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1 Introduction

A software backplane is a stuctural framework that can be re-used for many
different programs. Programmers start with the backplane, and plug modules
into it; the backplane manages all inter-module communication, and provides an
interface to the user and to a programming-tools environment. Plug-in modules
must adhere to a standard interface format, but otherwise they may do whatever
they like. In logical terms, each module is an active entity: all modules on the
backplane are active concurrently—more or less as they are in the hardware
domain.

Several well-known software technologies fall generally into this category.
Rule-based and blackboard systems are the most important. This paper de-
scribes a new software backplane, called the Process Trellis.

Existing backplanes have been crucial to some domains, notably expert sys-
tems. But they have been largely peripheral to the main body of software
research and practice. This will change, we believe. This paper argues that
software backplanes will become an important mainstream technology in the
future, because they stand at the intersection point of four crucial require-
ments. We need modular and reliable software; we need high-level development
tools; we need to accomodate heterogeneity; and we need to focus the power of
parallelism on hard problems—efficiently, but without requiring complex and
painstaking performance debugging on the programmer’s part.

Prognostications about software are of no interest in a vaccuum. We’ve
investigated our hypotheses about software backplanes and the Trellis in the
context of a particular domain, the realtime data fusion area. Broadly speak-
ing, realtime data fusion requires the realtime synthesis of a “big picture”’—an



analytic overview—from a (potentially) large and diverse collections of input
streams. These streams might describe the condition of a hospital patient, a
financial market, a scientific experiment, a factory, an airplane, a transportation
network... Like the backplane method itself, realtime data fusion is regarded by
many computer scientists as esoteric and peripheral, to the extent it is regarded
at all. Like the backplane method, it is destined to assume (we believe) a more
important role in the near future.

We'll address the general issue of software backplanes first (Section 2), and
then the character of the realtime data fusion problem (Section 3). We then
discuss our particular backplane, the Process Trellis.

The Trellis imposes a simple and uniform structure on complex, heteroge-
neous programs; and it does so in such a way that parallelism is inherent in
the resulting software. But the Trellis’s most important property is somewhat
idiosyncratic: the Trellis represents a strategy for embodying the “intellectual
structure” of a problem domain directly in software. The first step in building
a Trellis is an analysis of the major factors that inform decision-making in the
domain, and their logical interconnections. The structure of the Trellis is then
copied directly, in a sense transcribed, from this analysis—as we’ll describe. The
user interface is copied in turn directly from this software structure.

The Trellis is implemented in C-Linda![CG89], and has been tested in a
number of domains; our largest prototype, which we will describe briefly, is
designed for patient monitoring in the intensive care unit. Other papers dis-
cuss particular aspects of the Trellis project in depth (for example the realtime
scheduling algorithm [Fac90], the intensive care unit prototype [FSC91], the
Trellis as a formal system [Fac91] and multiple-Trellis ensembles [FGS91]). Our
intention here is to present an integrated overview, to discuss the project’s im-
plications and to relate this particular experiment to (what we believe to be) its
highly significant context: the realtime data fusion problem, and the software
backplane methodogy.

2 Software Backplanes

It’s hard to design, debug and maintain complex programs. Research aimed
at making these tasks a bit easier has tended to focus, in recent years, on
formal specification techniques and object-oriented programming. ((EM90] is a
good survey of what’s new and trendy.) Software backplanes offer a different
approach.

A software backplane is a framework that can be used in building many
different programs. To build a particular application, the developer plugs an

1A registered trademark of Scientific Computing Associates, New Haven.



appropriate set of modules into the backplane. “Plug in” means different things
in different contexts: it may involve the execution of some special integration
and scheduling routines (as it does for the Trellis), or simple link-editing, or
something else. Regardless, the “plugging in” process is simple, uniform and
intuitive in concept.

All modules share the same interface specification (so they’ll be compatible
with the framework); but otherwise they may differ radically in structure and
purpose. The backplane manages all inter-module communication and provides
interfaces to the user and to a programming-tools environment.

Micro-reusability vs. Macro-reusability

The backplane idea (as represented by earlier architectures as well as by the
Trellis) relates strongly to the widely-discussed goal of “software reusability”.
But in a sense, the backplane idea is “software reusability” turned inside out.

Software reusability as generally understood centers on the reuse of standard
modules from application to application. Object-oriented program design is
an important variant: it involves the re-use of class definitions, not merely as
templates for whole objects, but as adjectives that impart previously-defined
features to new objects. (The technique was introduced by Simula 67.)

Software backplanes promote “reusability” in the inverse sense. Instead of
providing a bunch of components that you may assemble in any shape you
wish, they provide the shape and invite you to populate it. In module-level
reusability schemes, the same component may appear within radically different
program structures. In the software backplane model, the same structure may
be imposed upon radically different sets of components.

In this sense, techniques like object-oriented programming promote “micro-
reusability,” software backplanes “macro-reusability.” .

(Object-oriented programming offers guidance in how to build modules, but
imposes no structure on the program as a whole. This point is often misunder-
stood, by people who believe that “object oriented programming” in itself offers
some kind of answer to the all-important question “how should we structure
software?” Object-oriented programming represents an important advance in
building materials, but no contribution to program architecture. Software back-
planes are exactly the reverse. It might be argued that object-oriented methods
do provide guidance on program structure: a program should be structuctured
as a collection of objects which communicate by invoking each other’s methods.
But as a software architecture this scheme is vacuous: it answers none of the
hard questions. Which modules communicate with which others? When and
how? How does the program as a whole communicate with its environment?
These are the questions that software backplanes address.)



