Standard Libraries for the
Programming Language

Haskell 98

A Non-Strict, Purely Functional Language

YaleU/DCS/RR-1105

Standard Libraries
for the

Haskell 98
Programming Language

1 February 1999

Simon Peyton Jones® [editor]
John Hughes® [editor]
Lennart Augustsson®

Dave Barton’

Brian Boutel*
Warren Burton®

Joseph Fasel®
Kevin Hammond?

Ralf Hinze!?
Paul Hudak!
Thomas Johnsson
Mark Jones®
John Launchbury!!

Erik Meijer®
John Peterson!
Alastair Reid!
Colin Runciman
Philip Wadler!!

3

13

Authors’ affiliations: (1) Yale University (2) University of St. Andrews
(3) Chalmers University of Technology (4) Victoria University of Wellington
(5) Simon Fraser University (6) Los Alamos National Laboratory (7) Inter-
metrics (8) Microsoft Research, Cambridge (9) University of Nottingham
(10) Utrecht University (11) Bell Labs (12) University of Bonn (13) York
University (14) Oregon Graduate Institute

CONTENTS

Contents
1 Introduction 2
2 Rational Numbers 3
2.1 LibraryRatio. e 4
3 Complex Numbers 6
3.1 Library Complex i 7
4 Numeric 9
4.1 Library Numeric 0 e e 9
5 Indexing Operations 17
5.1 Deriving Instancesof Ix e 17
5.2 Library Ix o o e e e 19
6 Arrays 20
6.1 Array Construction e e 21
6.2 Incremental Array Updates 22
6.3 Derived Arrays e 22
6.4 Library Array e e e 23
7 List Utilities 27
7.1 Indexinglists e 29
7.2 “Set” operations e e 29
7.3 List transformations L o o 29
7.4 unfoldr e e e e e e e e 30
7.5 Predicates e 31
7.6 The “By” operations i 31
7.7 The “generic” operations, 31
7.8 Library List o o e e e e e 32
8 Maybe Utilities 38
8.1 LibraryMaybe e 39
9 Character Utilities 40
9.1 LibraryChar & . & o e e e 42
10 Monad Utilities 46
10.1 Naming conventions o 0 i e 47
10.2 Class MonadPlus v v v vt e e e e e e e e e 47
10.3 Functions 47

104 LibraryMonad & o 0 ot e e 50

CONTENTS

11 Input/Output

111 I/OErrors.
11.2 Files and Handles.
11.3 Opening and Closing Files
11.4 Determining the Size of a File
11.5 Repositioning Handles
11.6 Handle Properties
11.7 Text Input and Output
11.8 Examples

12 Directory Functions
13 System Functions

14 Dates and Times

14.1 Library Time

15 Locale

15.1 Library Locale

16 CPU Time

17 Random Numbers

17.1 The RandomGen class, and the StdGen generator

17.2 The Randomclass

17.3 The global random number generator

Index

53
55
56
58
59
60
61
61
62

64

67

70
72

76
7

78

80
81
82
83

85

PREFACE 1

Preface

This document defines the standard libraries for Haskell 98.

The libraries presented here represent a selection of basic functionality that is expected to
be useful to many Haskell programmers. Most implementations provide further libraries
which are not a recognized part of the Haskell standard.

The latest version of this report, as well many other available libraries, can be found on the
web at http://haskell.org.

We would like to express our thanks to those who have contributed directly or indirectly
to this report without being named as authors, including Olaf Chitil, Tony Davie, Sigbjorn
Finne, Andy Gill, Mike Gunter, Fergus Henderson, Kent Karlsson, Sandra Loosemore,
Graeme Moss, Sven Panne, Keith Wansbrough.

2 1 INTRODUCTION

1 Introduction

This document defines the standard libraries for Haskell 98. Like the Prelude, these libraries
are a required part of a Haskell implementation. Unlike the Prelude, however, these modules
must be ezplicitly imported into scope.

When possible, library functions are described solely by executable Haskell code. Func-
tions which require implementation-dependent primitives are represented by type signatures
without definitions. Some data types are implementation-dependent: these are indicated
by comments in the source.

The code found here is a specification, rather than an implementation. Implementations
may choose more efficient versions of these functions. However, all properties of these
specifications must be preserved, including strictness properties.

Classes defined in libraries may be derivable. This report includes the derivation of such
classes when appropriate. When Prelude types are instances of derivable library classes a
commented empty instance declaration is used. The comment, “as derived”, indicates that
the instance is the same as would have been generated by a deriving in the Prelude type
declaration.

The following table summarises the fixities of all the operators introduced by the standard
libraries:

Prec- || Left associative Non-associative | Right associative
edence || operators operators operators
9 || Array.!, Array.//
7 || Ratio.%
6 Complex. :+
5 List.\\

Table 1: Precedences and fixities of library operators

2 Rational Numbers

module Ratio (
Ratio, Rational, (%), numerator, denominator, approxRational) where

infixl 7 %

data (Integral a) => Ratio a = ...

type Rational = Ratio Integer

) :: (Integral a) => a -> a -> Ratio a
numerator, denominator :: (Integral a) => Ratio a -> a
approxRational :: (RealFrac a) => a -> a -> Rational
instance (Integral a) => Eq (Ratio a) where ..
instance (Integral a) => Ord (Ratio a) where ...
instance (Integral a) => Num (Ratio a) where ..
instance (Integral a) => Real (Ratio a) where ...

instance (Integral a) => Fractional (Ratio a) where ...
instance (Integral a) => RealFrac (Ratio a) where ...

instance (Integral a) => Enum (Ratio a) where ...
instance (Read a,Integral a) => Read (Ratio a) where ...
instance (Integral a) => Show (Ratio a) where ...

For each Integral type ¢, there is a type Ratio ¢ of rational pairs with components of type
t. The type name Rational is a synonym for Ratio Integer.

Ratio is an instance of classes Eq§, Ord, Num, Real, Fractional, RealFrac, Enum, Read, and
Show. In each case, the instance for Ratio ¢ simply “lifts” the corresponding operations
over t. If ¢ is a bounded type, the results may be unpredictable; for example Ratio Int
may give rise to integer overflow even for rational numbers of small absolute size.

The operator (%) forms the ratio of two integral numbers, reducing the fraction to terms
with no common factor and such that the denominator is positive. The functions numerator
and denominator extract the components of a ratio; these are in reduced form with a
positive denominator. Ratio is an abstract type. For example, 12 % 8 is reduced to 3/2
and 12 % (-8) is reduced to (-3)/2.

The approxRational function, applied to two real fractional numbers x and epsilon,
returns the simplest rational number within the open interval (x — epsilon, x + epsilon).
A rational number n/d in reduced form is said to be simpler than another n’/d’ if |n| < |n/|
and d < d’. Note that it can be proved that any real interval contains a unique simplest
rational.

4 2 RATIONAL NUMBERS

2.1 Library Ratio

-- Standard functions on rational numbers

module Ratio (
Ratio, Rational, (%), numerator, denominator, approxRational) where

infixl 7 Y%

prec = 7 :: Int

data (Integral a) => Ratio a = !a :% 'a deriving (Eq)
type Ratiomal = Ratio Integer

¢ :: (Integral a) => a -> a -> Ratio a
numerator, denominator :: (Integral a) => Ratio a -> a
approxRational :: (RealFrac a) => a -> a -> Ratiomnal

-— "reduce" is a subsidiary function used only in this module.
-- It normalises a ratio by dividing both numerator
—-— and denominator by their greatest common divisor.

-- E.g., 12 ‘reduce‘ 8 == 3 :% 2
- 12 ‘reduce‘ (-8) == 3 :% (-2)
reduce _ O = error "Ratio.% : zero demnominator"
reduce x y = (x ‘quot® d) :% (y ‘quot‘ d)
where d = gcd x y
xhy = reduce (x * signum y) (abs y)
numerator (x :% _) = x
denominator (_ :% y) =y

instance (Integral a) => Ord (Ratio a) where

(x:%y) <= (x*:%y’) = x *y’ <=x’ *y
(:lhy) < (x7:hy’) = x*xy’ < x xy
instance (Integral a) => Num (Ratio a) where
(x:%y) + (x?:%y’) = reduce (x*y’ + x’*y) (y*xy’)
(x:%y) * (x?:%y’) = reduce (x * x’) (y * y?)
negate (x:%y) = (-x) %y
abs (x:%y) = abs x :%y
signum (x:%y) = signum x :% 1
fromInteger x = fromInteger x :% 1

instance (Integral a) => Real (Ratio a) where
toRational (x:%y) = tolnteger x :% toIlnteger y

2.1 Library Ratio

instance (Integral a) => Fractional (Ratio a) where
(x:%y) / (x2:%y’) = (xky?) % (y*x?)
recip (x:%y) = if x < 0 then (-y) :% (-x) else y :% x
fromRational (x:%y) = fromInteger x :% fromInteger y
instance (Integral a) => RealFrac (Ratio a) where

properFraction (x:%y) = (fromIntegral q, r:%y)
where (q,r) = quotRem x y

instance (Integral a) => Enum (Ratio a) where
toEnum = fromIntegral
fromEnum = fromInteger . truncate -- May overflow
enumFrom = numericEnumFrom -- These numericEnumXXX functions
enumFromThen = numericEnumFromThen -- are as defined in Prelude.hs
enumFromTo = numericEnumFromTo -- but not exported from it!
enumFromThenTo = numericEnumFromThenTo

instance (Read a, Integral a) => Read (Ratio a) where

readsPrec p =

readParen (p > prec)

(\r -> [(x%y,u) | (x,8) <~ readsr,
(n%n’t) <- lex s,
(y,u) <- reads t J)
instance (Integral a) => Show (Ratio a) where
showsPrec p (x:%y) showParen (p > prec)
(shows x . showString " % " . shows y)

approxRational x eps =

simplest (x-eps) (x+eps)

wvhere simplest x y | y < x = simplest y x
| x ==y = Xr
| x>0 = simplest’ n d n’ d’
ly<o = - simplest’ (-n’) 4’ (-n) d
| otherwise = 0 :% 1
where xr@(n:%d) = toRational x
(n’:%d’) = toRational y
simplest’ n d n’ &’ —-- assumes 0 < n%d < n’j%d’
| T == 0 = q 41
| q /= q’ = (q+1) :% 1
| otherwise = (g*n’’+d’’) :% n’’
wvhere (q,r) = quotRem n d
(q’,r’) = quotRem n’ d’
(n’?:%d’?’) = simplest’ 4’ r’ d r

6 3 COMPLEX NUMBERS

3 Complex Numbers

module Complex (
Complex((:+)), realPart, imagPart, conjugate,
mkPolar, cis, polar, magnitude, phase) where

infix 6 :+

data (RealFloat a) => Complex a = !a :+ !a

realPart, imagPart :: (RealFloat a) => Complex a -> a
conjugate :: (RealFloat a) => Complex a -> Complex a
mkPolar :: (RealFloat a) => a -> a -> Complex a
cis :: (RealFloat a) => a -> Complex a
polar :: (RealFloat a) => Complex a -> (a,a)
magnitude, phase :: (RealFloat a) => Complex a -> a
instance (RealFloat a) => Eq (Complex a) where ...
instance (RealFloat a) => Read (Complex a) where ...
instance (RealFloat a) => Show (Complex a) where ...
instance (RealFloat a) => Num (Complex a) where ...

instance (RealFloat a) => Fractional (Complex a) where ...
instance (RealFloat a) => Floating (Complex a) where ...

Complex numbers are an algebraic type. The constructor (:+) forms a complex number
from its real and imaginary rectangular components. This constructor is strict: if either
the real part or the imaginary part of the number is L, the entire number is 1. A complex
number may also be formed from polar components of magnitude and phase by the function
mkPolar. The function cis produces a complex number from an angle ¢. Put another way,
cis t is a complex value with magnitude ! and phase ¢ (modulo 27).

The function polar takes a complex number and returns a (magnitude, phase) pair in
canonical form: The magnitude is nonnegative, and the phase, in the range (—m,n]; if the
magnitude is zero, then so is the phase.

The functions realPart and imagPart extract the rectangular components of a complex
number and the functions magnitude and phase extract the polar components of a complex
number. The function conjugate computes the conjugate of a complex number in the usual
way.

The magnitude and sign of a complex number are defined as follows:

abs z = magnitude z :+ 0
signum O = 0
signum z@(x:+y) x/r :+ y/r where r = magnitude z

That is, abs z is a number with the magnitude of z, but oriented in the positive real

3.1 Library Complex

direction, whereas signum z has the phase of z, but unit magnitude.

3.1 Library Complex

module Complex(Complex((:+)), realPart, imagPart, conjugate, mkPolar,
cis, polar, magnitude, phase) where

infix 6 :+

data (RealFloat a) => Complex a = !'a :+ !'a deriving (Eq,Read,Show)
realPart, imagPart :: (RealFloat a) => Complex a —> a

realPart (x:+y) = x

imagPart (x:+y) = y

conjugate :: (RealFloat a) => Complex a —> Complex a

conjugate (x:+y) = x :+ (-y)

mkPolar :: (RealFloat a) => a -> a -> Complex a

r * cos theta :+ r * sin theta

1]

mkPolar r theta

cis :: (RealFloat a) => a -> Complex a
cis theta = cos theta :+ sin theta

polar :: (RealFloat a) => Complex a -> (a,a)
polar z = (magnitude z, phase z)

magnitude :: (RealFloat a) => Complex a -> a

magnitude (x:+y) = scaleFloat k
(sqrt ((scaleFloat mk x) "2 + (scaleFloat mk y)~2))

where k = max (exponent x) (exponent y)
mk = - k
phase :: (RealFloat a) => Complex a -> a
phase (0 :+ 0) =0
phase (x :+ y) = atan2 y x

> Num (Complex a) where
(x+x°) o+ (y+y?)
(x-x?) :+ (y-y”)
(x*x’=y*y?’) 4+ (x*y’+y*x’)

instance (RealFloat a)
(x:+y) + (x7:4y?)
(x:+y) - (x’:+y?)
(x:4y) * (x’:+y?)

negate (x:+y) = negate x :+ negate y
abs z = magnitude z :+ 0
signum O = 0

signum z@(x:+y) x/r :+ y/r where r = magnitude z
fromInteger n = fromInteger n :+ O

3 COMPLEX NUMBERS

instance (RealFloat a) => Fractional (Complex a) where

(x:+y) / (x7:+y”)

fromRational a

instance (RealFloat

pi
exp (x:+y)
log z

sqrt O
sqrt z@(x:+y)

sin (x:+y)
cos (x:+y)
tan (x:+y)

sinh (x:+y)
cosh (x:+y)
tanh (x:+y)

asin z@(x:+y)

acos z@(x:+y)

atan z@(x:+y)

asinh z
acosh z
atanh z

1l

(X*X”+y*y”) / d :+ (y*x);_x*y)7) / d
where x’’ = scaleFloat k x’

y’’ = scaleFloat k y’
k = - max (exponent x’) (exponent y’)
d - x)*x,7 + y)*y)?

fromRational a :+ O

a) => Floating (Complex a) where
pi :+ 0

exXpx * cos y :+ expx * sin y
where expx = exp X

log (magnitude z) :+ phase z

0

u :+ (if y < 0 then -v else v)

where (u,v) if x < 0 then (v’,u’) else (u’,v’)
v’ abs y / (u’*2)
u’ sqrt ((magnitude z + abs x) / 2)

sin x * cosh y :+ cos x * sinh y

cos x * cosh y :+ (- sin x * sinh y)
(sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(-sinx*sinhy))
where sinx = sin x

COSX = COS X
sinhy = sinh y
coshy = cosh y

cos y * sinh x :+ sin y * cosh x
cos y * cosh x :+ sin y * sinh x
(cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx)

where siny = sin y
cCOSy = cOoS y
sinhx = sinh x
coshx = cosh x
y’i+(-x?) i
where (x’:+y’) = log (((-y):+x) + sqrt (1 - z*z))
y)):+(_x:))
where (x’’:+y’’) = log (z + ((-y’):+x’))
(x’:+y?’) = sqrt (1 - z*z)
y2i+(-x?)

where (x’:+y’) = log (((1-y):+x) / sqgrt (1+2z*z))

log (z + sqrt (1+z*z))
log (z + (z+1) * sqrt ((z-1)/(z+1)))
log ((1+2) / sqrt (1-z*z))

4 Numeric

module Numeric(fromRat,

showSigned, showlnt,

readSigned, readlnt,

readDec, readOct, readHex,

floatToDigits,

showEFloat, showFFloat, showGFloat, showFloat,

readFloat, lexDigits) where
fromRat :: (RealFloat a) => Rational -> a
showSigned :: (Real a) => (a -> ShowS) -> Int -> a -> ShowS
showInt :: 'Integral a => a -> ShouS
readSigned :: (Real a) => ReadS a -> ReadS a
readInt :: (Integral a) =>

a -> (Char -> Bool) -> (Char -> Int) -> ReadS a

readDec :: (Integral a) => ReadS a
readQct :: (Integral a) => ReadS a
readHex :: (Integral a) => ReadS a
showEFloat (RealFloat a) => Maybe Int -> a -> ShowS
showFFloat (RealFloat a) => Maybe Int -> a -> Show$S
showGFloat (RealFloat a) => Maybe Int -> a -> ShowS
showFloat (RealFloat a) => a -> ShowS
floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int)
readFloat :: (RealFloat a) => ReadS a
lexDigits :: ReadS String

This library contains assorted numeric functions, many of which are used in the standard
Prelude. Most are self-explanatory. The floatToDigits function converts a floating point
value into a series of digits and an exponent of a selected base. This is used to build a set
of floating point formatting functions.

