
CompCertO: Compiling Certified Open C
Components∗

Jérémie Koenig
Yale University

New Haven, CT, USA
jeremie.koenig@yale.edu

Zhong Shao
Yale University

New Haven, CT, USA
zhong.shao@yale.edu

Abstract
Since the introduction of CompCert, researchers have been
refining its language semantics and correctness theorem, and
used them as components in software verification efforts.
Meanwhile, artifacts ranging from CPU designs to network
protocols have been successfully verified, and there is in-
terest in making them interoperable to tackle end-to-end
verification at an even larger scale.

Recent work shows that a synthesis of game semantics,
refinement-based methods, and abstraction layers has the po-
tential to serve as a common theory of certified components.
Integrating certified compilers to such a theory is a critical
goal. However, none of the existing variants of CompCert
meets the requirements we have identified for this task.

CompCertO extends the correctness theorem of CompCert
to characterize compiled program components directly in
terms of their interaction with each other. Through a careful
and compositional treatment of calling conventions, this is
achieved with minimal effort.

Keywords: Compositional Compiler Correctness, Game Se-
mantics, Simulation Convention, Language Interface

ACM Reference Format:
Jérémie Koenig and Zhong Shao. 2021. CompCertO: Compiling
Certified Open C Components. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI ’21), June 20–25, 2021, Virtual, Canada.
ACM,NewYork, NY, USA, 20 pages. https://doi.org/10.1145/3453483.
3454097

∗The present version, published by the authors as Yale University Technical
Report YALEU/DCS/TR-1556 [13] includes supplementary appendices after
the References section.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00
https://doi.org/10.1145/3453483.3454097

1 Introduction
Over the past decade, researchers have been able to formally
verify various key components of computer systems, includ-
ing compilers [15, 16, 25], operating system kernels [6, 7, 11],
file systems [4] and processor designs [3, 5]. Building on
these successes, the research community is attempting to
construct large-scale, heterogeneous certified systems by
using formal specifications as interfaces between the correct-
ness proofs of various components [2]. The ongoing design of
suitable semantic frameworks is an important step towards
this goal. However, incorporating certified compilers into
frameworks of this kind presents a number of difficulties.

1.1 Compositional Compiler Correctness
Compiler correctness is often formulated as a semantics
preservation property, asserting that the semantics of the
compiled program C(𝑝) are related in some particular way
to the semantics of the source program 𝑝:

J𝑝KS ∼ JC(𝑝)KT . (1)

For whole-program compilers, semantics preservation is
straightforward enough. In CompCert, the semantics of the
source and target programs are given as labeled transition
systems, and the relation ∼ is a simulation property.
However, practical applications involve program compo-

nents which we want to compile and verify separately from
each other. In principle, the use of a compositional seman-
tics enables the formulation of (1) at the level of individual
components. Unfortunately, traditional approaches to com-
positional semantics fare poorly in the presence of advanced
language features, or of the kind of abstraction involved in
the compilation process. For CompCert, early attempts along
these lines have proven challenging [21, 23].

As a result, commonwisdom holds semantics preservation
to be a lost cause for compositional compiler correctness [20].
Instead, research has focused on compositional reasoning
methods based on contextual refinement, side-stepping the
need for compositional semantics preservation [10, 22].

1.2 Decomposing Heterogeneous Systems
Unfortunately, these methods share an intrinsic limitation:
they presuppose the existence of a completed system to be
proven correct, and compositionality only operates within its

1

https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1145/3453483.3454097

PLDI ’21, June 20–25, 2021, Virtual, Canada Jérémie Koenig and Zhong Shao

boundary. This becomes a serious impediment in the context
of large-scale heterogeneous systems.

Example 1.1. Consider the problem of verifying a network
interface card (NIC) driver. The NIC and its driver are closely
coupled, but the details of their interaction are irrelevant to
the rest of the system; these details should not leak into our
large-scale reasoning. Instead, we wish to treat the NIC and
its driver as a unit, and establish a direct relationship between
C calls into the driver and network communication. Together,
the NIC and driver implement a specification 𝜎 : Net → C,
meaning they use the interface Net modeling the network,
and provide the interface C modeling C function calls.

The driver code could be specified (𝜎drv) and verified at the
level of CompCert semantics, whereas device I/O primitives
(𝜎io) and the NIC itself (𝜎NIC) would be specified as additional
components in the context of a richer model:

𝜎NIC : Net → IO 𝜎io : IO → C 𝜎drv : C → C
By reasoning about their interaction, it would be possible
to establish a relationship between the overall specification
𝜎 : Net → C and the composition 𝜎drv ◦ 𝜎io ◦ 𝜎NIC. Then
a compiler of certified components should help us transport
specifications and proofs obtained at the C level to the com-
piled code operating at the level of assembly (𝜎 ′ : Net → A).

Under existing contextual approaches, the NIC driver can
only be specified and verified in terms of its interactions
at the boundary of the C program code. Since abstracting
away from these interactions is the role of a driver in the
first place, this is a serious limitation. To be sure, existing
techniques could be extended to address this specific problem.
For example, the NIC hardware model could be brought
within the scope of the “whole program” being considered,
and the exchange of Ethernet packets modeled as part of its
observable behavior. However, this approach does not scale.

