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Keeping Shares of a Secret Secret

Josh D. Cohen

Abstract

In 1979, Blackley and Shamir independently proposed schemes by
which a secret can be divided into many shares which can be dis-
tributed to mutually suspicious agents. This report describes a homo-
morphism property attained by these and several other secret sharing
schemes which allows multiple secrets to be combined by direct com-
putation on shares. This property reduces the need for trust among
agents and allows secret sharing to be applied to many new problems.
One of these problems, that of secret-ballot elections, is given as an
application.

1 Introduction

Suppose that the economic ministers of the world are assembled in a room.
They have agreed that a world economic forecast is desirable and that this
cannot be accomplished without knowing the total assets of all the nations.
Each minister knows the assets of his or her nation (a very closely guarded
secret), and they all agree that it is in their common interest to determine
their total assets so that the forecast can be completed. Being economists,
however, the ministers are extremely skeptical of cryptographers, mathe-
maticians, computer scientists, and other odd creatures. In particular, the
ministers have no faith whatsoever that factoring is hard or that P is dif-
ferent from NP (they don’t even believe that P-TIME is different from P-
SPACE). The economists do, however, know a proof when they see it (they
do believe that LOG-SPACE is different from P-SPACE), but nothing is to
be believed without a proof.

Can the ministers determine their combined assets without relying on
unproven assumptions to protect their secret information?

This work was supported in part by the National Security Agency under Grant
MDA904-84-H-0004.




Cryptographic solutions can be found by using a mix ([Cha81]) or the
voting scheme of [DLM82] which essentially scramble the data so that the
associations between the secrets and their owners are hidden. If this is
not sufficient, techniques for computing with encrypted data (see [RAD78],
[Ya082], [BIMe85], and [Fei85], for example) can be incorporated into these
schemes so that the final result consists of only the aggregate value rather
than a (disassociated) list of secrets. This approach to the problem, however,
depends heavily upon cryptographic assumptions such as the difficulty of
factoring.

In this paper, we shall consider an alternate approach to such problems in
which no cryptography or cryptographic assumptions are required (although
the data used may be encrypted for other reasons).

If there exists an agent which is trusted by all the ministers, then the
problem has a simple solution. Each minister gives his or her information to
the agent, and the agent computes and announces the total assets. However,
if there is distrust, such a scheme is unacceptable. Even if the accuracy of
the total is believed or can be verified, the agent knows all of the secret
information, and can reveal any of it at will.

If, however, a group of n agents can be found such that each economic
minister believes that at least k of the agents are dependable (in the sense
that they are willing to cooperate faithfully) and that no more than kK — 1 of
the agents are corrupt (in the sense that they would conspire to reveal any
secrets they could derive), then a solution to this problem can be found by
embedding the problem within a suitable secret sharing scheme.

Shamir’s polynomial secret sharing scheme [Sha79) is ideal for this pur-
pose. Each minister gives a share of his or her secret datum to each of
the n agents. Each agent can then simply add its shares to form a single
super-share. The properties of polynomial evaluation and interpolation and
the details of Shamir’s scheme ensure that the super-shares are themselves
shares of the sum of the secrets. Thus, when the super-shares are revealed,
the desired sum can be derived.

At this point, we assume that there are no attempts at subversion. The
information is assumed to be correct, and the only concern is that some of
the agents may surreptitiously collaborate in order to obtain secret infor-
mation. In section 4, we shall see an example of how interactive proofs and
cryptographic methods can be used to verify both the validity of the shares
given to the agents and the accuracy of the composite results returned by
the agents.

In general, suppose each of m parties holds a “sub-secret”, and there




exists a “super-secret” which is the composition of the sub-secrets under
some known function (such as the sum or the product of the sub-secrets).
The parties want to determine the super-secret without revealing their sub-
secrets or depending upon cryptographic assumptions.

With an appropriate secret sharing homomorphism, shares of the sub-
secrets can be distributed to the n agents such that any k can determine
each of the sub-secrets. Each agent can then compose its “sub-shares” into
a single “super-share” such that any k of the super-shares are sufficient to
determine the super-secret.

The advantage of such a homomorphism is that k of the n agents can,
by revealing their super-shares, determine the super-secret without sharing
any information about the constituent sub-secrets. Information about the
sub-secrets can only be obtained if £ or more agents agree to merge their
sub-shares to reconstruct the sub-secrets.

An application of this homomorphism will be seen in the domain of elec-
tions. Here a voter can distribute shares of his or her vote to n agents.
Each agent can then compose its vote-shares to form a share of the election
tally. If k or more of the agents reveal their composite tally-shares, then the
election tally is publically revealed. However, a conspiracy of at least k dis-
honest agents is required in order to obtain information about an individunal
vote.