4.1 Library Numeric

module Numeric(fromRat,
showSigned, showlnt,
readSigned, readInt,
readDec, readOct, readHex,
floatToDigits,
showEFloat, showFFloat, showGFloat, showFloat,
readFloat, lexDigits) where

10 4 NUMERIC

import Char
import Ratio
import Array

~-- This converts a rational to a floating. This should be used in the
-- Fractional instances of Float and Double.

fromRat :: (RealFloat a) => Rational -> a

fromRat x =
if x == 0 then encodeFloat 0 0 —-- Handle exceptional cases
else if x < 0 then - fromRat’ (-x) -- first.

else fromRat’ x

-- Conversion process:

-- Scale the rational number by the RealFloat base until

-- it lies in the range of the mantissa (as used by decodeFloat/encodeFloat).
-- Then round the rational to an Integer and encode it with the exponent

—-— that we got from the scaling.

-- To speed up the scaling process we compute the log2 of the number to get
-- a first guess of the exponent.

fromRat’ :: (RealFloat a) => Rational -> a
fromRat’ x =r
where b = floatRadix r

p = floatDigits r
(minExpO, _) = floatRange r
minExp = minExpO - p -- the real minimum exponent
xMin = toRational (expt b (p-1))
xMax = toRational (expt b p)
pO = (integerLogBase b (numerator x) -
integerLogBase b (denominator x) - p) ‘max‘ minExp
f = if p0 < O then 1 % expt b (-p0) else expt b p0 % 1
(x’, p’) = scaleRat (toRational b) minExp xMin xMax pO (x / f)
r = encodeFloat (round x’) p’

-- Scale x until xMin <= x < xMax, or p (the exponent) <= minExp.
scaleRat :: Rational -> Int -> Rational -> Rational ->
Int -> Rational -> (Ratiomal, Int)
scaleRat b minExp xMin xMax p x =
if p <= minExp then
(x, p)
else if x >= xMax then
scaleRat b minExp xMin xMax (p+1) (x/b)
else if x < xMin +then
scaleRat b minExp xMin xMax (p-1) (x*b)
else :
(x, p)

4.1 Library Numeric 11

-- Exponentiation with a cache for the most common numbers.
minExpt = 0::Int
maxExpt = 1100::Int
expt :: Integer -> Int —-> Integer
expt base n =
if base == 2 && n >= minExpt && n <= maxExpt then
expts!n
else
base”n

expts :: Array Int Integer
expts = array (minExpt,maxExpt) [(n,2°n) | n <- [minExpt .. maxExpt]]

~- Compute the (floor of the) log of i in base b.
-- Simplest way would be just divide i by b until it’s smaller then b,
-- but that would be very slow! We are just slightly more clever.
integerLogBase :: Integer —> Integer —-> Int
integerlogBase b i =
if i < b then
0
else
-- Try squaring the base first to cut down the number of divisions.
let 1 = 2 * integerLogBase (b*b) i
doDiv :: Integer -> Int -> Int
doDiv i 1 = if i < b then 1 else doDiv (i ‘div‘ b) (1+1)
in doDiv (i ‘div‘ (b"1)) 1

-—- Misc utilities to show integers and floats

showSigned :: Real a => (a ~> ShowS) -> Int -> a -> ShowS
showSigned showPos p x | x < 0 = showParen (p > 6)
(showChar ’-’ . showPos (-x))

| otherwise = showPos x

-- showInt is used for positive numbers only

showInt :: Integral a => a -> ShowS
showInt n r | n < 0 = error "Numeric.showInt: can’t show negative numbers"
| otherwise =

let (n’,d) = quotRem n 10
r’ toEnum (fromEnum 0’ + fromIntegral d) : r
in if n’ == 0 then r’ else showInt n’ r’

12 4 NUMERIC

readSigned :: (Real a) => ReadS a -> ReadS a
readSigned readPos = readParen False read’
where read’ r = read’’ r ++
[(-x,t) | ("-",s) <~ lex r,
(x,t) <- read’’ s]
read’’ r = [(n,s) | (str,s) <- lex r,
(n,"") <- readPos str]

-- readInt reads a string of digits using an arbitrary base.
—-- Leading minus signs must be handled elsewhere.

readInt :: (Integral a) => a -> (Char -> Bool) -> (Char -> Int) -> ReadS a
readInt radix isDig digTolnt s =
[(foldlli (\n 4 -> n * radix + d) (map (fromIntegral . digToInt) ds), r)
| (ds,r) <- nonnull isDig s]

—-- Unsigned readers for various bases

readDec, readOct, readHex :: (Integral a) => ReadS a
readDec = readInt 10 isDigit digitToInt

readOct = readInt 8 isOctDigit digitTolInt

readHex = readInt 16 isHexDigit digitToInt

showEFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
showFFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
showGFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
showFloat :: (RealFloat a) => a -> ShowS

showEFloat d x

showString (formatRealFloat FFExponent d x)
showFFloat d x showString (formatRealFloat FFFixed d x)
showGFloat d x showString (formatRealFloat FFGeneric d x)
showFloat = showGFloat Nothing

-—- These are the format types. This type is not exported.
data FFFormat = FFExponent | FFFixed | FFGeneric

4.1 Library Numeric 13

formatRealFloat :: (RealFloat a) => FFFormat -> Maybe Int -> a -> String
formatRealFloat fmt decs x = s
where base = 10
s = if isNaN x then
"NaN"
else if isInfinite x then
if x < 0 then "-Infinity" else "Infinity"
else if x < 0 || isNegativeZero x then
’-? : doFmt fmt (floatToDigits (toInteger base) (-x))
else
doFmt fmt (floatToDigits (toInteger base) x)
doFmt fmt (is, e) =
let ds = map intToDigit is
in case fmt of
FFGeneric ->
doFmt (if e < 0 || e > 7 then FFExponent else FFFixed)
(is, e)
FFExponent ->
case decs of
Nothing ->
case ds of
[’0°] -> "0.0eO"
[d] ->d : ".0e" ++ show (e-1)
d:ids =>d : ’.’” : ds ++ ’e’:show (e-1)
Just dec —>
let dec’ = max dec 1 in
case is of
[0] => ’0’:?.’:take dec’ (repeat ’0’) ++ "eO"
_ ->
let (ei, is’) = roundTo base (dec’+1) is
d:ds = map intToDigit
(if ei > O then init is’ else is’)
in d:’.’:ds ++ "e" ++ show (e-1l+ei)

FFFixed ->
case decs of
Nothing ->
let f 0 s ds = mk0O s ++ "." ++ mkO ds
fns " =f (n-1) (s++"0") un
fns (d:ds) = f (n-1) (s++[d]) ds
rﬂko N = Iloll
mkO s = s
in f e "" ds

Just dec ->
let dec’ = max dec O in

14 4 NUMERIC

if e >= 0 then
let (ei, is’) = roundTo base (dec’ + e) is
(1s, rs) = splitAt (e+ei) (map intToDigit is’)
in (if null 1s then "O" else 1ls) ++
(if null rs then "" else ’.’ : rs)
else
let (ei, is’) = roundTo base dec’
(replicate (-e) 0 ++ is)
d : ds = map intToDigit
(if ei > O then is’ elsgse 0:is’)
in d : ’.? : ds

roundTo :: Int -> Int -> [Int] -> (Int, [Int])
roundTo base d is = case f d is of
(0, is) —> (0, is)
(1, is) -> (1, 1 : is)
where b2 = base ‘div‘ 2
f n [] = (0, replicate n 0)
f 0 (i:.) = (if 1 >= b2 then 1 else 0, []1)
fd (i:is) =
let (¢, ds) = f (d-1) is
i’ =c +1
in if i’ == base then (1, 0:ds) else (0, i’:ds)

-- Based on "Printing Floating-Point Numbers Quickly and Accurately"
-- by R.G. Burger and R. K. Dybvig, in PLDI 96.
-- This version uses a much slower logarithm estimator. It should be improved.

-- This function returns a list of digits (Ints in [0..base-1]) and an
—— exponent.

floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int)

4.1 Library Numeric 15

floatToDigits _ 0 = ([0], 0)
floatToDigits base x =
let (f0, e0) = decodeFloat x
(minExp0, _) = floatRange x
p = floatDigits x
b = floatRadix x
minExp = minExp0O - p —-- the real minimum exponent
-- Haskell requires that f be adjusted so denormalized numbers
-- will have an impossibly low exponent. Adjust for this.
(f, e) = let n = minExp - €0
in if n > 0 then (f0 ‘div‘ (b°n), e0+n) else (f0, e0)

(r, s, mUp, mDn) =
if e >= 0 then
let be = b"e in
if f == b~ (p-1) then
(f*xbe*b*2, 2*b, be*b, b)
else
(f*be*2, 2, be, be)
else
if e > minExp && f == b~(p-1) then
(f*b*2, b~ (-e+1)*2, b, 1)
else
(f*2, b~ (-e)*2, 1, 1)

k =
let kO =
if b==2 && base==10 then
-—- logBase 10 2 is slightly bigger than 3/10 so
-- the following will err on the low side. Ignoring
-- the fraction will make it err even more.
-- Haskell promises that p-1 <= logBase b f < p.
(p -1+ e0) %3 ‘div‘ 10
else
ceiling ((log (fromInteger (f+1)) +
fromInt e * log (fromInteger b)) /
log (fromInteger base))
fixup n =
if n >= 0 then
if r + mUp <= expt base n * s then n else fixup (n+1)
else
if expt base (-n) * (r + mUp) <= s then n
else fixup (n+1)
in fixup kO

gen ds rn sN mUpN mDnN =

16

rds

-- This floating point reader uses a less restrictive syntax for floating
-- point than the Haskell lexer. The ¢.

readFloat
readFloat r

lexDigits
lexDigits

nonnull
nonnull p s

4 NUMERIC

let (dn, rn’) = (rn * base) ‘divMod‘ sN
mUpN’ = mUpN * base
mDnN’ = mDnN * base
in case (rn’ < mDnN’, rn’ + mUpN’ > sN) of
(True, False) -> dn :
(False, True) -> dn+l :

(True, True) > if rn’ * 2 < sN then dn :

ds

ds

(False, False) -> gen (dn:ds) rn’ sN mUpN’ mDnN’

if k >=
gen

else

let

0 then

[l r (s * expt base k) mUp mDn

bk = expt base (-k)

in gen []1 (r * bk) s (mUp * bk) (mDn * bk)
in (map toInt (reverse rds), k)

(RealFloat a) => ReadS a
= [(fromRational ((n%1)*10""(k-d)),t) |

lexFrac (’.’:ds)

?

is optional.

ds else dn+1l

: ds

(n,d,s) <~ readFix r,

(k,t) <~ readExp s]
where readFix r = [(read (ds++ds’), length ds’, t)

(ds,d) <- lexDigits r,
(ds’,t) <- lexFrac d]

lexDigits ds

lexFrac s = [("",s)]
readExp (e:s) | e ‘elem‘ "eE" = readExp’ s
readExp s = [(0,s)]

readExp’ (’-’:s)
readExp’ (’+’:8)
readExp’ s

:: ReadS String

nonnull isDigit

[(-k,t) | (k,t) <- readDec s]
readDec s
readDec s

(Char -> Bool) -> ReadS String
[(cs,t) | (es@(_:.),t) <- [span p s]]

17

5 Indexing Operations

module Ix (Ix(range, index, inRange), rangeSize) where
class (0Ord a) => Ix a where

range it (a,a) -> [al

index :: (a,a) -> a -> Int

inRange :: (a,a) -> a -> Bool
rangeSize :: (Ix a) => (a,a) -> Int
instance Ix Char where ...
instance Ix Int where .
instance Ix Integer where ...
instance (Ix a, Ix b) => Ix (a,b) where .
-— et cetera
instance Ix Bool where
instance Ix Ordering where ...

The Ix class is used to map a continuous subrange of values in a type onto integers. It
is used primarily for array indexing (see Section 6). The Ix class contains the methods
range, index, and inRange. The index operation maps a bounding pair, which defines the
lower and upper bounds of the range, and a subscript, to an integer. The range operation
enumerates all subscripts; the inRange operation tells whether a particular subscript lies in
the range defined by a bounding pair.

An implementation is entitled to assume the following laws about these operations:
range (1,u) !! index (1,u) i == i -- when i is in range

inRange (1,u) i == i ‘elem‘ range (1,u)

5.1 Deriving Instances of Ix

Derived instance declarations for the class Ix are only possible for enumerations (i.e. da-
tatypes having only nullary constructors) and single-constructor datatypes, including arbi-
trarily large tuples, whose constituent types are instances of Ix.

e For an enumeration, the nullary constructors are assumed to be numbered left-to-right
with the indices being 0 to n — 1 inclusive. This is the same numbering defined by
the Enum class. For example, given the datatype:

data Colour = Red | Orange | Yellow | Green | Blue | Indigo | Violet

we would have:

18 5 INDEXING OPERATIONS

instance (Ix a, Ix b) => Ix (a,b) where
range ((1,17),(u,u’))
= [(i,i’) | i <- range (1,u), i’ <~ range (1’,u’)]
index ((1,17),(u,u’)) (i,i’)
= index (1,u) i * rangeSize (1’,u’) + index (1’,u’) i’
inRange ((1,1’),(u,u’)) (i,i?%)
= inRange (1,u) i && inRange (1’,u’) i’

-- Instances for other tuples are obtained from this scheme:

-- instance (Ix al, Ix a2, ... , Ix ak) => Ix (al,a2,...,ak) vwhere
- range ((11,12,...,1k),(ul,u2,...,uk)) =

- [(i1,i2,...,ik) | i1l <- range (11,ul),

- i2 <~ range (12,u2),

- ik <- range (lk,uk)]

- index ((11,12,...,1k),(ul,u2,...,uk)) (i1,i2,...,ik) =
- index (1k,uk) ik + rangeSize (1lk,uk) * (

- index (1k~1,uk-1) ik-1 + rangeSize (1k-1,uk-1) * (
- index (11,ul)))

- inRange ((11,12,...1k),(ul,u2,...,uk)) (il1,i2,...,ik) =

- inRange (11,ul) il &% inRange (12,u2) i2 &&
- ... && inRange (1lk,uk) ik

Figure 1: Derivation of Ix instances

range (Yellow,Blue) == [Yellow,Green,Blue]
index (Yellow,Blue) Green == 1
inRange (Yellow,Blue) Red == False

e For single-constructor datatypes, the derived instance declarations are as shown for
tuples in Figure 1.

5.2 Library Ix

5.2 Library Ix

module Ix (Ix(range, index, inRange), rangeSize) where

class (0Ord a) => Ix a where

range :: (a,a) -> [al
index :: (a,a) -> a —> Int
inRange :: (a,a) -> a -> Bool
rangeSize :: Ix a => (a,a) -> Int
rangeSize b@(1,h) | null (range b) = 0
| otherwise = index b h + 1

-~ NB: replacing "null (range b)" by "1 > h" fails if
-- the bounds are tuples. For example,

- 2,1 > (1,2),

-- but

- range ((2,1),(1,2)) = []

instance Ix Char where

range (m,n) = [m..n]
index b@(c,c’) ci
| inRange b ci = fromEnum ci - fromEnum c
| otherwise = error "Ix.index: Index out of range."

inRange (c,c’) i c<=1&&i<=c’

instance Ix Int where

range (m,n) = [m..n]
index b@(m,n) i
| inRange bi = i-m
| otherwise = error "Ix.index: Index out of range."

inRange (m,n) i m<=1i&ki<=n

instance Ix Integer where
range (m,n) = [m..n]
index b@(m,n) i
| inRange b i
| otherwise
inRange (m,n) i

fromInteger (i - m)
error "Ix.index: Index out of range."
m<=1ié&ki<=n

instance (Ix a,Ix b) => Ix (a, b) —- as derived, for all tuples
instance Ix Bool -- as derived
instance Ix Ordering —-- as derived

instance Ix () -- as derived

20 6 ARRAYS
6 Arrays
module Array (
module Ix, -- export all of Ix for convenience
Array, array, listArray, (!), bounds, indices, elems, assocs,
accumArray, (//), accum, ixmap) where
import Ix
infixl 9 !, //
data (Ix a) => Array a b = ... -- Abstract
array (Ix a) => (a,a) -> [(a,b)] -> Array a b
listArray (Ix a) => (a,a) -> [b] -> Array a b
D) (Ix a) => Array a b ->a ->b
bounds (Ix a) => Array a b -> (a,a)
indices (Ix a) => Array a b -> [al
elems (Ix a) => Array a b -> [b]
assocs (Ix a) => Array a b -> [(a,b)]
accumArray (Ixa) => (b > c¢c ->b) => b -> (a,a) > [(a,c)]
-> Array a b
/7 (Ix a) => Array a b -> [(a,b)] -> Array a b
accum (Ix a) => (b => ¢ -> b) -> Array a b -> [(a,c)]
-> Array a b
ixmap (Ix a, Ix b) => (a,a) -> (a -> b) -> Array b ¢
-> Array a ¢
instance Functor (Array a) where .
instance (Ix a, Eq b) => Eq (Array a b) where ...
instance (Ix a, Ord b) => Ord (Array a b) where ..
instance (Ix a, Show a, Show b) => Show (Array a b) where ...
instance (Ix a, Read a, Read b) => Read (Array a b) where ..