Example 1.1 is by no means a contrived corner case. In fact,
patterns of this kind are pervasive even in more mundane
situations. Programmers often use libraries which mediate
access to external resources (network services, file systems,
user interfaces). Proper high-level specifications for soft-
ware components of this kind must model these resources.
It would rapidly become burdensome to expect the verifica-
tion framework to fix in advance the dozens or hundreds of
kinds of resources which may be involved in the course of
verifying a large-scale system.

Fortunately, advances in compositional semantics offer a
realistic path to tackling problems of this kind. In particular,
game semantics (§2.1) provides a general and expressive
framework tomodel interactions between typed components.
Recent work proposes integrating dual nondeterminism and
refinement into this framework, extending it with powerful
mechanisms to account for abstraction [12]. Establishing a
compatible compiler correctness result is an important test
of this approach and practical next step.

1.3 Contributions
This paper introduces CompCertO,1 the first extension of
CompCert satisfying the following requirements:

1. A semantics is given for source and target components.
2. The correctness theorem relates the behaviors of cor-

responding source and target components directly.
3. The C calling convention is modeled explicitly.
4. A form of certified component linking is provided.
5. Changes to existing proofs of CompCert are minimal.

Each of these requirements is fulfilled by some existing
CompCert extension, however none satisfies them all.
We generalize CompCert semantics to express interac-

tions between components (§3), using language interfaces to
describe the form of these interactions and simulation conven-
tions to describe the correspondence between the interfaces
of source and target languages. The behavior of composite
programs is specified by a horizontal composition operator
(§3.2), which is shown to be correctly implemented by the
existing linking operator for assembly programs (§3.3). To fa-
cilitate reasoning about CompCert semantics and simulation
proofs, we define a notion of CompCert Kripke logical relation
(§4). We then use a rich simulation convention algebra to
derive our main compiler correctness statement (Thm. 3.8)
from the simulation properties of individual passes (§5).

2 Main Ideas
2.1 Game Semantics
Game semantics is a form of denotational semantics which
incorporates some operational aspects. Typically, game se-
mantics interpret types as two-player games and terms as
strategies for these games.
Games describe the form of the interaction between a

program component (the system) and its execution context
(the environment). Strategies specify which move the system
plays for each possible configuration of the game.
Configurations are usually identified with sequences of

moves (plays), and strategies with the set of configurations
a component can reach. This representation makes game
semantics similar to the trace semantics of process algebras,
but game semantics is distinguished by a strong polarization
between the actions of the system and those of the environ-
ment. This confers an inherent “rely-guarantee” flavor to
games which facilitates compositional reasoning [1].

Games. A game is defined by a set of moves players will
choose from, as well as a stipulation of which sequences of
moves are valid. We focus on two-player, alternating games
where the environment plays first and where the players
each contribute every other move.

1This paper discusses CompCertO version 0.1, available in the git repository
at https://github.com/CertiKOS/compcert/tree/compcerto.

2

https://github.com/CertiKOS/compcert/tree/compcerto

CompCertO: Compiling Certified Open C Components PLDI ’21, June 20–25, 2021, Virtual, Canada

When typesetting examples, we underline the moves of
the system; a valid play in the game of chess may look like:

𝑒2𝑒4 · 𝑐7𝑐5 · 𝑐2𝑐3 · 𝑑7𝑑5 · · ·
The games we use to model low-level components will rely
on the following constructions.

Type Structure. Game semantics allows simple games to
be combined into more sophisticated ones, which can then
be used to interpret compound types. For example, in the
game 𝐴 × 𝐵 the environment initially chooses whether to
play an instance of 𝐴 or an instance of 𝐵. The game 𝐴 → 𝐵

usually consists of an instance of 𝐵 played together with
instances of 𝐴 started at the discretion of the system, where
the roles of the players are reversed.
The games we start from are particularly simple. We call

each one a language interface. Their moves are partitioned
into questions and answers, where questions correspond to
function invocations and answers return control to the caller.

Definition 2.1. A language interface is a tuple𝐴 = ⟨𝐴◦, 𝐴•⟩,
where 𝐴◦ is a set of questions and 𝐴• is a set of answers.

We focus on games of the form 𝐴 → 𝐵, where 𝐴 and 𝐵

are language interfaces. The valid plays are the sequences

𝑞 ·𝑚1 · 𝑛1 · · ·𝑚𝑘 · 𝑛𝑘 · 𝑟 ∈ 𝐵◦ (𝐴◦𝐴•)∗𝐵•

and all their prefixes. They describes a program component
responding to an incoming call 𝑞. The component performs
a series of external calls 𝑚1 . . .𝑚𝑘 which yield the results
𝑛1 . . . 𝑛𝑘 . Finally, the component returns from the incoming
call with the result 𝑟 . The arrows show the correspondence
between questions and answers but are not part of the model.

