Generalized Gaussian quadratures appear to have been introduced by Markov [11,12] late
in the last century, and have been studied in great detail as a part of modern analysis
(see [2,8,9]). They have not been widely used as a computational tool, in part due to
absence of effective numerical schemes for their construction. Recently, a numerical scheme
was introduced for the design of such quadratures (see [10]); numerical results presented
in [10] indicate that such quadratures dramatically reduce the computational cost of the
evaluation of integrals under certain conditions. In this paper, we modify the approach of
[10], improving the stability of the scheme and extending its range of applicability. The
performance of the method is illustrated with several numerical examples.
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1 Introduction

Generalized Gaussian quadratures appear to have been introduced by Markov [11, 12] late in
the last century. More recent expositions include those by Krein [9] and Karlin [8]. Those
expositions contain proofs of the existence of such quadratures for wide classes of functions;

however they do not describe a numerical procedure for obtaining the quadrature weights and

nodes.

Recently, a paper by Ma et al. [10] described a numerical algorithm for obtaining such
quadratures. In [10], a version of Newton’s method is introduced for the determination of
nodes and weights of generalized Gaussian quadratures. The procedure of [10] guarantees the
convergence of the Newton algorithm provided it is started sufficiently close to the solution
(whose existence is proven in [11, 9, 8]), and utilizes a continuation procedure to provide such
starting points. The present paper describes a variation of that algorithm, which consists
mainly of two major changes. The first change is that an entirely different continuation scheme
is used; with the new continuation scheme, the algorithm is considerably more robust. The
second change is the addition of a preprocessing step which, given as input a large class of

functions, uses the singular value decomposition to produce a set of basis functions suitable for

the algorithm.

Since a substantial fraction of the algorithm is changed, this paper is written as a repetition

of [10], rather than as a list of changes; however, the portions dealing with quadratures for

functions with end-point singularities are omitted.

This paper is organized in the following manner. Section 2 summarizes the necessary ma-
terial from [9] and [8]. Section 3 briefly describes certain standard numerical tools used by
the algorithm. Section 4 contains various analytical results to be used in the construction of
the algorithm. Section 5 describes the algorithm in detail. Finally, Section 6 contains several

numerical examples; the actual nodes and weights obtained in Section 6 are listed in Tables

1-14.




2 Mathematical Preliminaries

We start by introducing some notation. Given a finite sequence of real numbers z; < z, <

-+« < Ty, let the sequence m,,...,m, be defined as follows.

my = 0, .

m; = 0 if 7> 1 and z; # ZTj-1, (1)
m; = j—1 .ifj>landzj=:cj_1=...=z1,

m; = k ifj>k+1andxj=xj_1=...=xj-k#2j-k—1-

2.1 Chebyshev systems

Definition 2.1 A sequence of functions éy,.. -» @i will be referred to as a Chebyshev system

on [a,b] if each of them is continuous and the determinant

$1(z1) -+ i(zn)

: : (2)
0571,(:1:1) M Q‘Dn(zn)

is nonzero for any sequence of points 1, . . <y Tn Such thata <z, < 75...< 2, < b.

An alternate definition of a Chebyshev system is that any linear combination of the functions

with nonzero coefficients has no more than n zeros.

A related definition is that of an extended Chebyshev system.

Definition 2.2 Given a set of functions ¢,, .. - &n which are continuously differentiable on an
interval [a,b]. and given a sequence of points Ty,...,z, such that a < 7, <z < ... Lz, <b,

let the sequence my,...,m, be defined by (1). Let the matriz C(z1y...,2n) = [eij] be defined
by the formula

cij = %’%m) 3)
in which %‘%i(_zj) is taken to be the function value. Then ¢, .. - &n will be referred to as an

extended Chebyshev system on [a, b] if the determinant [C(z1,...,2,)| is nonzero for all such

Sequences ;.

Remark 2.1 It is obvious from Definition 2.2 that an extended Chebyshev system is a special

case of the Chebyshev system. The additional constraint is that the successive points z; at which
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the function is sampled to form the matriz may be identical; in that case, for each duplicated
point, the first corresponding column contains the function values, the second column contaiis
the first derivatives of the functions, the third column contains the second derivatives of tie

functions, and so forth; this matriz must also be nonsingular.

Examples of Chebyshev and extended Chebyshev systems include the following (additional '

examples can be found in [8])..

Example 2.1 The powers 1,z,2%,...,2" form an eztended Chebyshev system on the interval

(—o0,20).

Example 2.2 The ezponentials e™ % e~ .. e~*% form an extended Chebyshev system for

any A....,An, > 0 on the interval [0, 0).

Example 2.3 The functions 1,cosz,sinz,cos2z,sin2z,...,cosnz,sinnz form a Chebyshev

system on the interval z € [0,27).
2.2 Generalized Gaussian quadratures

The quadrature rules considered in this paper are expressions of the form
n i
Y widla;) (4)
i=1 |

where the points z; € R and coefficients w; € R are referred to as the nodes and weights of the

quadrature, respectively. They serve as approximations to integrals of the form

b
/a $(2)w(a)dz (5)

where w is a non-negative function to be referred to as the weight function.

Quadratures are typically chosen so that the quadrature (4) is equal to the desired integral
(5) for some set of functions, commonly polynomials of some fixed order. Of these, the classical
Gaussian quadrature rules consist of n nodes and integrate polynomials of order 2n — 1 exactly;
these quadratures are used in this paper as a numerical tool (see section 3.2). In [10], the notion

of a Gaussian quadrature was generalized as follows:




Definition 2.3 A quadrature formula will be referred to as Gaussian with respect to a set of
2n functions ¢1,...,é2, : [a,b] — R and a weight function w : [a,b] — R, if it consists of
n weights and nodes, and integrates the functions ¢; ezactly with the weight function w for all
t=1,...,2n. The weights and nodes of a Gaussian quadrature will be referred to as Gaussian

weights and nodes respectively.

" The following theorem appears to be due to Markov [11, 12]; proofs of it can also be found

in [9] and [8].

Theorem 2.1 Suppose that the functions é1,..., 62 : [a,b] — R form a Chebysher system on
[a.b]. Suppose in addition that w : [a,b] — R is non-negative, and is nonzero at more than n— 1
points on [a,b]. Then there ezists a unique Gaussian quadrature for ¢, ..., ¢y, on [a,b] with

respect to the weight function w. The weights of this quadrature are positive.
2.3 Total positivity
A concept closely related to that of an extended Chebyshev system is that of a extended totally

positive (ETP) kernel:

Definition 2.4 Given a function K : [a,b] x [c,d] — R which is n times continuously differen-

tiable, and given a sequence of points z;, .. >y Zn Such that c < zq <29 < ... <z, < d, let the

sequence my....,my be defined by (1). Let the functions ®1,- .-, by be defined by the formula
0™ K
() = 5—(2;,1), (6)

in which %05}3:(:1:]-,25) is taken to be the function value. Then K will be referred to as extended

totally positive if the functions ¢1,. .., ¢, form an eztended Chebyshev system on [e,d] for all

such sequences of z;.

Examples of ETP kernels include the following (additional examples can be found in [8]).

Example 2.4 The function e~*t is extended totally positive for z,t € [0, 00).

Example 2.5 The function e===%" is extended totally positive for z,t € (—o0, 00).




Example 2.6 The function 1/(z + t) is extended totally positive for z,t € (0,00)

A proof of the following lemma can be found in, for example, [8].

Lemma 2.2 Suppose that K and L are extended totally positive functions of two variables.

Then t{ze function M defined by the formula
- d ‘ ‘
M(z.1) =/ K(z,)L(s,1)ds (7)
. ,

is extended totally positive. In other words, if the kernels of two integral operators are extended

totally positive, the kernel of the product of the two operators is ertended totally positive.
The following theorem can be found in [8, 7].

Theorem 2.3 Suppose that K : [a,b] X [a,b] — R is an ezxtended totally positive kernel. Then

the first p eigenfunctions of the integral operator T : L*[a,b] — L*[a,b] defined by the formula

b
(T@)(z}):/a K(z,s)o(s)ds (8)

constitute an extended Chebyshev system, for any p > 1.