Haskell provides indexable arrays, which may be thought of as functions whose domains are
isomorphic to contiguous subsets of the integers. Functions restricted in this way can be
implemented efficiently; in particular, a programmer may reasonably expect rapid access to
the components. To ensure the possibility of such an implementation, arrays are treated as
data, not as general functions.

Since most array functions involve the class Ix, this module is exported from Array so that
modules need not import both Array and Ix.

6.1 Array Construction 21

-— Scaling an array of numbers by a given number:

scale :: (Num a, Ix b) => a -> Array b a -> Array b a

scale x a = array b [(i, a!i * x) | 1 <~ range b]
where b = bounds a

-- Inverting an array that holds a permutation of its indices
invPerm :: (Ix a) => Array a a -> Array a a
invPerm a = array b [(al!i, i) | i <- range bl

where b = bounds a

—-- The inner product of two vectors
inner :: (Ix a, Num b) => Array a b -> Array a b -> b
inner v w = if b == bounds w
then sum [v!i * w!i | i <- range b]
else error "inconformable arrays for inner product"
where b = bounds v

Figure 2: Array examples

6.1 Array Construction

If a is an index type and b is any type, the type of arrays with indices in a and elements in b
is written Array a b. An array may be created by the function array. The first argument
of array is a pair of bounds, each of the index type of the array. These bounds are the lowest
and highest indices in the array, in that order. For example, a one-origin vector of length
10 has bounds (1,10), and a one-origin 10 by 10 matrix has bounds ((1,1),(10,10)).

The second argument of array is a list of associations of the form (indez, value). Typically,
this list will be expressed as a comprehension. An association (i, x) defines the value of
the array at index i to be x. The array is undefined (i.e. 1) if any index in the list is out of
bounds. If any two associations in the list have the same index, the value at that index is
undefined (i.e.). Because the indices must be checked for these errors, array is strict in
the bounds argument and in the indices of the association list, but nonstrict in the values.
Thus, recurrences such as the following are possible:

a = array (1,100) ((1,1) : [(i, i * at(i-1)) | i < [2..100]]1)

Not every index within the bounds of the array need appear in the association list, but the
values associated with indices that do not appear will be undefined. Figure 2 shows some
examples that use the array constructor.

The (!) operator denotes array subscripting. The bounds function applied to an array
returns its bounds. The functions indices, elems, and assocs, when applied to an array,
return lists of the indices, elements, or associations, respectively, in index order. An array
may be constructed from a pair of bounds and a list of values in index order using the
function listArray.

22 6 ARRAYS

If, in any dimension, the lower bound is greater than the upper bound, then the array is
legal, but empty. Indexing an empty array always gives an array-bounds error, but bounds
still yields the bounds with which the array was constructed.

6.1.1 Accumulated Arrays

Another array creation function, accumArray, relaxes the restriction that a given index may
appear at most once in the association list, using an accumulating function which combines
the values of associations with the same index. The first argument of accumArray is the
accumulating function; the second is an initial value; the remaining two arguments are a
bounds pair and an association list, as for the array function. For example, given a list of
values of some index type, hist produces a histogram of the number of occurrences of each
index within a specified range:

hist :: (Ix a, Num b) => (a,a) -> [a] -> Array a b
hist bnds is = accumArray (+) O bnds [(i, 1) | i<-is, inRange bnds il

If the accumulating function is strict, then accumArray is strict in the values, as well as the
indices, in the association list. Thus, unlike ordinary arrays, accumulated arrays should not
in general be recursive.

6.2 Incremental Array Updates

The operator (//) takes an array and a list of pairs and returns an array identical to the
left argument except that it has been updated by the associations in the right argument.
(As with the array function, the indices in the association list must be unique for the
updated elements to be defined.) For example, if m is a l-origin, n by n matrix, then
m//L((i,i), 0) | i <- [1..n]] is the same matrix, except with the diagonal zeroed.

accum f takes an array and an association list and accumulates pairs from the list into the
array with the accumulating function f. Thus accumArray can be defined using accum:

accumArray f z b = accum f (array b [(i, z) | i <- range b])

6.3 Derived Arrays

The two functions map and ixmap derive new arrays from existing ones; they may be thought
of as providing function composition on the left and right, respectively, with the mapping
that the original array embodies. The map function transforms the array values while ixmap
allows for transformations on array indices. Figure 3 shows some examples.

6.4 Library Array 23

-- A rectangular subarray
subArray :: (Ix a) => (a,a) -> Array a b -> Array a b
subArray bnds = ixmap bnds (\i->1)

-— A row of a matrix
row :: (Ix a, Ix b) => a -> Array (a,b) ¢ => Array b ¢
row i x = ixmap (1’,u’) (\j->(i,j)) x where ((1,1’),(u,u’)) = bounds x

-- Diagonal of a square matrix
diag :: (Ix a) => Array (a,a) b -> Array a b
diag x = ixmap (1,u) (\i->(i,1)) x
where ((1,1’),(u,u’)) | 1 ==1° & u == u’ = bounds x

-- Projection of first components of an array of pairs
firstArray :: (Ix a) => Array a (b,c) -> Array a b
firstArray = map (\(x,y)->x)

Figure 3: Derived array examples

6.4 Library Array

module Array (
module Ix, -- export all of Ix
Array, array, listArray, (!), bounds, indices, elems, assocs,
accumArray, (//), accum, ixmap) where

import Ix
import List((\\))

infixl 9 !, //
data (Ix a) => Array a b = MkArray (a,a) (a -> b) deriving ()

array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b
array b ivs =
if and [inRange b i | (i,_.) <- ivs]
then MkArray b

(\j -> case [v | (i,v) <- ivs, i == j] of
[vl] —>v
[1 -> error "Array.!: \
\undefined array element"
_ -> error "Array.!: \

\multiply defined array element")
else error "Array.array: out-of-range array association"

listArray :: (Ix a) => (a,a) -> [b] -> Array a b
listArray b vs = array b (zipWith (\ a b -> (a,b)) (range b) vs)

24

)

(1) (MkArray _ f)

bounds

bounds (MkArray b _)

indices
indices

elems
elems a

assocCs
assocs a

un
a// us

accum

accum f

accumArray

accumdrray f z b

ixmap

ixmap b f a

instance
fmap

instance
a==

instance
a <=

instance

showsPrec p a

f

b

(Ix a, Eq b)

(Ix a, Ord b)

6 ARRAYS

(Ix a) => Array ab ->a > b

(Ix a) => Array a b -> (a,a)

(Ix a) => Array a b -> [a]
range . bounds

(Ix a) => Array a b -> [b]
[a!i | i <- indices a]

(Ix a) => Array a b -> [(a,b)]
[(i, a!i) | 1 <- indices a]

(Ix a) => Array a b -> [(a,b)] -> Array a b

array (bounds a)
([(i,a'i) | i <~ indices a \\ [i | (i,_) <- wusl]
++ us)

(Ix a) => (b -> ¢ => b) => Array a b -> [(a,c)]
-> Array a b
foldl (\a (i,v) -> a // [(i,f (ali) v)])

(Ixa) = (b ->c ->b) ->b -> (a,a) —> [(a,c)]
-> Array a b
accum £ (array b [(i,z) | i <- range b])

(Ix a, Ix b) => (a,a) -> (a -> b) -> Array b ¢
-> Array a ¢

array b [(i, a ! £ i) | i <~ range b]

=> Functor (Array a) where

fn (MkArray b f) = MkArray b (fn . f)

=> Eq (Array a b) where

assocs a == assocs a’

=> 0rd (Array a b) where

assocs a <= assocs a’

(Ix a, Show a, Show b) => Show (Array a b) where
showParen (p > 9) (

showString "array "

shows (bounds a) . showChar ’ ’

shows (assocs a))

6.4 Library Array

instance (Ix a, Read a, Read b) => Read (Array a b) where
readsPrec p = readParen (p > 9)
(\r -> [(array b as, u) | ("array",s) <- lex r,
(b,t) <- reads s,
(as,u) <- reads t

D

25

7 List Utilities

27

module List (
elemIndex, elemIndices,
find, findIndex, findIndices,
nub, nubBy, delete, deleteBy, (\\), deleteFirstsBy,
union, unionBy, intersect, intersectBy,
intersperse, transpose, partition, group, groupBy,
inits, tails, isPrefix0f, isSuffixOf,
mapAccumlL, mapAccumR,
sort, sortBy, insert, insertBy, maximumBy, minimumBy,
genericLength, genericTake, genericDrop,
genericSplitAt, genericIndex, genericReplicate,
zip4, zipb, zip6, =zip7,
zipWith4, zipWith5, zipWith6, zipWith7,
unzip4, unzipb5, unzip6, unzip7, unfoldr,

-- ...and what the Prelude exports

0da:), [,

map, (++), concat, filter,

head, last, tail, init, null, length, (!!),

foldl, foldll, scanl, scanll, foldr, foldrl, scanr, scanrl,
iterate, repeat, replicate, cycle,

take, drop, splitAt, takeWhile, dropWhile, span, break,
lines, words, unlines, unwords, reverse, and, or,

any, all, elem, notElem, lookup,

sum, product, maximum, minimum, concatMap,

zip, zip3, zipWith, zipWith3, unzip, unzip3

) where
infix 5 \\
elemIndex :: Eq a => a -> [a] -> Maybe Int
elemIndices :: Eq a =>a -> [a] -> [Int]
find :: (a => Bool) -> [a] -> Maybe a
findIndex :: (a -> Bool) -> [a] -> Maybe Int
findIndices :: (a -> Bool) —> [a] -> [Int]
nub :: Eq a => [a] -> [al
nubBy :: (a -> a -> Bool) -> [a] -> [a]
delete :: Eqa=>a->[a] -> [a]
deleteBy :: (a -> a => Bool) -> a -> [a] -> [al
AV :: Eq a => [a] -> [a] -> [a]
deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
union :: Eq a => [a] -> [a] -> [a]

unionBy :: (a -> a -> Bool) —> [a] -> [a] -> [a]

28 7 LIST UTILITIES

intersect :: Eq a => [a] > [a] -> [al
intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
intersperse ::a -> [a]l -> [al
transpose :: [[al]l > [[all
partition :: (a -> Bool) —> [a]l -> ([al,[al)
group :: Eq a => [a] > [[all
groupBy :: (a -> a -> Bool) -> [a]l -> [[all
inits :: [al -> [[all
tails :: [al —> [[all
isPrefix0f :: Eq a => [a] -> [a] -> Bool
isSuffix0f :: Eq a => [a] -> [a] -> Bool
mapAccumL it (a->b ->(a, ¢)) > a -> [bl -> (a, [c])
mapAccumR it (@->b > (a, ¢)) ->a ~> [bl > (a, [cD
unfoldr :: (b -> Maybe (a,b)) -> b -> [a]
sort :: Ord a => [a] -> [a]
sortBy :: (a => a -> Ordering) -> [a] -> [al
insert :: 0rd a => a -> [a] —> [a]
insertBy :: (a -> a -> Ordering) -> a -> [a] -> [al
maximumBy :: (a -> a -> Ordering) -> [a] > a
minimumBy :: (a => a -> Ordering) -> [a] -> a
genericLength :: Integral a => [b]l -> a
genericTake :: Integral a => a -> [b] -> [b]
genericDrop :: Integral a => a -> [b] -> [b]
genericSplitAt :: Integral a => a -> [b] -> ([bl, [b])
genericIndex :: Integral a => [b] -> a > b
genericReplicate :: Integral a => a -> b -> [b]
zip4 :: [a] -> [b] -> [c] -> [d] -> [(a,b,c,d)]
zip5 :: [a] => [b] -> [c] -> [d] -> [e] -> [(a,b,c,d,e)]
zip6 t: [a] -> [b] -> [c] -> [d] > [e]l —> [f]
-> [(a,b,c,d,e,f)]
zip7 :: [a] > [b] -> [c] => [d] -> [e]l ~> [£f] -> [g]
-> [(a,b,c,d,e,f,g)]
zipWith4 1t (a->b->c->d->e) -> [a]->[b]->[c]->[d]l->[e]
zipWithb :: (a->b->¢c->d->e->f) —>
[a]l->[bl->[c]->[d]->[e]->[£]
zipWithé 11 (a->b->c->d->e->f->g) ->
[a]->[b]->[c]->[d]->[e]l->[£]1->[g]
zipWith7 :: (a->b->c->d->e->f->g->h) ->
[a]l->[bl->[c]->[d]l->[e]l->[£]1->[g]l->[h]
unzip4 :: [(a,b,c,d)] -> ([a],[b]l,[c],[d])
unzip5 :: [(a,b,c,d,e)] -> ([al,[bl, [c],[d],[e])
unzip6 :: [(a,b,c,d,e,f)] -> ([al,[bl,[c],[d], [e], [£f])
unzip? :: [(a,b,c,d,e,f,g)] -> ([al,[bl,[c],[d], [e], [£f],[g])

7.1 Indexing lists 29
This library defines some lesser-used operations over lists.

7.1 Indexing lists

Function elemIndex val list returns the index of the first occurrence, if any, of val in
list as Just index. Nothing is returned if not (val ‘elem‘ list).

Function elemIndices val list returns an in-order list of indices, giving the occurrences
of val in 1list.

Function find returns the first element of a list that satisfies a predicate, or Nothing, if
there is no such element. findIndex returns the corresponding index. findIndices returns
a list of all such indices.

7.2 “Set” operations

There are a number of “set” operations defined over the List type. nub (meaning “essence”)
removes duplicates elements from a list. delete, (\\), union and intersect preserve the
invariant that lists don’t contain duplicates, provided that their first argument contains no
duplicates.

e delete x removes the first occurrence of x from its list argument, e.g.,

delete ’a’ "banana" == "bnana"

e (\\) is list difference (non-associative). In the result of xs \\ ys, the first oc-
currence of each element of ys in turn (if any) has been removed from xs. Thus,
(xs ++ ys) \\ xs == ys. union is list union, e.g.,

"dog" ‘union‘ "cow" == "dogcw"

e intersect is list intersection, e.g.,

intersect [1,2,3,4] ‘intersect‘ [2,4,6,8] == [2,4]

7.3 List transformations

e intersperse sep inserts sep between the elements of its list argument, e.g.,

intersperse ’,’ "abcde" == "a,b,c,d,e"

30

7.4

7 LIST UTILITIES

transpose transposes the rows and columns of its argument, e.g,.,

transpose [[1,2,3],[4,5,6]1] == [[1,4],[2,5],[3,61]

partition takes a predicate and a list and returns a pair of lists: those elements of
the argument list that do and do not satisfy the predicate, respectively; i.e.,

partition p xs == (filter p xs, filter (not . p) xs)

sort/sortBy implement a stable sorting algorithm, here specified in terms of the
insertBy function, which inserts objects into a list according to the specified ordering
relation.

group splits its list argument into a list of lists of equal, adjacent elements. For
exmaple

group IIMiSSiSSipPiII e [IIMII , llill s IISSII R llill R IISSII s Ilill , Ilppll , llill]

inits returns the list of initial segments of its argument list, shortest first.

inits "abc" == [llll,llall,llabll,Ilabcll]

tails returns the list of all final segments of its argument list, longest first.

tails "abc" == ["abc", "bc", “c",""]

mapAccumL. £ s 1 applies £ to an accumulating “state” parameter s and to each
element of 1 in turn.

mapAccumR is similar to mapAccumL except that the list is processed from right-to-left
rather than left-to-right.

unfoldr

The unfoldr function undoes a foldr operation. Note that, in general, only invertible
functions can be unfolded.

unfoldr £’ (foldr £ z xs) == xs

if the following holds:

£2 (f x y)
f’ z

Just (x,y)
Nothing

7.5 Predicates 31

7.5 Predicates

isPrefix0f and isSuffix0f check whether the first argument is a prefix (resp. suffix) of
the second argument.

7.6 The “By” operations

By convention, overloaded functions have a non-overloaded counterpart whose name is
suffixed with “By”. For example, the function nub could be defined as follows:

nub :: (Eq a) => [a] -> [a]
nub [] = [
nub (x:xs) = x : nub (filter (\y -> x /= y) xs)

However, the equality method may not be appropriate in all situations. The function:

nubBy :: (a -> a -> Bool) -> [a] -> [al
nubBy eq [] = 0
nubBy eq (x:xs) = x : nubBy eq (filter (\y -> not (eq x y)) xs)

allows the programmer to supply their own equality test. When the “By” function replaces
an Eq context by a binary predicate, the predicate is assumed to define an equivalence; when
the “By” function replaces an Ord context by a binary predicate, the predicate is assumed
to define a total ordering.

The “By” variants are as follows: nubBy, deleteBy, unionBy, intersectBy, groupBy,
sortBy, insertBy, maximumBy, minimumBy. The library does not provide elemBy, because
any (eq x) does the same job as elemBy eq x would. A handful of overloaded func-
tions (elemIndex, elemIndices, isPrefix0f, isSuffix0f) were not considered important
enough to have “By” variants.

7.7 The “generic” operations
The prefix “generic” indicates an overloaded function that is a generalised version of a
Prelude function. For example,
genericLength :: Integral a => [b] -> a
is a generalised verion of length.

The “generic” operations are as follows: genericLength, genericTake, genericDrop,
g P g gth, g) 8 P
genericSplitAt, genericIndex, genericReplicate.

