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Abstract. In this paper we prove lower bounds and present algorithms optimal within a
small constant factor for generalized shuffle permutations on Boolean cubes. A generalized shuffle
permutation is a permutation where a global address (aq—1a4—2...a0) receives its new content
from a global address (as(g—1)as(q—2)- - - @s(0))> With §(ao) = 01,8(e1) = az,...,8(as—1) = ag
for o; € {0,1,...,4— 1},0 < q. For packet switched communication restricted to one port at a
time per processor, the minimum number of communications in sequence is equal to the number
of address bits to which the permutation is applied. The data transfer time of the permutation
is proportional to the size of the data set per processor and the number of address bits being
part of the permutation. With concurrent communication on all ports of every processor the
data transfer time is proportional to the size of the data set per processor. Depending on
communication capability, message size, cube size, data transfer rate, and communication start-
up time, different algorithms must be chosen for a communication time optimal within a small
constant factor. The analysis is verified by experimental results on the Intel iPSC/1.

1 Introduction

A dimension permutation is a permutation defined on the bits of the address field, while an arbi-
trary permutation is a permutation on the address field. There are (log, M)! possible dimension
permutations compared to M! arbitrary permutations for an address space of size M. Examples
of dimension permutations are k-shuffle/unshuffle permutations, matrix transposition [5], [8],
bit-reversal [10], and conversion between various data structures, such as consecutive and cyclic
storage [5], [8]. Shuffle operations can be used to reconfigure a two dimensional partitioning to
a three dimensional partitioning of a matrix for multiplication with maximum concurrency [7].
They may also be used for data (re)alignment for certain Fast Fourier Transform algorithms [6],
[10].

The main focus of this paper is on lower bounds for stable generalized shuffle permutations
for communication restricted to one port at a time per processor, one-port communication, and
concurrent communication on all ports, n-port communication, and optimal algorithms for n-port
communication. We also present new optimal algorithms for one-port communication demon-
strating that for some situations there is a slight reduction in the communication complexity
compared to the previously known algorithms. A stable permutation is a permutation where
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the same processors are used before and after the permutation. A generalized shuffle permuta-
tion corresponds to a cyclic shift on a properly permuted index set. Dimension permutations,
a generalization of shuffle permutations are treated in [3]. Unstable dimension permutations
are treated in [4]. Stable dimension permutations have also been studied by Flanders [1] on
mesh-connected array processors, and by Swarztrauber [14] on Boolean cubes. Flanders and
Swarztrauber give almost identical algorithms for communication restricted to one port at a
time. The notation and definitions used throughout the paper are introduced in Section 2. In
Section 3 we discuss lower bounds. Algorithms are described in Section 4, and implementations
on the Intel iPSC are described in Section 5. We conclude with a few remarks in Section 6.

2 Preliminaries

2.1 Address spaces and Boolean cubes

The nodes in a Boolean n-cube can be given addresses such that adjacent nodes differ in precisely
one bit. The number of nodes is N = 2",

Definition 1 The Hamming distance between two numbers a and a’ with binary encodings

a = (ag-1ag-2 . ..ao) and @’ = (aj_ja}_,...qap) is Hamming(a,a’) = S0 (a; ® al).

The distance between two nodes & and y in a Boolean n-cube is Hamming(z,y). The number
of nodes at distance j from any node is (7). The number of disjoint paths between any pair of
nodes z and y is n. Hamming(z,y) paths are of length Hamming(z,y) and n — Hamming(z,y)
paths are of length Hamming(z,y) + 2 [11]. ||a|| denotes the number of 1-bits in the binary
representation of a, i.e., ||a|| = Hamming(a,0). |S| is the cardinality of set S.

The machine address space is A and the logic address space is L. The machine address
space A = {(ag-1a4-2...a0)| a; = 0,1; 0 < i < ¢} is the Cartesian product of the processor
address space and local storage address space. The processor address space requires n bits, or
dimensions. The storage per node is 297" elements. Of the machine address space, the n low-
order dimensions are used for processor addresses, and the ¢ — n high-order dimensions are used
for local storage addresses:

(Elq_laq_g s+ ln Gn—10n-3 ... ag).

s p

The set of machine dimensionsis Q = {0,1,...,q — 1}, the set of processor dimensions is
9, ={0,1,...,n — 1}, and the set of local storage dimensionsis Qs = {n,n+1,...,q— 1}.

The logic address space L = {(Wp—1Wm—2...wo)|w; = 0,1; 0 < i < m} encodes a set of
|£] = 2™ elements. The set of logic dimensions is M = {0,1,...,m — 1}. The relationship
between the number of processor dimensions, the local storage dimensions, and the number of
logic dimensions is arbitrary. For instance, if m < ¢ — n and m < n, then the entire data set
can be allocated to the local storage of a single processor, or across processors with one element
per processor using 2™ processors.
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Figure 1: The relationship between the sets of address dimensions.
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Definition 2 A dimension allocation function, , is a one-to-one mapping from the set of logic
dimensions, M, to the set of machine dimensions, Q; 7 : M — Q.

Let R = {rm,~1,Tmy—-2,---,70} be the set of logic dimensions mapped to processor di-
mensions, i.e., (i) € Q,, Vi € R and V = {vp,—1,Vm,—2,-.., 0} be the set of logic dimen-
sions mapped to local storage dimensions, i.e., 7(i) € Q,, Vi € V. Then, |R| = m, < n,
Vf=ms <g-—n, RUV = M, RNV = ¢, my + my = m. T, = {r(i)|[Vi € R} and
Iy = {n(4)|Vi € V}, are the sets of processor and local storage dimensions used for the allo-
cation of elements: I' = I', UT,. The inverse of the dimension allocation function 7! is a
mapping: I' — M, such that 7= o = I, where I is the identity function. Figure 1 illustrates
the relationships between the different sets and the allocation function. We will refer to the
dimensions in Q, (processor dimensions) as real dimensions and the dimensions in Q, (local
storage dimensions) as virtual dimensions.

Definition 3 The real distance between two locations with addresses @ and ¢/, a,a’ € A, is

Hamming,(a,a’) = Y773 (a;®a}) and the virtual distance between a and o’ is Hamming,(a, a') =
-1

Yin(ai @ af).

Lemma 1 Hamming(a,a’) = Hamming,(a,a’) + Hamming,(a,a').

If the m, lowest-order logic dimensions are mapped to processor dimensions, then the allo-
cation is cyclic; if the m,, highest-order logic dimensions are mapped to processor dimensions,
then the allocation is consecutive [5]. We use the notation (vm,—19m,—2 .. .%|"m,~17my—2 - - - T0)
for w when we want to stress the separation of logic dimensions mapped to real and virtual
dimensions. Element w is allocated to location @, where a; = We-1(5), if ¢ € T, and a; = 0,
otherwise. We arbitrarily define the unassigned address fields to be 0.