3 Numerical Preliminaries

3.1 Newton’s Method

In this section we discuss two well-known numerical techniques: Newton’s method and the
| continuation method. A more detailed discussion of these techniques can be found, for example,
in [14].

Newton’s method is an iterative method for the solution of nonlinear systems of equations
of the form F(z) = 0, where F : R®™ — R" is a continuously differentiable function of the form

fi(z)

Foy=| "%, )

fniz)




and ¢ = (z1,...,7,)T. The method uses the Jacobian matrix J of F, which is defined by the

formula
sk@) - i)
J(z) = : ; (10)
(@) o Yoo
Lemma 3.1 Suppose that
' F(y) =0 (11)

with F': R — R™ defined by (9), and that [J(y)| # 0, with |J(y)| denoting the determinant of
the matriz J(z) defined in (10) at the point y. Given a starting point yo € R™, let the sequence
Y1, Y2, - - - be defined by the formula

Yetr = Uk — J 7 (ye) Fye). (12)

Then there exists a positive real number ¢ such that for any yo satisfying the inequality Hyo—yll <

€, the sequence (12) converges to y quadratically, that is, there ezists a positive real number o

such that
k1 = yll < allyx - y)|% (13)

3.1.1 Continuation method

In order for Newton’s method to converge, the starting point which is provided to it must be
close to the desired solution. One scheme for generating such starting points is the continuation

-method, which is as follows.
Suppose that in addition to the function F : R® — R™ whose zero is to be found, another

function G : [0,1] x R* — R™ is available which possesses the following properties:

e 1. For any z € R™,
G(1,z) = F(z). (14)
e 2. The solution of the equation
G(0,z)=0 (15)

is known.




e 3. For all ¢ € [0,1], the equation
G(t,z)=0 _ (16)

has a unique solution z such that the conditions of Lemma 3.1 are satisfied.

o 4. The solution z is a continuous function of ¢.

If these conditions are met, an algorithm for the solution of F(z) = 0 is as follows. Let the

points t;, for ¢ = 1,...,m, be defined by the formula #; = i/m. Solve in succession the equations

G(t1,z) = 0,
G(tz, 1') = 0,
G(tm,z) = 0 (17)

using Newton's method, with the starting point for Newton’s method for each equation taken
to be the solution of the preceding equation. The solution z of the final equation G(t,,,z) =0
is, by (14), identical to the solution of the desired equation F(z) = 0. Obviously, for sufficiently

large m, Newton’s method is guaranteed by Lemma 3.1 to converge at each step.

Remark 3.1 In practice, it is desirable to choose the smallest m for which the above algorithm
will work, in order to reduce the computational cost of the scheme. On the other hand, the
largest step t; — t;—y for which the Newton method will converge commonly varies as a function

- of t. Thus, in this paper, we use an adaptive version of the scheme.

3.2 Gaussian integration and interpolation

Classical Gaussian quadrature rules are a well-known numerical tool (see for instance [14]);
they integrate polynomials of order 2n — 1 exactly with respect to some weight function, and
consist of n weights and nodes. A variety of Gaussian quadratures were analyzed in the last
century, each being defined by a distinct weight function. Of these, the algorithm presented in

this paper uses only the Gaussian quadratures for the weight function w(z) = 1 on the region




of integration [—1, 1]. These quadratures are closely associated with the Legendre polynomials;
we will refer to their nodes as Legendre nodes.

Another numerical tool used in this paper is polynomial interpolation on Legendre nodes.
Interpolation refers to the following problem: given two finite real sequences fi,..., f, € R and
Z1,...,Z, € [a,b], construct a function f :[a,b] — R such that flzi) = fiforalli=1,...,n.
An inter}iéla.tion scheme is referred to as linear if the function f depends linearly on the values
fi- One linear interpolation scheme is polynomial interpolation, in which the interpolating
function f is a polynomial of degree n — 1. As is well-known, such a polynomial always exists
and is unique. However, in general two numerical difficulties arise with polynomial interpolation
using polynomials of high order. The first is that for many sequences of points z;, the values
of the interpolating polynomial between the points z; are not well-conditioned as a function
of the values f; to be interpolated. The second is that even for those sequences of points
where the computation of the vaiues of the interpolating polynomial is well-conditioned, the
computation of the coefficients of the power series of the interpolating polynomial is extremely
ill-conditioned.

As is well-known, these difficulties do not arise if the points z; are taken to be Chebyshev
nodes and the interpolating polynomial is computed as a series of Chebyshev polynomials rather
than as a power series. As the following lemma shows, the difficulties also do not arise if the
points z; are taken to be Legendre nodes and the interpolating polynomial is computed as
a series of Legendre polynomials. The lemma makes use of the following properties of the
Legendre polynomials: first, that the i’th Legendre polynomial P; has degree i; second, that

the polynomials P; form an orthonormal system of functions on [-1,1].

Lemma 3.2 Suppose that z,,...,z, € [-1,1] are the Legendre nodes of order n, and that
wy,...,w, € R are the associated Gaussian weights. Given a sequence fy,..., fn € R, let
p : [=1,1] — R be the interpolating polynomial of degree n — 1 such that p(z;) = f; for all

t=1,...,n, and let co,...,ch_q be the coefficients of the Legendre series of p; that is,

plz) =Y ¢;Py(z), (18)




where Pi(z) is the i'th Legendre polynomial. Then the following relation holds:
n 1 n—1
Suwift= [ papd=3 (19)
i=1 -1 1=0 .
Proof. The second equality of (19) follows from (18) and the orthonormality of the Legendre
polynomials. The first equality may be proven as follows: the polynomial p has degree n — 1,
thus its square has degree 2n — 2. Since the Gaussian quadrature integrates exactly all polyno-

mials up to order 2n — 1, it integrates p? exactly; thus the first equality of (19) holds. ]

3.3 Singular value decomposition

The singular value decomposition (SVD) is a ubiquitous tool in numerical analysis, which is

given for the case of real matrices by the following lemma (see, for instance, [3] for more details).

Lemma 3.3 For any n x m real matriz A, there ezists an n X p matriz U with orthonormal
columns, an m X p matriz V. with orthonormal columns, and a p x p real diagonal matriz
S = [si;] whose diagonal entries are non-negative, such that A = USV™ and that s;; < Si+1,i+1

foralli=1,...,p—1.

The diagonal entries s; of S are called singular values; the columns of the matrix V are

called right singular vectors; the columns of the matrix U are called left singular vectors.
3.4 Singular value decomposition of integral operators

This section, which follows [5], contains an existence theorem for a factorization of integral

operators. The operators T : L[c,d] — L?[a,b] to which it applies are of the form

1)@ = [ K s, (20)

in which the function K : [e,b] x [¢,d] — R is referred to as the kernel of the operator T.
Throughout this section, it will be assumed that all functions are square-integrable; the term
“norm” will mean the L? norm.

" The following theorem, which defines the factorization, is proven in a more general form as

Theorem VI.17 in [13].




Theorem 3.4 Suppose that the function K - [a,b] x [c,d] — R is square integrable. Then there
ezist two orthonormal sequences of funvctions u; : [a,b] = R and v; : [e,d] = R and a sequence

si€R, fori=1,...,00, such that

K(z,t) = Zui(z)sivi(t) (21)

and that s; > $2 2 ... 2 0. The sequence s; is uniquely determined by K. Furthermore, the
functions v; are eigenfunctions of the operator T=T', where T is defined by (20), and the values

s; are the square roots of the eigenvalues of T*T.

By analogy to the finite-dimensional case, we will refer to this factorization as the singular
value decomposition. We will refer to the functions u; as left singular functions of X (or of T),
to v; as right singular functions, and to 8; as singular values.

As is the case for the discrete singular value decomposition, this decomposition can be used
to construct an approximation to the function K, by discarding small singular values and the

associated singular functions:
P

K(z,t) > ui(z)s;vi(t). (22)

1=1
The error of this approximation can then be computed from (21):

p oo
Zu, (z)s;vi(t) = Z ui(z)s;vi(t), (23)
i=1 1=p+1

and, therefore,

l l K(z,t) - gu,’(z)sivi(t)‘ ' = i s2. (24)

i=p+1

Using (24), we will be approximating integrals

/b K(z,t)w(z)dz (25)

by the formula

1

/ablx’(z,t)w(z)da: / Z"' (z)sivi(t)w(z)dz

=1

. .
~ st(t)/a ui(2)w(z)dz. (26)
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Thus, a quadrature which is exact for each of the integrals

/ab ui(z)w(z)dz, (27)

fori=1,...,p,is an approximate quadrature for integrals of the form (25).