32 7 LIST UTILITIES

7.8 Library List

module List (
elemIndex, elemIndices,
find, findIndex, findIndices,
nub, nubBy, delete, deleteBy, (\\),
union, unionBy, intersect, intersectBy,
intersperse, transpose, partition, group, groupBy,
inits, tails, isPrefix0f, isSuffixO0f,
mapAccuml, mapAccumR,
sort, sortBy, insert, insertBy, maximumBy, minimumBy,
genericLength, genericTake, genericDrop,
genericSplitAt, genericIndex, genericReplicate,
zip4, zipb, zip6, zip7,
zipWith4, zipWith5, zipWith6, zipWith7,
unzip4, unzip5, unzip6, unzip7, unfoldr,

-- ...and what the Prelude exports

adac:),),

map, (++), concat, filter,

head, last, tail, init, null, length, (!!),

foldl, foldll, scanl, scanll, foldr, foldrl, scanr, scanrl,
iterate, repeat, replicate, cycle,

take, drop, splitAt, takeWhile, dropWhile, span, break,
lines, words, unlines, unwords, reverse, and, or,

any, all, elem, notElem, lookup,

sum, product, maximum, minimum, concatMap,

zip, zip3, zipWith, zipWith3, unzip, unzip3

) where

import Maybe(listToMaybe)

infix 6 \\

elemIndex :: Eq a => a -> [a] -> Maybe Int
elemIndex x = findIndex (x ==

elemIndices :: Eqg a =>a -> [a] -> [Int]
elemIndices x = findIndices (x ==

find :: (a -> Bool) -> [a] -> Maybe a
find p = listToMaybe . filter p
findIndex :: (a -> Bool) -> [a]l -> Maybe Int
findIndex p = listToMaybe . findIndices p
findIndices :: {a -> Bool) -> [a] -> [Int]

findIndices p xs [il (x,i) <- zip xs [0..], p x]

7.8 Library List

nub
nub

nubBy
nubBy eq []
nubBy eq (x:xs)

delete
delete

deleteBy
deleteBy eq x []
deleteBy eq x (y:ys)

A\
A\

deleteFirstsBy
deleteFirstsBy eq

union
union

unionBy
unionBy eq xs ys

intersect
intersect

intersectBy
intersectBy eq xs ys

intersperse
intersperse sep []
intersperse sep [x]

intersperse sep (x:xs)

-- transpose is lazy

in

:: Eq a => [a] > [a]
= nubBy (==

:: (a -> a —> Bool) -> [a] -> [a]
= []

33

= x : nubBy eq (filter (\y -> not (eq x y)) xs)

:: Eqa =>a -> [a] > [a]
= deleteBy (==

:: (a2 ~> a -> Bool) -> a -> [a] —> [a]
(]

:: Eq a => [a] > [a] -> [a]
= foldl (flip delete)

:: (a -> a -> Bool) -> [a] -> [a] -> [a]
= foldl (flip (deleteBy eq))

:: Eq a => [a] -> [a] -> [a]
= unionBy (==

:: (a -> a => Bool) -> [a] -> [a] -> [a]
= xs ++ foldl (flip (deleteBy eq)) (nubBy eq

:: Eq a => [a] -> [a] -> [a]
= intersectBy (==)

(a => a -> Bool) -> [a] -> [a] -> [al
= [x | x <- xs, any (eq x) ys]

::a > [a] —> [a]
= []
[x]

X : sep : intersperse sep xs

both rows and columns,

- and works for non-rectangular ’matrices’

-- For example, transpose [[1,2],[3,4,5],01] = [[1,3],[2,4],[5]]
-~ Note that [h | (h:t) <- xss] is not the same as (map head xss)
-- because the former discards empty sublists inside xss

transpose
transpose []
transpose ([]
transpose ((x:xs)

: x88)
: x88)

tfal]l -> [fall
(]
transpose xss
(x : [h | (h:t) <= xss])
transpose (xs : [t | (h:t) <- xssl)

if x ‘eq‘ y then ys else y : deleteBy eq x ys

ys) xs

34

partition
partition p xs

7 LIST UTILITIES

(a -> Bool) -> [a] -> ([al,[a])
foldr select ([J1,[]) xs
where select x (ts,fs) | p x

| otherwise

(x:ts,fs)
(ts, x:fs)

—-- group splits its list argument into a list of lists of equal, adjacent

~- elements. e.g.,
-- group "Mississippi" ==
group

group

groupBy
groupBy eq []
groupBy eq (x:xs)

xs returns the
inits "abc" ==

-— inits
-- e.g.,
inits

inits []
inits (x:

xs)

X8 returns the
tails "abc

-- tails
-- e.g.,
tails

tails []
tails xxs@(_:xs)

isPrefix0f

isPrefix0f [] -
isPrefix0f _ [
isPrefix0f (x:xs) (y:ys)

isSuffixDf
isSuffix0f x y

mapAccumL
mapAccumL £
mapAccumL f

(]

(x:x8)

2]

mapAccumR
mapAccumR f
mapAccumR f

(]

(x:x8)

[IIMII , llill , IISSII ,Ilill s IISSII ,llill ,llppll ,lliII]

:: Eq a => [al -> [[a]]

groupBy (==

(a => a -> Bool) -> [a] -> [[all]
[

(x:ys) : groupBy eq zs

where (ys,zs) = span (eq x) xs

list of initial segments of xs, shortest first.
[ll U} , Ilall , Ilab" , llabcll]

[al -> [[al]
(01
[[1] ++ map (x:) (inits xs)

list of all final segments of xs, longest first.
["abC", "bC", IICII,IIII]

[al -> [[al]
(011
xxs : tails xs

:: Eq a => [a] -> [a] -> Bool

True
False
x ==y && isPrefix0f xs ys

:: Eq a => [a] -> [a] -> Bool

reverse x ‘isPrefix0f‘ reverse y

(a=>b->(a, ¢)) ->a->[b] -> (a, [c])

(s, [
(s’?,y:y8)
where (s’, y) =f s x

(s’’,ys) = mapAccuml f s’ xs
(a=>b->(a, ¢)) >a->[b] - (a, [c]D
(s, [
(s??, y:ys)

fs’x
mapAccumR f s xs

where (s’’,y)
(s?, ys)

7.8 Library List

unfoldr
unfoldr £ b

sort
sort

sortBy
sortBy cmp

insert
insert

insertBy
insertBy cmp x []

insertBy cmp x ys@(y:ys’)

maximumBy
maximumBy max []
maximumBy max xs

minimumBy
minimumBy min []
minimumBy min xs

genericLength
genericLength []
genericLength (x:

genericTake
genericTake _ []
genericTake O _
genericTake n (x:
| n>0
| otherwise

genericDrop
genericDrop 0 xs
genericDrop _ []
genericDrop n (_:
| n>0
| otherwise

xs)

xs)

xs)

(b -> Maybe (a,b)) -> b -> [a]
case f b of
Nothing -> []
Just (a,b) -> a : unfoldr £ b

(0rd a) => [a] —> [a]
sortBy compare

(a -> a -> Drdering) -> [a] -> [al]
foldr (insertBy cmp) []

(0rd a) => a -> [a] -> [al]
insertBy compare

(a -> a -> Ordering) -> a -> [a] —> [a]
[x]

case cmp x y of
GT -> y : insertBy cmp x ys’
_ —> X : ys

(a->a->a) > [a]l >a
error "List.maximumBy: empty list"
foldll max xs

(a->a->a) > [a] > a
error "List.minimumBy: empty list"
foldll min xs

(Integral a) => [b] -> a
0
1 + genericLength xs

(Integral a) => a -> [b] -> [b]
(]
1

x : genericTake (n-1) xs
error "List.genericTake: negative argument"

(Integral a) => a -> [b] -> [b]
xS

(]

genericDrop (n-1) xs
error "List.genericDrop: negative argument"

35

36 7 LIST UTILITIES

genericSplitAt :: (Integral a) => a -> [b] -> ([bl,[bl)
genericSplitAt 0 xs = ([],xs)
genericSplitAt _ [] = (00,
genericSplitAt n (x:xs)
| n>0 = (x:x8’,x8’’)
| otherwise = error "List.genericSplitAt: negative argument"

where (xs’,xs’’) genericSplitAt (n-1) xs

genericIndex :: (Integral a) => [b] -> a > Db
genericIndex (x:.) O X
genericIndex (_:xs) n

| n>0 = genericIndex xs (n-1)

| otherwise = error "List.genericIndex: negative argument"
genericIndex _ _ = error "List.genericIndex: index too large"
genericReplicate :: (Integral a) => a -> b -> [b]

genericReplicate n x genericTake n (repeat x)

zip4 :: [a]l -> [b] => [c] -> [d] -> [(a,b,c,d)]

zip4 = zipWithd (,,,)

zip5 :: [a] -> [b] => [c] -> [d] -> [e] -> [(a,b,c,d,e)]

zipb = zipWithb (,,,,)

zip6 :: [a]l => [b] => [c] -> [d] -> [e]l —> [f] —>
[(a,b,c,d,e,f)]

zip6 = zipWithé (,,,,,)

zip7 :: [a] => [B] => [c] -> [d] -> [e] -> [£f] -
gl -> [(a,b,c,d,e,f,g)]

zip7 = zipWith7 (,,,,,,)

zipWith4 (a->b->c->d->e) -> [a]l->[b]l->[c]->[d]->[e]

zipWith4 z (a:as) (b:bs) (c:cs) (d:ds)
= zabcd: zipWith4 z as bs cs ds
zipWithd _ _ _ _ _ = [

zipWithb i1 (a->b->c->d->e->f) ->
[al->[b]l->[c]->[d]->[e]->[f]
zipWithb z (a:as) (b:bs) (c:cs) (d:ds) (e:es)
= zabcde : zipWithd z as bs ¢s ds es
zipWithb = [

zipWithé i1 (a=->b->c->d->e->f->g) ->
[al->[b]->[c]->[d]->[e]l->[f]->[g]
zipWith6 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs)
= zabcdef : zipWith6 z as bs ¢s ds es fs
zipWith6 _ _ _ _ _ _ _ = [

7.8 Library List 37

zipWith?7 it (a->b->c->d->e->f->g->h) >
[al->[b]->[c]->[d]->[e]l->[£]->[g]->[h]
zipWith7 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs)
= zabcdef g : zipWith7 z as bs cs ds es fs gs

zipWith7 _ _ _ _ _ _ _ _ =[]
unzip4 :: [(a,b,c,d)] -> ([al,[b],[c],[d])
unzip4 = foldr (\(a,b,c,d) ~(as,bs,cs,ds) ->
(a:as,b:bs,c:cs,d:ds))
(r1,0m,0,m
unzipb :: [(a,b,c,d,e)] -> ([a]l, [bl,[c],[d],[e])
unzipb = foldr (\(a,b,c,d,e) ~(as,bs,cs,ds,es) ->
(a:as,b:bs,c:cs,d:ds,e:es))
a,0,0,0,mo
unzip6 :: [(a,b,c,d,e,f)] -> ([al,[b]l,[c],[d],[e],[£f])
unzip6 = foldr (\(a,b,c,d,e,f) “(as,bs,cs,ds,es,fs) —>
(a:as,b:bs,c:cs,d:ds,e:es,f:fs))
a,0,0o,a0,0,m0)
unzip? :: [(a,b,c,d,e,f,g)] -> ([al,[b],[c],[d], [e], [£f], [g])
unzip7 = foldr (\(a,b,c,d,e,f,g) ~(as,bs,cs,ds,es,fs,gs) —>

(a:as,b:bs,c:cs,d:ds,e:es,f:fs,g:gs))

a,0,0,0,0,0,0)

38 8 MAYBE UTILITIES

8 Maybe Utilities

module Maybe(
isJust, isNothing,
fromJust, fromMaybe, listToMaybe, maybeToList,
catMaybes, mapMaybe,

-- ...and what the Prelude exports
Maybe (Nothing, Just),

maybe

) where
isJust, isNothing :: Maybe a -> Bool
fromJust :: Maybe a -> a
fromMaybe :: a —-> Maybe a > a
listToMaybe :: [a] -> Maybe a
maybeToList :: Maybe a -> [a]
catMaybes :: [Maybe a] -> [al
mapMaybe :: (a => Maybe b) -> [a] -> [b]

The type constructor Maybe is defined in Prelude as
data Maybe a = Nothing | Just a

The purpose of the Maybe type is to provide a method of dealing with illegal or optional
values without terminating the program, as would happen if error were used, and without
using I0Error from the I0 monad, which would cause the expression to become monadic.
A correct result is encapsulated by wrapping it in Just; an incorrect result is returned as
Nothing.

Other operations on Maybe are provided as part of the monadic classes in the Prelude.

8.1 Library Maybe 39

8.1 Library Maybe

module Maybe (
isJust, isNothing,
fromJust, fromMaybe, listToMaybe, maybeToList,
catMaybes, mapMaybe,

-- ...and what the Prelude exports
Maybe (Nothing, Just),

maybe
) where

isJust
isJust (Just a)
isJust Nothing

isNothing
isNothing

fromJust
fromJust (Just a)
fromJust Nothing

fromMaybe
fromMaybe d Nothing
fromMaybe d (Just a)

maybeToList
maybeToList Nothing
maybeToList (Just a)

listToMaybe
listToMaybe []
listToMaybe (a:_)

catMaybes
catMaybes ms

mapMaybe
mapMaybe £

: Maybe a -> Bool

True
False

:: Maybe a -> Bool

not . isJust

:: Maybe a -> a

a
error "Maybe.fromJust: Nothing"

:: a -> Maybe a -> a

d
a

:: Maybe a -> [a]

(]
[al

[a] -> Maybe a
Nothing
Just a

[Maybe al] -> [al
[m | Just m <- ms]

(a —> Maybe b) ~-> [a] -> [b]
catMaybes . map f

40 9 CHARACTER UTILITIES

9 Character Utilities

module Char (
isAscii, isLatinl, isControl, isPrint, isSpace, isUpper, isLower,
isAlpha, isDigit, isOctDigit, isHexDigit, isAlphaNum,
digitToInt, intToDigit,
toUpper, tolower,
ord, chr,
readlLitChar, showLitChar, lexLitChar

-- ...and what the Prelude exports
Char, String
) where

isAscii, isLatinl, isControl, isPrint, isSpace, isUpper, islower,
isAlpha, isDigit, isOctDigit, isHexDigit, isAlphaNum :: Char -> Bool

toUpper, toLower :: Char -> Char

digitToInt :: Char -> Int
intToDigit :: Int -> Char

ord :: Char -> Int
chr :: Int -> Char
lexLitChar :: ReadS String

readLitChar :: ReadS Char
showLitChar :: Char -> ShowS

This library provides a limited set of operations on the Unicode character set. The first 128
entries of this character set are identical to the ASCII set; with the next 128 entries comes
the remainder of the Latin-1 character set. This module offers only a limited view of the
full Unicode character set; the full set of Unicode character attributes is not accessible in
this library.

Unicode characters may be divided into five general categories: non-printing, lower case
alphabetic, other alphabetic, numeric digits, and other printable characters. For the pur-
poses of Haskell, any alphabetic character which is not lower case is treated as upper case
(Unicode actually has three cases: upper, lower, and title). Numeric digits may be part
of identifiers but digits outside the ASCII range are not used by the reader to represent
numbers.

For each sort of Unicode character, here are the predicates which return True:

41

Character Type Predicates

Lower Case Alphabetic | isPrint isAlphaNum isAlpha isLower
Other Alphabetic isPrint isAlphaNum isAlpha isUpper
Digits isPrint isAlphaNum

Other Printable isPrint

Non-printing

The isDigit, isOctDigit, and isHexDigit functions select only ASCII characters.
intToDigit and digitToInt convert between a single digit Char and the corresponding Int.
digitToInt operates fails unless its argument satisfies isHexDigit, but recognises both up-
per and lower-case hexadecimal digits (i.e. °0’..?9°, >a’..”£?, ’A’..’F’). intToDigit fails
unless its argument is in the range 0..15, and generates lower-case hexadecmial digits.

The isSpace function recognizes only white characters in the Latin-1 range.

The function showLitChar converts a character to a string using only printable characters,
using Haskell source-language escape conventions. The function readLitChar does the
reverse.

Function toUpper converts a letter to the corresponding upper-case letter, leaving any other
character unchanged. Any Unicode letter which has an upper-case equivalent is transformed.
Similarly, toLower converts a letter to the corresponding lower-case letter, leaving any other
character unchanged.

The ord and chr functions are fromEnum and toEnum restricted to the type Char.

42 9 CHARACTER UTILITIES

9.1 Library Char

module Char (
isAscii, isLatinl, isControl, isPrint, isSpace, isUpper, isLower,
isAlpha, isDigit, isOctDigit, isHexDigit, isAlphalum,
digitToInt, intToDigit,
toUpper, tolower,
ord, chr,
readLitChar, showLitChar, lexLitChar,

-- ...and what the Prelude exports
Char, String
) where

import Array -- used for character name table.
import Numeric (readDec, readOct, lexDigits, readHex)
import UnicodePrims -- source of primitive Unicode functions.