The backplane’s (and macro-reusability’s) advantages:

Backplanes are good for reliability: they allow us to partition-off a significant
part of the problem and implement it once, with the intent of re-using this part
repeatedly. And the partitioned-off segment isn’t some arbitrary chunk of code.
It’s a potentially difficult chunk, insofar as it deals with coordination (among
the concurrently-active modules of the program, and between the program as
a whole and the external environment). It’s also the chunk that imparts shape
to the whole, the organizing framework. Naturally, we focus significant effort
on developing the backplane. Once we’ve achieved a reliable backplane, we’ve
solved a significant element of any large-scale concurrent system.

By imposing a fixed organizing strategy on the program as a whole, back-
planes allow subtantial investment in design, debugging and visualization tools
optimized to that framework to be amortized over many applications.

Simple, standard, one-size-fits-all interface specifications promote hetero-
geneity: two separate modules can be developed in complete mutual ignorance,
using radically different tools and techniques, and yet be assured that they’ll
be able to communicate. (Note how the heterogeneity of telephones increased
when the U.S. phone system ceased to be a hard-wired whole, and turned into
a backplane—the network—plus plug-in modules.)

And the backplane is inherently a concurrent structure. A successful back-
plane design can make explicit parallelism all-but-transparent: applications pro-
grammers build parallel programs with only the most general awareness that
they are doing so, and without needing to master any new tools or techniques
beyond the backplane itself. (Substantial Trellis applications, yielding efficient
C-Linda programs that run on a large range of parallel machines, have been
developed by applications programmers with no knowledge of parallel program-
ming in general or Linda in particular.)

The macro-reusability of the backplane approach in no way conflicts, of
course, with the micro-resuability promoted by object-oriented and other ap-
proaches. Just the opposite: a standard backplane strongly promotes reusable
modules, by assuring that they can be incorporated as-is into many applications.

3 The Realtime Data Fusion Problem

We turn now to the application domain, which is a substantial topic in its own
right.
Realtime data fusion refers, again, to the integration and analysis of a col-

lection of incoming data streams. Software for realtime data fusion is a research
field that is preparing for an imminent explosion. The reasons are simple. Ma-



chinery and organizations are getting more complicated: burgeoning floods of
data are available to characterize their states, and the machinery itself is more
sensitive to constant fine-tuning. Human users can’t keep up now, and if present
technological trends continue, they will fall further and further behind.

We can summarize the problem in terms of an ever-widening “control gap.”
The control gap is the gulf separating the optimal response to a time-critical
situation from the actualresponse that human operators—struggling under their
inherent data-processing limitations—can achieve. Realtime data fusion is an
attempt to bridge this constantly widening gap.

For example: in intensive care units and operating rooms, clinicians must
interpret and react to a complicated and diverse collection of unstoppable data
streams. Unless the correct interpretation is available fast, it’s useless. And
technological trends are tending to make this hard problem harder. They tend
to increase the volume, diversity and accuracy of the data that can be gathered,
and the range of available responses to any given problem—while doing nothing
to lessen the urgency of the required response, or to increase human data-
processing capacity. In these situations, clinicians face the obvious difficulties
of processing and interpreting masses of data correctly. They also face the more
subtle problem of “fixation”—the natural human tendency to become biased
towards an initial hypothesis and to ignore or misinterpret data to the contrary.
Aircraft control involves similar problems: masses of data, time-critical deci-
sions, a hard problem getting worse. Similar problems arise in the control of
complex systems of all kinds—ships, factories, airports, power plants and so on.

Another example: consider the the masses of data produced by scientific
sensing equipment and laboratory experiments. Data may need to be inter-
preted in realtime, either to allow for an immediate response (as in weather
prediction)—or simply because, in a long-running experiment producing high
volumes of data, once you fall behind you are stuck forever. Your data backlog
grows without let-up, potentially overwhelming storage and cataloging facilities.
It becomes imperative to extract value from the data, some idea of its concep-
tual content, in realtime. There are many scientific domains in which massive
data-handling is a growing problem. For example, “data volumes generated
by very large array or very long baseline radio telescopes currently overwhelm
the available computational resources” [Brom89]. NASA’s “earth observation
system” is designed to generate a terabyte of data per day when it comes on
line in the late 1990’s [Sci90a). A headline in Science summarizes the problem:
“Learning to drink from a fire hose [Sci90b].” Realtime data fusion systems
make it possible to present an accurate, high-level, pre-processed synopsis for
further analysis instead of a mass of low-level data. Related problems occur in
the monitoring of financial, economic or commercial information.

Realtime ezpert monitors in particular may represent the most important
species of realtime data fusion software. An expert system uses heuristics in



problem domains where determinate algorithms are unknown or intractable; an
expert monitor is a high-performance expert system, capable of functioning as
a monitor in realtime. The data fusion systems we will describe are in fact
“expert monitors.” They don’t rely on heuristics exclusively, by any means; but
they draw freely on the techniques of applied Al

4 The Trellis

We move now to the specifics of our project. We describe the Process Trellis,
which is our particular software backplane for realtime data fusion applications.