2.2 Classification of dimension permutations

A dimension permutation implies a change in allocation from 7%(M), before the permutation,
to m@(M), after it. Let R® be the set of logic dimensions mapped to processor dimensions before
the permutation. Let R* be the set of logic dimensions mapped to processor dimensions after
it. V® and V° are defined similarly. The sets of machine dimensions used before and after the
permutation are denoted I'® = I‘z U 1"; and I'* = T3 UT§, where I‘;’,, I's € 9, and I";,I‘g C Q,.
Clearly |T®| = |T'%|, since the number of elements is conserved. If I® = T'® (i-e., Fg = T} and
I'® = T'?) then the permutation is stable. Otherwise, it is unstable. Note that we classify the case
where I‘g =T} and I # I'? as an unstable permutation. The restriction of stable permutations
to use the same local address space before and after the permutation is made for notational
convenience. The algorithms for stable permutations presented in this paper also work for the
case 1";’, = I'; and I‘g # T'? with the same complexity as in the stable case, if the time for
local data rearrangement is ignored. For convenience, let I' = I'®* = I'*, T, = I‘Ib, = T} and

T, =Tb=Tq

Definition 4 A stable generalized shuffle permutation (GSH), gsh, on a subset of the machine
address space I' is a one-to-one mapping I' — T with § = 7%or~% ( 7~ denotes (7%)~1) restricted
such that §,(ao) = a1,é,(1) = az,...,0,(0s-1) = 0, i # @, i # j, 05,05 € T,0< 0,5 < 0,
and 6,(i) = ¢, Vi € T' = J. The index set J of the permutation is the subset of I such that
{i|6(2) # i} = J. The order of the permutation is o = |J|. Alternatively, one can define a
generalized shuffle permutation, gsh’, on the set of logic dimensions, i.e., gsh’ : M — M (for
the stable case) with gsh/ = 772 o 7®.

For convenience, we let J = {ag,a1,...,0,_1} be an ordered index set with the order
implied. The permutation function §, or gsh, applies to the subset of machine dimensions.
For convenience, we use §(a), or gsh(a), a € A, to denote (@5(g-1)@5(g—2) - - - @5(0)), Where § is
extended to a function of @ — Q with 6(3) = i, i € @ — J. We require that the GSH forms
a single cycle over the machine dimensions in the index set J, i.e., it corresponds to a right
cyclic shift of the ordered set 7. In a GSH a logic dimension k assigned to machine dimension
i = n°(k) is reassigned to machine dimension 6(i) = 7%(k). Following the definition, we have
the corollary below.

Corollary 1 In a GSH, a global address a = (ag—1a,—3 . . .ap) receives its content from the global
address é(a) = (as(g-1)as(g-2) - - - a5(0)) and sends its contents to the global address §~1(a) =
(@5-1(g—1)@5-1(g2) - - .as-1(0)), if it contains an element originally.

Proof: Assume ¢ = m first. Before a GSH, element w = (Wm—1Wm—2...wp) is allocated to
global address @ = (@m—1@m—2...a0). Then, w; = Grb(;) OF Gi = Wr—p(j). After a GSH, element
w is relocated to global address o’ = (a],_ya!,_,...a}). Then, w; = a;a(i) OF G; = Wr—a(;).
Since,

a:i = wﬂ"“(i) = ww—borbow‘“(i) = a"lrbmr“a(i) = Qg1 (%)
global address (@m—1am—2 . . . ag) sends its element to global address (ab’—l(m_l)a(s—l(m_Q) .+ G5-1(0))-
For ¢ > m, we consider the subset of global address with a; =0 forallie @ —T. Il
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Figure 2: The definition of § and §’, and cycles formed by traversing § and §’.
Definition 5 The identity permutation I is defined by §o(i) = ¢,Vi € T or J = ¢.

The order of the identity permutation is 0. A subscript o on §, §,, is used to denote the
order of the GSH being o.

Figure 2 shows a shuffle permutation in which machine dimension i becomes §(i) =
(¢! + 1) mod 5. Global address (asasazaiap) sends its contents to global address
(a5—1(4)(15-—1(3)(15—1(2)(15-1(1)a5—1(0)) = (asaza1a0a4). Note that § = (5')_1, if Wb(i) =1,VieM,
i.e., if 7® = I is the identity function.

Definition 6 A full-cube permutation (FCP) is a GSH for which the data set is allocated to all
real processors (but not necessarily the entire memory): I', = Q,. An eztended-cube permutation
(ECP) is a GSH for which the data set only occupies a fraction of the cube: T, C Q,.

Definition 7 A real GSH is a GSH such that 7 C T, and J # ¢. A virtual GSH is a GSH
such that J C T'; and J # ¢. A GSH that is neither real nor virtual and J # ¢ is a mized
GSH.

Definition 8 A shuffle permutation sh is a GSH such that J = {0,1,...,0 — 1} (i.e., 6(j) =
(J+1)modo, 0 < j < o), and an unshuffle permutation sh™! is a GSH such that J =
{o-1,0-2,...,0} (i.e.,8(j) = (j—1) mod o). A k-shuffle is the permutation sh* = shosh*~1.

A real GSH preserves the local address map. Data is moved between processors in the
subcube defined by the set of dimensions T',. All processors in this set have identical address
maps. A real GSH is a generalization of the collinear planar ezchanges described in [1]. A virtual
GSH (called vertical ezchanges in [1]) only involves local data movement, or a change of local
address map in the set of processors defined by the set I',. The same change is made for every
processor in this set. A mized GSH (planar-vertical ezchanges [1]) involves both processor and
local storage dimensions in the index set 7.

The reason for distinguishing between the real and virtual permutations is that access times
for local storage references are usually considerably faster than communication between proces-
sors. The former can often, with good approximation, be ignored. In standard random access




memories (RAM) the access time is independent of the address, however, the interprocessor
access time is often a function of the distance. In a packet switched communication system
the minimum time for a communication is proportional to the number of links that need to
be traversed. The actual time may be higher due to contention for communication links. In a
bit-serial pipelined system the time for a communication is independent of the distance for a
given machine, in the absence of contention. The time increases in proportion to the logarithm
of the machine size. The contention is often a function of the number of dimensions.

Definition 9 The real order o, of a GSH on a machine address space is |{j|j # 6(j),7 € Tp}| =
|7 NT,|, and its virtual order o5 is |{j|j # 6(7),7 € Ts} = |T N T4l

2.3 Base algorithms

All Boolean cube algorithms we present are based on sequences of exchange operations between
pairs of processors through communication in the same two dimensions for all pairs.

Definition 10 A dimension exchange function E(i,j) is a GSH with J = {i,j}. Data is
exchanged between pairs of locations (global addresses) as defined by
(ala; = 0,a; = 1) < (ala; = 1,a; = 0).
A shuffle permutation on I' can be performed as a sequence of o — 1 dimension exchanges

on adjacent machine dimensions. Similarly, a GSH can be performed as a sequence of o — 1
dimension exchanges on adjacent dimensions in the index set J.