The following theorem shows that if an operator is extended totally positive, its singular

functions form an extended Chebyshev system.

Theorem 3.5 Suppose that K : [a,b] X [c,d] — R is eztended totally positive. Then the first p
left singular functions of K form an extended Chebyshev system, for any p; likewise the first p

right singular functions of K form an extended Chebyshev system, for any p.
Proof. Let the integral operator T : L%[c,d] — L*[a,b] be defined by the formula
. d .
(The)= [ K.ofd, (28)
and the function L : [a,b] — [a,b] be defined by the formula
, d
L(z.1) = / K(z,8)K(t, s)ds. (29)

Clearly, the integral operator S : L?[a,b] — L?[a,b] defined by the formula S = T*T has the
kernel L:

(S6)(z) = /ab/cdI((z,s)]&'(t,s)ds¢(t)dt

/ " Lz t)o(t)dt. (30)

Since K is extended totally positive, due to Lemma 2.2, L is also extended totally positive.
Thus, by Theorem 2.3, the eigenfunctions of S constitute an extended Chebyshev system. By
Theorem 3.4, these eigenfunctions are identical to the left singular functions of T, which proves
that the first p left singular functions of T constitute an extended Chebyshev system, for any

p. The proof for the right singular functions is identical. o
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4 Analytical Apparatus

4.1 Convergence of Newton’s method

In this section, we observe that the nodes and the weights of a Gaussian quadrature satisfy a
certain system of nonlinear equations. We then prove that the Newton method for this system of
equations is always quadratically convergent, provided the functions to be integrated constitute

an extended Chebyshev system.

Given a set of functions ¢,..., ¢, and a weight function w, the Gaussian quadrature is

defined by the system of equations

n b
S wigh (z:) / 61(2)w(z)dz,
i=1 a

n b
Zu’i¢2(xi) = /a¢2(r)w(:c)d:z,

n b
Ywiom(z) = [ u(e)ole)dz (31)
=1 a

(see Definition 2.3). Let the left hand sides of these equations be denoted by f; through f,,.
Then each f; is a function of the weights wy,...,w, and nodes z,,...,z, of the quadrature.

Its partial derivatives are given by the obvious formulae

% = ¢(z1), (32)
dfi , |

Thus, the Jacobian matrix of the system (31) is

¢1(z1) - di(zn)  widi(zy) --- wn @y ()

J(z1,. T, 0, wy) = : : : : (34)
b2m(21) o0 Pon(Tn) widh,(z1) o wadh,(zn)

Lemma 4.1 Suppose that the functions ¢,. .., ¢y form an extended Chebyshev system. Let
the Gaussian quadrature for these functions be denoted by w; and Z;. Then the determi-

nant of J is nonzero at the point which constitutes the Gaussian quadrature; in other words,

I (#10 ey By, .oy ti)| # 0.
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Proof. It is immediately obvious from (34) that

J(Z1ye ey Tns W, . .. p)| =

é1(z1) -+ oilzn)  Si(z1) - i(zn)
Wy Wy vt Wpop - Wy (35)
¢2n($l) ot ¢2n(xn) ¢/2n($1) tte één(wn)
CIf &1+ ..., G2 form an extended Chebyshev system, then by Theorem 2.1, the weights y,. .., wn

of the Gaussian quadrature are positive. In addition, by the definition of an extended Chebyshev

system, the determinant in the right hand side of (35) is nonzero. Thus

|J(B10.n s Enatity, ... )] # 0. (36)

a

Corollary 4.2 Under the conditions of Lemma 4.1, the Gaussian weights and nodes depend

continuously on the weight function.

4.2 Linear interpolation

Given a collection of n points zq,9,...,2, € [a,b], an interpolation scheme with the nodes

T1.T....,Zy is a linear mapping L : R* — L*°[a,b] such that for any point y € R",
L(y)(z:) = ¥is (37)

for all ¢ = 1,2,...,n. For a function f € L*[a,b], the error é1(f) of interpolation of the

interpolation scheme L is defined by the formula
() = max |f(2) = LF)(@) (39)

where F = (f(21), f(2),---, f(za))T.
The following lemma serves as a justification for the notation we use in Section 4.3 for linear

interpolation schemes.
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Lemma 4.3 Suppose L : R* — L%a,b] is a linear interpolation scheme with n nodes
T15..-.Zn € [a,b]. Then there ezists a sequence of functions y,...,a, : [a,b] — R such

)

that for any vector f € R", with elements f=0, 0 )T

(L) = Y. fae), (39)

=1
for all z'€ [a,b].
Proof. Let the vectors ey, ..., e, € R" with elements e = (€i1y..., ein)T be the standard basis
in R"; that is, e;; = 1 for all 4 = I,...,n,and e;; =0 for all 4,5 = 1,...,7n such that i # 7. Let
the functions ay,...,a, : [a,b] — R be defined by the formula a; = Le;. Since the interpolation

scheme L is linear, for any vector f € R™ with elements f = (f1s---, )T, and for any point

T € [a,b],
whe = (1 (;fi6i>)($)
- gfi(Lei)<m>
_ ; fiai(z). (40)

]

In the case of polynomial interpolation, the functions a; arereferred to as Lagrange polynomials;

by analogy to that case, we will in general refer to the functions a; as the Lagrange functions
of the interpolation scheme.

The following lemma provides an error bound for approximation of a function of two vari-

ablés using two one-dimensional interpolation formulae, expressed in terms of error bounds

for each one-dimensional interpolation scheme applied separately. Its proof is an exercise in’

elementary analysis, and is omitted.

Lemma 4.4 Suppose that z,,z,,...,z, € [a,8] and t1,t5,.. . tm € [c, d] are two finite real
sequences, and that ay,az,...,ay : [a,b] — R and By, Ba, .. osBm : [e,d] — R are two sequences
of bounded functions. Suppose further that L, : R* — L*[a,b] is an interpolation formula

~with the nodes 1, ...,z, and Lagrange functions Q15-.y0n, and Ly : R™ — L®[c,d] is an

14




interpolation formula with the nodes ty,...,t,, and Lagrange functions 31,....0y,. Suppose

that 17 € R is such that

n

Y lei(z) < n, (41)

i=1
for all z € [a,b], and

m

o180 <, (42)
i=1 ,

for all t € [c.d]. Finally, suppose that K is a function [a,b] X [c.d] — R, and that for ail
T € [a.b] and t € [c.d],

K(z,t) - i K(z; t)ai(z) (43)
1=1
and .
K(z,t) - Z]\(:rt )8;(t) ’ . (44)
1=1
Then
K( :7:t)—Zz:]\(rz Yo z)d(t)’<cl+n) (45)

=1 3=1
for all z € [a.b] and t € [¢,d].

4.3 Approximation of SVD of an integral operator

This section describes a numerical procedure for computing an approximation to the singular
value decomposition of an integral operator.

The algorithm uses quadratures which possess the following property.

Definition 4.1 We will say that the combination of a quadrature and a linear interpolation

" scheme preserves inner products on an interval [a,b] if it possesses the following properties.
¢ 1. The nodes of the quadrature are identical to the nodes of the interpolation scheme.

e 2. The quadrature integrates ezactly any product of two interpolated functions; that is,

for any two functions f, g : [a,b] — R produced by the interpolation scheme, the integral

/ f(z)g(z)dz (46)

is computed ezxactly by the quadrature.
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Quadratures and interpolation schemes which possess this property include:

Example 4.1 The combination of a (classical) Gaussian quadrature at Legendre nodes and
polynomial interpolation at the same nodes preserves inner products, since polynomial interpo-
lation on n nodes produces an interpolating polynomial of order n — 1, the product of two such

polynomials is a polynomial of order 2n — 2, and a Gaussian quadrature integrates exactly all

polynomials up to order 2n — 1.

Example 4.2 If an interval is broken into several subintervals, and a quadrature and interpo-
lation scheme which preserves inner products is used on each subinterval, then the arrangement

as a whole preserves inner products on the original interval. (This follows directly from the

definition.)