Consider a series of separate decision processes. The processes are hierar-
chical; higher-level processes deal with broader or more general sub-problems.
For example, each element in the lowest level of decision processes might be
wired directly to external data sources. The next-higher levels might perform
initial data filtering, trending and baseline calculations. Levels above this might
recognize fairly narrow patterns. Still higher levels might recognize broader or
more complex patterns, and top level processes might perform “meta” services—
evaluating the reliability of certain aspects of the system, the applicability of
the existing decision structure and so on.

All processes run concurrently. Each can be regarded as driving a meter that
displays, at all times, the current status of the sub-problem it’s focussed on —
the latest input value in some data stream, the probability that a given diagnosis
correctly describes the situation, and so on. These processes are logical black
boxes with respect to the Trellis. As long as they conform to the Trellis interface
protocol, each process can incorporate any kind of logic that seems appropriate.
Processes may be statistical, analytic, heuristic or anything else.

Each module in the Trellis (a module is simply a decision process) continu-
ously attempts to calculate a state based upon the states of inferior modules.
When sufficient information is available from a module’s inferiors — each deci-
sion process defines for itself what “sufficient information” means — it generates
a new state. As a result, modules one level up may recalculate their own states,
and so on. Values in this sense flow upward through the Trellis. Besides pas-
sively waiting for inferior modules to change state, modules may send queries
downward through the Trellis, forcing their inferiors to generate updated state
values. Queries in this sense filter downward.

We supply two types of “logic probe” with the system, a “write” and a “read”
probe. We can touch any module with a write probe, thereby setting the state
of the module we touch to any value we choose. In the default configuration
described above, each module in the bottom rank has a permanently-attached
write-value probe through which we pump new values into the system. We can



read any module’s current state by touching it with a “read-value” probe. If the
module has insufficient information to have a currently defined state, touching it
with a read-probe causes queries to propagate down to each of the its inferiors.
Eventually new data values arrive and a response is produced. ’

5 For Example

Our most substantial experiment with the Trellis to date is the prototype hemo-
dynamic monitor for a post-operative intensive care unit (ICU). This monitor?,
which is intended ultimately for clinical trial, is still a basic research project.
But it is a sizable and growing application and a useful test case.

Figure 1 is an excerpt, showing the relationships among the various levels
of the hierarchy, some typical occupants of each level and their inter-relations.
Figure 2 shows the entire program. (In fact, this figure is somewhat out of
date; the current program is an ensemble of two Trellises, as we explain below.
But figure 2 is nonetheless a useful picture of you might expect a substantial
“real-world” Trellis to look like.)

Figure 1 shows how the structure of a process Trellis program mirrors the
domain’s logical structure. At the bottom level are interface processes that
gather data from monitoring equipment or — in the prototype case — from the
realtime patient simulator. Raw BP, for example, receives blood pressure values.
At higher levels are processes that, like BP (blood pressure), calculate symbolic
values and detect trends in the lower level’s outputs. Higher levels, for example
the level containing the SVR (systemic vascular resistance) process, compute
values based on several lower-level data streams. The next level of processes,
for example Hypotension, look for various “clinical scenes” — physiologic states
whose presence, in a particular time ordering, enable the top level processes
(for example Tamponade) to make diagnoses. (A detailed description of the
knowledge representation issues of processes at this level is found in [CSG89].)
Earlier versions of the prototype had a still-higher level of “meta” processes
which could recommend courses of action (e.g., “perform an infectious disease
workup”) and summarize, either textually or graphically, the patient’s condition.

Using the process Trellis shell, two researchers without any specific knowl-
edge of Linda or of parallel programming (Drs. Cohen and Sittig of the Medical
Informatics program) have written, debugged, and tested a majority of the pro-
cesses in the current version of the prototype. The current ICU Trellis comprises
roughly 27,000 lines of code; it has been tested (off-line) on real patient data,
collected during open-heart surgery cases. (The program is intended for use
not in operating rooms but in intensive care units; for this type of monitoring,

2joint research with Drs. Perry Miller, Aaron Cohen, Dean Sittig and Stanley Rosenbaum
of the Anesthesiology Department and Medical Informatics Program at Yale.
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however, surgical and post-surgical ICU conditions are similar.)

Factor’s thesis [Fac90b] describes another implemented Trellis (for the anal-
ysis of blood pressure waveforms), and two other Trellis designs (for financial
markets and climate-data monitoring) produced collaboratively with domain
experts.

The sections following fill out the Trellis picture by describing the interface,
our parallel realtime scheduling technique, the role of probes, and our Trellis-
building tool (the Trellis Shell). We turn first, though, to the central question.

6 Why?

What’s good about the Trellis? Why is the Trellis a better structure than
rules, blackboards, generic “object oriented programs” and other alternatives
for realtime data fusion applications?

The designer of a complex application of this sort faces three key questions:

(a) What is the intellectual structure of the problem domain? When an
expert evaluates the evidence and attempts to reach a conclusion about some
particular problem, what “basic factors” does he need to consider? How do the
basic factors relate to each other? If he were to capture his feel for the problem’s
structure in a mental checklist, what items would be on the checklist?

(b) How should my program be structured? What are the major activities
that my program will need to carry out in order to solve the problem? How
should my code be structured and modularized? Which modules communicate
with which others, and how?

(c) How should my program communicate with its users? How will I get
information in and out? What kinds of data will users want? This question is
critically important for programs like realtime data fusion applications, which
often know too much for their own good. An intelligible interface is crucial, to
avoid burying the user in more data than he can use and thereby rendering the
program useless.