Lemma 2 A generalized shuffle permutation gsh(a) of order o can be realized by a sequence of
dimension exchanges on a properly ordered index set 7.

g'Sh(a) = 'Ez(a(i+2)modaa a(i+1)moda) 0:--0 E(a(i—l)moda, a(i—-2)modo) o E(aiv a(i—l)moda)
= U:;-_"-:z E(ajv a(j—l)moda') ‘

Lemma 2 is easily proved by induction. The dimension exchange operations are performed
in a right to left order.

Remark: The starting dimension for the exchange sequence is arbitrary, but the direction
(increasing or decreasing dimension) is important.

A generalized shuffle permutation can also be realized by a sequence of exchange operations

between a fixed dimension and cyclically and monotonically increasing dimensions.

Lemma 3 A generalized shuffle permutation gsh(a) can be realized by a sequence of dimension
ezchanges between an arbitrary, fized dimension and a sequence of dimensions of a properly
ordered index set J.

gSh(a’) = E(Ol,', a(z’—l)moda) 60---0 E(O!,', a(i+2)mod0') o E(ab a(i-{—l)moda) = ;;1.}.1 E(ah aj)




Lemma 3 can be proved by induction. Both the “[]” “[[” signs denote the composition
of a sequence of functions in which the index of the functions are substituted by i mod o, (i +
. )
1)mod o,. .., mod ¢ for [T:_;, and i mod o, (i — 1) mod o, ..., mod o for TG=-

A dimension exchange E(i,7),% # j, requires Hamming,(a’, a") routing cycles, where a’ = a”
except a} # af and @ # a. Ttis 2if 4,5 € Tp; 0if 4,5 € T,; and 1, otherwise. If 4,5 € T},
then the set of processors is partitioned into four groups with respect to the values of a; and
aj. The groups are labeled {00, 11, 01, 10}. Processors in the 10-group exchange data with
processors in the 01-group. The exchange operation can be realized by two nearest-neighbor
communications, with processors in the 00- and 11-groups as intermediate nodes. The minimum
temporary storage required at the intermediate processor is equal to the size of a message. With
one-port communication the time complexity is the same whether or not a message is forwarded
in the second dimension before the next message in the first dimension is sent. For simplicity
in the description below we assume that all K elements per processor are communicated in
one dimension before communication in the next dimension takes place. Our description also
corresponds to the case where the entire algorithm is repeated % times with a packet size B.
The temporary storage requirement in intermediate nodes is equal in size to the storage per
processor in the initial and final stages. If one of the dimensions is a virtual dimension, then one
nearest-neighbor communication will suffice. If both dimensions are virtual dimensions, then no
communication is required.

In the case of a mized GSH, one should pick the fixed dimension o; € 7 NT,. Each exchange
operation then becomes one nearest-neighbor communication step. For a real GSH 7 NT, = ¢,
one can extend the index set J by a virtual dimension v € I'y and use the virtual dimension
as the fixed dimension. Terminating the exchange sequence by repeating the first dimension
exchange (between dimension v and a dimension in the set J) yields the desired GSH.

Lemma 4 gsh(a) = E(v, ;)0 E(v, a(i—l)moda)o' -0 E(v, a(i+1)moda)°E(v7 o) = Hj’:i E(v, ;).

Proof: By Lemma 3, the o rightmost exchange operations (i.e., excluding the leftmost one)
realizes a GSH on the ordered set J' = {v, @i, &(i41)modo> - -+»Q(i—1)modo }- This means that
6(j) = @(j41)mods for all 0 < j < 0,5 # (i — 1) mod o, 6((i-1)mods) = v, and 6(v) = ;. But,
the exchange E(v, o;) implies §(v) = v and 6((i—1)modo) = .

If v € Q, is a virtual dimension, then one can partition the local memory of each processor
into two equal parts with respect to dimension v, i.e., the one of a global address with a, = 0
(first half) and @, = 1 (the second half). In Lemma 4, if v € T',, then the original data set
is partitioned into two parts with respect to a, and only one part needs to be moved for an
exchange operation. If v € @, — Iy, then all the original data set is in the first half with respect
to virtual dimension v (i.e., a, = 0). By locally moving the data of the processor with Go;_, =1
into the second part, we have a, = a,,_, for all processors. This means that the last exchange
step of Lemma 4, E(v, o;), which exchanges @o;_1ymoas 214 @y (as described in the proof) can
be omitted, Corollary 2. After the GSH, the valid data is in the first half if aq, = 0; and in the
second half, otherwise. The data volume is twice that of Lemma 4.




Corollary 2 gSh(a) = E(v)a(i—l)moda) 0---0 E(v,a(i+1)mod0') o E(vv Ol,‘) = ;;1 E(v’ aj)/' if

Uy = Qg4 -

Note that Lemmas 2 and 3 both require 0 — 1 dimension exchanges for a GSH of order
o. However, Lemma 4 requires o + 1 exchanges. Corollary 2 needs o exchanges. Dimension
permutations are also realized by dimension exchanges in [1].

Dimension permutation algorithms can also be obtained by using a matrix transposition
algorithm recursively [8], [13], [12], or by using all-to-all personalized communication twice [13],

[9].

3 The complexity of stable generalized shuffle permutations

For each internode communication, there is an associated transmission time #, for each element,
and a start-up time, or overhead, 7 for each communication of a packet of B elements. The
packet size that minimizes the communication complexity is B,,:. We consider both one-port
communication and n-port communication. In the first case communication is restricted to one
port at a time for each processor. In the second case communication can take place on all ports
concurrently. The links are assumed to be bidirectional.

The time complexity for the different GSH’s are denoted T*(ports, o), mp, K). The super-
script * is either /b for a lower bound, or an algorithm identifier for an upper bound. The first
argument for T' is the number of ports per processor used concurrently, the second argument
the real order of the GSH, the third argument the number of processor dimensions being used,
and the last argument the data volume per “allocated” processor, i.e., K = 2.

3.1 Some properties of stable generalized shuffle permutations

The following lemma establishes the fact that GSH’s only involving a part of the logic address
space can be viewed as block permutations.

Lemma 5 For a GSH of order o, 2™~° elements are subject to the same permutation.

Proof: |I'—J| = m — 0. The GSH function §, is defined in the same way for each of the 2™~
blocks identified by the corresponding m — o bits of the machine dimensions. I

Corollary 3 For a GSH of real order o, the permutation consists of 2me=0» permutations in
subcubes of size 2°p.

If a permutation only involves a subset of the processor dimensions to which data have
been allocated, and if a lower bound algorithm is used for each subcube permutation, then
performance cannot be gained by using the processor dimensions used for data allocation, but
not participating in the permutation.




Lemma 6 A GSH of real order o, < m,, cannot be improved by communication in the m, — o,
processor dimensions that are not included in the GSH, if the original algorithm fully utilizes
the bandwidth.