Example 2.2. We use a simplified version of C and assem-
bly to illustrate some of the principles behind our model.
Consider the program components in Fig. 1. The behavior of
B.c as it interacts with A.c is described by plays of the form:

sqr(3) ·mult(3, 3) · 9 · 9 (2)

This corresponds to the game C̃ → C̃ for a language inter-
face C̃ := ⟨ident × val∗, val⟩. Questions specify the function
to invoke and its arguments; answers carry the return value.
To describe the behavior of A.s and B.s, we use a set of

registers 𝑅 := {pc, eax, ebx, ecx} (pc is the program counter)
together with a stack of pending return addresses. The corre-
sponding language interface can be defined as Ã := ⟨val𝑅 ×
val∗, val𝑅 × val∗⟩. A possible execution of B.s is:

pc ↦→ sqr
eax ↦→ 42
ebx ↦→ 3
ecx ↦→ 7
stack: 𝑥 ®𝑘




pc ↦→ mult
eax ↦→ 42
ebx ↦→ 3
ecx ↦→ 3
stack: L𝑥 ®𝑘




pc ↦→ L
eax ↦→ 9
ebx ↦→ 3
ecx ↦→ 3
stack: 𝑥 ®𝑘




pc ↦→ 𝑥

eax ↦→ 9
ebx ↦→ 3
ecx ↦→ 3
stack: ®𝑘

 (3)

The correspondence between (2) and (3) is determined by
the C calling convention in use. This is discussed in §2.4.

A.c int mult(n, p) { A.s mult: %eax := %ebx
return n * p; %eax *= %ecx

} ret

B.c int sqr(n) { B.s sqr: %ecx := %ebx
return mult(n, n); call mult

} L: ret

Figure 1. Two simple C compilation units and correspond-
ing assembly code. For this example, the calling convention
stores arguments in the registers %ebx and %ecx and return
values in the register %eax.

2.2 CompCertO
Under the traditional CompCert semantics, programs are
interpreted as transition systems which define strategies for
the game E → W. They are run without any parameters
and produce a single integer denoting their exit status; the
corresponding language interface is W := ⟨1, int⟩, where
1 = {∗} is the unit set and int is the set of machine integers.
Interaction with the environment is captured as a sequence
of events from a predefined set. These events, which can be
described by a language interface E, correspond mainly to
system calls and accesses to volatile variables.

Semantic Model. In CompCertO, to model components
and their interactions, a transition system 𝐿 : 𝐴 ↠ 𝐵 will
describe a strategy for the game 𝐴 × E → 𝐵. The language
interface 𝐵 describes how a component can be activated, and
the ways in which it can return control to the caller. The
language interface 𝐴 describes the external calls that the
component may perform during its execution.

This flexibility allows us to treat interactions at a level of
abstraction adapted to each language. For example, the se-
mantics of the source language Clight has type C ↠ C. The
questions of C specify a function to call, argument values,
and the state of the memory at the time of invocation; the
answers specify a return value and an updated memory state.
On the other hand, the target language Asm uses A ↠ A,
where A describes control transfers in terms of processor
registers rather than function calls (see §3.2).

Simulations. CompCert uses simulation proofs to estab-
lish a correspondence between the externally observable
behaviors of the source and target programs of each compi-
lation pass. The internal details of simulation relations have
no bearing on this correspondence, so these details can re-
main hidden to fit a uniform and transitive notion of pass
correctness. This makes it easy to derive the correctness of
the whole compiler from the correctness of each pass.

Unfortunately, to achieve compositionality across compi-
lation units, our model must reveal details about component
interactions which were previously internal. Since many
passes transform these interactions in specialized ways, this
breaks the uniformity of pass correctness properties.

3

PLDI ’21, June 20–25, 2021, Virtual, Canada Jérémie Koenig and Zhong Shao

Existing work attempts to recover this uniformity by us-
ing more general notions of correctness covering all passes
[22, 23] or by delaying pass composition so that it operates
on closed semantics only [10, 22]. Unfortunately, these tech-
niques either conflict with our requirement #2, make proofs
more complex, or cascade into subtle “impedance mismatch”
problems requiring their own solutions (see §6).

By contrast, we capture the particularities of each simula-
tion proof by introducing a notion of simulation convention
expressing the correspondence between source- and target-
level interactions. To describe simulation conventions and
reason about them, we use logical relations.

2.3 Logical Relations
Logical relations are structure-preserving relations in the
way homomorphisms are structure-preserving maps. How-
ever, logical relations aremore compositional than homomor-
phisms, because they do not suffer from the same problems
in the presence of mixed-variance constructions like the
function arrow [9]. In the context of typed languages, this
means that type-indexed logical relations can be defined by
recursion over the structure of types.
Logical relations can be of any arity, but we restrict our

attention to binary logical relations. Given an algebraic struc-
ture S, a logical relation between two instances 𝑆1, 𝑆2 of S is
a relation 𝑅 between their carrier sets, such that the corre-
sponding operations of 𝑆1 and 𝑆2 take related arguments to
related results. We write 𝑅 ∈ R(𝑆1, 𝑆2).