-- Character-testing operations
isAscii, isControl, isPrint, isSpace, isUpper, isLower,
isAlpha, isDigit, isOctDigit, isHexDigit, isAlphaNum :: Char -> Bool

isAscii ¢ = ¢ < ’\x80’
isLatinl ¢ = ¢ <= ’\xff’
isControl ¢ = ¢ <’ 7 || ¢ > ’\DEL’ && c <= ’\x9f’
isPrint = primUnicodelIsPrint
isSpace ¢ = ¢ ‘elem’ " \t\n\r\f\v\xA0"
-- Only Latin-1 spaces recognized
isUpper = primUnicodeIsUpper -- ’A’..°Z°
isLower = primUnicodeIsLower -- ’a’..’z’
isAlpha c = igUpper c¢ || isLower c
isDigit ¢ = ¢c>= 0" && c <=9’
isOctDigit ¢ = ¢ >= 0’ && c <=7’
isHexDigit ¢ = isDigit ¢ || ¢ >= ’A? && c <= 'F’ ||

c >=’a’ && c <= £’

isAlphaNum = primUnicodeIsAlphaNum

9.1 Library Char 43

-- Digit conversion operations
digitToInt :: Char -> Int
digitToInt c
| isDigit ¢ = fromEnum ¢ - fromEnum ’0’
| ¢ >= ’a’ && ¢ <= £’ fromEnum ¢ - fromEnum ’a’ + 10
| ¢ >= A’ && ¢ <= ’F’ fromEnum ¢ - fromEnum ‘A’ + 10
| otherwise = error "Char.digitToInt: not a digit"

]

intToDigit :: Int -> Char
intToDigit i

| i>0 & i <= 9 = toEnum (fromEnum ’0’ + i)
| i >= 10 & i <= 16 = toEnum (fromEnum ’a’ + i - 10)
| otherwise = error "Char.intToDigit: not a digit"

-~ Case-changing operations

toUpper :: Char -> Char
toUpper = primUnicodeToUpper
toLower :: Char -> Char
toLower = primUnicodeToLower

—- Character code functions

ord :: Char -> Int
ord = fromEnum
chr :: Int -> Char

chr = toEnum

44 9 CHARACTER UTILITIES

—— Text functions

readLitChar :: ReadS Char

readLitChar (’\\’:s) = readEsc s
where
readEsc (’a’:s) = [(’\a’,s)]
readEsc (’b’:s) = [(’\b’,s)]
readEsc (’f’:s) = [(’\f’,s)]
readEsc (’n’:s) = [(°\n’,s)]
readEsc (’r’:s) = [(’\r’,s)]
readEsc (’t’:s) = [(’\t’,s)]
readEsc (’v’:s) = [(°\v’,s)]
readEsc (’\\’:s) = [(’\\’,8)]
readEsc (°"’:s) = [(*"?,8)]
readEsc (°\’’:8) = [(°\’’,8)]

readEsc (?"’:c:8) | ¢ >= @ && ¢ <= ’_°
= [(chr (ord ¢ - ord ’Q’), s)]
readEsc s@(d:_) | isDigit d
[(chr n, t) | (n,t) <- readDec s]
readEsc (’o07:s) [(chr n, t) | (n,t) <- readOct s]
readEsc (’x’:s) [(chr n, t) | (n,t) <- readHex s]
readEsc s@(c:_) | isUpper ¢
= let table = (’\DEL’, "DEL") : assocs asciiTab
in case [(c,s’) | (c, mne) <- table,
([1,s’) <~ [match mne s]]
of (pr:.) -> [pr]

(1 -> [
readEsc _ = [
match :: (Eq a) => [a] -> [a] > ([a],[al)
match (x:xs) (y:ys) | x ==y = match xs ys
match xs ys = (xs,ys)

readLitChar (c:s) = [(c,s)]

9.1 Library Char

showLitChar :: Char -> ShowS
showLitChar ¢ | ¢ > ’\DEL’ showChar ’\\’
protectEsc isDigit (shows (ord c))

showLitChar ’\DEL’ = showString "\\DEL"
showLitChar ’\\’ = showString "\\\\"
showLitChar ¢ | ¢ >= ’> > = showChar c
showLitChar ’\a’ = showString "\\a"
showLitChar ’\b’ = showString "\\b"
showLitChar ’\f’ = showString "\\f"
showLitChar ’\n’ = showString "\\n"
showLitChar ’\r’ = showString "\\r"
showLitChar ’\t’ = showString "\\t"
showLitChar ’\v’ = ghowString "\\v"
showLitChar ’\S0’ . = protectEsc (== ’H’) (showString "\\S0")
showLitChar c = showString (’\\’ : asciiTablc)
protectEsc p £ =f . cont
where cont s@(c:_) | p ¢ = "\\&" ++ s
cont s =8

asciiTab = listArray (’\NUL’, ’)
[lINULll , ||SOH|| s IISTx" , IIETX" , llEOTll s IIENQII , |IACK|| , ||BELI| ,
llBSll , ||HTII , IILFII , IIVT" , llFFll s IICRII , ||SD'| , IISIII ,
IIDLEII , IlDCiII , IlDCzll s IIDCBII , IIDC4II s IINAK" , n SYNII , IIETBI) ,
llCANll , IIEMII , IISUBII , IIESC" , ||FS|| s IIGSII , ||RS" , IIUSII ,

"Sp"]
lexLitChar :: ReadS String
lexLitChar (°\\’:s) = [(’\\’:esc, t) | (esc,t) <- lexEsc s]
where
lexEsc (c:s) | ¢ ‘elem "abfnrtv\\\"’" = [([c],s)]
lexEsc s@(d:_) | isDigit d = lexDigits s
lexEsc (’~?:c:s8) | ¢ >= '@ && c <=’ = [([’"?,c],s)]
-- Very crude approximation to \XYZ. Let readers work this out.
lexEsc s@(c:_) | isUpper ¢ = [span isCharName s]
lexEsc _ =[]
isCharName ¢ = isUpper c¢ || isDigit c

lexLitChar (c:s) [([c],s)]
lexLitChar "" = []

46

10

10

Monad Utilities

MONAD UTILITIES

module Monad (

MonadPlus (mzero, mplus),

join, guard, when, unless, ap,

msum,

filterM, mapAndUnzipM, zipWithM, zipWithM_, foldM,
1iftM, 1iftM2, 1iftM3, liftM4, 1liftM5,

-- ...and what the Prelude exports
Monad((>>=), (>>), return, fail),
Functor (fmap) ,

mapM, mapM_, sequence, sequence_, (=<<),
) where

class Monad m => MonadPlus m where

mzero :: m a

mplus :: ma->ma->ma
join :: Monad m => m (ma) ->m a
guard :: MonadPlus m => Bool -> m ()
when :: Monad m => Bool ->m () ->m QO
unless :: Monad m => Bool -=>m () -=> m ()
ap :: Monadm=>m (a ->b) >ma->mb
mapAndUnzipM :: Monad m => (a => m (b,c)) -> [a] -> m ([b], [c])
zipWithM :: Monadm=> (a->b->mc) -> [a] -> [b] -> m [c]
zipWithM_ :: Monad m=>(a->b->mc) -> [a]l] -> [b] -> m ()
foldM :: Monadm=> (a->b->ma) ->a->1[b] ->ma
filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
msum :: MonadPlus m => [m a] -> m a
1iftM :: Monad m=> (a->b) > (ma->mb)
1iftM2 :: Monadm=> (a->b->¢) > (ma->mb ->mc)
1iftM3 :: Monad m=> (a->b ->¢ ->4d) ->

ma->mb->mc ->mad)
1iftM4 :: Monadm=>(a->b->c¢c->d ->¢e) >
ma->mb->mc->md ->me)

1iftM5 :: Monadm=>(a->b->¢c->d->e > f) =>

ma->mb->mc->md->me ->m f)

The Monad library defines the MonadPlus class, and provides some useful operations on
monads.

10.1 Naming conventions 47

10.1 Naming conventions

The functions in this library use the following naming conventions:

e A postfix “M” always stands for a function in the Kleisli category: m is added to
function results (modulo currying) and nowhere else. So, for example,

filter :: (a -> Bool) -> [a]l -> [a]
filterM :: (Monad m) => (a -> m Bool) -> [a]l -> m [a]

e A postfix “_” changes the result type from (m a) to (m ()). Thus (in the Prelude):

sequence :: Monad m => [m al] -> m [al
sequence_ :: Monad m => [ma]l ->m ()

o A prefix “m” generalises an existing function to a monadic form. Thus, for example:

sum :: Num a => [a] -> a
msum :: MonadPlus m => [ma} -> m a

10.2 Class MonadPlus

The MonadPlus class is defined as follows:

class (Monad m) => MonadPlus m where
mzero :: m a
mplus ::ma->ma=->ma

The class methods mzero and mplus are the zero and plus of the monad.
Lists and the Maybe type are instances of MonadPlus, thus:

instance MonadPlus Maybe where

mzexro = Nothing
Nothing ‘mplus‘ ys = ys
xs ‘mplus‘ ys = xS

instance MonadPlus [] where
mzexro = [}
mplus = (++)

10.3 Functions

The join function is the conventional monad join operator. It is used to remove one level
of monadic structure, projecting its bound argument into the outer level.

48 10 MONAD UTILITIES

The mapAndUnzipM function maps its first argument over a list, returning the result as a
pair of lists. This function is mainly used with complicated data structures or a state-
transforming monad.

The zipWithM function generalises zipWith to arbitrary monads. For instance the following
function displays a file, prefixing each line with its line number,

listFile :: String -> I0 ()

listFile nm =

do cts <- openFile nm
zipWithM_ (\i line -> do putStr (show i); putStr ": "; putStrLn line)

[1..]

(lines cts)

The fo0ldM function is analogous to foldl, except that its result is encapsulated in a monad.
Note that foldM works from left-to-right over the list arguments. This could be an issue
where (>>) and the “folded function” are not commutative.

foldM f al [x1, x2, ..., xm]

do
a2 <- f al x1
a3 <- f a2 x2

f am xm
If right-to-left evaluation is required, the input list should be reversed.

The when and unless functions provide conditional execution of monadic expressions. For
example,

when debug (putStr "Debugging\n")

will output the string "Debugging\n" if the Boolean value debug is True, and otherwise do
nothing.

The monadic lifting operators promote a function to a monad. The function arguments are
scanned left to right. For example,

liftM2 (+) [0,1] [0,2] = [0,2,1,3]
1iftM2 (+) (Just 1) Nothing = Nothing

In many situations, the 1iftM operations can be replaced by uses of ap, which promotes
function application.

return f ‘ap‘ x1 ‘ap‘ ‘ap¢ xn
is equivalent to

liftMn f x1 x2 ... xn

50 10 MONAD UTILITIES

10.4 Library Monad

module Monad (
MonadPlus(mzero, mplus),
join, guard, when, unless, ap,
msum,
filterM, mapAndUnzipM, zipWithM, zipWithM_, foldM,
1iftM, 1iftM2, 1iftM3, 1iftM4, 1iftMb5,

—- ...and what the Prelude exports
Monad((>>=), (>>), return, fail),
Functor (fmap),

mapM, mapM_, sequence, sequence_, (=<<),
) where

—-- The MonadPlus class definition

class (Monad m) => MonadPlus m where
mzero :: m a
mplus :: ma->ma->ma

-- Instances of MonadPlus

instance MonadPlus Maybe where

mzexro = Nothing
Nothing ‘mplus‘ ys = ys
xs ‘mplus‘ ys = Xxs

instance MonadPlus [] where
mzero = []
mplus = (++)

-- Functions

msum :: MonadPlus m => [m a] -> m a

msum Xxs = foldr mplus mzero xs

join :: (Monad m) =>m (m a) -> m a

join x = x >= id

when :: (Monad m) => Bool ->m () ->m O
when p s = if p then s else return ()

unless :: (Monad m) => Bool =>m () -> m ()

unless p s when (not p) s

ap :: (Monadm) =>m (a ->b) ->ma->mb
ap = 1liftM2 ($)

10.4 Library Monad 51

guard :: MonadPlus m => Bool -> m ()

guard p = if p then return () else mzero

mapAndUnzipM :: (Monad m) => (a => m (b,c)) -> [a] -> m ([b]l, [c])
mapAndUnzipM f xs = sequence (map f xs) >>= return . unzip

zipWithM :: (Monad m) => (a -> b ->mc) => [a]l => [b] -> m [c]
zipWithM f xs ys = sequence (zipWith f xs ys)

zipWithM_ :: (Momadm) => (a->b ->me¢) -> [a]l -> bl -> m
zipWithM_ f xs ys = sequence_ (zipWith f xs ys)

foldM :: (Monad m) => (a =>b ->ma) ->a->[b] ->ma
foldM £ a (] = return a

foldM f a (x:xs) fax>»=\y->foldM f y xs

=> (a => m Bool) -> [a] -> m [al
return []
do {b <-p x;

ys <- filterM p xs;

return (if b then (x:ys) else ys)

filterM :: Monad
filterM p []
filterM p (x:xs)

n B

}
1iftM :: (Monad m) => (a->b) -=> (ma ->mb)
1iftM £ = \a -> do { a’ <~ a; return (f a’) }
1iftM2 :: (Monad m) => (a->b ->¢) >(ma->mb ->m c)
liftM2 f = \ab->do { a’ <- a; b’ <- b; return (f a’ b’) }
1iftM3 :: (Monad m) => (a->b -> ¢ —> d) ->
(ma->mb->mc ->md)
1iftM3 f = \abec->do{a’” < a; b’” <-b; ¢’ <~ ¢;
return (f a’ b’ ¢?) }
1liftM4 :: (Monad m) => (a->b ->c¢c ->d -> e) —>
ma->mb->mc~>md ->me)
liftM4 f = \abcd->do{a’” < a; b><-Db; c’<~c; d < d;
return (f a’ b’ ¢’ d4’) }
1iftM5 :: (Monad m) => (a->b ->c¢c->d->e > f) >

mMma->mb->mc->md ->me ->m f)
N\abcde->do {a’” <~ a; b’ <-b; ¢’ <-¢; 4’ <- d;
e’ <~ e; return (f a’ b’ ¢’ d’ e’) }

liftM5 £

11 Input/Output

module IO (
Handle, HandlePosn,
I0Mode (ReadMode ,WriteMode , AppendMode ,ReadWriteMode) ,
BufferMode (NoBuffering,LineBuffering,BlockBuffering),
SeekMode (AbsoluteSeek,RelativeSeek,SeekFromEnd) ,
stdin, stdout, stderr,
openFile, hClose, hFileSize, hIsEOF, isEOF,
hSetBuffering, hGetBuffering, hFlush,
hGetPosn, hSetPosn, hSeek,
hWaitForInput, hReady, hGetChar, hGetLine, hLookAhead, hGetContents,
hPutChar, hPutStr, hPutStrLn, hPrint,
hIsOpen, hIsClosed, hIsReadable, hIsWritable, hIsSeekable,
isAlreadyExistsError, isDoesNotExistError, isAlreadyInUseError,
isFullError, isEOFError,
isIllegalOperation, isPermissionError, isUserError,
ioeGetErrorString, ioeGetHandle, ioeGetFileName,
try, bracket, bracket_

-- ...and what the Prelude exports

I0, FilePath, IOError, ioError, userError, catch, interact,
putChar, putStr, putStrlLn, print, getChar, getLine, getContents,
readFile, writeFile, appendFile, readIO, readLn

) where

import Ix(Ix)

data Handle = ... -- implementation-dependent
instance Eq Handle where ..

instance Show Handle where .. -- implementation-dependent
data HandlePosn = ... -- implementation-dependent
instance Eq HandlePosn where ...

instance Show HandlePosn where --- -- implementation-dependent

data IOMode ReadMode | WriteMode | AppendMode | ReadWriteMode
deriving (Eq, Ord, Ix, Bounded, Enum, Read, Show)
NoBuffering | LineBuffering

| BlockBuffering (Maybe Int)

deriving (Eq, Ord, Read, Show)

AbsoluteSeek | RelativeSeek | SeekFromEnd

deriving (Eq, Ord, Ix, Bounded, Enum, Read, Show)

data BufferMode

data SeekMode

stdin, stdout, stderr :: Handle

openFile :: FilePath -> I0Mode -> I0 Handle
hClose :: Handle -> I0 ()

54 11 INPUT/OUTPUT
hFileSize :: Handle -> IO Integer
hIsEOF :: Handle -> I0 Bool
isEOF :: I0 Bool
isEOF hIsEQOF stdin
hSetBuffering :: Handle -> BufferMode -> IO ()
hGetBuffering :: Handle -> I0 BufferMode
hFlush :: Handle -> I0 ()
hGetPosn :: Handle -> I0 HandlePosn
hSetPosn :: HandlePosn -> I0 ()
hSeek : Handle -> SeekMode -> Integer -> IO ()
hWaitForInput :: Handle -> Int -> I0 Bool
hReady :: Handle -> IO Bool
hReady h hWaitForInput h 0
hGetChar :: Handle -> I0 Char
hGetLine :: Handle -> IO String
hLookAhead :: Handle -> IO Char
hGetContents :: Handle -> IO String
hPutChar :: Handle -> Char -> I0 (O
hPutStr :: Handle -> String —> I0 ()
hPutStrLn :: Handle -> String -> I0 ()
hPrint :: Show a => Handle -> a -> I0 ()
hIsOpen :: Handle -> IO Bool
hIsClosed :: Handle -> IO Bool
hIsReadable :: Handle -> IO Bool
hIsWritable :: Handle -> IO Bool
hIsSeekable :: Handle -> IO Bool
isAlreadyExistsError :: IOError -> Bool
isDoesNotExistError :: I0Error -> Bool
isAlreadyInUseError :: IOError -> Bool
isFullError :: I0Error -> Bool
isEOFError :: I0Error -> Bool
isIllegalOperation :: I0Error -> Bool
isPermissionError :: IOError -> Bool
isUserError :: I0Error -> Bool
ioeGetErrorString :: IDError -> String
ioeGetHandle :: I0Error -> Maybe Handle
ioeGetFileName :: I0Error -> Maybe FilePath
try :: I0 a —> Either IOError a
bracket :: I0a~->(a->I0b) ->(a->I0¢c) > I0c
bracket_ :I0a->(a->I0b) ->I0c ->1I0c

11.1 1/0O Errors 55

The monadic I/O system used in Haskell is described by the Haskell language report.
Commonly used I/O functions such as print are part of the standard prelude and need
not be explicitly imported. This library contain more advanced I/O features. Some related
operations on file systems are contained in the Directory library.