Proof: Let P and P’ be two problems such that I'; = I'; and subject to the same GSH, §,,,
on a gp-cube and an m,-cube, respectively. Let T' be the communication complexity of a lower
bound algorithm A for P, ie., T = %, where B is the total bandwidth required and L the
available bandwidth per unit time. Suppose there exists an algorithm A’ for problem P’ with
communication complexity 7' < T. Consider a new problem P”:-a GSH §,, on a o,-cube with
the bandwidth of each cube link, and the data set per node expanded by a factor of 2™»~%» of
the ones in P. Now, map the nodes in P’ to nodes in P” such that the corresponding bits of
the o, dimensions for problem P’ are used to identify processors in P”. Every algorithm for
problem P’ can be converted to an algorithm for problem P” with a communication complexity
that is at most the same. So, T = % > T'>T", where T" is the communication complexity of
the corresponding algorithm for P”. However, T" > gn,,:—:z% = %, which in turn is equal to T,
and we have a contradiction. il

Note that Lemma 6 only addresses the communication within the subcube used for the logic
address space. It does not address the extended-cube permutation case.

3.2 Lower bounds

A full-cube, real GSH of order o, on an n-cube consists of 2"~°» independent GSH’s, each
of order 2°7. If the communication channels in each such subcube are fully utilized, then no
additional reduction in the data transfer time is possible by using the remaining n — op ports in
case of n-port communication by Lemma 6.

Lemma 7 The lower bound for a full-cube, real GSH of order o,, o, > 0, on an n-cube is

K .
max(%5—t., 0p7), o, is even,

T (1,00, K) =
gsh(1,0p, 1, K) {max(z%f(_tc,(gp_l)r), op is odd,

for one-port communication, and

K ]
te,0,T) oy, 1S even
71 K max(5-te, 0pT), ) )
gsh(7,0p, 1, K) = {ma,x(gtc, (0p— 1)7), 0y is odd,

for n-port communication.

Proof: Consider the minimum number of start-ups first. Let a be such that a,, = 0, if
imod 2 =0, and ao, = 1 otherwise, 0 < i < oy,. It follows that Hamming,(a,gsh(a)) = Op, if
op is even; and o, — 1, if 0, is odd. To show that o), — 1 is the maximum Hamming distance
if 0, is odd, we show that a Hamming distance of o, is impossible. This is easily seen since
Qo; # Qo4 1)mod oy V0 <% < 0y, is impossible if oy, is odd.




The minimum data transfer time is bounded from below by the required bandwidth divided
by the available bandwidth. By Lemma 6, we can consider the bandwidths for each op-cube.
For each j € T NTp = J with §71(j) = 4, ¢ # j, only half of the nodes (a; # a;) need to send
elements across cube dimension j. Therefore, the bandwidth requirement for each permutation
in subcubes of dimension oy, is 0,2’ K. The available bandwidth per routing cycle of a o,-cube
is 297 for one-port and 0,277 for n-port communication. 1

Corollary 4 The data transfer time of any fized packet size algorithm of ¢ routing cycles for
a full-cube, real GSH is at least 555t with n-port communication, and at least 20('2_}1{ t. with
one-port communication where a}l processors are using the same dimension during the same

routing cycle.

Proof: In order to realize the minimum data transfer time described in Lemma 7, all links
should be used “effectively” in the sense that all messages are routed through a shortest path,
and “evenly” during every routing cycles. However, during the first and last routing cycles, at
least half of the cube links can not support effective communication for the GSH. For one-port
communication, the same argument applies to the first and last routing cycles for any cube
dimension used by all processors. I

Lemma 8 The lower bound for a full-cube, mized GSH of real order 0y, 0 < 0p < 0, On an
n-cube is

K
Ti%(1,0p,m, K) = max (ﬂz—t ap-r)

for one-port communication, and
K
Tg’fh(n, Op,n, K) = max (Etc’ ap‘r)

for n-port communication.

Proof: The minimum number of start-ups required is max{Hamming, (a, gsh(a))}, Va € A.
Choose any o; such that a; € T, and Q(j-1)mods € I's. Define a such that a,, = 0, if i is
even, 0 <7 < 0; and a4; = 1, otherwise. Moreover, change Qog;_1ymoar O be different from a, ;

(when o is odd). Clearly, Hamming,(a, gsh(a)) = op for the a so defined. It is easily seen that
max,{ Hamming(a, gsh(a))} < oy, since a; = as@), Vi €T — J.

The minimum data transfer time can be proved as in Lemma 7. I

An extended cube permutation of real order op can be improved by communication in the
n —my, processor dimensions not used for the allocation of the data array. A possible algorithm
is a composition of a subcube expansion, full cube permutation, and subcube compression al-
gorithms. The permutation is then performed on a data set reduced by a factor of 2"~™»r, The
subcube expansion permutation is of type one-to-all personalized communication [2].
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Corollary 5 The lower bound for the communication complezity for an extended-cube GSH
(myp < n) of real order o, on an n-cube is

max ((K +0p — 1), Fﬂ%%tc,apr) , op is even or mized GSH,

T'Y (1, 0, mp, K) =
g5h(1,9p, M, K) { max ((K + 0, — 2)te, 27";%5;1.7:0, (op — 1)1-) , otherwise,

for one-port communication, and

max ((#;; +0p — 1) te, grmmzrric, apr) , op is even or mized GSH,

T!Y (n,0p,my, K) = .
. e max ((n—m1§+0p +op — 2) te, 57‘_‘1"{‘_?'“'t°’ (Up - 1)T> » otherwise,

for n-port communication.

Proof: By Lemma 6, the lower bound for a GSH of real order op on a data set of 2™+*t™» elements
on an n-cube is the same as the lower bound of the same GSH of real order o, on a data set of
2ms1% elements on an (n—myp+0,)-cube. We now prove the lower bound for the latter problem.
The first argument of the maz function is derived by considering the minimum time required to
send out the K elements for any processor that needs to send data, and the propagation delay
for the last element sent out. From the proof of Lemma 7, the bandwidth required is 0,2°771K.
The “effective” bandwidth available is 0,2"~™r+°» for n-port communication and 2"—™»+% for
one-port communication. The former can be shown by collapsing the (n — m, + op)-cube into a
op-cube identified by the o, dimensions in the set J, and the bandwidth of each link increased
by a factor of 27%—™». |

4 Algorithms

4.1 Overview

In this section we present algorithms for both real and mized generalized shuffle permutations
(GSH’s). We consider full-cube permutations (FCP) and extended-cube permutations (ECP).
Algorithms of the ECP will utilize algorithms for the FCP as primitives.

