110

C %%
111

*

RMN = IRU - JL

ADD = RMN/2

JU = JL + ADD

JLMAX = ADD

JUMAX = RMN - ADD

DO 5 II=],N
IF(C(11) .NE. 1II) GO TO 6
CONT INUE

GO TO 7

CALL NROC (N, IC, IA, JA, A, ISP(IL), RSP(Q), ISP(IU), FLAG)
IF(FLAG .NE. 0) GO TO 100

CALL NSFC
(N, R, IC, I1A,JA, JLMAX,ISP(IL),ISP(JL),ISP(IJL), JUMAX,
ISP(1U),ISP(JU),ISP(IJU), RSP(Q), RSP(IRA), RSP(JRA), Z,
ISP(IRL),ISP(JRL), RSP(IRU),RSP(JRU), FLAG)

IF(FLAG .NE. 0) GO TO 100

See if enough space remains, move JU next to JL *¥*kkkkkkkkkkkxk

JLMAX = ISP(IJL4N=-1)

JUMAX = ISP(IJU4N-1)

IMAX = ISP(IL+N) - 1

UMAX = ISP(IUN) -1

IF(PATH .GT. 1) GO TO 20

NEED = JLMAX + JUMAX + LMAX + UMAX

RMN = RMN + 3W + 1

ESP = RMN - NEED

IF(NEED .GT. RMN) GO TO 110

JUOLD = JU -1

JU = JL + JLMAX -1

IF (JUMAX.LE.O0) GO TO 20

DO 15 II=1,JUMAX

ISP(JU+II) = ISP(JUOLD+II)

Call remaining subroutines ®*kkkkkkkkkkkkkkARkkARKkhARRKARIAK

JU = JL + JLMAX

L = JU + JUMAX

U = L + LMAX

IF(PATH .EQ. 3) GO TO 30

CALL NNFC
(N, R, C, IC, IA,JA,A, LMAX,ISP(IL),ISP(JL),ISP(IJL),RSP(L),
RSP(D), UMAX,ISP(IU),ISP(JU),ISP(1JU),RSP(U), Z, B, Z,
RSP(IMP), ISP(IRL),ISP(JRL), FLAG)

IF(FLAG .NE. 0) GO TO 100

RETURN

CALL NNSC
(N, R, C, ISP(IL),ISP(JL),ISP(1JL),RSP(L), RSP(D), ISP(IU),
1SP(JU),ISP(1JU),RSP(U), Z, B, RSP(TMP))

RETURN

ERROR: Error Detected in NROC, NSFC, NNFC, or NNSC

RETURN

ERROR: Insufficient Storage

FLAG = 10*N + 1
RETURN

ERROR: 1Illegal PATH Specification

FLAG = 11*N + 1
RETURN
END
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YALE SPARSE MATRIX PACKAGE - NONSYMMETRIC CODES
SOLVING THE SYSTEM OF EQUATIONS Mx = b

I. SUBROUT INE NAMES
Subroutine names and functions are --
(1) NROC for reordering;
(2) NSFC for symbolic factorization;
(3) NNFC for numeric factorization and solution;
(4) NNSC for solution.

II. CALLING SEQUENCES

The coefficient matrix can be processed by an ordering routine
(e.g., to reduce fillin or ensure numerical stability) before using
the remaining subroutines. If no reordering is done, then set
R(I) = C(I) = IC(I) = I for I=l,...,N. If an ordering subroutine
is used, then NROC should be used to reorder the coefficient matrix
The calling sequence is ==

( (matrix ordering))

(NROC  (matrix reordering))

NSFC (symbolic factorization to determine where fillin will
occur during numeric factorization)

NNFC (numeric factorization into product LDU of unit lower
triangular matrix L, diagonal matrix D, and unit
upper triangular matrix U, and solution of linear
system)

NNSC (solution of linear system for additional right-hand
side using LDU factorization from NNFC)

(If only one system of equations is to be solved, then the
subroutine TRK should be used.)

III. STORAGE OF SPARSE MATRICES
The nonzero entries of the coefficient matrix M are stored
row-by-row in the array A. To identify the individual nonzero
entries in each row, we need to know in which column each entry
lies. The column indices which correspond to the nonzero entries
of M are stored in the array JA; i.e., if A(K) = M(I,J), then
JA(K) = J. 1In addition, we need to know where each row starts and
how long it is. The index positions in JA and A where the rows of
M begin are stored in the array IA; i.e., if M(I,J) is the first
(leftmost) entry in the I-th row and A(K) = M(I,J), then
IA(I) = K. Moreover, the index in JA and A of the first location
following the last element in the last row is stored in IA(N+l).
Thus, the number of entries in the I-th row is given by
IA(I+l) - IA(I), the nonzero entries of the I-th row are stored
consecutively in
A(TIA(L)), A(IA(I)+l), ..., A(IA(I+1)-1),
and the corresponding column indices are stored consecutively in
JA(IA(L)), JA(TIA(L)+1l), ..., JA(IA(I+1)-1).
For example, the 5 by 5 matrix
(1. 0. 2. 0. 0.)
( 0. 3. 0. 0. 0.)
M= (0. 4. 5. 6. 0.)
(0. 0. 0. 7. 0.)
(0. 0. 0. 8. 9.)
would be stored as
|1 2 3 4 5 6 7 8 9