Under conventional program-building schemes, these are three separate ques-
tions. In the Trellis approach they are one question. The Trellis reduces all three
questions to the first one: what is the intellectual structure of the domain? Once
you have solved this problem, you have solved the other two as well. The cen-
tral facts about this architecture are: The intellectual structure of the problem
becomes the structure of the software; and the structure of the software becomes
the structure of the interface. In short,

Intellectual structure = Software Structure = Interface Structure
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To express this identity in another way: a Trellis program focussed on some
evolving real-world system isn’t an external monitor, as the term is usually
conceived—some piece of machinery, of arbitrary internal design, trained on the
system of interest. Rather, it’s a model of the real-world system, an embodiment
or microcosm. A model of a special kind, of course: a model of the system as
abstracted by an expert observer—not of the raw physical stuff. A model not of
the patient, but of the intellectual problem of diagnosis; not of the powerplant,
but of the intellectual problem of operating a powerplant efficiently; and so on.

We explain these statements and their import in terms of the following
points. (1) In Trellis programs, there is a one-one mapping between basic factors
or intellectual entities in the problem domain and modules in the program. (2) In
Trellis programs, there is a one-one mapping between logical connections among
basic factors and communication paths in the program. (3) In Trellis programs,
modules are organized into a conceptual hierarchy that mirrors the conceptual
hierarchy of the problem domain. There is an orderly and well-defined flow of
information among levels. All modules are active concurrently. (4) Summing
over these facts, we conclude that the problem structure is embodied in the
program structure. We may accordingly use exactly the same structure for the
user interface as well. The user interface may have exactly the same shape as
the program. It may report one “piece of data” for each module in the program.
It may arrange these piece of data in the same hierarchy as the program uses. In
so doing, it captures the shape not only of the program, but of the intellectual
structure of the problem domain.

Which modules?

Trellis applications are structured according to the following rule: identify the
basic intellectual factors in the problem domain; provide one module for each.
One-factor-one-module is a simple rule. It may also sound like an obvious one,
but it’s by no means typical of most approaches.

In conventional modularity schemes, the structure of the program follows
the exigencies of some sequential problem-solving strategy. A conventional pro-
gram aimed at data fusion would be coordinated by a driver routine. The driver
might call a routine to get a new data value, then (perhaps) an “analyze signal”
routine (which invokes a series of more specialized ones), then perhaps an infer-
ence engine of some sort, then a “display results” routine. The module struc-
ture imposed on the program text probably reflects the driver’s problem-solving
strategy. The routines to get data, to analyze signals, to draw conclusions and
to display results might be grouped into four large, separate envelopes. Each
envelope might then be hierarchically organized into subroutines, and so on.

In rule-based architectures, a single factor might be splintered over many
rules [see e.g. DBS84]. Rule systems are “naturally modular,” it’s sometimes
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argued, insofar as each rule captures a single fact about or aspect of the problem
domain. But each rule is small in scope, “fine grained;” we can’t use “three big
rules,” say, to capture the three major aspects of the problem, and then define a
series of slightly-smaller rules to implement each “major rule,” and so on. Each
rule captures a single sliver of information, and rules make up a flat collection:
one rule can’t “contain” other rules. Rules are in this sense inappropriate for
building a modular system.

Blackboard architectures comes closest to the Trellis’s one-factor-one-module
strategy (in principle; although in practice, the knowledge sources in a black-
board program are usually rules, and accordingly suffer from the same modu-
larity problems that other rule-based systems face).

How are modules organized?

In Trellis applications, the logical connections between factors are expressed in
the form of explicit communication links between modules. Again, the rule is
simple: one logical connection, one inter-module communication link.

In conventional program architectures, on the other hand, communication
within the program travels strictly up-and-down the organization tree; there are
no explicit communication links. There are no explicit communiction links in
object-oriented programs either. (Further, communication via method-invocation—
as in object-oriented programs—is inherently a poor match to Trellis-style inter-
module communication. Method invocation is the logical equivalent of proce-
dure invocation: invoke a method; wait; receive a reply. Communication in the
Trellis is asynchronous: when information is sent from one module to another,
no reply is expected or required.)

In blackboard architectures, again, there are no explicit communication
links. Communication takes place implicitly via the blackboard. Blackboard
systems in this sense fail to identify intellectual structure with program struc-
ture in the Trellis’s sense—the links being (in our view) part of the intellectual
structure.

The Trellis’s explicit communication links give it another significant en-
gineering advantage over blackboards; the Trellis has a property we might
call “local comprehensibility.” “Local comprehensibility” means that, if we
need to change or add modules, we need only understand the new module’s
“neighborhood” —the modules connected to it directly above and below. We
don’t need to understand the program as a whole. This makes it possible to en-
vision enormous Trellises incorporating tens of thousands of modules, or more.
A Trellis with ten thousand modules is a machine of staggering complexity. No
one programmer could understand such a program in its entirety. “Local com-
prensibility” means that, notwithstanding, we can imagine such a machine being
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methodically assembled, tested and put into service. In a blackboard system,
on the other hand, interactions between knowledge sources are dynamic, and
the effects of adding or modifying a knowledge source may be unpredictable.

The logical hierarchy

What we’ve described so far is different from conventional approaches and from
other software backplanes. It’s broadly similar, though, to many program struc-
tures that fall into the “specialist parallelism” category. (In [CG90], we divide
parallel program structures into three basic categories; in “specialist parallel”
programs, each process in the concurrent ensemble specializes in one aspect of
the problem, and specialists communicate over the edges of a logical graph or
network.)