Lemma 2 defines an algorithm for GSH’s that we refer to as Algorithm A0. Every dimension,
except the first and last, is traversed twice in successive exchanges. By combining the successive
communications through a look-ahead scheme Algorithm A1l is obtained. The number of start-
ups is reduced to o instead of 2(o — 1) for a real GSH. The modified algorithm can be improved
further by dividing the data set for each communication that takes place into two packets that are
sent during consecutive cycles, Algorithm A1’. The data transfer time is reduced approximately
by a factor of two compared to Algorithm Al.

Lemma 3 also defines a dimension permutation algorithm, that is of interest for mixed GSH ’s,
since the dimension exchanges can be performed as nearest-neighbor communications. Lemma 4
shows how a real GSH can be performed as a sequence of nearest-neighbor communications by

the inclusion of a virtual dimension. If the virtual dimension v € T',, then Algorithm A2 [1],
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[14] is obtained. If instead v € @, — T's, then each processor contains K valid elements and K
dummy elements, and o steps suffice by Corollary 2, Algorithm A2'.

For n-port communication the algorithms based on Lemmas 2, 3, and 4 are generalized
by dividing the data set K into o parts. Each such part is subject to a dimension exchange
sequence with a different starting dimension. The starting dimension can be chosen arbitrarily.
Note that at most [log, o] virtual dimensions suffice to realize the n-port versions of the one-port
algorithms.

We first present algorithms for real shuffle permutations, then algorithms for mixed shuffle
permutations. The complexity estimates for the different algorithms are summarized in Table
3. For notational convenience the algorithms are described for real shuffle operations of order
op = n.

4.2 Full-cube, real shuffle algorithms
4.2.1 One-port communication

Algorithm AO0. This algorithm is a direct application of Lemma 2. The algorithm can be
expressed as:

/* bit(i,z) = the ith bit of z. */
/* pid = the processor id. */
/* nbr[i] = the neighbor processor id along dimension i. */
doi=n-1,1, -1
if (bit(i, pid) = bit(i — 1, pid)) then
/* The intermediate node is passive. */
recv (nbr[i], tmp)
send (nbr[i — 1],tmp)
else
/* The node is active, exchange needed. */
send (nbr(i],buf)
recv (nbri — 1], buf)
endif
enddo

The path from a node @ = (@n_1an-2...a0) to the destination node (an_za,_3.. .Q0ln—1)
is:
(an_lan_g . .alao) — (an_gan_lan_g . .alao) g d (an-gan_g . .an_lao)
= (@n—20n-3...000n-1),

where the underlined dimensions are subject to exchange during the next step, if a; # a;_1.
After the first exchange step, the shuffle permutation on an n-cube is reduced to two independent
shuffle permutations on two (n — 1)-dimensional subcubes that are performed recursively and
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Figure 3: The data allocation as a function of exchange step for Algorithms A0 and Al.

concurrently. After step k,0 < k < n — 1 there are 2¥*! independent shuffle operations of order
n —k — 1. Each exchange operation takes place on 2”2 independent 2-cubes.

Figure 3 illustrates the data allocations as a function of the exchange step on a 4-cube. The
state for each half exchange step is shown below the sequence of states after each complete
exchange step. The dashed arrows show the sequence of communications. The solid arrows
apply to Algorithm Al. Figure 4 shows the interprocessor communication as a function of the
exchange step for a shuffle operation on a 4-cube. The data to be shuffled is identified by the
initial processor address (the sender), and is given in parentheses above the processor addresses.

Algorithms A1 (A1’). Algorithm A0 needs 2(n — 1) routing cycles for a real shuffle of order
n. All dimensions, except dimensions n — 1 and 0 are subject to two exchange operations. For
example, the path originating at processor (01101) traverses the same edge in dimension 3 twice
(11101) — (10101) — (11101), Figure 5. The number of routing cycles can be reduced to n
by combining successive communications along the same dimension, and removing redundant
communications, like the one in the example. In Algorithm A1l routing cycles 2¢ — 1 and 2¢ of
Algorithm A0 are combined, except for i = 0 and 4 = n — 1. The data transfer time remains the
same. In Algorithm AO all edges in a dimension are used in one direction (0—>1lorl—0)in
every step. By eliminating redundant communications half of the edges in a dimension become

idle. By combining non-redundant communications the other half of the edges carry twice the
load (2K).

By including the temporary storage in the intermediate nodes required by Algorithm A0
in the description of the dimension exchange sequence, Algorithms A0, A1, and A2 can be
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Figure 5: The path of node (01101) in Algorithm A1l.
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| (rjqarjri—1) | E(G+1,7) | E@G,j-1) | combined j |

000 (recv;41,send;) | (recv;,send;_q) )
001 (recv;y1,send;) | (send;,recv;_1) send;
010 (send;4q1,recv;) | (send;,recv;_q) ¢
011 (send;y1,recv;) | (recv;,send;_q) recv;
100 (send;ji1,recv;) | (recv;,send;_1) recv;
101 (send;yq,recv;) | (send;,recv;_q) ¢
110 (recv;41,send;) | (send;,recv;_1) send;
111 (recv;t1,send;) | (recvj,send;_q) ¢

Table 1: The combined communication along dimension 7 for Algorithm A1.

treated uniformly. The temporary storage is modeled by a virtual dimension v € Q, — I,.
The initial and final data sets are located in memory locations for which a, = 0. Temporary
storage corresponds to a, = 1. The first two dimension exchanges in Algorithm A0 consist of
the following four communication cycles:

(Ovg—1Vk—2 .. .'volri__l_rn_g eo.70) = (1Vk—1Vk—2 .. . V0|Fp—1Tn—2 . ..70)|Tn-1 # Tn-2,
(lvg—1vk—2 . - -’vo|7‘n—1_7‘n_—2- .19) = (0Vk_1Vk—2 .. . V0|Tn—1Tp—2...70)|Tn-1 = Tn-2,
(0vg—1Vk—2 .. .'v0|rn_1rn___2rn_3 eo.r0) = (10k—1Vk—2 . . . 0| Tn=1Tn—2Tn—3 - . . 70)| T2 # T3,
(lvg—1vk—2 .. -V0|Pn-1Tn—2Tn—3 . . .70) = (0Vk—_1Vk—2 .. . V0|Pn—1Tn—2Tpn—3...70)|Tn-2 = Tn_3.

The first cycle in each pair of cycles implies a sending of all data from one half of the nodes
to the other half. The nodes defined by 7,_1-; # rp—2—; are empty after communication cycle
2¢, where ¢ = {0,1...,n — 2} is the dimension exchange step. Cycle 2i + 1 communicates in
dimension n — 2 — 4, the same dimension as cycle 2(¢ + 1). In cycle 2i + 1 nodes for which
Tp—1—i = Tp—2-; send the content of the second half of their storage to the first half of the
storage of nodes (r,—17n—2...Tn_1-iFn_2-iTh-3-i...70). In cycle 2(i + 1) the nodes for which
Tn—2—i # Tn—3—; send the content of the first half of their storage across dimension n — 2 — 4.
Hence, half of the nodes that send data in dimension n — 2 — 4 during cycle 2i + 1 also send
data in the same dimension during cycle 2(¢ + 1). The other half receives during cycle 2( + 1)
the data set it sent during cycle 27 4+ 1. Since both communications are in the same dimension,
n — 2 — i, they are redundant. Half of the processors (i.e., those in the empty state) have no
data at any given intermediate step. The processors in the other half have 2K elements each.
Figure 6 shows the sequence of communication steps on a 4-cube. The numbers in parentheses
are the data identified by the processor addresses initially.