Example 2.3. A monoid is a set with an associative oper-
ation · and a unit 𝜖 . A logical relation of monoids between
⟨𝐴, ·𝐴, 𝜖𝐴⟩ and ⟨𝐵, ·𝐵, 𝜖𝐵⟩ is a relation 𝑅 ⊆ 𝐴 × 𝐵 such that:

(𝑢 𝑅 𝑢 ′ ∧ 𝑣 𝑅 𝑣 ′ ⇒ 𝑢 ·𝐴 𝑣 𝑅 𝑢 ′ ·𝐵 𝑣 ′) ∧ 𝜖𝐴 𝑅 𝜖𝐵 (4)

Logical relations between multisorted structures consist
of one relation for each sort, between the corresponding
carrier sets. In the case of structures which include type op-
erators, we can associate to each base type 𝐴 a relation over
its carrier set J𝐴K, and to each type operator 𝑇 (𝐴1, . . . , 𝐴𝑛)
a corresponding relator : given relations 𝑅1, . . . , 𝑅𝑛 over the
carrier sets J𝐴1K, . . . , J𝐴𝑛K, the relator for 𝑇 will construct
a relation 𝑇 (𝑅1, . . . , 𝑅𝑛) over J𝑇 (𝐴1, . . . , 𝐴𝑛)K. Relators for
some common constructions are shown in Fig. 2. In this
framework, the proposition (4) can be reformulated as:

·𝐴 [𝑅 × 𝑅 → 𝑅] ·𝐵 ∧ 𝜖𝐴 𝑅 𝜖𝐵 .

Example 2.4. A simulation relation between the transition
systems 𝛼 : 𝐴 → P(𝐴) and 𝛽 : 𝐵 → P(𝐵) is a relation
𝑅 ⊆ 𝐴 × 𝐵 satisfying the following property:

𝑠1 𝑠 ′1

𝑠2 𝑠 ′2

𝛼

𝑅 𝑅

𝛽

∀𝑠1 𝑠2 𝑠
′
1 . 𝛼 (𝑠1) ∋ 𝑠 ′1 ∧ 𝑠1 𝑅 𝑠2 ⇒

∃𝑠 ′2 . 𝛽 (𝑠2) ∋ 𝑠 ′2 ∧ 𝑠 ′1 𝑅 𝑠 ′2

𝑥 [𝑅1 × 𝑅2] 𝑦 ⇔ 𝜋1 (𝑥) [𝑅1] 𝜋1 (𝑦) ∧ 𝜋2 (𝑥) [𝑅2] 𝜋2 (𝑦)
𝑥 [𝑅1 + 𝑅2] 𝑦 ⇔ (∃ 𝑥1 𝑦1 . 𝑥1 [𝑅1] 𝑦1 ∧ 𝑥 = 𝑖1 (𝑥1) ∧ 𝑦 = 𝑖1 (𝑦1))

∨ (∃ 𝑥2 𝑦2 . 𝑥2 [𝑅2] 𝑦2 ∧ 𝑥 = 𝑖2 (𝑥2) ∧ 𝑦 = 𝑖2 (𝑦2))
𝑓 [𝑅1 → 𝑅2] 𝑔 ⇔∀𝑥 𝑦 . 𝑥 [𝑅1] 𝑦 ⇒ 𝑓 (𝑥) [𝑅2] 𝑔(𝑦)
𝐴 [P≤ (𝑅)] 𝐵 ⇔∀𝑥 ∈ 𝐴 . ∃𝑦 ∈ 𝐵 . 𝑥 [𝑅] 𝑦

Figure 2. A selection of relators

Using the relators in Fig. 2, we can express the same property
concisely and compositionally as 𝛼 [𝑅 → P≤ (𝑅)] 𝛽 .

Kripke Relations. Since relations for stateful languages
often depend on the current state, Kripke logical relations are
parametrized over a set of state-dependent worlds. Compo-
nents related at the same world are guaranteed to be related
in compatible ways. We use the following notations.

Definition 2.5. A Kripke relation is a family of relations
(𝑅𝑤)𝑤∈𝑊 . We write 𝑅 ∈ R𝑊 (𝐴, 𝐵) for a𝑊 -indexed Kripke
relation between the sets 𝐴 and 𝐵. For𝑤 ∈𝑊 we write:

[𝑤 ⊩ 𝑅] := 𝑅𝑤 [⊩ 𝑅] :=
⋂

𝑤 𝑅𝑤

A simple relation𝑅 ∈ R(𝐴, 𝐵) can be promoted to a Kripke
relation ⌈𝑅⌉ ∈ R𝑊 (𝐴, 𝐵) by defining ⌈𝑅⌉𝑤 := 𝑅 for all 𝑤 ∈
𝑊 . More generally, for an 𝑛-ary relator 𝐹 we have:

𝐹 : R(𝐴1, 𝐵1) × · · · × R(𝐴𝑛, 𝐵𝑛) → R(𝐴, 𝐵)
⌈𝐹 ⌉ : R𝑊 (𝐴1, 𝐵1) × · · · × R𝑊 (𝐴𝑛, 𝐵𝑛) → R𝑊 (𝐴, 𝐵)

where for the Kripke relations 𝑅𝑖 ∈ R𝑊 (𝐴𝑖 , 𝐵𝑖),
[𝑤 ⊩ ⌈𝐹 ⌉ (𝑅1, . . . , 𝑅𝑛)] := 𝐹 (𝑤 ⊩ 𝑅1, . . . ,𝑤 ⊩ 𝑅𝑛) .