11.1 I/O Errors

Errors of type I0Error are used by the I/O monad. This is an abstract type; the library
provides functions to interrogate and construct values in I0Error:

e isAlreadyExistsError — the operation failed because one of its arguments already
exists.

e isDoesNotExistError — the operation failed because one of its arguments does not
exist.

e isAlreadyInUseError — the operation failed because one of its arguments is a single-
use resource, which is already being used (for example, opening the same file twice
for writing might give this error).

e isFullError — the operation failed because the device is full.
e isEOFError — the operation failed because the end of file has been reached.
e isIllegalOperation — the operation is not possible.

e isPermissionError — the operation failed because the user does not have sufficient
operating system privilege to perform that operation.

isUserError — a programmer-defined error value has been raised using fail.

All these functions return return a Bool, which is True if its argument is the corresponding
kind of error, and False otherwise.

Any computation which returns an I0 result may fail with isI1legalOperationError. Ad-
ditional errors which could be raised by an implementation are listed after the corresponding
operation. In some cases, an implementation will not be able to distinguish between the
possible error causes. In this case it should return isIllegalOperationError.

Three additional functions are provided to obtain information about an error value. These
are ioeGetHandle which returns Just hdl if the error value refers to handle hdl and Nothing
otherwise; ioeGetFileName which returns Just name if the error value refers to file name,
and Nothing otherwise; and ioeGetErrorString which returns a string. For “user” errors
(those which are raised using fail), the string returned by ioeGetErrorString is the argu-
ment that was passed to fail; for all other errors, the string is implementation-dependent.

The try function returns an error in a computation explicitly using the Either type.

56 11 INPUT/OUTPUT

The bracket function captures a common allocate, compute, deallocate idiom in which
the deallocation step must occur even in the case of an error during computation. This is
similar to try-catch-finally in Java.

module I0 where

—-- Just provide an implementation of the system-indendent
-- actions that I0 exports.

try :: I0 a -> I0 (Either IOError a)
try f = catch (do r <- f
return (Right r))
(return . Left)

bracket :: I0a->(@->I0b) > (a->1I0¢c) > I0c
bracket before after m = do
x <- before
rs <- try (m x)
after x
case rs of
Right r -> return r
Left e -> ioError e

-- variant of the above where middle computation doesn’t want x
bracket_ :: I0a > @->I0b) >I0c ->1I0c
bracket_ before after m = do
x <~ before
rs <- try m
after x
case rs of
Right r -> return r
Left e -> ioError e

11.2 Files and Handles

Haskell interfaces to the external world through an abstract file system. This file system
is a collection of named file system objects, which may be organised in directories (see
Directory). In some implementations, directories may themselves be file system objects
and could be entries in other directories. For simplicity, any non-directory file system object
is termed a file, although it could in fact be a communication channel, or any other object
recognised by the operating system. Physical files are persistent, ordered files, and normally
reside on disk.

File and directory names are values of type String, whose precise meaning is operating
system dependent. Files can be opened, yielding a handle which can then be used to
operate on the contents of that file.

11.2 Files and Handles 57

Haskell defines operations to read and write characters from and to files, represented by
values of type Handle. Each value of this type is a handle: a record used by the Haskell
run-time system to manage 1/0 with file system objects. A handle has at least the following
properties:

e whether it manages input or output or both;

e whether it is open, closed or semi-closed,;

¢ whether the object is seekable;

e whether buffering is disabled, or enabled on a line or block basis;

a buffer (whose length may be zero).

Most handles will also have a current I/O position indicating where the next input or
output operation will occur. A handle is readable if it manages only input or both input
and output; likewise, it is writable if it manages only output or both input and output. A
handle is open when first allocated. Once it is closed it can no longer be used for either input
or output, though an implementation cannot re-use its storage while references remain to it.
Handles are in the Show and Eq classes. The string produced by showing a handle is system
dependent; it should include enough information to identify the handle for debugging. A
handle is equal according to == only to itself; no attempt is made to compare the internal
state of different handles for equality.

11.2.1 Semi-Closed Handles

The operation hGetContents puts a handle hdl into an intermediate state, semi-closed. In
this state, hdl is effectively closed, but items are read from hdl on demand and accumulated
in a special stream returned by hGetContents hdl.

Any operation except for hClose that fails because a handle is closed, also fails if a handle
is semi-closed. A semi-closed handle becomes closed:

e if hClose is applied to it;
e if an I/O error occurs when reading an item from the file item from the stream;
e or once the entire contents of the file has been read.
Once a semi-closed handle becomes closed, the contents of the associated stream becomes

fixed, and is the list of those items which were successfully read from that handle. Any I/O
errors encountered while a handle is semi-closed are simply discarded.

58 11 INPUT/OUTPUT

11.2.2 Standard Handles

Three handles are allocated during program initialisation. The first two-(stdin and stdout)
manage input or output from the Haskell program’s standard input or output channel
respectively. The third (stderr) manages output to the standard error channel. These
handles are initially open.

11.3 Opening and Closing Files -
11.3.1 Opening Files

Computation openFile file mode allocates and returns a new, open handle to manage the
file file. It manages input if mode is ReadMode, output if mode is WriteMode or AppendMode,
and both input and output if mode is ReadWriteMode.

If the file does not exist and it is opened for output, it should be created as a new file. If
mode is WriteMode and the file already exists, then it should be truncated to zero length.
Some operating systems delete empty files, so there is no guarantee that the file will exist
following an openFile with mode WriteMode unless it is subsequently written to success-
fully. The handle is positioned at the end of the file if mode is AppendMode, and otherwise
at the beginning (in which case its internal I/O position is 0). The initial buffer mode is
implementation-dependent.

If openFile fails on a file opened for output, the file may still have been created if it did
not already exist.

Implementations should enforce as far as possible, locally to the Haskell process, multiple-
reader single-writer locking on files. Thus there may either be many handles on the same
file which manage input, or just one handle on the file which manages output. If any open
or semi-closed handle is managing a file for output, no new handle can be allocated for that
file. If any open or semi-closed handle is managing a file for input, new handles can only be
allocated if they do not manage output. Whether two files are the same is implementation-
dependent, but they should normally be the same if they have the same absolute path name
and neither has been renamed, for example.

Error reporting: the openFile computation may fail with isAlreadyInUseError if the file
is already open and cannot be reopened; isDoesNotExistError if the file does not exist;
or isPermissionError if the user does not have permission to open the file.

11.3.2 Closing Files

Computation hClose hdl makes handle hdl closed. Before the computation finishes, if hdl
is writable its buffer is flushed as for hFlush. If the operation fails for any reason, any
further operations on the handle will still fail as if Adl had been successfully closed.

11.4 Determining the Size of a File 59

11.4 Determining the Size of a File

For a handle hdl which is attached to a physical file, hFileSize hdl returns the size of that
file in 8-bit bytes (> 0).

11.4.1 Detecting the End of Input

For a readable handle hdl, computation hIsEQF hdl returns True if no further input can
be taken from hdl; for a handle attached to a physical file this means that the current I/O
position is equal to the length of the file. Otherwise, it returns False. The computation
isEOF is identical, except that it works only on stdin.

11.4.2 Buffering Operations

Three kinds of buffering are supported: line-buffering, block-buffering or no-buffering.
These modes have the following effects. For output, items are written out from the in-
ternal buffer according to the buffer mode:

e line-buffering: the entire buffer is written out whenever a newline is output, the
buffer overflows, a flush is issued, or the handle is closed.

e block-buffering: the entire buffer is written out whenever it overflows, a flush is
issued, or the handle is closed.

e no-buffering: output is written immediately, and never stored in the buffer.

The buffer is emptied as soon as it has been written out.

Similarly, input occurs according to the buffer mode for handle hdl.

e line-buffering: when the buffer for Adl is not empty, the next item is obtained from
the buffer; otherwise, when the buffer is empty, characters are read into the buffer
until the next newline character is encountered or the buffer is full. No characters are
available until the newline character is available or the buffer is full.

e block-buffering: when the buffer for hdl becomes empty, the next block of data is
read into the buffer.

e no-buffering: the next input item is read and returned.
For most implementations, physical files will normally be block-buffered and terminals will

normally be line-buffered.

Computation hSetBuffering hdl mode sets the mode of buffering for handle hdl on sub-
sequent reads and writes.

60 11 INPUT/OUTPUT

e If mode is LineBuffering, line-buffering is enabled if possible.

e If mode is BlockBuffering size, then block-buffering is enabled if possible. The size
of the buffer is n items if size is Just n and is otherwise implementation-dependent.

e If mode is NoBuffering, then buffering is disabled if possible.

If the buffer mode is changed from BlockBuffering or LineBuffering to NoBuffering,
then

e if hdl is writable, the buffer is flushed as for hFlush;

e if hdl is not writable, the contents of the buffer is discarded.

Error reporting: the hSetBuffering computation may fail with isPermissionError if the
handle has already been used for reading or writing and the implementation does not allow
the buffering mode to be changed.

Computation hGetBuffering hdl returns the current buffering mode for hd!.

The default buffering mode when a handle is opened is implementation-dependent and may
depend on the file system object which is attached to that handle.

11.4.3 Flushing Buffers
Computation hFlush hdl causes any items buffered for output in handle hdl to be sent
immediately to the operating system.

Error reporting: the hFlush computation may fail with: isFullError if the device is full;
isPermissionError if a system resource limit would be exceeded. It is unspecified whether
the characters in the buffer are discarded or retained under these circumstances.

11.5 Repositioning Handles
11.5.1 Revisiting an I/O Position

Computation hGetPosn hdl returns the current I/O position of hdl as a value of the ab-
stract type HandlePosn. If a call to hGetPosn & returns a position p, then computation
hSetPosn p sets the position of h to the position it held at the time of the call to hGetPosn.

Error reporting: the hSetPosn computation may fail with: isPermissionError if a system
resource limit would be exceeded.

11.5.2 Seeking to a new Position

Computation hSeek hdl mode i sets the position of handle hd! depending on mode. If mode
is:

11.6 Handle Properties 61

e AbsoluteSeek: the position of kdl is set to i.
e RelativeSeek: the position of hdl is set to offset ¢ from the current position.

e SeekFromEnd: the position of hdl is set to offset 7 from the end of the file.

The offset is given in terms of 8-bit bytes.

If hdl is block- or line-buffered, then seeking to a position which is not in the current buffer
will first cause any items in the output buffer to be written to the device, and then cause
the input buffer to be discarded. Some handles may not be seekable (see hIsSeekable), or
only support a subset of the possible positioning operations (for instance, it may only be
possible to seek to the end of a tape, or to a positive offset from the beginning or current
position). It is not possible to set a negative I/O position, or for a physical file, an I/O
position beyond the current end-of-file.

Error reporting: the hSeek computation may fail with: isPermissionError if a system
resource limit would be exceeded.

11.6 Handle Properties

The functions hIsOpen, hIsClosed, hIsReadable, hIsWritable and hIsSeekable return
information about the properties of a handle. Each of these returns True if the handle has
the specified property, and False otherwise.

11.7 Text Input and Output

Here we define a standard set of input operations for reading characters and strings from
text files, using handles. Many of these functions are generalizations of Prelude functions.
I/O in the Prelude generally uses stdin and stdout; here, handles are explicitly specified
by the I/O operation.

11.7.1 Checking for Input

Computation hWaitForInput hdl ¢ waits until input is available on handle hdl. It re-
turns True as soon as input is available on hdl, or False if no input is available within ¢
milliseconds.

Computation hReady hdl indicates whether at least one item is available for input from
handle hdl.

Computation hGetChar hdl reads a character from the file or channel managed by hdl.

Computation hGetLine hdl reads a line from the file or channel managed by hdl, similar
to getLine in the Prelude.

62 11 INPUT/OUTPUT

Error reporting: the hWaitForInput, hReady and hGetChar computations may fail with:
isEOFError if the end of file has been reached.

11.7.2 Reading Ahead
Computation hLookAhead hdl returns the next character from handle ~dl without removing
it from the input buffer, blocking until a character is available.

Error reporting: the hLookahead computation may fail with: isEOFError if the end of file
has been reached.

Computation hGetContents hdl returns the list of characters corresponding to the unread
portion of the channel or file managed by hdl, which is made semi-closed.

Error reporting: the hGetContents computation may fail with: isEOFError if the end of
file has been reached.

Computation hPutChar hdl ¢ writes the character c to the file or channel managed by hdl.
Characters may be buffered if buffering is enabled for hdl.

Computation hPutStr hdl s writes the string s to the file or channel managed by hdl.

Computation hPrint hdl ¢ writes the string representation of ¢ given by the shows function
to the file or channel managed by hdl and appends a newline.

Error reporting: the hPutChar, hPutStr and hPrint computations may fail with: isFull-
Error if the device is full; or isPermissionError if another system resource limit would
be exceeded.

11.8 Examples

Here are some simple examples to illustrate Haskell 1/0.

11.8.1 Summing Two Numbers

This program reads and sums two Integers.

11.8 Examples 63

import IO

main = do
hSetBuffering stdout NoBuffering
putStr "Enter an integer: "
x1 <- readNum
putStr "Enter another integer:
x2 <- readNum
putStr ("Their sum is " ++ show (x1+x2) ++ "\n")
where readNum :: I0 Integer
readNum = do { line <- getLine; readI0 line }

11.8.2 Copying Files

A simple program to create a copy of a file, with all lower-case characters translated to
upper-case. This program will not allow a file to be copied to itself. This version uses
character-level I/O. Note that exactly two arguments must be supplied to the program.

import I0
import System

main = do
[£f1,f2] <- getArgs
hl <- openFile f1 ReadMode
h2 <- openFile f2 WriteMode
copyFile hl h2
hClose hi
hClose h2

copyFile hl h2 = do
eof <- hIsEOF hl
if eof then return () else
do
¢ <- hGetChar hil
hPutChar h2 (toUpper c)
copyFile hl h2

An equivalent but much shorter version, using string 1/0 is:
import System

main = do
[f1,£2] <- getArgs
s <- readFile f1
writeFile f2 (map toUpper s)

64

12

Directory Functions

12 DIRECTORY FUNCTIONS

module Directory (
Permissions,

getModificationTime)
import Time (ClockTime)
data Permissions = ...

instance Eq Permissions
instance Ord Permissions
instance Read Permissions

instance Show Permissions

createDirectory
removeDirectory
removeFile
renameDirectory
renameFile

getDirectoryContents
getCurrentDirectory
setCurrentDirectory

doesFileExist
doesDirectoryExist

getPermissions
setPermissions

getModificationTime

readable, writable, executable, searchable,
createDirectory, removeDirectory, removeFile,
renameDirectory, renameFile, getDirectoryContents,
getCurrentDirectory, setCurrentDirectory,
doesFileExist, doesDirectoryExist,
getPermissions, setPermissions,

where

~- Abstract

where ...
where .

where ...
where ..

readable, writable, executable, searchable ::

:: FilePath ->
: FilePath ->
:: FilePath ->
:: FilePath ->
:: FilePath ->
:: FilePath ->
:: I0 FilePath
:: FilePath ->
:: FilePath ->
:: FilePath ->
:: FilePath —->
:: FilePath ->
:: FilePath ->

Permissions -> Bool

10 O)
I0 O
10 O
FilePath -> I0 ()
FilePath -> I0 ()

I0 [FilePath]

10)

I0 Bool
I0 Bool

I0 Permissions
Permissions -> I0 ()

I0 ClockTime

These functions operate on directories in the file system.

Any Directory operation could raise an isIllegalOperationError, as described in Sec-
tion 11.1; all other permissible errors are described below. Note that, in particular, if an im-
plementation does not support an operation it should raise an isIllegalOperationError.

65

A directory contains a series of entries, each of which is a named reference to a file sys-
tem object (file, directory etc.). Some entries may be hidden, inaccessible, or have some
administrative function (for instance, “.” or “..” under POSIX), but all such entries are
considered to form part of the directory contents. Entries in sub-directories are not, how-
ever, considered to form part of the directory contents. Although there may be file system
objects other than files and directories, this library does not distinguish between physical
files and other non-directory objects. All such objects should therefore be treated as if they
are files.

Each file system object is referenced by a path. There is normally at least one absolute path
to each file system object. In some operating systems, it may also be possible to have paths
which are relative to the current directory.

Computation createDirectory dir creates a new directory dir which is initially empty, or
as near to empty as the operating system allows.

Error reporting: the createDirectory computation may fail with: isPermissionError if
the user is not permitted to create the directory; isAlreadyExistsError if the directory
already exists.

Computation removeDirectory dir removes an existing directory dir. The implementation
may specify additional constraints which must be satisfied before a directory can be removed
(for instance, the directory has to be empty, or may not be in use by other processes). It is
not legal for an implementation to partially remove a directory unless the entire directory is
removed. A conformant implementation need not support directory removal in all situations
(for instance, removal of the root directory).