IA|1 3 4 7 810
JAll 32 2 3 4 4 45
Al 1 2.1 &4 5. A 7. R. Q
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The strict upper (lower) triangular portion of the matrix
U (L) is stored in a similar fashion using the arrays 1IU, JU, U
(IL, JL, L) except that an additional array IJU (IJL) is used to
compress storage of JU (JL) by allowing some of the column (row)
indices to used for more than one row (column) (n.b., L is stored
by columns). IJU(K) (IJL(K)) points to the starting location in
JU (JL) of entries for the Kth row (column). Compression in JU
(JL) occurs in two ways. First, if a row (column) I was merged
into the current row (column) K, and the number of elements merged
in from (the tail portion of) row (column) I is the same as the
final length of row (column) K, then the Kthfow (column) and the
tail of row (column) I are identical and IJU(K) (IJL(K)) may point
to the start of the tail. Second, if some tail portion of the
(K-1)st row (column) is identical to the head of the Kth row
(column), then IJU(K) (IJL(K)) may point to the start of that tail
portion. For example, the nonzero structure of the strict upper
triangular part of the matrix

d 0 xxx

0dO0 xx

00dx0

0004dx

0000d

would be represented as
| 123456

IU | 146788

JU | 3454

IJu | 1243 .

The diagonal entries of L and U are assumed to be equal to one and
are not stored. The array D contains the reciprocals of the
diagonal entries of the matrix D.

IV. ADDITIONAL STORAGE SAVINGS
In NSFC, R and IC can be the same array in the calling
sequence if no reordering of the coefficient matrix has been done.
In NNFC, Z and ROW can be the same array. R, C and IC can all
be the same array if no reordering has been done. If only the
rows have been reordered, then C and IC can be the same array.
If the row and column orderings are the same, then R and C can be
the same array.
In NNSC, R and C can be the same array if no reordering has
been done or if the row and column orderings are the same. Z and B
can be the same array; however, then B will be destroyed.

V. PARAMETERS
Following is a list of parameters to the programs. Names are
uniform among the various subroutines. Class abbreviations are --
n - INTEGER variable
f - REAL variable

v - supplies a VALUE to a subroutine
r - returns a RESULT from a subroutine
i - used INTERNALly by a subroutine
a - ARRAY

Class | Parameter

by rows.

|

fva | A - nonzero entries of the coefficient matrix M, stored
|
| Size = number of nonzero entries in M.
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fva

nva

fvra

nr

nva

nvra

nvra

nvra

nvra

nva

nvra

nv

nvra

nv

fvra

nv

nv

nva

fvra

v

fra

IA

1JL

1JU

IL

1U

JA

JL

JLMAX

Ju

JUMAX

UMAX

right-hand side b.
Size = N.

ordering of the columns of M.
Size = N.

reciprocals of the diagonal entries of the matrix D.
Size = N.

error flag; values and their meanings are =--

0 No Errors Detected

N+ Null Row in A -- Row =K
2N+K Duplicate Entry in A -- Row =K
3Nik Insufficient Storage for JL -- Row =K
4N+l Insufficient Storage for L
SN+K  Null Pivot -- Row =K
6N+K Insufficient Storage for JU =-- Row =K
IN+1 Insufficient Storage for U
8N+K Zero Pivot -- Row =K

pointers to delimit the rows of A.
Size = N+l.

pointers to the first element in each column in JL,
used to compress storage in JL.
Size = N.

pointers to the first element in each row in JU, used
to compress storage in JU.
Size = N.

pointers to delimit the columns of L.
Size = N+l.

pointers to delimit the rows of U.
Size = N+l.

column numbers corresponding to the elements of A.
Size = size of A.

row numbers corresponding to the elements of L.
Size = JLMAX.

declared dimension of JL; JLMAX must be larger than
the number of nonzeros in the strict lower triangle
of M plus fillin minus compression.

column numbers corresponding to the elements of U.
Size = JUMAX.

declared dimension of JU; JUMAX must be larger than
the number of nonzeros in the strict upper triangle
of M plus fillin minus compression.

nonzero entries in the strict lower triangular portion
of the matrix L, stored by columns.
Size = LMAX.

declared dimension of L; LMAX must be larger than
the number of nonzeros in the strict lower triangle
of M plus fillin (IL(N+l1)-1 after NSFC).

number of variables/equations.

ordering of the rows of M.
Size = N.

nonzero entries in the strict upper triangular portion
of the matrix U, stored by rows.
Size = UMAX.

declared dimension of U; UMAX must be larger than
the number of nonzeros in the strict upper triangle
of M plus fillin (IU(N+l)-1 after NSFC).

solution x.
Size = N.

N



c

Ck** Suybroutine NROC
C*** Reorders rows of A, leaving row order unchanged

c
SUBROUTINE NROC (N, IC, IA, JA, A, JAR, AR, P, FLAG)
c
C Input parameters: N, IC, IA, JA, A
c Output parameters: JA, A, FLAG
c
C Parameters used internally:
C nia | P = at the Kth step, P is a linked list of the reordered
[ | column indices of the Kth row of A; P(N+l) points
c | to the first entry in the list.
c | Size = N+l.
C nia | JAR - at the Kth step,JAR contains the elements of the
c | reordered column indices of A.
c | Size = N.
C fia | AR - at the Kth step, AR contains the elements of the
c - | reordered row of A.
c | Size = N.
[ .
INTEGER IC(1), IA(1), JA(l), JAR(1l), P(l), FLAG
REAL A(l), AR(1l)
c
C *%%**% For each nonempty row **kk&kxkkkkkkkkkkkkkkhkkkkkkkkkk
DO 5 K=1,N
JMIN = IA(K)
JMAX = JTA(K+l) - 1
IF(JMIN .GT. JMAX) GO TO 5
P(N+l) = N + 1
C *%kkk%x Ingert each element in the list *kkkkkkkkkkkkkkkkkkkk
DO 3 J=JMIN, JMAX
NEWJ = IC(JA(J))
I=N+1
1 IF(P(1) .GE. NEWJ) GO TO 2
I=P(1)
GO TO 1
2 IF(P(I) .EQ. NEWJ) GO TO 102
P(NEWJ) = P(I)
P(I) = NEWJ
JAR(NEWJ) = JA(J)
AR(NEWJ) = A(J)
3 CONT INUE
C #*%%%* Replace old row in JA and A **kkkkkAkkkkkhkhkkrrkkkhkk
I=N+1
DO 4 J=JMIN, JMAX
I =P(1)
JA(J) = JAR(I)
4 A(J) = AR(I)
5 CONT INUE
FLAG = 0
RETURN
C
C ** ERROR: Duplicate entry in A
102 FLAG = N + K
RETURN
END