We use ⌈−⌉ implicitly when a relator appears in a context
where a Kripke logical relation is expected. Since reasoning
with logical relations often involves self-relatedness, we use
the notation 𝑥 :: 𝑅 to denote 𝑥 𝑅 𝑥 . For legibility, we will also
write𝑤 ⊩ 𝑥 𝑅 𝑦 for 𝑥 [𝑤 ⊩ 𝑅] 𝑦 and ⊩ 𝑥 𝑅 𝑦 for 𝑥 [⊩ 𝑅] 𝑦.

2.4 Simulation Conventions
Kripke relations are used to define simulation conventions.
The worlds ensure that corresponding pairs of questions and
answers are related consistently.

Definition 2.6. A simulation convention between the lan-
guage interfaces 𝐴1 = ⟨𝐴◦

1, 𝐴
•
1⟩ and 𝐴2 = ⟨𝐴◦

2, 𝐴
•
2⟩ is a tuple

R = ⟨𝑊,R◦,R•⟩, where𝑊 is a set, R◦ ∈ R𝑊 (𝐴◦
1, 𝐴

◦
2) and

R• ∈ R𝑊 (𝐴•
1, 𝐴

•
2). We will write R : 𝐴1 ⇔ 𝐴2. The identity

simulation convention for a language interface 𝐴 is defined
as id𝐴 := ⟨1,=,=⟩ : 𝐴 ⇔ 𝐴. We usually omit the subscript 𝐴.

A simulation between the transition systems 𝐿1 : 𝐴1 ↠ 𝐵1
and 𝐿2 : 𝐴2 ↠ 𝐵2 is then assigned a type R𝐴 ↠ R𝐵 , where
R𝐴 : 𝐴1 ⇔ 𝐴2 and R𝐵 : 𝐵1 ⇔ 𝐵2 relate the corresponding
language interfaces; we write 𝐿1 ≤R𝐴↠R𝐵 𝐿2. These nota-
tions are summarized in Table 1 and will be used extensively
throughout the paper.

4

CompCertO: Compiling Certified Open C Components PLDI ’21, June 20–25, 2021, Virtual, Canada

Table 1. Summary of notations

Notation Examples Description

𝑅 ∈ R(𝑆1, 𝑆2) ≤v Simple relation
𝑅 ∈ R𝑊 (𝑆1, 𝑆2) ↩→m Kripke relation (Def. 2.5)
𝑤 ⊩ 𝑅 Kripke relation at world𝑤
𝑤 ⊩ 𝑥 𝑅 𝑦 𝑥 and 𝑦 related at world𝑤
R ∈ CKLR injp CompCert KLR (§4.4)

𝐴, 𝐵,𝐶 C,A, 1 Language interface (Def. 2.1)
R : 𝐴1 ⇔ 𝐴2 CL Simulation convention (Def. 2.6)
𝐿 : 𝐴 ↠ 𝐵 Clight(𝑝) LTS for 𝐴 ↠ 𝐵 (Def. 3.1)
𝐿1 ⊕ 𝐿2 Horizontal composition (Def. 3.2)
𝐿1 ≤R↠S 𝐿2 Thm. 3.8 Simulation property (Def. 3.3)

Example 2.7. The calling convention used in Example 2.2
can be formalized as C̃ := ⟨val∗, C̃◦, C̃•⟩ : C̃ ⇔ Ã. We
use the set of worlds val∗ to relate the stack component of
assembly questions to that of the corresponding answers.
The relations C̃◦, C̃• are defined by:
rs[pc] = 𝑓 ®𝑣 ⊑ rs[ebx, ecx]

𝑥 ®𝑘 ⊩ 𝑓 (®𝑣) C̃◦ rs@𝑥 ®𝑘
rs[eax] = 𝑣 ′ rs[pc] = 𝑥

𝑥 ®𝑘 ⊩ 𝑣 ′ C̃• rs@®𝑘
For a C-level function invocation 𝑓 (®𝑣), we expect the register
pc to point to the beginning of the function 𝑓 , and the regis-
ters ebx and ecx to contain the first and second arguments (if
applicable). The register eax can contain an arbitrary value.
The stack 𝑥 ®𝑘 has no relationship to the C question, however
the assembly answer is expected to pop the return address 𝑥
and branch to it, setting the program counter pc accordingly.
In addition, the register eax must store the return value 𝑣 ′.

2.5 Simulation Convention Algebra
Simulation conventions simplify the adaptation of the pass
correctness proofs of CompCert. Instead of forcing all passes
into the same mold, we can choose conventions matching
the simulation relation and invariants used in each pass. The
proofs can then be composed as shown in Fig. 3.