2 The Homomorphism Property

Shamir in [Sha79] defines a (k,n) threshold scheme to be a division of a
secret D into n pieces Dj,..., D, in such a way that:

1. knowledge of any k or more D; pieces makes D easily computable;

2. knowledge of any k — 1 or fewer D; pieces leaves D completely unde-
termined (in the sense that all its possible values are equally likely).

Let S be the domain of possible secrets, and let T be the domain of
legal shares. Every instance of a (k,n) threshold scheme determines a set
of functions Fy : T¥ — § defined for each I C {1,2,...,n} with |I| = k.
These functions define the value of the secret D given any set of k values
D;,,...,D;,:

D = Fi(Dy,,...,Dyi,),

where I = {i1,...,tk}.




Let @ and ® be binary functions on elements of the secret domain S and
of the share domain T, respectively. We say that a (k,n) threshold scheme
has the (@, ®)-homomorphism property (or is (®,®)-homomorphic) if for
all I, whenever

D = Fy(D;,,. ..»D;,)

and
Dl = FI(D:'," . "D:‘k)’

then
D@D': FI(Di1®D:'1""’Dik ®D:")

This property implies that the composition of the shares are shares of
the composition. :

It is clear that Shamir’s polynomial secret sharing scheme is (+,+)-
homomorphic, but it is not quite so apparent that Shamir’s scheme satisfies
another property which is also necessary to capture the intuition described
earlier.

We want it to also be the case that & — 1 sets of sub-shares together with
all of the super-shares (and therefore the super-secret) leave the sub-secrets
completely undetermined.

We define a (@, ®)-composite (k,n) threshold scheme to be a division of
a set of sub-secrets d,...,d, into sub-shares d;j,1 < ¢ < n,1 <75 < m
such that :

1. D=di®ds & - & dp is easily computable given and £ or more
distinct super-shares D; = d; ) ® di2 ® - - - Q di.m;

2. When m > 1, knowledge of D, all D;, and any k — 1 or fewer sets of
~ sub-shares d;1,d;2,...,d;m leave the sub-secrets d; completely unde-
termined (in the sense that all its possible values are equally likely).

The following theorem is somewhat surprising,

Theorem 1 If the secret domain S and the share domain T are finite and
of the same cardinality, then every (D,Q)-homomorphic (k,n) threshold
scheme 1s a (®,®)-composite (k,n) threshold scheme.

Proof: (sketch)
The definition of (®,®)-homomorphism implies condition (1) immedi-
ately.




To prove condition (2), it suffices to consider only the case when m = 2
(two sub-secrets). The case for arbitrary m follows easily by induction.

Let {F;} be the set of functions determined by the (k,n) threshold
scheme, let D = d; @ d2 be the (known) super-secret, and let Dy, .. ., Dn
be the (known) super-shares. Assume without loss of generality that the
sub-shares d;,d;2,...,di,~1, for 1 = 1,2, are known. We want to show
that if D = dy @ d2 = d} & dj, then from the known information, each of
(d1,d3) and (d},d}) are equally likely to be the actual pair of sub-secrets.

Fix I = {1,2,...,k} and consider Fy. By condition (2) of a (k, n) thresh-
old scheme, and since |S| = |T| (with finite cardinality), there exists exactly
one value d;x € T such that d; = Fr(di1,d1,2,---,d1,k-1,d1,k) and one
dy; € T such that &} = Fr(di1,d12,...,d1k-1,d} ). Similarly, there is
exactly one value do x € T such that do = Fr(d2,1,d22,... ,d2 k—1,d2,) and
one dy; € T such that dy = Fy(dg1,d22,-- . dg k-1,d5 ;). Also, there is
exactly one possible value of D¢ € T such that D = Fi(Dy,Ds,...,Dy).

If each of the pairs (d k,d2k) and (d} ;,dj ;) can be shown to be equally
likely, then the sub-secrets (d1,dz) and (d},d)) that each would respectively
imply also become equally likely. But this is true if both dy x ® dox = D
and d’L,c ® d'2’,c = D; are true.

We can see that this is the case from the following chains of equalities.