Computation removeFile file removes the directory entry for an existing file file, where
file is not itself a directory. The implementation may specify additional constraints which
must be satisfied before a file can be removed (for instance, the file may not be in use by
other processes).

Error reporting: the removeDirectory and removeFile computations may fail with:
isPermissionError if the user is not permitted to remove the file/directory; or isDoesNot-
ExistError if the file/directory does not exist.

Computation renameDirectory old new changes the name of an existing directory from
old to new. If the new directory already exists, it is atomically replaced by the old di-
rectory. If the new directory is neither the old directory nor an alias of the old directory,
it is removed as if by removeDirectory. A conformant implementation need not support
renaming directories in all situations (for instance, renaming to an existing directory, or
across different physical devices), but the constraints must be documented.

Computation renameFile old new changes the name of an existing file system object from
old to new. If the new object already exists, it is atomically replaced by the old object.
Neither path may refer to an existing directory. A conformant implementation need not
support renaming files in all situations (for instance, renaming across different physical
devices), but the constraints must be documented.

66 12 DIRECTORY FUNCTIONS

Error reporting: the renameDirectory and renameFile computations may fail with:
isPermissionError if the user is not permitted to rename the file/directory, or if either
argument to renameFile is a directory; or isDoesNotExistError if the file/directory does
not exist.

Computation getDirectoryContents dir returns a list of all entries in dir.

If the operating system has a notion of current directories, getCurrentDirectory returns
an absolute path to the current directory of the calling process.

Error reporting: the getDirectoryContents and getCurrentDirectory computations may
fail with: isPermissionError if the user is not permitted to access the directory; or
isDoesNotExistError if the directory does not exist.

If the operating system has a notion of current directories, setCurrentDirectory dir
changes the current directory of the calling process to dir.

Error reporting: the setCurrentDirectory computation may fail with: isPermission-
Error if the user is not permitted to change directory to that specified; or isDoesNotExist-
Error if the directory does not exist.

The Permissions type is used to record whether certain operations are permissible on a
file/directory. getPermissions and setPermissions get and set these permissions, respec-
tively. Permissions apply both to files and directories. For directories, the executable field
will be False, and for files the searchable field will be False. Note that directories may
be searchable without being readable, if permission has been given to use them as part of
a path, but not to examine the directory contents.

Note that to change some, but not all permissions, a construct on the following lines must
be used.

makeReadable f = do
p <- getPermissions f
setPermissions f (p {readable = True})

The operation doesDirectoryExist returns True if the argument file exists and is a direc-
tory, and False otherwise. The operation doesFileExist returns True if the argument file
exists and is not a directory, and False otherwise.

The getModificationTime operation returns the clock time at which the file/directory was
last modified.

Error reporting: the get(set)Permissions, doesFile(Directory)Exist, and getMod-
ificationTime computations may fail with: isPermissionError if the user is not per-
mitted to access the appropriate information; or isDoesNotExistError if the file/directory
does not exist. The setPermissions computation may also fail with: isPermissionError
if the user is not permitted to change the permission for the specified file or directory; or
isDoesNotExistError if the file/directory does not exist.

67

13 System Functions

module System (
ExitCode(ExitSuccess,ExitFailure),
getArgs, getProgName, getEnv, system, exitWith, exitFailure
) where

data ExitCode = ExitSuccess | ExitFailure Int
deriving (Eq, Ord, Read, Show)

getArgs :: I0 [String]
getProgName :: I0 String

getEnv :: String -> I0 String
system :: String -> IO ExitCode
exitWith :: ExitCode -> 10 a
exitFailure :: 10 a

This library describes the interaction of the program with the operating system.

Any System operation could raise an isIllegalOperationError, as described in Sec-
tion 11.1; all other permissible errors are described below. Note that, in particular, if an
implementation does not support an operation it must raise an isIllegalOperationError.

The ExitCode type defines the exit codes that a program can return. ExitSuccess indicates
successful termination; and ExitFailure code indicates program failure with value code.
The exact interpretation of code is operating-system dependent. In particular, some values
of code may be prohibited (for instance, 0 on a POSIX-compliant system).

Computation getArgs returns a list of the program’s command line arguments (not includ-
ing the program name). Computation getProgName returns the name of the program as it
was invoked. Computation getEnv var returns the value of the environment variable var.
If variable var is undefined, the isDoesNotExistError exception is raised.

Computation system cmd returns the exit code produced when the operating system pro-
cesses the command cmd.

Computation exitWith code terminates the program, returning code to the program’s
caller. Before the program terminates, any open or semi-closed handles are first closed.
The caller may interpret the return code as it wishes, but the program should return
ExitSuccess to mean normal completion, and ExitFailure n to mean that the program
encountered a problem from which it could not recover. The value exitFailure is equal to
exitWith (ExitFailure ezitfail), where ezitfail is implementation-dependent. exitWith
bypasses the error handling in the I/O monad and cannot be intercepted by catch.

If a program terminates as a result of calling error or because its value is otherwise deter-
mined to be L, then it is treated identically to the computation exitFailure. Otherwise,
if any program p terminates without calling exitWith explicitly, it is treated identically to

68 13 SYSTEM FUNCTIONS

the computation

(p >> exitWith ExitSuccess) ‘catch® \ _ -> exitFailure

70

14 DATES AND TIMES

14 Dates and Times

module Time (

import Ix(Ix)

data ClockTime = ... —-- Implementation-dependent
instance Ord ClockTime where ...
instance Eq ClockTime where ..

data Month

data Day = Sunday | Monday | Tuesday | Wednesday | Thursday

data CalendarTime = CalendarTime {

data TimeDiff = TimeDiff {

ClockTime,
Month (January,February,March,April,May, June,
July,August,September,October,November ,December) ,
Day (Sunday ,Monday ,Tuesday,Wednesday, Thursday,Friday, Saturday),
CalendarTime(CalendarTime, ctYear, ctMonth, ctDay, ctHour, ctMin,
ctPicosec, ctWDay, ctYDay, ctTZName, ctTZ, ctIsDST),
TimeDiff (TimeDiff, tdYear, tdMonth, tdDay, tdHour,
tdMin, tdSec, tdPicosec),
getClockTime, addToClockTime, diffClockTimes,
toCalendarTime, toUTCTime, toClockTime,
calendarTimeToString, formatCalendarTime) where

= January | February | March | April
| May | June | July | August
| September | October | November | December

deriving (Eq, Ord, Enum, Bounded, Ix, Read, Show)

| Friday | Saturday
deriving (Eq, Ord, Enum, Bounded, Ix, Read, Show)

ctYear :: Int,
ctMonth :: Month,
ctDay, ctHour, ctMin, ctSec :: Int,
ctPicosec :: Integer,
ctWDay :: Day,
ctYDay :: Int,
ctTZName :: String,
ctTZ :: Int,
ctIsDST :: Bool

} deriving (Eq, Ord, Read, Show)

tdYear, tdMonth, tdDay, tdHour, tdMin, tdSec :: Int,
tdPicosec :: Integer
} deriving (Eq, Ord, Read, Show)

71

-- Functions on times

getClockTime :: ID ClockTime

addToClockTime :: TimeDiff -> ClockTime -> ClockTime
diffClockTimes :: ClockTime -> ClockTime —> TimeDiff
toCalendarTime :: ClockTime -> I0 CalendarTime

toUTCTime :: ClockTime -> CalendarTime

toClockTime :: CalendarTime -> ClockTime

calendarTimeToString :: CalendarTime -> String

formatCalendarTime :: TimeLocale -> String -> CalendarTime -> String

The Time library provides standard functionality for clock times, including timezone infor-
mation. It follows RFC 1129 in its use of Coordinated Universal Time (UTC).

ClockTime is an abstract type, used for the system’s internal clock time. Clock times
may be compared directly or converted to a calendar time CalendarTime for I/O or other
manipulations. CalendarTime is a user-readable and manipulable representation of the
internal ClockTime type. The numeric fields have the following ranges.

Value Range Comiments

ctYear -maxInt ... maxInt Pre-Gregorian dates are inaccurate
ctDay 1...31

ctHour 0...23

ctMin 0...59

ctSec 0...61 Allows for two Leap Seconds
ctPicosec 0...(102) -1

ctYDay 0 ... 365 364 in non-Leap years

ctTZ -89999 ... 89999 Variation from UTC in seconds

The ctTZName field is the name of the time zone. The ctIsDST field is True if Daylight
Savings Time would be in effect, and False otherwise. The TimeDiff type records the
difference between two clock times in a user-readable way.

Function getClockTime returns the current time in its internal representation. The ex-
pression addToClockTime d ¢ adds a time difference d and a clock time ¢ to yield a
new clock time. The difference d may be either positive or negative. The expression
diffClockTimes ¢! ¢2 returns the difference between two clock times ¢ and ¢2 as a
TimeDiff.

Function toCalendarTime ¢ converts ¢ to a local time, modified by the timezone and day-
light savings time settings in force at the time of conversion. Because of this dependence
on the local environment, toCalendarTime is in the I0 monad.

Function toUTCTime ¢ converts ¢ into a CalendarTime in standard UTC format.

72 14 DATES AND TIMES

toClockTime [converts [into the corresponding internal ClockTime ignoring the contents
of the ctWDay, ctYDay, ctTZName, and ctIsDST fields.

Function calendarTimeToString formats calendar times using local conventions and a
formatting string.

14.1 Library Time

module Time (
ClockTime,
Month (January,February,March, April,May, June,
July, August,September ,October ,November ,December) ,
Day (Sunday,Monday, Tuesday,Wednesday, Thursday,Friday,Saturday),
CalendarTime (CalendarTime, ctYear, ctMonth, ctDay, ctHour, ctMin,
ctPicosec, ctWDay, ctYDay, ctTZName, ctTZ, ctIsDST),
TimeDiff (TimeDiff, tdYear, tdMonth, tdDay, '
tdHour, tdMin, tdSec, tdPicosec),
getClockTime, addToClockTime, diffClockTimes,
toCalendarTime, toUTCTime, toClockTime,
calendarTimeToString, formatCalendarTime) where

import Ix(Ix)
import Locale(TimeLocale(..),defaultTimeLocale)
import Char (intToDigit)

data ClockTime = ... -- Implementation-dependent
instance Ord ClockTime where
instance Eq ClockTime where

data Month = January | February | March | April
| May | June | July | August
| September | October | November | December

deriving (Eq, Ord, Enum, Bounded, Ix, Read, Show)

data Day = Sunday | Monday | Tuesday | Wednesday | Thursday
| Friday | Saturday
deriving (Eq, Ord, Enum, Bounded, Ix, Read, Show)

14.1 Library Time

data CalendarTime =
ctYe
ctMo

CalendarTime {
ar
nth

ctDay, ctHour, ctMin, ctSec

ctPi

cosec

ctWDay
ctYDay
ctTZName

ctTZ

ctIsDST

} deriving (

data TimeDiff = Time

Eq, Ord, Read, Show)

Diff {

¢ Int,
:: Month,
:: Int,
: Integer,
: Day,
:: Int,
:: String,
:: Int,
:: Bool

tdYear, tdMonth, tdDay, tdHour, tdMin, tdSec :: Int,

tdPi
} deriving (

getClockTime
getClockTime

addToClockTime
addToClockTime td ct

diffClockTimes
diffClockTimes ctl ¢

toCalendarTime
toCalendarTime ct

toUTCTime
toUTCTime ct

toClockTime
toClockTime cal

calendarTimeToString
calendarTimeToString = formatCalendarTime defaultTimeLocale "c"

cosec
Eq, Ord, Read, Show)

:: I0 ClockTime

: TimeDiff ->

:: ClockTime ->
t2

: ClockTime ->

:: ClockTime ->

:: CalendarTime ->

: CalendarTime ->

Integer

Implementation-dependent

ClockTime -> ClockTime
Implementation-dependent

ClockTime -> TimeDiff
Implementation-dependent

I0 CalendarTime
Implementation-dependent

CalendarTime
Implementation-dependent

ClockTime
Implementation-dependent

String

73

74

formatCalendarTime ::

where

14 DATES AND TIMES

wday yday tzname _ _) =

(’%?:c:cs) = decode ¢ ++ doFmt cs
(c:cs) = ¢ : doFmt cs

-> Int
h’ = h ‘mod‘ 12 in if h’ == 0 then 12 else h’
fst (wDays 1 !! fromEnum wday)
= snd (wDays 1 !! fromEnum wday)
= fst (months 1 !! fromEnum mon)
snd (months 1 !! fromEnum mon)
snd (months 1 !! fromEnum mon)

= ghow2 (year ‘quot‘ 100)

doFmt (dateTimeFmt 1)
doFmt "Ym/%d/%hy"
show2 day

= show2’ day
= show2 hour
= show2 (tol2 hour)

show3 yday

show2’ hour

show2’ (tol2 hour)

show2 min

show2 (fromEnum mon+1)

n \nll

(if hour < 12 then fst else snd) (amPm 1)

= doFmt "%H:%M"
= doFmt (timel2Fmt 1)
= doFmt "%H:%M:%S"

doFmt fmt
doFmt

doFmt

doFmt "" ="
tol2 :: Int
tol2 h = let
decode ’A’ =
decode ’a’
decode ’B’
decode ’b’ =
decode ’h’ =
decode ’C’
decode ¢’ =
decode ’D’ =
decode ’d’ =
decode ‘¢’
decode ’H’
decode I’
decode ’j’ =
decode 'k’ =
decode 1’ =
decode M’ =
decode ’m’ =
decode ’n’ =
decode ’p’ =
decode ’R’
decode 1’
decode T’
decode ’t’ =
decode ’S’ =
decode ’s’ =
decode U’ =
decode ’u’ =
decode ’V’ =

n \t”
show2 sec
e -- Implementation-dependent
show2 ((yday + 7 - fromEnum wday) ‘div‘ 7)
show (let n = fromEnum wday in

if n == 0 then 7 else n)

let (week, days) =
(yday + 7 - if fromEnum wday > O then

in

fromEnum wday - 1 else 6) ‘divMod‘ 7

show2 (if days >= 4 then

TimeLocale -> String -> CalendarTime -> String
formatCalendarTime 1 fmt ct@(CalendarTime year mon day hour min sec sdec

14.1 Library Time

week+1
else if week == 0 then 53 else week)

decode W’ =
show2 ((yday + 7 - if fromEnum wday > O then
fromEnum wday - 1 else 6) ‘div‘ 7)
decode ’w’ = show (fromEnum wday)
decode ’X’ = doFmt (timeFmt 1)
decode ’x’ = doFmt (dateFmt 1)
decode ’Y’ = show year
decode ’y’ = show2 (year ‘rem‘ 100)

decode ’Z’ = tzname
decode Y%’ = "%"
decode ¢ = [c]
show2, show2’, show3 :: Int -> String

show2 x = [intToDigit (x ‘quot‘ 10), intToDigit (x ‘rem‘ 10)]
show2’ x = if x < 10 then [’ ’, intToDigit x] else show2 x

show3 x = intToDigit (x ‘quot‘ 100) : show2 (x ‘rem‘ 100)

75

76 15 LOCALE

15 Locale

module Locale(TimeLocale(..), defaultTimeLocale) where

data TimelLocale = TimeLocale {

wDays :: [(String, String)], -- full and abbreviated week days
months :: [(String, String)], —- full and abbreviated months
amPm :: (String, String), ~- AM/PM symbols

dateTimeFmt, dateFmt, -- formatting strings

timeFmt, timel2Fmt :: String
} deriving (Eq, Ord, Show) !

defaultTimeLocale :: TimeLocale

The Locale library provides the ability to adapt to local conventions. At present, it supports
only time and date information as used by calendarTimeToString from the Time library.

15.1 Library Locale

15.1 Library Locale

module Locale(TimeLocale(..), defaultTimeLocale) where

data TimeLocale = TimeLocale {

wDays :: [(String, String)}, -- full and abbreviated week days
months :: [(String, String)]}, -- full and abbreviated months
amPm :: (String, String), -- AM/PM symbols

dateTimeFmt, dateFmt, -- formatting strings

timeFmt, timel2Fmt :: String
} deriving (Eq, Ord, Show)

defaultTimeLocale :: TimeLocale
defaultTimelocale = TimeLocale {
wDays = [("Sunday", "Sun"), ("Monday", "Mon"),
("Tuesday", "Tue"), ("Wednesday", "Wed"),
("Thursday", "Thu"), ("Friday", "Fri"),

("Saturday", "Sat")],

months = [("January", "Jan"), ("February", "Feb"),

("MaI‘Ch" s "Mar") s ("April" s IIAPrII) ,
("May“ s "May") s ("June" s "Jun") R
("July" R "J'lll") , ("A'llg'llS't" , llAugll) ,

("September", "Sep"), ("October", "Oct"),
("November", "Nov"), ("December", "Dec")],

amPm = ("AM", "PM"),

dateTimeFmt = "%a %b %e %H:%M:%S %Z %Y",
dateFmt = "%m/%d4/%y",

timeFmt = "}H:%M:%S",

timel2Fmt = "}I:%M:%S %p"

}

78 16 CPU TIME

16 CPU Time

module CPUTime (getCPUTime) where

getCPUTime :: I0 Integer
cpuTimePrecision :: Integer

Computation getCPUTime returns the number of picoseconds of CPU time used by the
current program. The precision of this result is given by cpuTimePrecision. This is the
smallest measurable difference in CPU time that the implementation can record, and is
given as an integral number of picoseconds.