C
C

Cx** Subroutine NSFC
Cx** Symbolic LDU-factorization of nonsymmetric sparse matrix

c
C

nia

nia
nia

nia
nia

nia
nia

e N RN Ko Re o R e e R R e 2 N2 Ko e R e K2 K2 K2 K2R N2 N s N s N Ns s No o N2 Ro NN s No N NoNoN o NoRoNo No o N o}

nia’

(compressed pointer storage)

SUBROUTINE NSFC
(N, R, IC, IA,JA, JLMAX,IL,JL,IJL, JUMAX,IU,JU,LJU, Q, IRA,
JRA, IRAC, IRL,JRL, IRU,JRU, FLAG)

Input variables: N, R, IC, IA, JA, JLMAX, JUMAX.
Qutput variables: IL, JL, IJL, IU, JU, I1JU, FLAG.

Parameters used internally:
| Q - Suppose M’ is the result of reordering M. If
processing of the Ith row of M” (hence the Ith
row of U) is being done, Q(J) 1is initially
nonzero if M7(I,J) is nonzero (J.GE.I). Since
values need not be stored, each entry points to the
next nonzero and Q(N+l) points to the first. N+l
indicates the end of the list. For example, if N=9
and the 5th row of M° is

0xx0x00x0
then Q will initially be

aaaa8aalldb5 (a - arbitrary).
As the algorithm proceeds, other elements of Q
are inserted in the list because of fillin.
Q is used in an analogous manner to compute the
Ith column of L.

Size = N+l.
IRA, - vectors used to find the columns of M. At the Kth
JRA, step of the factorization, IRAC(K) points to the
IRAC head of a linked list in JRA of row indices I

such that I .GE. K and M(I,K) 1is nonzero. Zero
indicates the end of the list. IRA(I) (I.GE.K)
points to the smallest J such that J .GE. K and
M(1,J) 1is nonzero.
Size of each = N.
IRL, - vectors used to find the rows of L. At the Kth step
JRL of the factorization, JRL(K) points to the head
of a linked list in JRL of column indices J
such J .LT. K and L(K,J) is nonzero. Zero
indicates the end of the list. IRL(J) (J.LT.K)
points to the smallest I such that I .GE. K and
L(I,J) 1is nonzero.
Size of each = N.
IRU, - vectors used in a manner analogous to IRL and JRL
JRU to find the columns of U.
Size of each = N.

Internal variables: .
JLPTR - points to the last position used in JL.
JUPTR - points to the last positionm used in JU.
JMIN, JMAX - are the indices in A or U of the first and last

elements to be examined in a given row.
For example, JMIN=IA(K), JMAX=IA(K+l)-1.

INTEGER CEND, @M, REND, RK, VJ

INTEGER IA(l), JA(Ll), IRA(1l), JRA(1l), IL(l), JL(1), IJL(1)
INTEGER IU(l), Ju(l), IJU(l), IRL(l), JRL(l), IRU(l), JRU(1l)
INTEGER R(l), IC(l), Q(l), IRAC(l), FLAG



c

C  hkkkkk

Initialize pointers ®kk&kkkkkkkkhkhkhkkhhkkhhkikhkhkkkihkdkhkhhikkkk

NP1 =N +1

JLMIN
JLPTR
IL(1)
JUMIN
JUPIR
IU(1)

O e O

DO 1 K=1,N

1
C  *kkkik

IRAC(K) = 0
JRA(K) = 0
JRL(K) = 0
JRU(K) = 0
Initialize column pointers for A Hkkkkkkkkkkkkkkkkkkkkhhdkikk

DO 2 K=1,N

2

C  hkkkkk

RK = R(K)

IAK = IA(RK)

IF (IAK .GE. IA(RK+l)) GO TO 101
JAIAK = IC(JA(IAK))

IF (JAIAK .GT. K) GO TO 105
JRA(K) = IRAC(JAIAK)

IRAC(JAIAK) = K

IRA(K) = IAK

For each column of L and row of U *kkkkkkkkkkhkhkkkhkkkkhkhkk

DO 41 K=1,N

C  kkkkkk

C  dkkkkk

C  kkkkkk
5

Initialize Q for computing Kth column of L *hkkkkkkkkhkkkkkk
Q(NP1) = NP1
LUK = -]
by £illing in Kth column of A *kkkkkkkkkkkhkkkkhkkkkkkkhdkdkkkk
VJ = IRAC(K)
IF (VJ .EQ. 0) GO TO 5
Q1 = NP1
M=QM
M = Q)
IF (QM .LT. VJ) GO TO 4
IF (QM .EQ. VJ) GO TO 102
LUK = LUK + 1
QM) = VvJ
Q(VJ) = QM
VJ = JRA(VJ)
IF (VJ .NE. 0) GO TO 3
Link through JRU ®kkkkkkkdkkdkhhhhkhkhhihkkhhhkhkkhhhkkhkrhhhk
LASTID = 0
LASTI = 0
IJL(K) = JLPTIR
I =K
1 = JRU(I)
IF (I .EQ. 0) GO TO 10
@ = NP1
JMIN = IRL(I)
JMAX = IJL(I) + IL(I+l) - IL(1) -1
LONG = JMAX - JMIN
JTMP = JL (JMIN)
IF (JTMP .NE. K) LONG = LONG + 1
IF (JTMP .EQ. K) R(I) = -R(I)
IF (LASTID .GE. LONG) GO TO 7
LASTIL = 1
LASTID = LONG
IF (LONG .LE. 0) GO TO 6