Example 4.3 The combination of the trapezoidal rule on the interval [0,27], and Fourier in-

terpolation (using the interpolation functions 1, cos T,sinz, cos 2z,sin 2z, . . ., cosnz,sin nz ) pre-

serves inner products.

The algorithm takes as input a function X : [a,b]x[c,d] — R. It uses the following numerical

tools:

e 1. A quadrature and a linear interpolation scheme on the interval [a,b] which preserve
inner products. Let the weights and nodes of this quadrature be denoted by wf,...,w? €

R and z1,...,2, € [a,b] respectively. Let the Lagrange functions (see Section 4.2) of the

interpolation scheme be denoted by a,...,ay, : [a, b] — R.

e 2. A quadrature and a linear interpolation scheme on the interval [c,d] which preserve
inner products. Let the weights and nodes of this quadrature be denoted by wi,...,wi €

R and ty,...,t, € [c, d] respectively. Let the Lagrange functions of the interpolation

scheme be denoted by f,...,08m : [¢,d] — R.

‘As will be shown below, the accuracy of the algorithm is then determined by the accuracy to

which the above two interpolation schemes approximate K.
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The output of the algorithm is a sequence of functions uy,...,u, : [a,b] = R, a sequence of
functions v1,..., @ [¢,d] — R, and a sequence of singular values s;,.. .,8p € R, which form
an approximation to the singular value decomposition of K.

Description of the algorithm:

e 1. Construct the n x m matrix A = [a;;] defined by the formula

ai; = K(zq,t5)(/wf - wh. (479

e 2. Compute the singular value decomposition of A, to produce the factorization
A=USV~, (48)

where " = [u;;] is an n X p matrix with orthonormal columns, V = [v;;] is an m X p
matrix with orthonormal columns, and S is a p X p diagonal matrix whose j'th diagonal

entry is s;.

e 3. Construct the n x p matrix U = [ii;;] and the m x p matrix V = [#;;] defined by the

formulae

Qi = uik/\/;)_f» (49)
v/ y/ul- | (50)

e 4. For any points = € [a,b] and t € [c,d], evaluate the functions u; : [a,b] — R and

i’jk

vk : [¢,d] — R via the formulae
u(z) = iﬁik - ai(z), (51)
) = 3t 80) (52)
i=
foral k =1,...,p.

Theorem 4.5 Suppose that the combination of the quadrature with weights and nodes
wi,...,wi € R and 21,...,z, € [a,b], respectively, and the interpolation scheme with Lagrange

functions ay,...,ay : [a,b] = R, preserves inner products on [a.b].
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~ Suppose in addition that the combination of the quadrature with weights and nodes

wi,....wl, € Randty,...,ty € [c,d], respectively, and the interpolation scheme with Lagrange

functions By, ..., Bm : [c,d] = R, preserves inner products on [c, d].
For any function K : [a,b] x [¢,d] — R, let u; : [a,b] = R, v; : [¢,d] — R, and s; € R be
defined in (47)-(52), for alli = 1,...,p. Then

o 1. The functions u; are orthonormal, i.e.

b
/ u,-(x)uk(z)dx = ‘Sik (53)
a
for alli,k=1,...,p, with 6; the Kronecker symbol (6;; =1 if i = j, 0 otherwise).

o 2. The functions v; are orthonormal, i.e.

d
/ vi(8)or(t)dz = b (54)
foralli,k=1,...,p.

e 3. The function K :[a,b] x [c,d] — R defined by the formula

K(z,t)= isy'uj(:r)vj(t)e : (55)
7=1

is identical to the function produced by sampling K on the grid of points (z;,t;), then

interpolating with the two interpolation schemes. That is,

K(z,t) = ZZK(::,, Jei(z)35(t). (56)

=1 j5=1

Proof. We first prove (56). Combining (51), (52), and (55), we have

I;'(:c,t) = Zsk <i uk(z; a,(a:)) (E ’ka(wl')ﬂj t))

1=1

= Zi (Z ug(z;)spvg(wf )) ai(z)B;(t)
=Yy (E(u,k/\/— Jsk(vje/+/w} )) ai(z)B;(2)

k=1
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= ZZ (Z uikskvjk/, /wfw;») ai(f’«')ﬁj(t)

i=13=1 \k=1
= o5 (i) wrwl) ai(2)3;(0). (57)
1=1 =1

Now, (56) follows from the combination of (57) and (47).
We'now demonstrate the orthonormality of the functions u;. Since these are functions

produced by interpolation, and since the quadrature on [a,b] is assumed to integrate exactly

all products of pairs of interpolated functions,

b n
/ ui(z)ur(z)de = Z wiui(z;)ur(z;)
a j=1

D AN AN
j=1

= ZuJ'iu]'k. (58)
71=1

Since the last sum in (58) is the inner product of two columns of the orthonormal matrix U

(see (48),
/b (@ )up(z)de = 6. (59)

The orthonormality of the functions v; is proven in the same manner. a

Remark 4.1 Obviously, the above proof approrimates the singular value decomposition of the
operator T : L?*[c,d] — L?*a,b] with the kernel K by constructing an approzimation T with
kernel K to the operator T that is of finite rank, and constructing the ezact singular value

decomposition of the latter.

Observation 4.2 In the preceding proof, the assumption that each combination of quadrature
and interpolation scheme preserves inner products was used only to demonstrate the orthonor-
mality of the corresponding singular functions. Thus, if the conditions of Theorem 4.5 hold,
with the exception that the quadrature on [a,b] does not preserve inner products, then (54) and

(56) hold (but, in general, (53) does not).
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Remark 4.3 Theorem 4.5 and Lemma 4.4 generalize trivially to higher dimensions. One-
dimensional quadratures and interpolation formulae have to be replaced with their multidimen-

sional counterparts; otherwise, the proofs are unchanged.
5 Numerical Algorithm

’fhis section describes a numerical algorithm for the evaluétion of nodes and weights of gen-
eralized Gaussian quadratures. The algorithm’s input is a sequence of functions D1y Gop -
[a.b] — R which form an extended Chebyshev system on [a,b], and a weight function w; :
[a,b] — R*. Its output is the weights and nodes of the quadrature. The main components of

the algorithm are as follows (not listed in order of execution):

¢ 1. Newton’s method is used to solve (31) which defines the Gaussian quadrature.

® 2. An adaptive version of the continuation method (Section 3.1.1) is used to provide
starting points for Newton’s method. The continuation scheme used here is different from

that used in [10]; the details of the continuation scheme and of the method of adaption

are described below.

e 3. The algorithm of section 4.3 can be used as an optional preprocessing step, which takes
as input a kernel of an integral operator and produces its singular functions. The first 2n

of the left singular functions are then used as input to the main algorithm.
5.1 Continuation Scheme

The continuation scheme used is as follows. Let the weight functions w : [0,1] x [a, b] — R* be

defined by the formula
w(e,z) = aw(z)+ (1-a) Y §(z - ¢;), (60)
Jj=1 )
where w; is the weight function for which a Gaussian quadrature is desired, § denotes the Dirac

. delta function, and the points ¢; € [a,b] are arbitrary distinct points. These weight functions

have the following properties:
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e 1. With a = 1, the weight function is equal to the desired weight function wy, due to

(60).
e 2. With a = 0, the Gaussian weights and nodes are

w;j = 1, (61)

T, = ¢, (62)

for j = 1,...,n, whatever the functions ¢; are (since w(0,z) = 0, unless z = ¢; for some

j€(1,n]).
e 3. The quadrature weights and nodes depend continuously on a (by Corollary 4.2).

The intermediate problems which the continuation method solves are the Gaussian quadratures
relative to the weight functions w(a, *). The scheme starts by setting a = 0, then increases «
in an adaptive manner until a = 1, as follows. A current step size is maintained, by which «
is incremented after each successful termination of Newton’s method. After each unsuccessful
termination of Newton’s method, the step size is halved and the algorithm restarts from the
point yielded by the last successful termination. After a certain number of successful steps, the
current step size is doubled. (Experimentally, the current problem was found to be well suited
to an aggressive mode of adaption: in the authors’ implementation, the initial value of the step
size was chosen to be one, and the step size was doubled after a single successful termination

of Newton's method.)