But the Trellis isn’t merely an arbitrary network. Trellis modules are ar-
ranged in a particular way, and they communicate according to a well-defined
protocol.

Trellis modules form a conceptual hierarchy, with conceptually “higher level”
modules dominating lower-level ones in the graph. Trellises have multiple input
streams; we can identify each input stream with a bottom-level module in the
Trellis graph. Each module in the Trellis depends, ultimately, on some subset of
all input streams. One module is “higher level” than another only if it depends
(ultimately) on a set of input streams whose size is the same as or greater than
the other’s.

Informally, then, a “higher level” module fuses more data streams than a
lower-level one, or it applies a further stage of processing and refinement to the
same set of data streams examined by a lower-level one.

Referring again to figure 1, “Vasoconstriction” depends ultimately on four
data streams, “cardiac output,” “raw CVP,” “Raw Blood Pressure” and “Raw
Heart Rate.” SVR is lower-level: it depends on three streams. Tamponade
is higher-level; it depends on five streams. “Increased Pericardial Pressure” is
higher-level than “PAD” insofar as it applies a further stage of processing to
the same set of input data streams (a singleton set in this case).

The formal ordering rule we’ve given is a constraint that determines when a
module cannot be higher-level than another module. It leaves the developer free
to make some determinations within this constraint: although module A may
correspond to a larger set than module B, the developer may choose to rank the
two at the same level in the Trellis graph, because they are conceptually similar.
It’s possible, though, to project the Trellis graph onto a regular structure that
strictly captures our formal notion of hierarchy. We can draw a “process lattice”
corresponding to any Trellis. In the process lattice (the powerset lattice over the
set of input streams), each node represents one sub-set over all input streams,
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and nodes are partially-ordered by set inclusion. Each module in the Trellis
can be mapped onto the corresponding node (the node with the same input
streams as that module) in the lattice. Many Trellis modules may be mapped
to the same lattice node; many lattice nodes may have no corresponding Trellis
module. The lattice represents a kind of synopsis or summary or overview of
the corresponding Trellis. (Figure 3 is a process-lattice synopsis of the intensive
care unit Trellis in figure 2.)

In section 3, we described the information flow pattern within the Trel-
lis. This regular flow also strongly differentiates the Trellis from an arbitrary
network-stuctured parallel program.

All Trellis modules are active concurrently. Hence they all exist and maintain
a current state at all times. This fact distinguishes the Trellis both in engineering
terms and “philosophically” from blackboard architectures.

In engineering terms, blackboard systems (unlike Trellises) are designed
to invoke, repeatedly, the single knowledge source with the greatest marginal
solution-finding value; much effort has gone into studying this inherently se-
quential scheduling paradigm [HR85].

The philosophical distinction is more fundamental. Most blackboard sys-
tems (and most rule systems—indeed, most applied Al systems in general) are
designed to converge on the “correct answer” to an interesting problem. Trellis
programs, on the other hand, are designed to capture some system’s current
state in its entirety. In the Trellis approach, designers are encouraged to sup-
ply a module for each and every interesting factor, no matter how specialized,
rare or esoteric. This approach reflects our belief that the interesting problem
of the near future is not how to deploy computing power thriftily, but how
to squander it creatively. If a module focussed on some particularly rare and
highly-specialized condition runs silently for ten years without ever seeing any-
thing worthy of comment, and on day 3,654 alerts us to some rare condition that
might otherwise have been overlooked—we’re satisfied. (In fact, delighted.)

In Sum

It should be clear then that, given the identity of its modules, the connections
among modules and the hierarchy in which modules are arranged, a Trellis
represents an embodiment of its problem domain.

The implications for the important topic of interface design are clear. Be-
cause the program embodies the external system being monitored (is a model
or microcosm of the external system), we can describe the state of the external
system by describing the state of the program. Interface design isn’t a separate
project, independent of basic modularization and structural decisions; rather,
having designed the Trellis graph itself, we 've already designed the interface—
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figure 3.
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not the visual details, obviously, but the logical structure.

Our work on a graphics interface, discussed in the next section, focusses
on visualizing the state of the Trellis program—and thereby, the state of the
external system on which it’s focussed.

7 Visualization

Our current display involves a receding plane modelled on the logical organiza-
tion of the Trellis, and divided into “tiles.” Each tile corresponds to a module in
the Trellis; tiles closer to the viewer correspond to higher-level modules. When
the value or condition monitored by a Trellis module is normal, the correspond-
ing tile lies flat. As the monitored condition departs from normal, the associated
tile angles forward and changes color. The user can select interesting tiles and
set them up as separate windows, in which relevant current data about the
corresponding module is displayed. (Figure 5).

The point in this style of display is, of course, to suppress uninteresting
information, and to allow the user to focus his attention on the key points.
The tile-plane display pursues this aim in several ways. All information about
“normal” modules is suppressed (unless the user asks for it explicitly); flat-lying
tiles integrate unobtrusively into the surrounding plane. Color change and tile-
angle are twin indicators of a developing problem. Higher-level modules are
closer to the viewer—whose attention will tend, accordingly, to be drawn first to
serious “high-level” problems (because they are the closest and most prominent
in the plane).

8 Realtime scheduling, and the frequency. of
the Trellis

Because all Trellis modules can execute concurrently, the Trellis architecture
allows us to use parallelism to meet realtime constraints. Our goal specifically
is to minimize the number of processors necessary to guarantee that the pro-
gram analyzes incoming data within some time bound—that is, that the Trellis
computes the full implications of incoming data, performs all the analysis of
which it is capable, within an acceptable interval.