C **x*** And merge the corresponding columns into the Kth column *¥***
DO 9 J=JMIN, JMAX
VJ = JL(J)
8 M=QM
@ =QM)
IF (QM .LT. VJ) GO TO 8
IF (QM .EQ. VJ) GO TO 9
LUK = LUK + 1
QM) =VJ
Q(VJ) = QM
@ =VJ
9 CONT INUE
GO TO 6
C **k*%%x [ ASTI is the longest column merged into the Kth **%kkkkkkikkk
C ***xk%* See if it equals the entire Kth column **kkkkkkkkkkkkkkkkikkk
10 M = Q(NP1)
IF (QM .NE. K) GO TO 105
IF (LUK .EQ. 0) GO TO 17
IF (LASTID .NE. LUK) GO TO 1l
C *%kk** If 5o, JL can be compressed Xk&kkkkkkkkkkkkkkkkkkkkrkkhkkkik
IRLL = IRL(LASTI)
IJL(K) = IRLL + 1
IF (JL(IRLL) .NE. K) IJL(K) = IJL(K) - 1

GO TO 17
C **k*x* If not, see if Kth column can overlap the previous one **%x*
11 IF (JLMIN .GT. JLPTR) GO TO 15
Q@1 = Q(QM)

DO 12 J=JLMIN, JLPTR
IF (JL(J) - QM) 12, 13, 15

12 CONTINUE
GO TO 15
13 IJL(K) = J~

DO 14 I=J,JLPIR
IF (JL(I) .NE. M) GO TO 15
@ = Q(QM)
IF (QM .GT. N) GO TO L7
14 CONT INUE
JLPTR = J -1
C *%k*** Move column indices from Q to JL, update vectors **kkkikkkikxk
15 JLMIN = JLPTR + 1
IJL(K) = JLMIN
IF (LUK .EQ. 0) GO TO 17
JLPTR = JLPTR + LUK
IF (JLPTR .GI. JLMAX) GO TO 103

@ = Q(NP1)
DO 16 J=JLMIN, JLPTR
M = Q(QM)
16 JLJ) = QM
17 IRL(K) = IJL(K)

IL(K+l) = IL(K) + LUK

c

C **kkx*x Initialize Q for computing Kth row of U **kkkkkkkkkkkkkkkkkk
Q(NP1) = NP1
LUK = -1



C  kkkkkx

18

19
C  *kkkkk

20

21

C  Rkkkkk

22

23
C  hkkkkk

24

25

C  khkkik
26

by filling in Kth row of reordered A *¥*kkkkkkkkkkkkkkkhkkkkk
RK = R(K)
JMIN = IRA(K)
JMAX = JTA(RK+l) -1
IF (JMIN .GT. JMAX) GO TO 20
DO 19 J=JMIN, JMAX
VJ = IC(JA(J))
@ = NP1
M = QM
@ = QM)
IF (QM .LT. VJ) GO TO 18
IF (QM .EQ. VJ) GO To 102
LUK = LUK + 1
QM) = VJ
Q(VJ) = QM
CONT INUE . .
Link through JRL, ®kkkkkkkkkkkkkkkkkkkkkxhhkkhhrrhhhhhhkink
LASTID = 0
LASTI = 0
IJU(K) = JUPTR
I =K
I1 = JRL(K)
I =11
IF (I .EQ. 0) GO TO 26
I1 = JRL(I)
@ = NP1
JMIN = IRU(I)
JMAX = IJU(I) + IU(I+l) - IU(T) -1
LONG = JMAX - JMIN
JIMP = JU(JMIN)
IF (JTMP .EQ. K) GO TO 22
Update IRL and JRL, ®kkkkkkikkkkikkkkkkkkkkkhrrhkihhhkkhrh ik
LONG = LONG + 1
CEND = IJL(I) + IL(I+l1) - IL(I)
IRL(I) = IRL(I) + 1
IF (IRL(I) .GE. CEND) GO TO 22
J = JL(IRL(I1)) -
JRL(I) = JRL(J)
JRL(J) = I
IF (LASTID .GE. LONG) GO TO 23
LASTI = I
LASTID = LONG
IF (LONG .LE. 0) GO TO 21
And merge the corresponding rows into the Kth row ®%kixkkikk
DO 25 J=JMIN, JMAX
VJ = Ju@J)
M = QM
@ = Q(M)
IF (QM .LT. VJ) GO TO 24
IF (QM .EQ. VJ) GO TO 25
LUK = LUK + 1
QM) = VJ
Q(VJ) = QM
M =VJ
CONT INUE
GO TO 21
Update JRL(K) and IRL(K) *kkkkkkkkkkkkkkkhkhhkhkhkkhhhhkikhhs
IF (IL(K+l) .LE. IL(K)) GO TO 27
J = JL(IRL(K))
JRL(K) = JRL(J)
JRL(J) = K