5.1.1 Starting points

The choice of the points ¢; was left indefinite above. In exact arithmetic the algorithm would
converge for any choice of distinct points (see Lemma 4.1). However the number of steps of the
continuation method, and thus the speed of execution, is affected by the choice. More impor-
tantly, the numerical stability of the scheme might be compromised due to poor conditioning of
the matrix J (see (34)). Indeed, while Lemma 4.1 guarantees that the matrix J is non-singular,

it says nothing about its condition number. Thus, in the authors’ implementation, the points
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¢c; used for the production of the quadrature of order n were computed from the nodes z; of

the quadrature of order n — 1, by the formulae

| &1 = I, (63)
c; = (:Ei_l-l-:l:i)/Q, i=2,...,n——1, (64)
Chn = ZTp-i. . (65)

With this choice, no failures to converge have been encountered in the authors’ experience.
6 Numerical examples

A variety of quadratures were generated to illustrate the performance of the above algorithm.
In each case the preprocessing step of producing singular functions was used. This step requires
two sets of quadratures and interpolation schemes, which must approximate the desired kernel
to the desired accuracy. These quadratures and interpolation schemes were chosen so that
the approximation was accurate to about the precision of the arithmetic that was used. The
following combination of quadrature and interpolation scheme which preserves inner products
was used: the interval of integration was divided into several subintervals, and a combination
of a (classical) Gaussian quadrature at Legendre nodes and polynomial interpolation was used
on each subinterval. |

In each of the following examples, the calculations were done in extended precision (Fortran
REAL*16) arithmetic, with the exception of the last example, which was done in double precision

(REAL*8) arithmetic.
6.1 Exponentials

In this example we construct quadratures for the integral

/ e~*tdz, (66)
0

under the condition that 1 < ¢ < 500. In this case, the corresponding kernel K : [0, 00) x
[1,500] — R is given by
K(z,t) = e, (67)
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and is extended totally positive; thus its singular functions form an extended Chebyshev system.
A sample of the quadratures produced by the algorithm is included in Tables 1-3; for double

precision accuracy, a 27-point quadrature is required.
6.2 Complex Exponentials

Here, We design quadratures for a new version [5] of the two-dimensional Fast Multipole Method.

These quadratures are for the integral .

/ =%z, (68)
0

under the condition that z € C is constrained to lie in the region D of the complex plane which
consists of the rectangle [1,4] x [~4,4] with a 1 x 1 square deleted from each of its two left hand
corners, as depicted in Figure 1. Since both the true integral (equal to 1/z) and the quadrature
which approximates the integral are complex analytic on that region, due to the maximum
modulus principle the maximum error of the quadrature is achieved on the boundary 6D of the
region. Accordingly, the kernel whose singular functions were computed was A'(z,2) = e™%%,
with z varying over §D. A brief examination of the resulting singular functions shows that they
do not form a Chebyshev system; if they did so, the ¢’th function would have 7 — 1 zeros, yet it
has inany more. Thus the algorithm is not guaranteed to work; however, it did so. A sample
of the resulting quadratures is included in Tables 4-6; in this case a quadrature yielding double

precision accuracy contains 32 nodes.

6.3 Exponentials multiplied by I

In this example, quadrature formulae are constructed for integrals of the form

/Ooo Io(zy)e "tdz, (69)

under the condition that ¢t € [1,500] and y € [0,t — 1]; these formulae were designed to be used
in a version of the one-dimensional Fast Multipole Method which is used in an algorithm [6] for
the fast Hankel transform. In this case the singular functions produced by the precomputation

stage were extremely similar to those for exponentials alone; unlike in the case of complex
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Figure 1: Coefficient z of complex exponentials to be integrated

exponentials, it is possible that they form a Chebyshev system. In any case, the algorithm
converged, producing a quadrature which required two more nodes for double precision accuracy
than were required for the integration of exponentials alone (i.e. 29 nodes). A sample of the

resulting quadratures is included in Tables 7-9.

6.4 Exponentials multiplied by J,

Here, we construct quadratures for the integral

/ooo Jo(zy)e "tdz, (70)

under the conditions that t € [1,4] and y € [0,4+/2], where J, denotes the Bessel function of the
first kind of order zero. These quadratures are used in a new version [4] of the three-dimensional

Fast Multipole Method. Jo is given by the well-known (see for instance [1]) formula

Jo(y) = %/OW cos(y cos 6)d#. (1)
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Substituting (71) into (70) yields the integral

© /1 7 ot _
/ (——/ cos(zycos@)df | e "' dx
0o \7

- l/“

7o Jo

Thus a quadrature accurate for the integral

0
o0
cos(zy cos §)e~ " dzd8. (72)

o0
/ cos(zy)e *dz, (73
0

under the conditions that ¢ € [1,4] and y € [0,4+/2], is also accurate for the integral (70) under
the same conditions on y and ¢. Since the function cos(zy)e™®! is a harmonic function of y
and ¢, by the maximum modulus principle the maximum error of a quadrature for (73) lies
on the boundary éD of the rectangular region t € [1,4], y € [0,4v/2]. Accordingly, the kernel
whose singular functions were computed was A'(z,z) = cos(zy)e™ !, with (¢,y) varying over
6D. As in the case of complex exponentials, the singular functions have too many zeros to form
a Chebyshev system, however the algorithm converged. A sample of the resulting quadratures

is included in Tables 10-14; for single precision accuracy 22 nodes are required.

6.5 Numerical Observations

The following observations were made in the course of our numerical experiments.

e 1. The number of continuation steps required is highly variable; in many cases, only one
step sufficed to produce the quadrature: less frequently, up to fifty or so continuation
steps were required. This variability occurred even between quadratures for successive

numbers n of nodes, with the same weight function and kernel K.

e 2. The algorithm worked in the cases where Theorem 2.1 applied, and also in cases where
it did not. In the latter cases, it is conceivable that the resulting quadratures would have
negative weights, or that they would not be unique. However, all computed weights were
positive, and, while no systematic attempt was made to look for non-uniqueness of the

quadratures, no instance of it was observed.
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7 Generalizations and Applications

o 1. The success of the algorithm in instances where Theorem 2.1 does not apply su:-
gests that further theoretical investigation of conditions for the existence of generalized

Gaussian quadratures would be profitable.

e 2. An obvious generalization of these results is to quadratures for integrals in more than
one dimension. However, such an extension does not seem to have been explored classi-

cally: the authors are investigating a generalization of Theorem 2.1 for multidimensional

quadratures.

e 3. An obvious application of the é]gorithm of this paper is for the efficient evaluation of
functions represented by their integral transforms (see Sections 6.1, 6.2, 6.3, 6.4 above,
as well as [5] and [4]). The method of steepest descent in the numerical complex analysis

provides a wide field of applications for such algorithms.

e 4. An entirely different field of applications involves the numerical solution of integral
equations with singular kernels; of particular interest are boundary integral equations
of scattering theory on regions with corners. The authors are currently pursuing this

direction of research.
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Table 1: Quadratures for exponentials

Quadratures for the integral

o
/ e Tdz,
0

under the condition that 1 < ¢ < 500.

(7]

Nodes (z;)

Weights (w;)

Error

6

0.2934661296034111E-02
0.2122706574797170E-01
0.8809516681098265E-01
0.3048205241689060E+00
0.9407821348001514E+00
0.2710823671107057E+01

0.8078894059616301E-02
0.3337852721645502E-01
0.1157432569817795E400
0.3589923073929015E+00
0.1018252445219498E401
0.2863049428178813E+01

0.827E-03

0.2027451178542047E-02
0.1244627909236754E-01
0.4102057941602644E-01
0.1144937922230447E400
0.2954175879426304E4-00
0.7210624530246545E4+00
0.1687074064747948E+01
0.3896282168946610E+01

0.5378159157423945E-02
0.1689195281391659E-01
0.4443355769152601E-01
0.1123335780703449E400
0.2711448390160103E+00
0.6264263367286485E+400
0.1408860943521751E401
0.3344043060866228E+01

0.726E-04

14

0.1075073588251350E-02
0.5889243490962496E-02
0.1560078432135377E-01
0.3258052212086110E-01
0.6154351752779967E-01
0.1109619891032348E4-00
0.1951651530857407E+00
0.3377699882687942E4-00
0.5772805419211481E+400
0.9761165652290038E+00
0.1635615445691163E+01
0.2723809484786727E+01
0.4541163041303490E+4-01
0.7767616655342678E+01

0.2783455121689438E-02
0.7006395914900820E-02
0.1279502133157069E-01
0.2192733340131016E-01
0.3737740049082059E-01
0.6379243969367225E-01
0.1084594588227473E+00
0.1830223278438481E+00
0.3061647832783700E+00
0.5079755103629931E+00
0.8381174751258640E+00
0.1385562498413431E+01
0.2347348786059432E+01
0.4444622409829190E+01

0.366E-07 |
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Table 2: Quadratures for exponentials (continued)

Quadratures for the integral

oo
/ e %z,
0

under the condition that 1 <t < 500.