(In a previous section we claimed, of course, that the interesting computing
challenge of the near future was the creative squandering of computing power.
How does this claim accord with our goal of meeting realtime constraints with
minimal processors? Creative squandering is, of course, very different from
pointless waste. Computing power will certainly be cheap enough to allow us
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to wager large sums against long odds, but few resources are ever cheap enough
to waste indiscriminately. More concretely, we need to draw a clear distinction
between our engineering goals for a particular software project and the boader
intellectual context of which this implementation is one part. The Trellis is
a working, useful piece of software as of right now. It’s well placed to take
advantage of the obvious ongoing trend towards cheap computing power. It’s
also engineered to be efficient on existing commercial hardware today.) -

In the simplest implementation of a Trellis program, each Trellis module
corresponds to (is implemented by) a separately-scheduled process. But we use
a different implementation, more amenable to realtime scheduling. The Trellis
is executed in a series of sweeps: all modules are updated for the ith time before
any module is updated for the i+1st. Each sweep is executed by many processes
concurrently. We create a fixed number of identical worker processes (typically
one per available processor — each worker will run fulltime, essentially without
blocking). We then use a scheduling heuristic to partition Trellis modules among
workers. On the ith iteration, each worker updates the Trellis modules that have
been assigned to it.

The Trellis shell implements this parallel-execution scheme. A collection of
generic worker processes is created, one worker per processor. On each sweep,
each worker updates its own set of Trellis processes.

We interpret our realtime constraint as follows: every input stream has an
associated frequency—the maximum rate at which new values become available.
We require that, whenever a new value becomes available on any stream, the
entire Trellis has already been updated on the basis of the previous value. In
other words, each module has recomputed its state since the previous value’s
arrival. (Other interpretations are possible, and some subtlety is involved in
making these definitions precise: see [Fac89, Fac90].)

Our iterative execution scheme means that any running Trellis has an asso-
ciated frequency: we can sweep through the entire Trellis, allowing every module
to update its state, so many time a second. Note that, when we increase the
number of processors on which a given Trellis executes, its frequency increases
too—given more processors, each sweep goes more quickly, up to a limit deter-
mined by the longest-executing single module. ’

In order to satisfy our realtime constraint, we need only require that the
frequency of the Trellis be greater than or equal to the frequency of its fastest
input stream. This requirement defines the scheduler’s task: the scheduler ar-
ranges Trellis modules onto (a heuristic approximation to) the smallest number
of processors that allow the Trellis to run fast enough.

The scheduler presupposes an analytic model of program execution time,
upon which it draws to predict the behavior of any given module partition-
ing. We have developed such a model; it has been tested and remains accurate
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for synthetic Trellises of up to roughly 20,000 modules (the largest synthetic
programs we can run under the current implemention on available parallel ma-
chines).

The Trellis scheduling problem is NP-complete; furthermore, no polynomial
time approximation algorithm exists, since finding a feasible schedule is also
NP-complete. Our scheduler is accordingly heuristic. We compared it to two
other approaches, a first-fit algorithm and a simulated-annealing scheduler; our
scheduler was clearly better than either (see [Fac90]). (It also ran, in some cases,
roughly 5 orders of magnitude faster than the simulated annealing scheduler).

Where does Trellis execution belong on the loosely-defined spectrum from
“hard” to “soft” realtime? The scheduler, and the analytic model upon which it
is based, depend on certain timing information supplies as input: expected time
to access local and global memory (a two-level memory model is assumed, as for
example in Linda); communication delays as a function of number of Processors;
expected execution time of each module, and so on. The scheduler preserves
the degree of “real-timeness” inherent in these input data.

To the extent that the numbers characterizing the machine’s key performance
parameters and the performance of the the modules individually are highly accu-
rate, the scheduler’s realtime performance guarantees are also highly accurate.
To the extent that these numbers are approximations at some level of confidence,
the realtime schedule is comparably approximate. Our scheduling approach is
consistent, in other words, with whatever degree of hard-realtimeness is practical
and desirable.

Related work

Our scheduler solves the following problem: given the value of a metric, in our
case the make span (i.e. completion time), minimize the number of PrOCessors.
Most other multi-processor scheduling work in contrast minimizes some met-
ric on a fixed number of processors. For example, Stone [Sto77] and Lo [Lo8§]
minimize the total cost (i.e. maximize throughput) and Papadimitriou and Yan-
nakakis [PY88] minimize the make span. Most work in real-time domains takes
a similar approach, minimizing a metric, such as the number of processes miss-
ing their deadline, on a fixed number of processors [ZRS87,CC89,LPD88]. In
many models this is the only approach available, since the worst case demands
for computation and communication are unbounded. (They are of course not
unbounded in the Trellis case.)
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9 The power of probes

Probes provide a uniform mechanism for getting information into and out of
a Trellis. They also allow us to string many Trellises together into a single
ensemble: we can use probes as “data conduits” to feed information from one
Trellis into another. We clip one end of the probe to a module in Trellis A
and the other to a module in Trellis B. Depending on which way the probe is
pointing, we can now pump data directly from A to B, or vice versa.