C *%#kkkx LASTI is the longest row merged into the Kth *kkkkkkkkkkkkkk
C *ikdkk See if it equals the entire Kth row *¥kkkkkkkkkkkkkkkkxkkiik
27 M = Q(NPL)
IF (QM .NE. K) GO TO 105
IF (LUK .EQ. 0) GO TO 34
IF (LASTID .NE. LUK) GO TO 28
C **xxxkx If so, JU can be compressed **¥kkkkkkikkkikkkikhkikikkkkkkkk
IRUL = IRU(LASTI)
IJU(K) = IRUL + 1
IF (JU(IRUL) .NE. K) IJU(K) = IJU(K) -1

GO TO 34
C #*%%%*% If not, see if Kth row can overlap the previous one *¥¥kkkk%
28 IF (JUMIN .GT. JUPTR) GO TO 32
™ = Q(QM)

DO 29 J=JUMIN, JUPTR
IF (JU@J) - QM) 29, 30, 32

29 CONT INUE
GO TO 32
30 IJU(K) = J

DO 31 I=J,JUPIR
IF (JU(I) .NE. QM) GO TO 32
™M = Q(QM) -
IF (QM .GT. N) GO TO 34
31 CONT INUE
JUPIR = J -1
C **xk%** Move row indices from Q to JU, update vectors **kkkkikkkkkkkk
32 JUMIN = JUPIR + 1
IJU(K) = JUMIN .
IF (LUK .EQ. 0) GO TO 34
JUPTR = JUPIR + LUK
IF (JUPTR .GT. JUMAX) GO TO 106

QM = Q(NPL)
DO 33 J=JUMIN, JUPTR
= Q(QM)
33 JU@) = QM
34 JRU(K) = LJU(K)
IU(K+l) = IU(K) + LUK
c
C  kkkkk Update IRU’ JRU khkkkkhkkhhkhkhkkkkkkkkkhkhkkkhkhkhhkhkkkhkkkkkhkkkkkk
1=K
35 Il = JRU(I)

IF (R(I) .LT. 0) GO TO 36
REND = IJU(I) + LU(I+1) - IU(I)
IF (IRU(I) .GE. REND) GO TO 37
J = JU(IRU(I))
JRU(L) = JRU@J)

JRUJ) = 1

GO TO 37
36 R(1) = -R(I)
37 I =11

IF (I .EQ. 0) GO TO 38
IRU(L) = IRU(I) + 1
GO TO 35



C
C **kxx%x Update IRA, JRA, IRAC ®hkkkikikkhhkkkkhkkkhhhhkhkkhhkihhhsnkhk

38 1 = IRAC(K)
IF (I .EQ. 0) GO TO 4l
39 11 = JRA(I)
IRA(I) = IRA(I) + 1
IF (IRA(I) .GE. IA(R(1)+1)) GO TO 40
IRAI = IRA(I)
JAIRAI = IC(JA(IRAIL))
IF (JAIRAI .GT. I) GO TO 40
JRA(I) = IRAC(JAIRAI)
IRAC(JAIRAI) = I
40 I =11
IF (I .NE. 0) GO TO 39
41 - CONTINUE

IJL(N) = JLPIR
IJU(N) = JUPTR
FLAG = 0
RETURN

C ** ERROR: Null Row in A
101 FLAG = N + RK
RETURN
C ** ERROR: Duplicate entry in A
102 FLAG = 2*®N + RK
RETURN
C ** ERROR: Insufficient Storage for JL
103 FLAG = 3N + K
RETURN
C ** ERROR: Null pivot
105 FLAG = 5% + K
RETURN
C ** ERROR: Insufficient Storage for JU
106 FLAG = 6*N + K

RETURN
END
c
c
c
C*** Subroutine NNFC
C*** Numerical LDU-factorization of sparse nonsymmetric matrix and
C solution of system of linear equations (compressed pointer
c storage)
c
SUBROUTINE NNFC
* (N, R, C, IC, 1A,JA,A, LMAX,IL,JL,I1JL,L, D, UMAX,IU,JU,1JU,
* U, Z, B, ROW, ™P, IRL,JRL, FLAG)
c
C Input variables: N, R, C, IC, IA, JA, A, B, IL, JL, 1JL,
o IMAX, IU, JU, 1JU, UMAX
c Output variables: Z, L, D, U, FLAG



Parameters used internally:

nia | IRL, - vectors used to find the rows of L. At the Kth step
nia | JRL of the factorization, JRL(K) points to the head

| of a linked list in JRL of column indices J

such J .LT. K and L(K,J) 1is nonzero. Zero
indicates the end of the list. IRL(J) (J.LT.K)
points to the smallest I such that I .GE. K and
L(I,J) is nonzero.

Size of each = N.

fia ROW - holds intermediate values in calculation of U and L.
Size = N.

fia TMP - holds new right-hand side b’ for solution of the
equation Ux = b’.
Size = N.