Nodes (z;)

Weights (w;)

Error j

23

0.6351980115825126E-03
0.3390398468501349E-02
0.8533988111011606E-02
0.1642520313864894E-01
0.2767253774178896E-01
0.4324590958238922E-01
0.6462964536146855E-01
0.9401198766143719E-01
0.1345150809637970E+00
0.1904922248317389E+00
0.2679364541057184E+00
0.3750493014038291E400
0.5230239495194809E+00
0.7271139907371750E400
0.1008092183746637E+01

10.1394262856335610E+01

0.1924307475579603E+01
0.2651497602918851E+01
0.3650430825998876 E+01
0.5029133182526411E+01
0.6954672288346456 E+01
0.9721470480335499E+01
0.1402158019660932E+02

0.1635014749191032E-02
0.3906005173541682E-02
0.6439810761063304E-02
0.9442176581726002E-02
0.1321157735118120E-01
0.1817939708425140E-01
0.2494901611240477E-01
0.3433118358535485E-01
0.4739385869478771E-01
0.6554991255546435E-01
0.9069257914926255E-01
0.1253810727774845E+00
0.1730865464562759E+00
0.2385227411097447E+00
0.3281047583403605E+00
0.4506156991375293E+00
0.6182453916131797E+00
0.8483813375121229E+00
0.1167112116649273E+01
0.1617207388482339E+01
0.2279901680035951E+01
0.3352383978313540E+01
0.5608355831510393E+01

0.356E-12
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Table 3: Quadratures for exponentials (continued)

Quadratures for the integral

to o]
/ e Tldz,
0

under the condition that 1 <t < 500.

Y]

Nodes (z;)

Weights (w;) ‘

Error

|

27

0.5378759010624780E-03
0.2860176825815242E-02
0.7148658617716300E-02
0.1360965515937845E-01
0.2257800188133212E-01
0.3456421989535069E-01
0.5032042618508775E-01
0.7092509447124836E-01
0.9788439120828463E-01
0.1332509921950535E4-00
0.1797695570864978 400
0.2410654714132133E4-00
0.3218961915636380E+00

0.4284852078938826E+00 !

0.5689615509235298E+00
0.7539347736933301E+00
0.9972472224438443E+00
0.1316964566299846E+01
0.1736698582009859E+4-01
0.2287418444638146E+01
0.3010034073439038E+01
0.3959315495048493E4-01
0.5210381702393131E+01
0.6870768194824406E+-01
0.9106577764323245E+01
0.1221294512896673E+02
0.1689348652665484E+02

0.1383311204046008E-02
0.3279869733166365E-02
0.5330932895600203E-02
0.7646093110803760E-02
0.1037458793227033E-01
0.1372178039022047E-01
0.1796868836009351E-01
0.2348971809947674E-01
0.3076860552710760E-01
0.4041894092839717E-01
0.5321827718681367E-01
0.7016094768858448E-01
0.9253048536912244E-01
0.1219928996130354E+00
0.1607156476580828E+00
0.2115215602167892E+00
0.2780925850550500E4-00
0.3652478333806065E+00
0.4793398853949993E+00
0.6288554258416082E+00
0.8254021100491956 E+00
0.1085495633209734E+01
0.1434174907278760E+01
0.1913323186889750E+01
0.2604342790201154E+01
0.3708436699287805E+01

0.6023086156615004E+01

0.323E-14
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under the condition that z € C lies in the region D of the complex plane depicted in Figure 1.

Table 4: Quadratures for complex exponentials

Quadratures for the integral

oo
/ e *dz,
0

LN

Nodes ()

Weights (w;)

Error

|

—

(

0.1099271618238942E+00
0.5491694162336780E+00
0.1271416827286341E+01
0.2239523056474301E+01
0.3446836330005198E+01
0.4877666068772302E+01
0.6502607915187052E+01

0.2775596224308371E+00
0.5900612562744907E+00
0.8478610527159362E+00
0.1088510946164213E+01
0.1323732065869006E+01
0.1534838877513932E+01
0.1719048349027934E+01

0.107E-02

10

0.7940097370047949E-01

0.4059967502704461E+00
0.9586054827056690E+00
0.1707633862341116E+01
0.2634252243120157E+01
0.3733067811454947E+01
0.5005663556309191E+01
0.6447614701968830E+01
0.8049956086568744E+01
0.9806270415536372E+01

0.2021326824744206E+00
0.4452920131070853E+00
0.6549257007902238E+00
0.8399190894283777E+00
0.1012522786957398E+01
0.1185698158021533E+01
0.1358749093234873E+01
0.1523775992304074E+01
0.1681530325372958E+01
0.1839363349513445E+01

0.398E-04

0.4810701202067075E-01

0.2505848757761927E+00
0.6047137247359728E+00
0.1097956904569217E+01
0.1718338718562377E+01
0.2456116758149593E+01
0.3304098340771468E+01
0.4257638182548677E+01
0.5314792420007071E+01
0.64762816706856 71E+01
0.7744192070244406E+01
0.9119761690912472E+01
0.1060243019989989E+02
0.1219107734541850E+02
0.1388654365182865E+02
0.1569478151303984E+02
0.1762993064234310E+02

0.1231104634892695E+00
0.2802783031579153E+400
0.4258197681747696E+00
0.5586462093341786E+00
0.6804909782597703E400
0.7938674951201829E+00
0.9013184216898933E+00
0.1005434048854524E+01
0.1109016499341237E+01
0.1214353975155841E+01
0.1321691619491553E+01
0.1429331461933850E+01
0.1535781285935049E+01
0.1641633199457229E+01
0.1750408322216728E+01
0.1869608472411435E+01
0.2013038988665553E+01

0.156E-07
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under the condition that z € C lies in the region D of the complex plane depicted in Figure 1.

Table 5: Quadratures for complex exponentials (continued)

Quadratures for the integral

oo
/ e dz,
0

(]

Nodes (z;)

Weights (w;)

Error

|

26

0.3186852812707167E-01

0.1670696511352561E+00
0.4070892206145096E+00
0.7472439175044331 E+00
0.1182020706329825E4+01
0.1705877918170689E+01
0.2313727921958910E+01
0.3001165447553827E+01
0.3764536084546370E+01
0.4600933023898150E+01
0.5508181675990506 E-+01
0.6484841722444765E+01
0.7530228834188133E+01
0.8644426324529564E+01
0.9828211695813383E+01
0.1108280524626372E+02
0.1240944939152817E+02
0.1380901099033861E+02
0.1528185219684248E+02
0.1682806304875190E+02
0.1844797932809189E+02
0.2014289281830454E+02
0.2191599603042421 E+02
0.2377386163950739E+02
0.2572922307071097E+02
0.2780603356526977E+02

0.8168641985324435E-01

0.1882692109574778E+00
0.2909692905166523E+00
0.3884080535348131E+4-00
0.4802140096002388E+00
0.5666489183411501E4-00
0.6483159527750231E400
0.7259502257876793E400
0.8003069049756682E+00
0.8721245141158127E400
0.9421323128655350E400
0.1011073349889977E+01
0.1079715704282156E+01
0.1148813015862887E+-01
0.1218968645024915E+01
0.1290432847974804E+01
0.1363002295760370E+01
0.1436177127644119E+01
0.1509511398129948E+01
0.1582954591205827E+01
0.1657078657112459E+01
0.1733260266399871E+01
0.1814015981921987E+01
0.1903865269011978E+01
0.2011585306477846E+01
0.2156295623247961E+01

0.801E-12
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under the condition that z € C lies in the region D of the complex plane depicted in Figure 1.