80 17

17 Random Numbers

RANDOM NUMBERS

module Random (
RandomGen (next, split),
StdGen, mkStdGen,
Random(random, randomR,,
randoms, randomRs,
randomI0, randomRIO),
getStdRandom, getStdGen, setStdGen, newStdGen
) where

class RandomGen g where
next :: g -> (Int, g)
split :: g -> (g, g)

data StdGen = ... -- Abstract

instance RandomGen StdGen where ...
instance Read StdGen where ...
instance Show StdGen where ...

mkStdGen :: Int -> StdGen

class Random a where
randomR :: RandomGen g => (a, a) -> g -> (a, g)
random :: RandomGen g => g -> (a, g)

randomRs :: RandomGen g => (a, a) -> g -> [al]
randoms :: RandomGen g => g -> [a]

randomRIO :: (a,a) -> I0 a
randomI0 :: I0 a

instance Random Int where .

instance Random Integer where ...
instance Random Float where ...
instance Random Double where ...
instance Random Bool where ...
instance Random Char where ...

newStdGen :: I0 StdGen
setStdGen :: StdGen -> I0 O
getStdGen :: I0 StdGen

getStdRandom :: (StdGen -> (a, StdGen)) -> I0 a

———————————————— The RandomGen class —-————=—-—————--—-

——————————————e- A standard instance of RandomGen ----

———————————————— The Random class —----~~—————————————-

———————————————— The global random generator ---------

17.1 The RandomGen class, and the StdGen generator 81

The Random library deals with the common task of pseudo-random number generation. The
library makes it possible to generate repeatable results, by starting with a specified initial
random number generator; or to get different results on each run by using the system-
initialised generator, or by supplying a seed from some other source.

The library is split into two layers:

e A core random number generator provides a supply of bits. The class RandomGen
provides a common interface to such generators.

e The class Random provides a way to extract particular values from a random number
generator. For example, the Float instance of Random allows one to generate random
values of type Float.

17.1 The RandomGen class, and the StdGen generator

The class RandomGen provides a common interface to random number generators.

class RandomGen g where
next :: g -> (Int, g
split :: g -> (g, g)

e The next operation allows one to extract at least 30 bits (one Int’s worth) from the
generator, returning a new generator as well. The integer returned may be positive
or negative.

e The split operation allows one to obtain two distinct random number generators.
This is very useful in functional programs (for example, when passing a random num-
ber generator down to recursive calls), but very little work has been done on statisti-
cally robust implementations of split ([1,4] are the only examples we know of).

The Random library provides one instance of RandomGen, the abstract data type StdGen:

data StdGen = ... -- Abstract
instance RandomGen StdGen where
instance Read StdGen where ...
instance Show StdGen where

mkStdGen :: Int -> StdGen

The result of repeatedly using next should be at least as statistically robust as the “Minimal
Standard Random Number Generator” described by [2,3]. Until more is known about
implementations of split, all we require is that split deliver generators that are (a) not
identical and (b) independently robust in the sense just given.

The show/Read instances of StdGen provide a primitive way to save the state of a random
number generator. It is required that read (show g) ==

82 17 RANDOM NUMBERS

In addition, read may be used to map an arbitrary string (not necessarily one produced
by show) onto a value of type StdGen. In general, the read instance of StdGen has the
following properties:

e It guarantees to succeed on any string.
e It guarantees to consume only a finite portion of the string.

e Different argument strings are likely to result in different results.

The function mkStdGen provides an alternative way of producing an initial generator, by
mapping an Int into a generator. Again, distinct arguments should be likely to produce
distinct generators.

Programmers may, of course, supply their own instances of RandomGen.

17.2 The Random class

With a source of random number supply in hand, the Random class allows the programmer
to extract random values of a variety of types:

class Random a where
randomR :: RandomGen g => (a, a) -> g -> (a, g)
random :: RandomGen g => g -> (a, g)

randomRs :: RandomGen g => (a, a) -> g -> [a]
randoms :: RandomGen g => g -> [al

randomRID :: (a,a) -> I0 a
randomI0 :: ID a

-- Default methods
randoms g = x : randoms g’
where
(x,g’) = random g
randomRs = ...similar...

randomIO
randomRIO range

getStdRandom random
getStdRandom (randomR range)

instance Random Int where ...
instance Random Integer where ...
instance Random Float where .

instance Random Double where ...
instance Random Bool where ...
instance Random Char where ...

17.3

The global random number generator 83

randomR takes a range (lo,hi) and a random number generator g, and returns a
random value uniformly distributed in the closed interval [lo, hi], together with a new
generator. It is unspecified what happens if lo > hi. For continuous types there is no
requirement that the values lo and hi are ever produced, but they may be, depending
on the implementation and the interval.

random does the same as randomR, but does not take a range.

— For bounded types (instances of Bounded, such as Char), the range is normally
the whole type.

— For fractional types, the range is normally the semi-closed interval [0, 1).
— For Integer, the range is (arbitrarily) the range of Int.

The plural versions, randomRs and randoms, produce an infinite list of random values,
and do not return a new generator.

The I0 versions, randomRI0 and randomI0, use the global random nuniber generator
(see Section 17.3).

17.3 The global random number generator

There is a single, implicit, global random number generator of type StdGen, held in some
global variable maintained by the I0 monad. It is initialised automatically in some system-
dependent fashion, for example, by using the time of day, or Linux’s kernal random number
generator. To get deterministic behaviour, use setStdGen.

setStdGen :: StdGen -> I0 ()
getStdGen :: I0 StdGen
newStdGen :: I0 StdGen

getStdRandom :: (StdGen -> (a, StdGen)) -> I0 a

getStdGen and setStdGen get and set the global random number generator, respec-
tively.

newStdGen applies split to the current global random generator, updates it with one
of the results, and returns the other.

getStdRandom uses the supplied function to get a value from the current global random
generator, and updates the global generator with the new generator returned by the
function. For example, rollDice gets a random integer between 1 and 6:

rollDice :: I0 Int
rollDice = getStdRandom (randomR (1,6))

84 17 RANDOM NUMBERS

References

[1] FW Burton and RL Paée, “Distributed random number generation”, Journal of Func-
tional Programming, 2(2):203-212, April 1992.

[2] SK Park, and KW Miller, “Random number generators - good ones are hard to find”,
Comm ACM 31(10), Oct 1988, pp1192-1201.

[3] DG Carta, “Two fast implementations of the minimal standard random number gener-
ator”, Comm ACM, 33(1), Jan 1990, pp87-88.

[4] P Hellekalek, “Don’t trust parallel Monte Carlo”, Department of Mathematics, Univer-
sity of Salzburg, http://random.mat.sbg.ac.at/ " peter/pads98.ps, 1998.

The Web site http://random.mat.sbg.ac.at/ is a great source of information.

Index

Code entities are shown in typewriter font. Ordinary index entries are shown in a roman

font.

1, 20, 23, 24
%, 3, 4

hy 3

//, 20, 22-24
t+, 6,7
>>=,2

\\, 27, 32, 33
1,67

AbsoluteSeek, 61
accum, 20, 22, 24
accumArray, 20, 22, 24
addToClockTime, 71, 73
ap, 46, 50
AppendMode, 58
approxRational, 3, 4
Array (datatype), 21
Array (module), 10, 20, 23, 42
array, 20
accumulated, 22
derived, 22
array, 20, 21, 23
assocs, 20, 21, 24

bounds, 20, 21, 24
bracket, b4, 56
bracket_, 54, 56
BufferMode (datatype), 53

CalendarTime (datatype), 70, 73
calendarTimeToString, 71, 73
catch, 68

catMaybes, 38, 39

changing the directory, 66
Char (module), 10, 40, 42, 72
chr, 40, 43

cis, 6,7

clock time, 70

ClockTime (datatype), 70, 72
closing a file, 58

85

Complex (module), 6, 7
conjugate, 6, 7

CPU time, 78
CPUTime (module), 78
cpuTimePrecision, 78
createDirectory, 64
creating a file, 58
ctDay, 70, 73

ctHour, 70, 73
ctIsDST, 70, 73
ctMin, 70, 73

current directory, 66

dateFmt, 76, 77
dateTimeFmt, 76, 77

Day (datatype), 70, 72
defaultTimeLocale, 76, 77
delete, 27, 33
deleteBy, 27, 33
deleteFirstsBy, 27, 33
deleting directories, 65
deleting files, 65
denominator, 3, 4
diffClockTimes, 71, 73
digitToInt, 40, 43
directories, 56, 64
Directory (module), 64
doDiv, 11
doesDirectoryExist, 64
doesFileExist, 64

elemIndex, 27, 29, 32
elemIndices, 27, 29, 32
elems, 20, 21, 24
end of file, 59
Enum (class)

instance for Ratio, 5
enumeration, 17
environment variables, 67

86

Eq (class)

instance for Array, 24
error, 67
executable, 64
execution time, 78
ExitCode, 67
ExitCode (datatype), 67
ExitFailure, 67
exitFailure, 67
ExitSuccess, 67
exitWith, 67
expt, 11
expts, 11

fail, 55
FFFormat (datatype), 12
file, 56
file buffering, 59
file system, 56
filterM, 46, 51
find, 27, 32
findIndex, 27, 32
findIndices, 27, 32
Floating (class)
instance for Complex, 8
floatToDigits, 9, 14
flushing a file buffer, 60
foldM, 46, 51
formatCalendarTime, 71, 74
formatRealFloat, 13
Fractional (class)
instance for Complex, 8
instance for Ratio, 5
fromJust, 38, 39
fromMaybe, 38, 39
fromRat, 9, 10
Functor (class)
instance for Array, 24

genericDrop, 28, 35
genericIndex, 28, 36
genericLength, 28, 35
genericReplicate, 28, 36
genericSplitAt, 28, 36
genericTake, 28, 35

get the contents of a file, 62

getArgs, 67
getClockTime, 71, 73
getCPUTime, 78
getCurrentDirectory, 64
getDirectoryContents, 64
getEnv, 67
getModificationTime, 64
getPermissions, 64
getProgName, 67
getStdGen, 80, 83
getStdRandom, 80, 83
group, 28, 34
groupBy, 28, 34
guard, 46, 51

Handle (datatype), 53
HandlePosn (datatype), 53
handles, 56
hClose, 53, 58
hFileSize, 54, 59
hFlush, 54, 60
hGetBuffering, 54, 60
hGetChar, 54, 61
hGetContents, 54, 57, 62
hGetLine, 54, 61
hGetPosn, 54, 60
hIsClosed, 54, 61
hISEOF, 54, 59
hIsOpen, 54, 61
hIsReadable, 54, 61
hIsSeekable, 54, 61
hIsWritable, 54, 61
hLookAhead, 54, 62
hPrint, 54, 62
hPutChar, 54, 62
hPutStr, 54, 62
hPutStrLn, 54
hReady, 54, 61
hSeek, 54, 60
hSetBuffering, 54, 59
hSetPosn, 54, 60
hWaitForInput, 54, 61

1/0, 53
I/O errors, 55
imagPart, 6, 7

INDEX

INDEX

index, 17-19
indices, 20, 21, 24
inits, 28, 34

input /output, 53
input/output examples, 62
inRange, 17-19
insert, 28, 35
insertBy, 28, 35
integerLogBase, 11
intersect, 28, 33
intersectBy, 28, 33
intersperse, 28, 33
intToDigit, 40, 43

10, 53

10 (module), 53, 56
ioeGetErrorString, 54, 55
ioeGetFileName, 54, 55
ioeGetHandle, 54, 55
I0Error, 55

I0Mode (datatype), 53, 58
isAlpha, 40, 42
isAlphaNum, 40, 42
isAlreadyExistsError, 54, 55
isAlreadyInUseError, 54, 55
isAscii, 40, 42
isControl, 40, 42
isDigit, 40, 42
isDoesNotExistError, 54, 55
isEQF, 54, 59
isEOFError, 54, 55
isFullError, 54, 55
isHexDigit, 40, 42
isIllegalOperation, 54, 55
isJust, 38, 39
isLatini, 40
isLower, 40, 42
isNothing, 38, 39
isOctDigit, 40, 42
isPermissionError, 54, 55
isPrefix0f, 28, 34
isPrint, 40, 42
isSpace, 40, 42
isSuffix0f, 28, 34
isUpper, 40, 42
isUserError, 54, 55

87

Ix, 18
Ix (class), 17, 19

instance for Char, 19

instance for Integer, 19

instance for Int, 19
Ix (module), 17, 19, 20, 23, 53, 70, 72
Ix

derived instance, 17
ixmap, 20, 22, 24

join, 46, 50

lexDigits, 9, 16
lexLitChar, 40, 45
1iftM, 46, 51
1iftM2, 46, 51
1iftM3, 46, 51
1iftM4, 46, 51
1iftMs, 46, 51

List (module), 23, 27, 32
listArray, 20, 21, 23
listToMaybe, 38, 39
Locale (module), 72, 76, 77
locale, 76

lookahead, 62

magnitude, 6, 7
making directories, 65
map, 22
mapAccumL, 28, 34
mapAccumR, 28, 34
mapAndUnzipM, 46, 51
mapMaybe, 38, 39
match, 44 §
maximumBy, 28, 35
Maybe (module), 32, 38, 39
maybeToList, 38, 39
minimumBy, 28, 35
mkPolar, 6, 7
mkStdGen, 80, 81
Monad (class)

superclass of MonadPlus, 50
Monad (module), 46, 50
MonadP1lus (class), 46, 50

instance for [J, 50

instance for Maybe, 50

88

Month (datatype), 70, 72
moving directories, 65
moving files, 65

mplus, 46, 50

msum, 46, 50

mzero, 46, 50

newStdGen, 80, 83

next, 80, 81

nonnull, 16

nub, 27, 33

nubBy, 27, 33

Num (class)
instance for Complex, 7
instance for Ratio, 4

numerator, 3, 4

Numeric (module), 9, 42

openFile, 53, 58
opening a file, 58
operating system commands, 67
Ord (class)
instance for Array, 24
instance for Ratio, 4
superclass of Ix, 17, 19
ord, 40, 43

partition, 28, 34

path, 65

Permissions (datatype), 64
phase, 6, 7

physical file, 56

polar, 6, 7

polling a handle for input, 61
program arguments, 67
program name, 67

Random, 82

Random (module), 80
random, 80, 82
random access files, 60
RandomGen, 81
randomI0, 80, 82
randomR, 80, 82
randomRIO, 80, 82
randomRs, 80, 82

INDEX

randoms, 80, 82
range, 17-19
rangeSize, 17-19
Ratio (datatype), 3
Ratio (module), 3, 4, 10
Rational (type synonym), 3
xRational (type synonym), 3, 4
rational numbers, 3
Read (class)
instance for Array, 25
instance for Ratio, 5
readable, 64
readDec, 9, 12
readFloat, 9, 16
readHex, 9, 12
reading a directory, 66
reading from a file, 61
readInt, 9, 12
readLitChar, 40, 44
ReadMode, 58
readOct, 9, 12
readSigned, 9, 12
ReadWriteMode, 58
Real (class)
instance for Ratio, 4
RealFrac (class)
instance for Ratio, 5
realPart, 6, 7
RelativeSeek, 61
removeDirectory, 64
removeFile, 64
removing directories, 65
removing files, 65
renameDirectory, 64
renameFile, 64
renaming directories, 65
renaming files, 65
roundTo, 14

scaleRat, 10

searchable, 64
SeekFromEnd, 61

seeking a file, 60

SeekMode (datatype), 53, 60
semi-closed handles, 57

INDEX

setCurrentDirectory, 64
setPermissions, 64
setStdGen, 80, 83
setting the directory, 66
Show (class)
instance for Array, 24
instance for HandlePosn, 53
instance for Ratio, 5
show2, 75
show3, 75
showEFloat, 9, 12
showFFloat, 9, 12
showFloat, 9, 12
showGFloat, 9, 12
showInt, 9, 11
showLitChar, 40, 45
showSigned, 9, 11
size of file, 59
sort, 28, 35
sortBy, 28, 35
split, 80, 81
standard handles, 58
stderr, 53, 58
StdGen, 81
StdGen (datatype), 80
stdin, 53, 58
stdout, 53, 58
System (module), 67
system, 67

tails, 28, 34
tdDay, 70, 73
tdHour, 70, 73
tdMin, 70, 73
tdMonth, 70, 73
tdPicosec, 70, 73
tdYear, 70, 73
terminating a program, 67
the file system, 64

Time (module), 64, 70, 72
time, 70

time of day, 70
timel12Fmt, 76, 77
TimeDiff (datatype), 70, 73
timeFmt, 76, 77

TimeLocale (datatype), 76, 77
to12, 74
toCalendarTime, 71, 73
toClockTime, 71, 73
toLower, 40, 43
toUpper, 40, 43
toUTCTime, 71, 73
transpose, 28, 33

try, 54, 56

unfoldr, 28, 35
UnicodePrims (module), 42
union, 27, 33
unionBy, 27, 33
unless, 46, 50
unzip4, 28, 37
unzipb, 28, 37
unzip6, 28, 37
unzip7, 28, 37

when, 46, 50
writable, 64
WriteMode, 58

zip4, 28, 36
zip5, 28, 36
zip6, 28, 36
zip7, 28, 36
zipWith4, 28, 36
zipWithb, 28, 36
zipWith6, 28, 36

_ zipWith7, 28, 37

zipWithM, 46, 51
zipWithM_, 46, 51

89