Internal variables:
JMIN, JMAX - indices of the first and last positions in a row to
be examined.
SUM - used in calculating TMP.

o000 O00O00000000000n00n

INTEGER RK,UMAX

REAL LKI

INTEGER R(1l), C(l), IC(l), IA(1l), JA(l), IL(l), JL(l), IJL(L)
INTEGER IU(Ll), Ju(l), IJU(l), IRL(L), JRL(1), FLAG

REAL A(l),:L(l), D(l), U(Ll), Z(1), B(l), ROW(1l), TMP(1)

*kkk*% Initialize pointers and test storage *¥kkkkkkkkkkkkkkkkkkikk
IF(IL(N+l)-1 .GT. LMAX) GO TO 104
IF(IU(N+l)-1 .GT. UMAX) GO TO 107
DO 1 K=1,N
IRL(K) = IL(K)
JRL(K) = 0
1 CONTINUE

xkkkk% For each row Xkkkkkkkkkkkkkkkkkkkkkkkkkikhhhikrhkhkrhhkkkkkkk
DO 19 K=1,N
k%k%*kx* Reverse JRL and zero ROW where Kth row of L will fill in *%%*
ROW(K) = 0
I1 =0
IF (JRL(K) .EQ. 0) GO TO 3
I = JRL(K)
2 I2 = JRL(1)
JRL(L) = I1
I1 =1
ROW(I) = 0
I =12
IF (I .NE. 0) GO TO 2
kkkkk%x Set ROW to zero where U will fill in *kdkkkkikkkkkkikkkkkkkkkkk
3 JMIN = ILJU(K)
JMAX = JMIN + IU(K+l) - IU(K) - 1
IF (JMIN .GT. JMAX) GO TO 5
DO 4 J=JMIN, JMAX

4 ROW(JUWJ)) =0
kkkkk*x Place Kth row of A in ROW kkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkk
5 RK = R(K)

JMIN = IA(RK)
JMAX = IA(RK+l) -1
DO 6 J=JMIN, JMAX
ROW(IC(JA(J))) = A(J)
6 CONTINUE



C #kkkkkx Ipitialize SUM, and link through JRL *kkkkkkkkkkkkkkkkkkkkkk
SUM = B(RK)
1 =11
IF (I .EQ. 0) GO TO 10

C *kkkxxx Agsign the Kth row of L and adjust ROW, SUM #k¥kkkkkkkkkkkik

7 LKI = -ROW(I)

C *kkkk% If L is not required, then comment out the following line **

L(IRL(1)) = -LKI

SUM = SUM + LKI * TMP(I)

JMIN = 1U(I)

JMAX = TU(I+l) - 1

IF (JMIN .GI. JMAX) GO TO 9

MU = IJU(I) - JMIN

DO 8 J=JMIN, JMAX

ROW(JU(MU+J)) = ROW(JU(MU+J)) + LKI * U(J)
I = JRL(I)
IF (I .NE. 0) GO TO 7

O 0o

C
C **xkk% Aggign Kth row of U and diagonal D, set TMP(K) *kkkdkkikkkik
10 IF (ROW(K) .EQ. 0) GO TO 108
DK = 1 / ROW(K)
D(K) = DK
TMP(K) = SUM * DK
IF (K .EQ. N) GO TO 19
JMIN = IU(K)
JMAX = IU(K+1l) = 1
IF (JMIN .GT. JMAX) GO TO 12
MU = IJU(K) - JMIN
DO 11 J=JMIN, JMAX
11 U(J) = ROW(JU(MU+J)) * DK
12 CONTINUE

C **xx** Update IRL and JRL, keeping JRL in decreasing order fhkkkkkk
13 I =11 "
IF (I .EQ. 0) GO TO 18
14 IRL(I) = IRL(I) + 1
Il = JRL(I)
IF (IRL(I) .GE. IL(I+l)) GO TO 17
IJLB = IRL(I) - IL(I) + IJL(I)

J = JL(IJLB)
15 IF (I .GT. JRL(J)) GO TO 16
J = JRL(J)
GO TO 15
16 JRL(I) = JRL(J)
JRL(J) =1
17 I =11
IF (I .NE. 0) GO TO 14
18 IF (IRL(K) .GE. IL(K+l)) GO TO 19

J = JL(IJL(K))
JRL(K) = JRL(J)
JRL(J) = K

19 CONTINUE



c

C **kxxkx GSolve Ux = TMP by back substitution ***k&xkxkkkkkkkkkkkkikk
K=N
DO 22 I=1,N
SUM = TMP(K)
JMIN = IU(K)
JMAX = TU(K+1l) - 1
IF (JMIN .GT. JMAX) GO TO 21
MU = IJU(K) - JMIN
DO 20 J=JMIN, JMAX
20 SUM = SUM - U(J) * TMP(JU(MU+J))
21 IMP(K) = SUM
Z(C(K)) = suM
22 K = K-1
FLAG = 0
RETURN
C
C ** ERROR: Insufficient Storage for L
104 FLAG = 4%N + 1
RETURN
C ** ERROR: Insufficient Storage for U
107 FLAG = 7*N + 1
RETURN
C ** ERROR: ' Zero Pivot
108 FLAG = 8*N + K
RETURN
END
c
c
c

C*** Subroutine NNSC
C*** Numerical solution of sparse nons
c
C
SUBROUTINE NNSC
* (N, R, C, IL, JL, IJL, L, D

Input variables:
Output variables:

N, R, C, IL
Z

Parameters used internally:
| TMP

I

Internal variables:
JMIN, JMAX - indices of the first
Uor L to be used.

fia
Size = N.