Table 1 shows the 8 possible patterns of (r;+17;7j—1) and its corresponding combined com-
munication along cube dimension j. The second and third columns are the two communication
steps for E(j+1,5) and E(j,j — 1), respectively, in which send; (recv;) denotes “send (receive)
along dimension j”. The last column shows the combined communication along dimension j
with ¢ denoting the cancellation of communication.
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Figure 6: The sequence of communication steps for Algorithm A1.

The algorithm can be expressed as follows:

/* bit(i, z), pid and nbr[i] are defined as before. */
/* buf[1] = the local data to be shuffled. */
/* buf[2] = the temporary buffer. */
if (n < 1) stop
if (bit(n — 1, pid) # bit(n — 2, pid)) then
send (nbr[n — 1], buf[1])
else
recv (nbr[n — 1], buf[2])
endif
doj=n-2,1,-1
if (bit(j + 1, pid) = bit(j, pid)) then
/* was in a holding state. */
if (bit(j, pid) # bit(j — 1, pid)) then
/* need to change to an empty state. */
send (nbr[j],buf[l:2])
endif
else
if (bit(4, pid) = bit(j — 1, pid) then
recv (nbr[j],buf[l: 2])
endif
endif
enddo
if (bit(1, pid) = bit(0, pid)) then
if (bit(0, pid) = bit(n — 1, pid)) then
send (nbr[0], bu f[2])
else
send (nbr[0], bu f[1])
endif
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else
recv (nbr[0], buf[1])
endif

The complexity of Algorithm Al is always less than, or at most equal to that of Algorithm
A0. Note that Algorithm Al can be improved further by approximately a factor of two for
the data transfer time, if one send and one receive operation can be performed concurrently on
different ports. In Algorithm Al, if a node issues a send (receive) during routing cycle 7, then
it does not issue a send (receive) during cycles 2 — 1 and 7 + 1 (if these cycles exist). Therefore,
the communication during cycle i can be split into two communications, each communicating
half of the data set that needs to be communicated. The data volume for each intermediate step
is reduced to K, instead of 2K, for each active link. This algorithm is labeled A1’. Note that
Algorithms A1 (A1’) only uses a communication link in one direction 0 — 1 or 1 — 0.

Algorithm A2 (A2’). In Algorithms A0 and A1 the required storage is twice the size of the
data set, if the temporary storage is accounted for. By employing Lemma 4 and using dimension
vg—1 as the “fixed” dimension, the storage need is reduced to the size of the data set. For a real
shuffle permutation dimension v;_1 is not included in the index set J and n + 1 exchange steps
are required for a shuffle of real order n. By using a dimension used for local storage addresses
as the virtual dimension, the communication in each cycle becomes bidirectional, i.e., exchange
operations. During each step, all communications occur in the same dimension of the cube.
Processors in subcube 0 exchange the second half of the data with the first half of the data of
the processors in subcube 1. The sequence of exchange steps for a shuffle permutation can be
illustrated as follows:

(Vk=1Vk—2 . . - V10|Tn—1Tn—2 - . . T170) — (TQUk—2 . .. V1V0|Tn—1Tn—2 ... T2T1Vk—1)

bad (ﬂvk_z .o .’Ul’l)ol’l'n__l’r'n_g .. .T_zro?)k_l) —_— e — (’I‘n_g’vk_g .. .'vl'volrn_lrn_g .. .Tlrovk_l)
b (’l‘n_l’vk_z e v1v0|7'n—27'n-3 SN T1T0’t)k_1) - (’vk_l’l)k_g o ’l)l’Uol’l‘n_z’l‘n_g, [N 7‘1T07’n_1).

Figure 7 shows the 4 exchange steps in a 3-cube that realizes the shuffle permutation. Figure 8
shows the data allocation as a function of the exchange step in a 4-cube.

Note that after n exchange steps half of the data (for each processor) have been permuted
to the right processor. The other half of the data need one more exchange step. Hence, if the
data that need the final exchange step were dummy data, then n exchange steps would suffice.
If instead of choosing v € I's, v is selected such that v € @, — I',, then n steps suffice. Consider
subcubes 00, 01, 10 and 11 with respect to dimensions n — 1 and 0. During the first step, data
in subcubes 01 and 10 are sent to subcubes 00 and 11, respectively. During the next n — 2 steps,
data are exchanged within subcubes 00 and 11 while subcubes 01 and 10 are idle. During the
last step, half of the data (for each processor) in subcubes 00 and 11 are sent to subcubes 10
and 01, respectively. The amount of data communicated during every step is K, instead of %

Note that all data are sent through some shortest path in A2’, since each dimension is only
routed once (unlike A2). The total bandwidth required is the same as the lower bound. With
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Figure 7: The 4 exchange steps in a 3-cube. The shaded areas are the parts of data sub ject to

exchange during the next step.

initial

Vo

proc. v az az ay ap

ata w4 wswywy wg
step 2

Vv

vV ag az ay ag

W4 W3 W W1 Wo

step 0

vV ag az ay ag

W4 W3 Wo W1 Wo
step 3

vV ag az ay ap

W4 W3 We W1 Wo

step 1

Vo

vV asz ag aj ag

W4 W3 W2 W1 Wo
step 4

vV az az ay Ao

W4 W3 W2 W1 Wo
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one-port communication, the data transfer time nKt, is exactly twice the lower bound. Note
that Algorithm A1 (A1’) traverses the cube dimensions in decreasing order while Algorithm A2
(A2') traverses the cube dimensions in increasing order, cyclically. In Algorithm A1 the active
half of processors are changing, while in Algorithm A2’ the active half stay the same.

4.2.2 n-port communication

The n-port versions of Algorithms A0, A1 and Al’ are obtained by using the same exchange
sequences, cyclically, with different starting indices. Since their complexities are always higher
than, or at most, the same as, that of Algorithm A2’, we omit them in the following discussion.