Unfortunately, the simulation convention obtained when
we vertically compose the updated simulation properties
suffers two serious problems. First, it is overly specific to the
construction of CompCert and the exact sequence of passes
included in the compiler. Second, because the correctness
proofs in CompCert sometimes assume more guarantees on
outgoing calls than they provide for incoming calls, outgoing
and incoming calls use different simulation conventions. This
asymmetry breaks horizontal compositionality (Thm. 3.4).
In CompCertO, we rectify this imbalance outside of the

simulation proof itself. The requirements of most passes on
their outgoing calls are met using the properties of the source
language Clight, encoded as self-simulations and inserted as
a pseudo-pass. We can then perform algebraic manipulations
on simulation statements to rewrite the overall simulation
convention used by the compiler.

id : 𝐴 ⇔ 𝐴 𝐿 ≤id↠id 𝐿

R : 𝐴1 ⇔ 𝐴2 S : 𝐴2 ⇔ 𝐴3
R · S : 𝐴1 ⇔ 𝐴3

𝐿1 ≤R𝐴↠R𝐵 𝐿2 𝐿2 ≤S𝐴↠S𝐵 𝐿3
𝐿1 ≤R𝐴 ·S𝐴↠R𝐵 ·S𝐵 𝐿3

𝐴1

𝐴2

𝐴3

𝐵1

𝐵2

𝐵3

𝐿1

𝐿2

𝐿3

R𝐴 R𝐵

S𝐴 S𝐵

Figure 3. Simulation identity and vertical composition

This is achieved using a notion of simulation convention
refinement (⊑) allowing a simulation convention to replace
another in all simulation statements. We construct a typed
Kleene algebra [14] based on this ordering, and use it to
ensure that our compiler correctness statement uses a simple,
compositional simulation convention (§5).

3 Operational Semantics
This section describes CompCertO’s semantic infrastructure.
We start by reviewing the techniques used in CompCert.

3.1 Whole-Program Semantics in CompCert
The semantics of CompCert languages are given in terms of a
simple notion of process behavior. By process, we mean a self-
contained computation which can be characterized by the
sequence of system calls it performs. For a C program to be
executed as a process, its translation units must be compiled
to object files, then linked together into an executable binary
loaded by the system.

The model used for verifying CompCert accounts for this
in the following way. Linking is approximated by merging
programs, seen as sets of global definitions. The execution of
a program composed of the translation units M1.c . . . M𝑛.c
which compile to M1.s . . . M𝑛.s is modeled as:

𝐿tgt := Asm(M1.s + · · · + M𝑛.s) .

Here, + denotes CompCert’s linking operator and Asmmaps
an assembly program to its semantics. Note that the loading
process and the conventional invocation of main are encoded
as part of the definition of Asm.
To formulate compiler correctness, we must also specify

the behavior of the source program. To this end, CompCert
defines a linking operator and semantics for the language
Clight,2 allowing the desired behavior to be specified as:

𝐿src := Clight(M1.c + · · · + M𝑛.c) .

Compiler correctness can then be stated as a refinement
property of some kind between 𝐿src and 𝐿tgt.

Transition Systems. In the original CompCert, language
semantics are given as labeled transition systems (LTS),

2CompCert features a richer version of the C language, but the dialectClight
is usually used as the source language when building certified artifacts.

5

PLDI ’21, June 20–25, 2021, Virtual, Canada Jérémie Koenig and Zhong Shao

𝑣 ∈ val ::= undef | int(𝑛) | long(𝑛) | float(𝑥) | single(𝑥) | vptr(𝑏, 𝑜)
(𝑏, 𝑜) ∈ ptr = block × Z (𝑏, 𝑙, ℎ) ∈ ptrrange = block × Z × Z

alloc : mem → Z→ Z→ mem × block

free : mem → ptrrange → option(mem)
load : mem → ptr → option(val)
store : mem → ptr → val → option(mem)

Figure 4. Outline of the CompCert memory model

which characterize a program’s behavior in terms of se-
quences of observable events. Schematically, a CompCert
LTS is a tuple 𝐿 = ⟨𝑆,→, 𝐼 , 𝐹 ⟩ consisting of a set of states 𝑆 ,
a labeled transition relation→ ⊆ 𝑆 × E∗ × 𝑆 , a subset 𝐼 ⊆ 𝑆

of initial states, and a set 𝐹 ⊆ 𝑆 × int of final states with exit
statuses. The relation 𝑠

𝑡→ 𝑠 ′ indicates that the state 𝑠 may
transition to the state 𝑠 ′ through an interaction 𝑡 ∈ E∗.

The construction of states in CompCert language seman-
tics follows common patterns. In particular, all languages
start with the same notion of memory state.

Memory Model. The CompCert memory model [17, 18]
is the core algebraic structure underlying the semantics of
CompCert languages. Some of its operations are shown in
Fig. 4. The idealized version presented here involves the type
of memory states mem, the type of runtime values val, and
the types of pointers ptr and address ranges ptrrange.
The memory is organized into a finite number of blocks.

Each memory block has a unique identifier 𝑏 ∈ block and
is equipped with its own linear address space. Block identi-
fiers and offsets are often manipulated together as pointers
(𝑏, 𝑜) ∈ ptr. New blocks are created with prescribed bound-
aries using the primitive alloc. A runtime value 𝑣 ∈ val can
be stored at a given address using the primitive store, and
retrieved using the primitive load. Values can be integers
(int, long) and floating point numbers (float, single) of differ-
ent sizes, as well as pointers (vptr). The special value undef
represents an undefined value. Simulation relations often
allow undef to be refined into a more concrete value; we
write value refinement as ≤v := {(undef, 𝑣), (𝑣, 𝑣) | 𝑣 ∈ val}.