We usually think of multi-Trellis ensembles as hierarchies: a “bottom” Trellis
receives input and refines it, then feeds the refined product to another Trellis,
or to many others; they treat this refined product as raw input, and refine it
further. In other words, we may string a probe from an upper module of A4 to a
lower module of B: the A module’s highly-refined information product becomes
the B module’s raw input. There are several ways to use probes in this fashion,
and they differ in detail; but generally speaking, the probes function in every
case like simple patch-cords conducting data from one Trellis to another.

Multiple Trellises are important for several reasons.

First, a Trellis operates (as we’ve noted) at some fixed frequency. Multiple
Trellises allows us to build ensembles in which we need both “fast Trellises”
and “slow Trellises.” This flexibility is crucial. Suppose our data streams are
“fast”—say, new values are available once per millisecond. Assume, also, that we
have certain decision procedures that don’t need to run frequently, but perform
a lengthy computation (say, 100 milliseconds worth of computing) when they
do run. We now have a problem: our fast streams will require attention once
every millisecond; and we require that a Trellis completely update its state for
each new set of input values. So, the Trellis we’ve attached directly to the fast
streams must be capable of a coniplete update—every module executes once—
once a millisecond. But if a module executing the long decision procedure is
part of this same Trellis, we are unable to meet our requirements, because this
one module will consume 100 milliseconds all by itself on those occasions when
it needs to execute.

The solution is to build two Trellises. A “fast Trellis” is wired directly to
the input streams. It’s attached via probes to a “slow Trellis.” The period of
the slow Trellis is large enough to allow long decision procedures to execute to
completion. The fast Trellis feeds partially-refined data into the slow Trellis.
The ICU Trellis is, in fact, structured this way: the fast Trellis runs at about
100 Hz, the slow Trellis at 1 Hz. (Most modules are located in the slow Trellis.
The structure is described in [FGS91].)

Multiple Trellises are useful for two other reasons as well, one obvious and
one less so. It’s obvious that multiple Trellises provide another, coarser level of
modularity in Trellis applications, above the level of the individual Trellis ele-
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ments themselves. In the weather and climate monitor described in [Fac90b] (a
joint design study with researchers at Sandia Laboratory in Livermore), multiple
Trellises are central for another reason: they will allow “custom Trellises” to be
wired onto a main, public Trellis. The public Trellis performs basic data filter-
ing and analysis; scientists with particular experiments to run may attach their
Trellises to the main, public Trellis at any appropriate point. A custom Trel-
lis performs information-processing for a particular scientist or research group.
Such a Trellis might accept as input the highly-refined information product
produced by high-level public-Trellis modules. Or, it might substitute its own
filtering or analysis routines for some of the public routines. In that case, it
clips its probes onto correspondingly lower-level modules of the public Trellis.
At any time, arbitrarily-many custom Trellises may be wired into the public
Trellis.

10 The Trellis Shell

The Trellis architecture is captured in a “Trellis shell”. Programmers supply
the shell with decision logic for each module; the shell builds the Trellis frame-
work automatically, generating all the code necessary to support parallelism
and handling realtime process scheduling. The shell provides in addition both
a graphics and a menu interface to allow interactive invocation of probes, and
Trellis program debugging.

To construct a Trellis program, the programmer uses a high-level tool that
creates a database of process descriptions. The programmer specifies a process’s
name, the function it uses to calculate its state (this function will expect as
arguments the state of this process and its inferiors), some information about
the nature of the process’s state, and a handful of miscellaneous routines. The
shell is capable of compiling any subset of processes in the database (or the
entire database) into a Trellis program.

A graphical program-development interface makes it possible for the devel-
oper to visualize a running Trellis program. (This interface is distinct from the
end-user interface discussed above. The developer’s interface is more detailed
and allows a greater degree of control — and assumes, as a consequence, more
knowledge — than the end-user’s interface.)

The decision logic supplied by the user is written in C, and may contain
arbitrary code. The Trellis framework generated by the shell uses C-Linda.
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11 Present and Future

Future Trellis development focusses on refinement of existing Trellises and Trellis
tools, and production of new Trellises. Trellis research focusses on three areas:
(a) Sensor/actuator Trellises, (b) Turingware Trellises and (c) true bigness.

Sensor/actuator Trellises rely on a simple generalization of the Trellis
information-flow protocol. In the Trellis as described, data values flow up-
ward and “anti-data”—queries, in other words—flow down. But we could also
interpret “anti-data” to mean commands. The lowest-level modules in a sen-
sor/actuator Trellis may play either of two roles: some are connected to incom-
ing data streams, as usual; others are connected to actuators. Such a Trellis is
designed to monitor and (at least to some extent) to control a complex system
or machine. Data values flow upward from the bottom; when they suggest that
low-level, “tactical” adjustments to the mechanism are needed, the appropriate
orders are issued by relatively low-lying Trellis elements, and communicated
back downwards to actuator modules. (The actuator modules put them into
effect by directly altering the state of the external machinery.) Data values that
suggest farther-reaching, more “strategic” adjustments cause decisions to be
reached and orders issued at correspondingly higher levels of the Trellis. Thus,
tactical monitoring and control activity takes place near the bottom, relatively
more “strategic” activity closer to the top of the Trellis.

This software model immediately suggests a biological analog. And the
analogy (if it isn’t pressed too hard) provides us in turn with useful new ways of
thinking about the Trellis. In a sensor/actuator Trellis, “tactical” adjustments
are planned and put into effect at low levels; we might add that

While this immediate response is occurring, the same signals are be-
ing transmitted to higher centers for more elaborate analysis of their
information content and for combination with signals from other
types of receptors [Henn74].