[sN NN NeNoNeNoNe Rz Ro N o)

INTEGER R(1), C(l), IL(l), JL(
REAL L(1), D(1l), U(l), B(l), 2

ymmetric system of linear

equations given LDU-factorization (compressed pointer storage)

» 1U, JU, 1JU, U, Z, B, TMP)

» JL, IJL, L, D, IU, JU, IJU, U, B

= temporary vector which gets result of solving Ly = b.

and last positions in a row of

1), 1JL(l), 1U(l), Ju(l), IJU(L)
(1), ™P(1)



kkkkkk Set TMP to reordered B Hkkkkkkkkkkkkkkhkkhkkhkkkhkkkkkhkhkhhhhk

DO 1 K=1,N
1 TMP(K) = B(R(K))
kkkkk* Solve Ly = b by forward substitution *kkkkkkkkkkkkkkkikkkik
DO 3 K=1,N
JMIN = IL(K)

JMAX = IL(K+l) - 1

TMPK = -D(K) * TMP(K)
TMP(K) = -TMPK

IF (JMIN .GT. JMAX) GO TO 3
ML = IJL(K) - JMIN

DO 2 J=JMIN, JMAX

2 TMP (JL (ML+J)) = TMP(JL(ML+J)) + TMPK * L(J)
3 CONTINUE
kkkkkk Solve Ux = y by back substitution e % 3k ok 7k v o ok vk ok v 3k ok vk ok ok ok ok vk vk ok ok ok ok
K=N
DO 6 I=],N
SUM = -TMP(K)
JMIN = IU(K)

JMAX = IU(K+L) - 1

IF (JMIN .GT. JMAX) GO TO 5
MU = IJU(K) - JMIN

DO 4 J=JMIN, MAX

4 SUM = SUM + U(J) * TMP(JU(MU+J))
5 TMP(K) = -SUM
Z(C(K)) = -sM
K=K-~-1
6 CONTINUE
RETURN

END



o000 on

Appendix 4 7/31/17

Test Driver for Sparse Nonsymmetric Matrix Package

Ck** Program NTST
C*** Test Driver for Nonsymmetric Codes in Yale Sparse Matrix Package

C
C Variables:
C
C NG - size of grid used to generate test problem.
c
c N - number of variables and equations (= NG x NG).
c
C IA - INTEGER one-dimensional array used to store row pointers
c to JA and A; DIMENSION = N+l.
c
[ JA - INTEGER one-dimensional array used to store column
C indices of nonzero elements of M; DIMENSION = number of
c nonzero entries in M.
C
c A - REAL one-dimensional array used to store nonzero elements
C of M; DIMENSION = number of nonzero entries in M.
c
C X - REAL one-dimensional array used to store solution x;
c DIMENSION = N.
C
C B - REAL one-dimensional array used to store right-hand-side b
C DIMENSION = N.
c
[¢ P - INTEGER one-dimensional array used to store permutation of
C rows and columns for reordering linear system;
c DIMENSION = N.
c
C IP - INTEGER one-dimensional array used to store inverse of
o permutation stored in P; DIMENSION = N.
c
C NSP - declared dimension of one-dimensional arrays ISP and RSP.
c
C ISP - INTEGER one-dimensional array used as working storage
C (equivalenced to RSP); DIMENSION = NSP.
c
o RSP - REAL one-dimensional array used as working storage
C (equivalenced to ISP); DIMENSION = NSP.
[
C ESP - INTEGER amount of excess storage available
C
c
INTEGER 1IA(1Ol), JA(500), P(100), IP(l00), ISP(L500), ESP,
* CASE, PATH, FLAG, APTR,VP,VQ, X,XMIN,XMAX, Y,YMIN,YMAX
REAL A(500), Z(100), B(100), RSP(1500), NAME(3)
EQUIVALENCE (ISP(l), RSP(l))
DATA NSP/1500/, EPS/1E-S/,
* NAME(1)/°N’/, NAME(2)/°T’/, NAME(3)/°C’/
C
INDEX(I,J) = NG*I + J - NG
c
NG =3
N = NG*NG



C #*kxk*x CASE=] => NDRV, CASE=2 => TDRV, CASE=3 => CDRV #kikkkkkkkk

c

DO 5 CASE=l,3

C *hkkk* Set up matrix for five-point finite difference operator **%*x

C

APIR = 1
DO 2 I=1,NG
DO 2 J=1,NG
VP = INDEX (I, J)
P(VP) = VP
IP(VP) = VP
IA(VP) = APTR
SUM = 0
XMIN = MAXO ( 1, I-1)
XMAX = MINO (NG, I+l)
YMIN = MAXO ( 1, J-1)
YMAX = MINO (NG, J+1)
DO 1 X=XMIN, XMAX
DO 1 Y=YMIN, YMAX
IF ((X-1) * (Y=J) .NE. 0) GO TO 1
VQ = INDEX(X, Y)
JA(APTR) = VQ
A(APTR) = 8
IF (VP .LT. VQ) A(APTR) = -1
IF (VP .GI. VQ) A(APIR) = =2
SUM = SUM + A(APTR) * VQ
APTR = APTR + 1
CONTINUE
B(VP) = SIM
CONTINUE
IA(N+1) = APTR
NZA = IA(N+1) = 1

C **kkx% Output original array A ®kkkkkkkkkkkkkkikikkkkkhhhkrkrkRRER*

1001

1002

1003

1004

c

*

*
*

*

IF (CASE.EQ.1) PRINT 1001, NG,NG
FORMAT (/’ %** FIVE-POINT OPERATOR ON °,
11, * BY “ 11, * GRID °)
IF (CASE.EQ.1) PRINT 1002, (IA(I),I=1,N), IA(N+l)
FORMAT (/’ COEFFICIENT MATRIX: °/
A IA (INDICES OF FIRST ELEMENTS IN ROWS)’

/(1015))
IF (CASE.EQ.1) PRINT 1003, (I,JA(I),A(1), I=l,NzA)
FORMAT (/° JA A’

/° 1  COLUMN INDICES MATRIX’
/(13, 110, F16.5))
IF (CASE.EQ.1) PRINT 1004, (B(1), I=l,N)
FORMAT (/° RIGHT HAND SIDE B: *
/(5F10.5))