Table 6: Quadratures for complex exponentials (continued)

Quadratures for the integral

oo
/ e *dzx,
0

LN

Nodes (z;)

i

Weights (w;)

Error 1

32

0.2599836293936463E-01

0.1365267137471029E+00
0.3335929178284293E+-00
0.6144848200204676E+00
0.9757788966059570E+00
0.1413764904033582E+01
0.1924760915837073E+01
0.2505322024543478E+01
0.3152355883303843E+01
0.3863171917607857E+01
0.4635491817809779E+-01
0.5467443320214809E+01
0.6357552049608270E+01
0.7304739365689955E+01
0.8308328039815608E+01
0.9368051427922781E+01
0.1048405410784282E+02
0.1165686219043638E+02
0.1288729607812993E+02
0.1417631366171486E+02
0.1552481519724356 E+02
0.1693348466077443E+02
0.1840274326790348E 402
0.1993284537567664E+02
0.2152409758022736E+02
0.2317716791120881E+02
0.2489347969157359E+02
0.2667574373640977E+02
0.2852878296929011E+-02
0.3046102218822619E+02
0.3248756039307094E+02
0.3463653566705793E 402

0.6666723984893712E-01

0.1541635906448656E+00
0.2395065808061905E+00
0.3216997252047818E+00
0.4002647717267098E+00
0.4750901483689786E+00
0.5463258676163205E+00
0.6142802064945914E+00
0.6793389599054632E+00
0.7419135289744640E+00
0.8024143819948454E+00
0.8612429338113290E+00
0.9187946472618356E+00
0.9754669332016366E+00
0.1031665911277885E+01
0.1087805382732233E+01
0.1144289073127857E+401
0.1201466511491073E+01
0.125956436329056 7TE+01
0.1318623693719137E+01
0.1378494220804057E+01
0.1438913247537656 E+01
0.1499642611759877E+01
0.1560607527964651E+01
0.1622001781246697E+01
0.1684367617089771E+01
0.1748695093705612E+01
0.1816615869561691E+01
0.1890833030920412E+-01
0.1976151351204436E+01
0.2082162437141457E+01
0.2231151873780132E+01

0.282E-14
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Table 7: Quadratures for exponentials multiplied by I

Quadratures for the integral

o0
/ Io(zy)e™*dz,
, 0

under the condition that t € [1,500] and y € [0,t — 1].

LN

Nodes (z;)

I

Weights (w;)

|

Error —I

6

0.2014951814758335E-02
0.1524995123116156E-01
0.6752356088881507E-01
0.2501565900307728E+400
0.8236005667135590E+400
0.2511917343393000E+01

0.5609959210156781E-02
0.2486640535654579E-01
0.9333052982723889E-01
0.3114318476382451E400
0.9419185523143980E+00
0.2783935122763889E+4-01

0.997E-03

o}

0.1310754453518395E-02
0.8427815046421337E-02
0.2934337237542595E-01
0.8663331921085451E-01
0.2362895983874226 E+00
0.6083828926140039E+00
0.1496074584403707E+01
0.3613104405570935E+01

0.3522290544269296 E-02
0.1188533050797089E-01
0.3342585308732757E-01
0.8985909963205312E-01
0.2297963615059060E+00
0.5600968338362269E+00
0.1320244303895297E+01
0.3253613362413727E+01

0.892E-04

14

0.6424288534795956E-03
0.3562319666990144E-02
0.9643424057074440E-02
0.2074298599770349E-01
0.4057928260022333E-01
0.7600572280169251E-01
0.1390443053485344E+00
0.2503136051566992E+00
0.4447622918282108E+00
0.7811276346003586E+00
0.1357818162257100E+01
0.2341992534236977E401
0.4036529413075654E+01
0.7126502974662635E+01

0.1667964367860395E-02
0.4298903067080389E-02
0.8159545461265918E-02
0.1463864640961027E-01
0.2614391453322226E-01
0.4665755537868725E-01
0.8276361628521883E-01
0.1454478222995341E400
0.2529871458046016E+00
0.4357009925372973E400
0.7446059596729966 E+00
0.1271434906786924E+401
0.2216807353831690E+01
0.4302367103374836E+01

0.900E-07
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Table &: Quadratures for exponentials multiplied by Io (continued)

Quadratures for the integral

/ Io(zy)e *'dz,
0

under the condition that ¢ € [1,500} and y € [0, — 1].

| N

Nodes (z;)

Weights (w;)

Error —I

24

0.3495789092315762E-03
0.1870021782900649E-02
0.4726267824851739E-02
0.9151716313193496E-02
0.1554236980028004E-01
0.2452696840462340E-01
0.3706303150690139E-01
0.5456277459785074E-01
0.7905495952668643E-01
0.1134006713086074E+00
0.1615933468425095E+00
0.2291729794308585E+00
0.3238013639554152E+00
0.4560558428504051E+00
0.6405113416979851E+-00
0.8972279324556263E+00
0.1253809582199313E+01
0.1748318313157252E+4-01
0.2433578887375728E+01
0.3384010828873551E+4-01
0.4707795467897619E+01
0.6572440958883276E+-01
0.9272736577094724E+4-01
0.1349943616527142E+02

0.9002840624465873E-03
0.2160252603038041E-02
0.3590338301868660E-02
0.5325399369607390E-02
0.7559106650189445E-02
0.1056758825931061E-01
0.1473724813105991E-01
0.2059685692839059E-01
0.2885941258668471E-01
0.4049079881256631E-01
0.5680844261155735E-01
0.7961469039423471E-01
0.1113872397913262E+00
0.1555264308649468E+00
0.2166942382013035E+00
0.3012922008808448E+00
0.4181453830530776E+00
0.5795680006227947E+00
0.8031688787093632E+00
0.1115348337169697E+01
0.1559213913124744E+01
0.2216187240183199E+01
0.3282974439738362E+01
0.5529398603135539E+01

0.925E-12
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Table 9: Quadratures for exponentials multiplied by I (confinued)

Quadratures for the integral

- (e
[ ooy,
0

under the condition that t € [1,500] and y € [0,¢ - 1].

(Y]

Nodes (z;)

Weights (w;)

Error

]

29

0.2855179413353365E-03
0.1519624696728258E-02
0.3804359141657344E-02
0.7260138000706486E-02
0.1208205371062810E-01
0.1856564543199398E-01
0.2714156753309568E-01
0.3842017800878239E-01
0.5324783256625659E-01
0.7277755829761968E-01
0.9855788611173273E-01
0.1326465035778468E400
0.1777590387840778E+00
0.2374657658898870E+00
0.3164509240422835E+00
0.4208524457939620E4-00
0.5587051648321601E+00
0.7405185479404663E400
0.9800319873390735E+00
0.1295209795621391E401
0.1709570851677607E+01
0.2254009385987865E401
0.2969389638669206E+01
0.3910476327629495E4-01
0.5152430007642100E401
0.6802867813529709E+01
0.9027979519502084E4-01
0.1212289908066820E402
0.1679085599535762E4-02

0.7344503079351386E-03
0.1744538390662211E-02
0.2844687196642974E-02
0.4098961298933580E-02
0.5593550200298448E-02
0.7444670271885530E-02
0.9807968524698940E-02
0.1288914176031762E-01
0.1695687345717790E-01
0.2235879759838917E-01
0.2954235698585330E-01
0.3908423859367893E-01
0.5173159700695577E-01
0.6845695550893067E-01
0.9052903520482935E-01
0.1196036182345700E4-00
0.1578409524693449E4-00
0.2080593451794129E4-00
0.2739397750144418E400
0.3603059290242059E+00
0.4735231867763476E400

0.6221016600956893E+00 |

0.8176841100086656E4-00
0.1076831175000068E4-01
0.1424628439002124E4-01
0.1902988149814232E+-01
0.2593285548365225E4-01
0.3696550722303479E4-01
0.6009492062220468E+-01

0.299E-14
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Table 10: Quadratures for exponentials multiplied by J,

Quadratures for the integral

/ JO('Iy)e-xtdxa
0

under the condition that ¢ € [1,4] and y € [0,4+/2).