The quotation describes the human sensory-motor system, which centers on a
hierarchy that recalls the Trellis scheme: immediate “low-level,” local responses
at the bottom; more elaborate, global responses at higher levels.

The analogy in turn suggests that we might view the sensor/actuator Trellis
as a kind of synthetic nervous system. (Note that we are fishing in rather differ-
ent analogical waters from the ones frequented by the neural network research
community. A neural network is an abstract model of the brain, not of the
nervous system; not, in particular, of the data paths that connect the muscles
to the brain. It’s the wiring of the nervous system, the way information flows
and decisions are made, not the computational capabilities of the brain, that we
are interested in.)
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It follows that, when a factory, powerplant, transportation system or what-
ever is equipped with a sensor/actuator Trellis, we might look at the resulting
ensemble as a kind of “robot in the large.” Robotics in the broadest sense stud-
ies “synthetic organisms,” each one capable of responding as a whole, as a single
integrated system, to its environment. In practical terms, Robotics as presently
conceived focusses on issues of vision, navigation, physical manipulation and
planning that are associated with mobile, more-or-less anthropomorphic robots.
But there’s no reason in principle why we can’t regard an entire power plant
(say) as a robot as well.

What we gain by doing so is a well-defined goal: to think of the build-
ing, factory, trasportation network or whatever not as a collection of separate
systems (each, perhaps, individually computerized and quasi-intelligent), but
rather as a whole, capable of bringing many systems to bear on the solution of
a single problem and (importantly) of presenting a single integrated interface
to the users. Thus, suppose computer scientists worked not in buildings but
in macro-robots. We’d expect to be able to log on to “the building.” * We’d
expect to able to pose problems to the building as a whole: we need to move
three new people with phones and workstations to the fifth floor; propose some
people-moving, furniture-moving and wiring plans. We’d expect to be able to
ask questions: how much did you cost to operate last month? We’d expect to
be able to integrate directory, people-finding and messaging services under the
rubric of the building itself: Please find Fruitford and let him know that I'm
in a meeting in room 300. Some of the required software relates directly to
the Trellis, other pieces fit elsewhere. But the organizing framework and the
“macro-robot” approach derive directly from the Trellis.

Turingware Trellises. We use the term “Turingware” to describe ensem-
bles in which processes and people intermingle freely and “anonymously:” when
some element (either a human or a software element) of the ensemble interacts
with another, the first element doesn’t know or care whether the other element
is a person or a process. We discuss the idea in general and give some examples
in [CGY0].

The Trellis seems like a particularly appropriate framework for experiments
with Turingware. It’s easy to conceive of problem domains in which high-lying
Trellis elements ought to be people, not software. Supposing we’ve identified
some part of a Trellis problem that a person can solve more effectively than soft-
ware, we can integrate that person “transparently” into the Trellis. He receives
upward-flowing data (on his computer display, presumably); his responses are
mailed upward in turn to the elements above. Queries or instructions may arrive
from on high, to be processed and passed downwards. The Trellis allows us to
impose a clear, simple and appropriate organizational strategy on a potentially
far-flung and complex mess of people and programs.

True bigness. The Trellis is one scheme for organizing massively-parallel
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asynchronous programs. Our tools and the architecture itself were designed
with massive Trellises (on the order of tens of thousands and more) modules in
mind. Tests of synthetic twenty-thousand module Trellises show them perform-
ing predictably and effectively on small current-generation parallel machines.

In very large Trellises, many modules will be similar or identical instan-
tiations of a template: a transportation network will have a large number of
segments all of which must be monitored separately and continuously, but the
logic required will be basically the same in all cases; hence we may have, say, a
thousand separate segements, each involving an identical 10-module sub-Trellis.
The complete program, of course, will involve other differentiated modules as
well. Scientific data gathering (in astronomy or weather domains, for example)
may involve hundreds of data sources, to most of which essentially the same set
of trends-detection filtering modules may be attached.

Of course, many Trellis domains will require a large collection of separate
and distinct modules. Our medical collaborators estimate that the ICU Trellis
will incorporate several hundred modules, most distinct in design, when it’s
finished; but this Trellis focusses only on hemodynamic monitoring. A general-
purpose Trellis for monitoring surgical and intensive care patients in all areas
would entail thousands of distinct modules. Beyond the inherent breadth of the
domain, the complexities of developing reliable heuristic decision procedures
will also tend to multiply modules. The Trellis structure can easily support
multiple modules devoted to the same diagnostic function. We might test a new
septic-shock diagnosis module by installing it alongside the old module; the old
module continues to drive the display, but a write probe attached to the new
module deposits values in a file, for performance comparisons against the old
module. (It’s also interesting to envision Trellis modules that are developed by
experts in specialized areas, then disseminated to Trellis programs nation-wide.)

Conclusions

We believe that out Trellis work to date strongly supports the contention that
software backplanes are a powerful tools. We’ve mentioned the fact that the
bulk of our intensive care unit Trellis was constructed by programmers who had
no knowledge of parallelism. There’s a more general point as well: readers will
be hard-pressed to adduce many parallel applications that involve more than
one hundred separate and distinct activities, as the ICU Trellis does. They
will be still harder pressed to find comparably complex parallel applications
that meet realtime constraints. The mere fact that such a complex application
was methodically designed, assembled, tested and analyzed by a small research
group speaks strongly for the power of the backplane technique in general, and
the Trellis in particular.
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