The memory model is shared by all of the languages in
CompCert. States always consist of a memory component
𝑚 ∈ mem, alongside language-specific components which
may contain additional values (val).

3.2 Open Semantics in CompCertO
The memory model also plays a central role when describing
interactions between program components. In our approach,
the memory state is passed alongside all control transfers.

Language Interfaces. Our models of cross-component
interactions in CompCert languages are shown in Table 2. At
the source level (C), questions consist of the address of the

Table 2. Language interfaces used in CompCertO

Name Question Answer Description

C vf [sg] (®𝑣)@𝑚 𝑣 ′@𝑚′ C calls
L vf [sg] (ls)@𝑚 ls′@𝑚′ Abstract locations
M vf (sp, ra, rs)@𝑚 rs′@𝑚′ Machine registers
A rs@𝑚 rs′@𝑚′ Arch-specific
1 n/a n/a Empty interface
W * 𝑟 Whole-program

function to invoke (vf ∈ val), its signature (sg ∈ signature),
the values of its arguments (®𝑣 ∈ val∗), and the state of the
memory at the point of entry (𝑚 ∈ mem); answers consist
of the function’s return value and the state of the memory at
the point of exit. This language interface is used for Clight
and most of CompCert’s intermediate languages.
As we move towards lower-level languages, this is re-

flected in the language interfaces we use: function arguments
are mapped into abstract locations alongside local temporary
variables (L, used by LTL and Linear). These locations are
eventually concretized into stack slots and machine registers
(M, used by Mach). Finally, the target assembly language
stores the program counter, stack pointer, and return ad-
dress into their own registers (A, used by Asm). Note that
the actual stack contents are part of the memory state𝑚.
The interface of whole-program execution can also be

described in this setting: the language interface 1 contains no
move; per §2.2, the interface W has a single trivial question
∗, and the answers 𝑟 ∈ int give the exit status of a process.
Hence the original CompCert semantics described in §3.1
can be seen to define strategies for 1↠W: the process can
only be started in a single way, cannot perform any external
calls, and indicates an exit status upon termination.

Transition Systems. To account for the cross-component
interactions described by language interfaces, CompCertO
extends the transition systems described in §3.1 as follows.

Definition 3.1. Given an incoming language interface 𝐵

and an outgoing language interface 𝐴, a labeled transition
system for the game𝐴 ↠ 𝐵 is a tuple 𝐿 = ⟨𝑆,→, 𝐷, 𝐼 , 𝑋,𝑌 , 𝐹 ⟩.
The relation → ⊆ 𝑆 × E∗ × 𝑆 is a transition relation on the
set of states 𝑆 . The set 𝐷 ⊆ 𝐵◦ specifies which questions the
component accepts; 𝐼 ⊆ 𝐷 × 𝑆 then assigns to each one a set
of initial states. 𝐹 ⊆ 𝑆 × 𝐵• designates final states together
with corresponding answers. External calls are specified by
𝑋 ⊆ 𝑆 ×𝐴◦, which designates external states together with a
question of 𝐴, and 𝑌 ⊆ 𝑆 × 𝐴• × 𝑆 , which is used to select
a resumption state to follow an external state based on the
answer provided by the environment. We write 𝐿 : 𝐴 ↠ 𝐵

when 𝐿 is a labeled transition system for 𝐴 ↠ 𝐵.

We use infix notation for the various transition relations
𝐼 , 𝑋,𝑌 , 𝐹 . In particular, 𝑛 𝑌 𝑠 𝑠 ′ denotes that 𝑛 ∈ 𝐴• resumes
the suspended external state 𝑠 to continue with state 𝑠 ′.

6

CompCertO: Compiling Certified Open C Components PLDI ’21, June 20–25, 2021, Virtual, Canada

𝑞 ∈ 𝐷𝑖 𝑞 𝐼𝑖 𝑠
i◦

𝑞 𝐼 (𝑖, 𝑠)
𝑠

𝑡→𝑖 𝑠
′

run
(𝑖, 𝑠) ®𝑘 𝑡→ (𝑖, 𝑠 ′) ®𝑘

𝑠 𝐹𝑖 𝑟
i•(𝑖, 𝑠) 𝐹 𝑟

𝑠 𝑋𝑖 𝑞 𝑞 ∈ 𝐷 𝑗 𝑞 𝐼 𝑗 𝑠
′

push
(𝑖, 𝑠) ®𝑘 𝜖→ (𝑗, 𝑠 ′) (𝑖, 𝑠) ®𝑘

𝑠 ′ 𝐹 𝑗 𝑟 𝑟 𝑌𝑠
𝑖
𝑠 ′′

pop
(𝑗, 𝑠 ′) (𝑖, 𝑠) ®𝑘 𝜖→ (𝑖, 𝑠 ′′) ®𝑘

𝑠 𝑋𝑖 𝑞 ∀𝑗 . 𝑞 ∉ 𝐷 𝑗
x◦

(𝑖, 𝑠) ®𝑘 𝑋 𝑞

𝑟 𝑌 𝑠
𝑖
𝑠 ′

x•
𝑟 𝑌 (𝑖,𝑠) ®𝑘 (𝑖, 𝑠 ′) ®𝑘

Figure 5. Horizontal composition of open semantics.