C **%xk%%x (Call ODRV hkkhkkkkhkhkkkkhkhkhkkhkhkhkhhkhkhkkkhkhkhhkhkkhkkkhhhkhhkkkkkkik

FLAG = 0
PATH = 1
CALL ODRV
(N, 1A,JA,A, P,IP, NSP,RSP, PATH, FLAG)
IF (FLAG.NE.O) GO TO 101



e}

C **%x**x* OQutput ordering of variables/equations *%kkkkkikkkkikkkkiikk
IF (CASE.EQ.l) PRINT 1005, (I,P(I),IP(L), I=L,N)
1005 FORMAT (/° ROW/COLUMN ORDERING FROM ODRV: */

* /° P IpP ‘
* /° 1 ROW/COL ORDERING INVERSE ORDERING *
* /(13, 110, 120))
C
C *kkk**x (Call NDRV / TDRV / CDRV kkkkkkkkkkkkhkkhkkhhhkhdhkkhkikkkkdkdk
PATH = 1
IF (CASE.EQ.l) CALL NDRV
* (N, P,P,IP, IA,JA,A, B, Z, NSP,ISP,RSP,ESP, PATH, FLAG)
IF (CASE.EQ.2) CALL TDRV
* (N, P,IP, IA,JA,A, B, Z, NSP,ISP,RSP,ESP, FLAG)
IF (CASE.EQ.3) CALL CDRV
* (N, P,P,IP, IA,JA,A, B, Z, NSP,ISP,RSP,ESP, PATH, FLAG)
IF (FLAG.EQ.0) GO TO 3
PRINT 1006, NAME(CASE), FLAG
1006 FORMAT (/° ERROR IN “, Al, “DRV: FLAG = °, 15)
GO TO 5
c

C d d ke k kX Calculate error Je e A Je Je e Je dk e e g de de Je e de Je Kk de Fe kg g K K ek Fe e de Kk k de dk de e K Kk Kk K Kk ok &
3 SUM = 0
DO 4 I=1,N
4 SUM = SUM + ((Z(L1)-1)/1)%*2
RMS = SQRT (SUM/N)
C
C % kX kkdk 0utput solution and error measure e e Je Je Je e Je de J J Je de Je ek K K K Kk Kk k ok Kk kK Kk
PRINT 1007, NAME(CASE), (z(I1), I=1,N)
1007 FORMAT (/° SOLUTION FROM “, Al, ‘DRV: *
* /(5F10.5))
o
IF (RMS.LE.EPS) PRINT 1008, RMS
1008 FORMAT (/‘ SOLUTION CORRECT: RMS ERROR = °, 1lPES.2)
IF (RMS.GT.EPS) PRINT 1009, RMS
1009 FORMAT (/° SOLUTION INCORRECT: RMS ERROR = °, 1PES.2)

PRINT 1010, ESP
1010 FORMAT (/° EXTRA STORAGE AVAILABLE = ‘, 14)

5 CONTINUE

STOP

C

C **%xkk* Error messages *AkkkRkkAAXXXKAXXKKIXREAKIAAKRRKKKKIIK KKK XKk *A K

101 PRINT 1013, FLAG

1013 FORMAT (/° ERROR IN ODRV: FLAG = “, I5)
STOP
END

[



A

Appendix 5
Sample Output From Test Driver

*%% FIVE-POINT OPERATOR ON 3 BY 3 GRID
COEFFICIENT MATRIX:

IA (INDICES OF FIRST ELEMENTS IN ROWS)
1 4 8 11 15 20 24 27 31 34

JA A
1 COLUMN INDICES MATRIX
1 1 8. 00000
2 2 -1.00000
3 4 -1.00000
4 1 -2.00000
5 2 8.00000
6 3 -1.00000
7 5 -1.00000
8 2 -2.00000
9 3 8.00000
10 6 -1.00000
11 1 -2.00000
12 4 8.00000
13 5 -1.00000
14 7 -1.00000
15 2 -2.00000
16 4 -2.00000
17 5 8.00000
18 6 -1.00000
19 8 -1.00000
20 3 -2.00000
21 5 -2.00000
22 6 8. 00000
23 9 -1.00000
24 4 -2.00000
25 7 8. 00000
26 8 -1.00000
27 5 -2.00000
28 7 -2.00000
29 8 8.00000
30 9 -1.00000
31 6 -2.00000
32 8 -2.00000
33 9 8.00000




RIGHT HAND SIDE B:
2.00000 6.00000 14.00000
23.00000 40.00000 31.00000
ROW/COLUMN ORDERING FROM ODRV:

P

I
1
2
3
4
5
6
7
8
9

0 HF N UVOWY W

SOLUTION FROM NDRV:

1.00000 2.00000 3.00000
6.00000 7.00000  8.00000
SOLUTION CORRECT: RMS ERROR =
EXTRA STORAGE AVAILABLE = 1384

SOLUTION FROM TDRV:

1.00000 2.00000 3.00000
6.00000 7.00000  8.00000
SOLUTION CORRECT: RMS ERROR =
EXTRA STORAGF. AVAILABLE = 1412

SOLUTION FROM CDRV:
1.00000 2.00000  3.00000
6.00000 7.00000 8.00000
SOLUTION CORRECT: RMS ERROR =

EXTRA STORAGE AVAILABLE = 1364

18.00000
44.00000

IP

ROW/COL ORDERING INVERSE ORDERING

SO WL ONN -~

4.00000
9.00000

6.36E-09

4.00000
9.00000

6.36E-09

4.00000
9.00000

6.36E-09

14.00000

5.00000

5.00000

5.00000

v~