Nodes (z;)

Weights (w;)

Error

0.1093474676900044E+-00
0.5176974101534121E+00
0.1133065916111916E+-01
0.1881350151107404E+01
0.2717854096012053E+01
0.3616502749074490E+01
0.4562710533038212E+01
0.5549008853485283E+01

0.2710750266277354E+00
0.5276915884394641E+00
0.6915150441387948E+00
0.7983440040645204E+00
0.8716416012135397E+00
0.9264383911692414E+00
0.9729462225948307E+00
0.1024138658446855E+01

0.162E-02

12

0.7685522448236467E-01

0.3802271685596512E+00
0.8629501667245919E+-00
0.1477406574242533E+01
0.2190593072512602E+01
0.2979188555054684E+01
0.3826805213168235E+01
0.4722181214285143E+01
0.5657828852278510E+01
0.6629008403962641E+01
0.7632911519449263E+01
0.8669258567695921E+01

0.1937803229242497E+00
0.4024780894501363E+00
0.5551232854865536 E+00
0.6684012296815303E+00
0.7541446224405415E+00
0.8203905361353097E+00
0.8731017778158731E+400
0.9167109597437153E+00
0.9545728875259875E+00
0.9893709749159459E+400
0.1023874368056413E+01
0.1067824933823433E+01

0.709E-04
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Table 11: QuadraturesAfor exponentials multiplied by Jy (continued)

Quadratures for the integral

/ Jo(wy)e=*tdz,
0

under the condition that ¢ € [1,4] and y € [0,4+/2].

Nodes (z;)

Weights (w;)

Error

0.4557110658309451E-01

0.2345692419777160E+00
0.5560507435597863E+00
0.9888622621190326 E+00

1 0.1514051750681985E+01

0.2116308405894669E+01
0.2783466404955423E+01
0.3505774922334249E+01
0.4275358227777114E+01
0.5085850421343891E+01
0.5932129958898720E+01
0.6810110232637652E+01
0.7716569940856932E+01
0.8649018954485772E+01
0.9605599035641322E+01
0.1058501999437337E+02
0.1158653269800637E+02
0.1260993904708917E+02
0.1365563090220990E+02
0.1472471197434301E+02
0.1582111587898742E+02

0.1162693279863745E+00
0.2587357630437822E+00
0.3805968474435821E+00
0.4818526125575090E+4-00
0.5659864564983776E400
0.6365120448492290E+00
0.6961876640755223E4-00
0.7471226714069135E+00
0.7909873646366727E4-00
0.8291470860681295E+-00
0.8627341849390908E+-00
0.8926928974293094E+00
0.9198161427100997E+00
0.9447809312411800E+00
0.9681847744461964E+-00
0.9905857720543664E+4-00
0.1012551797552972E4-01
0.1034729712476950E401
0.1057973242328095E+01
0.1083960111883219E+01
0.1123223099240344E4-01

0.553E-07
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Table 12: Quadratures for exponentials multiplied by Jo (continued)

Quadratures for the integral
o
[ o(wy)etas,
0

under the condition that ¢ € [1,4] and y € [0,4+/2].

| N| Nodes (z;) I Weights (w;) | Error
31 | 0.3135427831034307E-01 | 0.8024339887513055E-01 [ 0.195E-10
0.1633283571233953E+00 | 0.1826480678501762E+00
0.3938519939248281E+00 | 0.2767843166469057E+00
0.7134977521472219E+00 | 0.3607878783606646E+00
0.1112086865038666 E+01 | 0.4347972857765461E+00
0.1580107134125432E+01 | 0.4998566920961263E+00
0.2109237828913374E+01 | 0.5572245708288816E+00
0.2692380266283717E+01 | 0.6080577723352450E+00
0.3323499813712884E+01 | 0.6533243161908575E+00
0.3997438592537748E+01 | 0.6938153813251570E+00
0.4709757745640057E+01 | 0.7301846396770468E+00
0.5456619026749223E+01 | 0.7629849054856576E-+00
0.6234697842382201E+01 | 0.7926941021324604E+00
0.7041117206272996E+01 | 0.8197316250932437E+00
0.7873394668593335E+01 | 0.8444685010430712E+00
0.8729397582414611E+01 | 0.8672343080184358E+00
0.9607304495127067E+01 | 0.8883227316567794E+00
0.1050557184595927E+02 | 0.9079967283507420E+00
0.1142290582410390E+02 | 0.9264937318864332E+00
0.1235823954272516E+02 | 0.9440311133071873E+00
0.1331071586594676E+02 | 0.9608120820932964E+00
0.1427967645292451E+02 | 0.9770323352089769E+00
0.1526465797627137E+02 | 0.9928880149352948E+00
0.1626539716056547E+02 | 0.1008585996949826E+01
0.1728184746281412E+02 | 0.1024358393992377E+01
0.1831421215592517E+02 | 0.1040484810479409E+01
0.1936300165981823E4-02 | 0.1057329638354610E+01
0.2042912676709522E+402 | 0.1075408955912917E+01
0.2151404706129260E+02 | 0.1095542344669040E+01
0.2262012600158427E+02 | 0.1119613828562103E+01
0.2375360482790972E+02 | 0.1159632125663126E+01
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Table 13: Quadratures for exponentials multiplied by Jo (continued)

Quadratures for the integral

[ o(zye=as,
0

under the condition that ¢ € [1,4] and y € [0,4/2].

Nodes (z;)

Weights (w;)

l

Error

40

0.2450466782681923E-01

0.1282174857176023E+00
0.3113726824539808E+-00
0.5689058522320320E+00
0.8947716487384897E+00
0.1282740805986842E+-01
0.1726889168240672E+01
0.2221829818237509E+01
0.2762775128318641E4-01
0.3345508771449190E+01
0.3966321542990838E+01
0.4621940741778159E+01
0.5309466588865855E+01
0.6026319872772099E+01
0.6770200467500875E+01
0.7539054647612656E+01
0.8331048881923509E+01
0.9144548183658569E+01
0.9978097658074295E+01
0.1083040639472408E+02
0.1170033322583332E+02
0.1258687411609641E+02
0.1348915109370842E+02
0.1440640271349045E402
0.1533797609080401E+02

0.6278240289055225E-01

0.1441452770046284E+00
0.2213018947962683E+00
0.2927436383298983E+00
0.3579417172934986E+00
0.4170055991300023E+400
0.4703924681663025E+00
0.5186914865873826E+00
0.5624975493703959E+00
0.6023527423690355E+400
0.6387284183350381E+00
0.6720275534119337E+00
0.7025949580565075E+00
0.7307287944249567E+00
0.7566905396059194E4-00
0.7807125897154367E400
0.8030036866777486E+00
0.8237527017133555E+00
0.8431313322224179E+00
0.8612961564381806 E+00
0.8783903510592598E+00
0.8945452599331251E+00
0.9098819208500799E+00
0.9245126105589752E4-00
0.9385424474160881E+4-00

(Continued in the next table)

0.147E-13 |

40




Table 14: Quadrétures for exponentials multiplied by Jo (continued)

Quadratures for the integral

[ wtee-ra
. 0

under the condition that ¢ € [1,4] and y € [0,4V/2].

[N

Nodes (z;)

Weights (w;)

Error j

40

(Continued from the preceding table)

0.1628332058271154E+02
0.1724198323818701E+02
0.1821360621166772E+02
0.1919792646634440E+02
0.2019477834484074E+02
0.2120410011858627E+02
0.2222594665494397E+02
0.2326051184537432E+02
0.2430816659609159E+02
0.2536951778065644E+02
0.2644549219792192E+02
0.2753746108815434E+02
0.2864745668803461E+02
0.2977833401798621E+02
0.3093837103779525E+02

0.9520710907702972E+00
0.9651945915710470E+00
0.9780074909877168E+00
0.9906053454228810E+00
0.1003088034610363E+01
0.1015564634343247E+01
0.1028161001682954E+01
0.1041032846271463E+01
0.1054383431852286E+01
0.1068492599609564E+4-01
0.1083742894323642E+01
0.1100713259554107E+01
0.1120408914213389E+01
0.1144615248532595E+01
0.1182108938213342E+-01

0.147E-13
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