Algorithm A2. For a shuffle permutation of order n the data is partitioned into n equal
sized subsets. Assume log, 7 = 7 is an integer, then exchange sequences i, 0 < i < 7, can be
represented as

('Uk—-l ooV Vk—p-1Vk—p—-2 . . .’UolTn_.l’l'n_z ce e TigpoTipaTyTi—1 . .« ’I"())

— (k=1 Vk—yTiVk—y—2 - . - V0| Tp—1Tr—2 - - -Tit2Ti41Vk—n—1Ti—1 - - - T0)

— (Vg=1.. - Vk=nTit1Vk—p=2 - - - V0| T—1Tn—2 . . -Ti42TiVk—y—1Ti=1-..T0) — *
— (Vk—-1.. - Vk=nTi=2Vk—p—2 - - -V0|Tn_2Tn_3.. S TiVk—n—1Ti=1Ti=3 - . . T0Tn—1)
— (Vg—1--- Vk—nTi=1Vk—n—2 - - V0|Pn—2Tn—3 . . . "iVk—y—1Ti—2 .. .TTr—1)

— (k1. VkeyVk—n—1Vk—p—=2 - - - V0|Tr—2Tn_3 . . . TiTi_1T5—2 . . TOTn—1),

where (vg_1Vk—2...0%5—y) = i. Note that the assumption of log, n being an integer is only
required for notational convenience.

Formally, let J = Qg,01,...,0,-1 be a sequence obtained from the order set J. Let L be
the left rotation operator, i.e., L(J) = a1,...,0,-1,09, and L' = LYo [. The o exchange
sequences are defined by Seq;, 0 <7 < 0.

Seq; = L'(J), o.

Note that a; is also the first dimension of Seq;. For o = 3,

Ser = &g, &1, G2, Q.

Seql = 0,03, 00,07.

Seqy = ag, ap, a1, as.

During any routing cycle, different sequences use edges in different dimensions.

Algorithm A2'. The one-port version of Algorithm A2 uses a single dimension during each
exchange step. An n-port version of the algorithm can be created by defining the exchange

sequences Seq;, 0 < i < n, »
Seq; = L'(J).
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Node a is active (during the intermediate steps) for Seq; if a; = @(;i—1)modn- During routing cycle
7,1 < j < n—2,node a exchanges data along dimension 7 if @(i—j)modn = @(i—j—1)modn-

Another n-port version of Algorithm A2’ is to pipeline the communications along one path
per node, such as a path derived from Seqqg. In the one-port algorithm, data originated from
different nodes use different edges in dimension 7 during routing cycle ¢ (if they need to be routed
through dimension ¢). The paths from all N nodes are edge-disjoint. The complexity of the
pipelined algorithm with optimal packet size, (v/Kt. + \/(n — 1)7)2, is higher than the version
of Algorithm A2’ using n sequences, in general.

4.3 Full-cube, real, generalized shuffle algorithms

For a real GSH of order n on an n-cube, one can modify any algorithm for a real shuffle permuta-
tion on an n-cube by considering cube dimensions ag, o1, ..., @,_1, instead of cube dimensions
0,1,...,n—1. Since all cube dimensions are assumed to have the same communication char-
acteristics the complexity is unaffected by the change. For a real GSH of order o, < n, the
permutation consists of 2"~ permutations in independent subcubes. These permutations are
performed concurrently. By Lemma 6 no advantage can be taken of the fact that op < n, if
the permutation algorithm is optimal. We ignore the improvement possible over our algorithms
since they are of optimal order.

4.4 Full-cube, mixed, generalized shuffle algorithms

By Lemma 3 a mized GSH can be realized through the following exchange sequence:
gsh(a) = E(ai, a(i—1)ymods) © ** + © E(, ®(i42)modo ) © E(, @(i41)mods)-

No communication is necessary for exchan I%e operations for which both dimensions are in T',.
The one-port communication complexity is —E—tc+ap1' which is optimal with respect to the data
transfer time, and the start-up time. Figure 9 shows a GSH on the index set J = {3,0,2, 4, 1}.
This index set is derived from the initial index map 7%(0) = 3,7%(1) = 4,7%(2) = 0 7rb(3) =1
and 7°(4) = 2, and 7%(i) = 4,0 < i < 4. The cycle on the left is derived from the dimension
permutation function §. The cycle on the right is derived from 6, which describes the mapping
for the set of logic dimensions. Table 2 shows the sequence of exchange operations of the
permutation for the case where 0,1,2 € Q, (real dimensions) and 3,4 € Q, (virtual dimensions).
The permutation is the conversion from consecutive storage to cychc storage [5], [8].

For n-port communication it is possible to extend the index set J with virtual dimensions
and apply Algorithm A2 as for a real GSH. If there are at least [log, 0,] virtual dimensions
in I'; — J then no extra storage is needed. Alternatively, one can run m/, GSH’s concurrently,
where m!, = |{o;]a; € TN Ls, a(i41)mods € J NTp}|. No two generalized shuffle permutations
need to utilize the same processor dimension during the same routmg cycle. The complex1ty is
2m, t + o,7. The data transfer time is bounded from above by —Lt and from below by
The latter algorithm, though it may have a hlgher data transfer tlme has one less start-up. The
choice of algorithm depends on K, 7, ¢, and m/,.
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Figure 9: The cycles formed by traversing § function (on the left) and é’ function (on the right).

Encodjng Po P1 P2 P3 P4 P5 Pe P7
(43|210) 0] 4|8 (1216 |20 |24 | 28

1 5 9 13 (1721|2529

(wrwowgqwawy) | 2 | 6 [ 10 [ 14 | 18 | 22 | 26 | 30
3| 7 [11(15]19 |23 |27 | 31

(43]210) o189 |16|17]24]25

4 |5 (1213 (20|21 |281{29

(wrwewawzwg) | 2 3 |10 |11 |18 | 19| 26 | 27
6 7114|1522 |23 30| 31

(43]210) o189 4|512]13

16 | 17 | 24 | 25 | 20 | 21 | 28 | 29

(wywawewswo) | 2 | 3 (10|11 | 6 | 7 |14 | 15
18 {19 | 26 | 27 | 22 |23 | 30 | 31

(43]210) o189 [4]5]12]13
21310116 | 7 |14 15

(w4w1w2w3wo) 16 | 17 | 24 | 25|20 | 21 | 28 | 29
18 119|126 |27 (2223|3031

(43]210) 0] 112 |3 |4]|5]6]|7
819 (1011|1213 |14 ]| 15

(wawswowiwo) | 16 | 17 [ 18 | 19 | 20 | 21 | 22 | 23
24 125126 |27 |28 (29|30 31

Table 2: Conversion from (wiwowsw3ws,) encoding to (wswswew;wo) encoding. The underlined
dimensions are the pair of dimensions going to be exchanged during the next routing cycle.
Machine dimensions 0, 1 and 2 are real dimensions, and 3, 4 are virtual dimensions.
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4.5 Extended-cube permutation algorithms

For an extended-cube permutation, we adopt a three phase scheme: subcube expansion, full-cube
permutation, and subcube compression. In the first phase, each processor partitions its data into
2"~™r pieces and all processors concurrently perform a one-to-all personalized communication
to each of the 2™~ distinct subcubes of dimension 7 — m,. In the second phase, an algorithm
for a full-cube permutation is used concurrently in the 2"~™» subcubes, with the data volume
reduced by a factor of 2*~™». The third phase is the reverse of the first phase, i.e., data are
gathered (compressed) into the original active subcube. The complexities of the first phase and
the third phase are the same, and for the best known algorithm [2,9] the complexity of each is