D = di9d;
Fr(diy,d12,--,d16-1,d1) & Fr(d21,d22,- -, d2,k-1,d2,k)

= Fi(di1®da1,d12®da2,....d1 k-1 d2k-1,d1k @ d2k)
= FI(DlaDQs”'7Dk—1,dl,k®d2,k)'

Also,

D = d\ody

Fl(dl,ls d1,2, ceey dl,k..l,dll,k) D F](dzyl, dz,g, ceny dgyk_l R d'2,k)
Fr(di1 ®d2n,d12®d22, ..., di k-1 ® dzk—1,d1x ® d3 1)

= F;(Dy,Da,...,De-1,d] ; ®dy ).

]

But we’ve seen above that the only possible value * € T' such that
D= FI(D17D27'“,DI¢—19*)

is Dg. Thus, both dy x ®dax = Di and d} ; ® d ;. = Dy are true, as desired.
Therefore, (d1,d2) and (d},d}) are equiprobable values for the hidden
pair of sub-secrets. |




It should be noted that in the above proof, the condition that the secret
domain S and the share domain T are of the same finite cardinality was
only used to assure that if Dy is a given super-share, then the probability
that D was derived as some dj ¢ ® d2x which imply sub-secrets of d; and
dg, respectively is the same as the probability that Dy was derived as some
d ; ®dj  respectively implying sub-secrets of d} and dj. This property may
be attained by a secret sharing scheme even if the constraint on the domains
is not.

3 Some Examples

It is easy to see that the properties of polynomials give Shamir's (k.n)
threshold scheme the (+,+)-homomorphism property, and since the secret
domain and the share domain consist of the same finite set (namely the
integers modulo p), Shamir’s scheme is a (4, +)-composite (k,n) threshold
scheme and enjoys all of the properties thereof.

Some other techniques can also be easily seen to produce (+, +)-composite
(k,n) threshold schemes. See [Bla79], [AsBI80], and [Kot84] for some further
examples.

What if the super-secret is not the sum of the sub-secrets? By using a
homomorphism between addition and discrete logarithms, it is possible to
transform Shamir’s scheme into a (x,+)-composite (k,n) threshold scheme.
Thus, if the desired super-secret is the product of the sub-secrets, Shamir’s
scheme can still be used.

In general, discrete logarithms may be difficult to compute. However, if
p is small or of one of a variety of special forms, the problem is tractable (see
[PoHe78], [Ad179], [CLS85]). It should be emphasized that such special cases
for p do not in any way weaken the security of our schemes. The security
is not cryptographic, but rather is information theoretic. Therefore, there
need be no assumptions about the difficulty of solving any special problems.

4 Application: Secret-Ballot Elections

The motivating application for this work is in the domain of cryptographic
elections. In [CoFi85], an election scheme is presented in which a government
holds an election in which the legitimacy of the votes and the tally is verified
by means of interactive proofs (see [FMR84], [GMRS85]).

Although, there is high confidence in the correctness of the tally in such




an election, the government is a “trusted authority” with the ability to see
every vote and compromise the voters’ privacy.

The election scheme can, however, be embedded within a (+,+)-composite
(k,n) threshold scheme (in particular, in Shamir’s scheme) as suggested by
the outline below. This extension is also described in [Coh86.

Instead of a single government, n sub-governments (or tellers) each hold
a sub-election. Each voter then chooses either 0 or 1 as a secret value (0
indicating a no vote, 1 indicating a yes vote) and distributes one share of
the secret vote to each of the n tellers. The tally of the election will be the
sum of the voters’ secrets.

After votes are cast, each teller simply adds the vote-shares it has re-
ceived. Since the (k,n) threshold scheme has the (+,+)-homomorphism
property, this sum of vote-shares is itself a share of the sum (tally) of the
votes. Thus, once k or more tellers release their sub-tallies, the overall elec-
tion tally can be determined. Furthermore, since the secret domain and the
share domain consist of the same finite set, the conditions of Theorem 1
are satisfied, and k£ or more conspiring tellers are required to determine any
individual voter’s secret vote.

Since each teller actually tallies the vote-shares it receives by means
of the (single government) election scheme of [CoFi85], there is very high
confidence that the sub-tally it releases is correct.

Also, the interactive proof techniques used in this scheme can be gen-
eralized slightly to allow verification of the vote-shares. Here. each voter
participates in an interactive proof to demonstrate to all participants that
the vote-shares it distributes are legitimate in the sense that every set of k
vote-shares derives the same secret vote and that this vote is either a O or
al.

Thus, as long as at least k of the n designated tellers participate through
to conclusion, an election can be conducted such that each participant has
very high confidence in the accuracy of the resulting tally and no set of k — 1
or fewer tellers (together with any number of conspiring voters) can (without
breaking the underlying cryptosystem and thereby solving an open number
theoretic problem) gain more than a small ¢ advantage at distinguishing
between possible votes of honest voters.