1
K <1 - 2n_mp) te+ (n—mp)T

for one-port communication, and

K 1
1- A=y te+ (n—my)T

n—my

for n-port communication. With n-port communication, if the algorithm used in the second
phase is optimal, then the total data transferred is ~ 2n_mp+1 + 2{; compared to K for an

optimal algorithm using links of the active subcube only. The speed -up of the data transfer
time is about a factor of *=2, but the start-ups compare as 2(n —m,) + o, to o,. For one-port

communication, the data transferred is & —,T‘E;,,if,:q + 2K compared to 5'—’;,5 The speed-up of the
data transfer time is about a factor of —2

4.6 Algorithm comparison and summary

All presented algorithms have a communication complexity of the same order as the lower
bound. The difference in the communication complexities of the algorithms and the lower
bound is generally a small constant factor. The control is distributed for all algorithms. The
communication complexities of a real GSH of order o, are summarized in Table 3. The second
last column contains the ratio of data transfer times and the lower bound. The last column
contains the ratio of the start-up times and the lower bound.?

For one-port communication the number of start-ups of the algorithms is at most twice the
lower bound. Algorithms A1, A1’ and A2’ have a number of start-ups equal to the lower bound.
For n-port communication, Algorithm A2’ has a number of start-ups equal to the lower bound.
The data transfer time for Algorithm A2 with one-port communication is at most 50% higher
than the lower bound, and that of Algorithm A1’ and A2’ is twice the lower bound. For n-port
communication all algorithms have a data transfer time that is at most a factor of two, higher
than the lower bound.

We conclude that the data transfer time of Algorithm A2 is a factor of —-L+l lower than
that of Algorithm A2’ for both one-port and n-port communications. The factor ranges from

%For convenience, we use oy, as the lower bound for comparison. (For a real GSH of odd a5, the lower bound
is 0p —1.)
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l Comm. ] Alg. | Byt ] Communication complexity | t. factor/lb | T factor/lb ]

A0 | K 2(0p — 1)Kt. + 2(0p — 1)[E]7 [2, 4) 2
one-port | Al | 2K | 2(o, — 1)Kt. + ((o, — 2)[Z] + 2[EN)r (2, 4) 1
comm. | Al | K opKt. + oy [%] T 2 1
A2 | K et K1, + (0, + D)[ K7 (1, 1.5] (1, 1.5]
A2 | K opKt. + o, [ KT 2 1
nport | A2 | £ L) Ko+ (0p + DI 2517 (1, 1.5] (1,1.5]
comm. | A2 % Kt.+ o, [;’fg] T 2 1

Table 3: Summary of the communication complexities of various algorithms for a real GSH of
order oy.

Comm. one-port n-port
Algorithm | A0 | A1 | A1 | A2 | A2 || A2 | A2

Memory |2K |2K | 2K | K |2K || K | 2K

min{K} 1 1 1 2 1 || 20, | op

Table 4: The memory required and the minimum size of data volume required for maximum
concurrency for different algorithms with one-port communication.

0.5 - 0.75. With optimal packet size the number of start-ups of Algorithm A2 is a factor of
1+ ;1; higher than that of Algorithm A2’ for both one-port and n-port communications. The
factor ranges from 1 to 1.5. For a small packet size relative to the data set, the number of
start-ups compares as the data transfer times. Algorithm A2’ is relatively more competitive for
n-port communication than for one-port communication with optimal packet size. The break-
even point between Algorithms A2 and A2'is 7 = (0, — 1)%150 for one-port communication, and

T=(1- ;i—))%tc for n-port communication.

Table 4 shows the memory required for different algorithms, and the minimum size of the
data set K for which the complexity estimates are true. All algorithms require a memory which
is at most twice the original data volume.

In addition to the algorithms above it is also possible to perform a generalized shuffle per-
mutation through all-to-all personalized communication [9,13], but it can be shown always to be
inferior to the algorithms presented here. Likewise, performing the permutation by recursively
applying an optimal matrix transposition algorithm [8] yields a complexity higher than that of
the algorithms presented here.
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Shuffle times comparison, 5—cube
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Figure 10: The measured shuffle times as a function of message lengths on an iPSC 5-cube.

5 Implementation issues

We have implemented the one-port versions of Algorithms A1 and A2 on the Intel iPSC /1. For
comparison we have also performed shuffle permutations by using the routing logic. For a real,
full-cube, shuffle permutation with a message size less than a few hundred bytes, Algorithm A1
is of lowest complexity, while for a large message size Algorithm A2 is preferable, Figure 10.
We have also included measurements of shuffle permutations by all-to-all personalized commu-
nication, Algorithm A3, which as expected requires more time than Algorithms Al and A2.
Algorithm A3 has the disadvantage that the data to be exchanged between pairs of neighbors
may not be in contiguous memory locations. Therefore, it may require more start-ups, or local
data movement determined by the total data volume to be transmitted. Local data movement
requires a substantial amount of time on the Intel iPSC [8]. The best time of either Algorithm
Alor A2is 5 - 10 times less than that of the router. All one-port algorithms have a complexity
that is linear in the number of dimensions for shuffle permutations with a real order equal to the
number of cube dimensions. The deviation from the linear dependence exhibited in Figures 11
and 12 is due to a hybrid implementation which optimizes the sum of start-up time and the
time for local data movement [8].

6 Summary and conclusions

We have proved lower bounds and devised a few algorithms optimal within small constant factors
for stable generalized shuffle permutations on Boolean cubes. With concurrent communication
on all ports of each node our algorithms are optimal within a factor of two. No lower bounds, or
optimal algorithms were previously known for this case, except for shuffle permutations through
all-to-all personalized communication [13], which requires a data volume of an order 0(2°) to
be optimal. With communication restricted to one processor port at a time, Algorithms A1’
and A2’ have a time complexity comparable to that of Algorithm A2 [14]. Depending on the
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Shuffle times comparison, 8 bytes
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Figure 11: The measured shuffle times as a function of cube dimensions on an iPSC 6-cube with
K = 8 bytes.

Shuffle times comparison, 1 kbytes
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Figure 12: The measured shuffle times as a function of cube dimensions on an iPSC 6-cube with
K =1 kbytes.
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machine parameters and data volume one or the other may have the lowest complexity with
the ratio of communication times %%hh—?n—% varying in the range [2,2]. Implementations on
the Intel iPSC/1 show that for shuffle permutations with a message size of up to a few hundred
bytes the measured communication time of Algorithm Al is the lowest of Algorithms A1, A2,
all-to-all personalized communication, and the router. For a larger message size Algorithm A2

has the lowest time complexity.
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