Horizontal Composition. To model linking, the follow-
ing definition expresses the behavior of a collection of com-
ponents in terms of the behavior of each one.

Definition 3.2 (Horizontal composition). For two transition
systems 𝐿1, 𝐿2 : 𝐴 ↠ 𝐴with 𝐿𝑖 = ⟨𝑆𝑖 ,→𝑖 , 𝐷𝑖 , 𝐼𝑖 , 𝑋𝑖 , 𝑌𝑖 , 𝐹𝑖⟩, the
horizontal composition of 𝐿1 and 𝐿2 is

𝐿1 ⊕ 𝐿2 :=
〈
(𝑆1 + 𝑆2)∗, →, 𝐷1 ∪ 𝐷2, 𝐼 , 𝑋, 𝑌 , 𝐹

〉
,

where →, 𝐼 , 𝑋 , 𝑌 , 𝐹 are defined by the rules shown in Fig. 5.

When the composite transition system receives an incom-
ing question, an appropriate component is chosen based on
the domains 𝐷1 and 𝐷2 (i◦). This component becomes active
and the composite transition system proceeds accordingly
(run, x◦, x•, i•). To enable mutual recursion between 𝐿1 and
𝐿2, the composite system maintains an alternating stack of
suspended states of 𝐿1 and 𝐿2. When 𝐿1 is active and per-
forms an external call to 𝐿2, the current state is suspended
and the question of 𝐿1 is used to initialize a new instance
of 𝐿2 (push). When that instance terminates, the suspended
state of 𝐿1 is resumed by the corresponding answer (pop).
In between, 𝐿2 may itself perform cross-component calls,
creating new instances of 𝐿1, and so on to an arbitrary depth.

3.3 Open Simulations
CompCert is proved correct using a simulation between the
transition semantics of the source and target programs. This
forward simulation is used to establish a backward simula-
tion. Backward simulations are in turn proved to be sound
with respect to trace containment. We have adapted forward
and backward simulations to the semantic model of Comp-
CertO. In this section we present forward simulations, which
are used as our primary notion of refinement.

Forward Simulations. A forward simulation asserts that
any transition in the source program has a corresponding
transition sequence in the target. The sequence may be
empty, but to ensure the preservation of silent divergence
this can only happen for finitely many consecutive source
transitions. This is enforced by indexing simulation rela-
tions over well-founded orders, and requiring the index to
decrease whenever an empty transition sequence is used.

𝑞1 𝑠1

𝑞2 𝑠2

𝑤𝐵⊩R
◦
𝐵

𝐼1

𝑤𝐵⊩𝑅

𝐼2

𝑠1 𝑟1

𝑠2 𝑟2

𝐹1

𝑤𝐵⊩𝑅 𝑤𝐵⊩R
•
𝐵

𝐹2

𝐼1 [⊩ R◦
𝐵
→ P≤ (𝑅)] 𝐼2 𝐹1 [⊩ 𝑅 → P≤ (R•

𝐵
)] 𝐹2

(a) Initial states (b) Final states

𝑠1 𝑚1 𝑛1 𝑠 ′1

𝑠2 𝑚2 𝑛2 𝑠 ′2

𝑋1

𝑤𝐵⊩𝑅 𝑤𝐴⊩R
◦
𝐴

𝑌
𝑠1
1

𝑤𝐴⊩R
•
𝐴

𝑤𝐵⊩𝑅

𝑋2 𝑌
𝑠2
2

∀𝑤𝐵 𝑠1 𝑠2𝑚1 .𝑤𝐵 ⊩ 𝑠1 𝑅 𝑠2 ∧ 𝑠1 𝑋1 𝑚1 ⇒
∃𝑤𝐴𝑚2 .𝑤𝐴 ⊩𝑚1 R

◦
𝐴
𝑚2 ∧ 𝑠2 𝑋2 𝑚2 ∧

∀𝑛1 𝑛2 𝑠
′
1 .𝑤𝐴 ⊩ 𝑛1 R

•
𝐴
𝑛2 ∧ 𝑛1 𝑌

𝑠1
1 𝑠 ′1 ⇒

∃ 𝑠 ′2 .𝑤𝐵 ⊩ 𝑠 ′1 𝑅 𝑠 ′2 ∧ 𝑛2 𝑌
𝑠2
2 𝑠 ′2

(c) External states

Figure 6. Selected forward simulation properties

This mechanism is unchanged in CompCertO and is largely
orthogonal to the techniques we introduce, so we omit this
aspect of forward simulations in our exposition.

This omission aside, our forward simulations are outlined
in Fig. 6. To take external interactions into account, a sim-
ulation of 𝐿1 : 𝐴1 ↠ 𝐵1 by 𝐿2 : 𝐴2 ↠ 𝐵2 operates in the
context of the simulation conventions R𝐴 : 𝐴1 ⇔ 𝐴2 and
R𝐵 : 𝐵1 ⇔ 𝐵2. If incoming questions are related by R◦

𝐵
at a

world𝑤𝐵 , these properties guarantee that the corresponding
answers will be related by R•

𝐵
at the same world.

Conversely, the simulation convention R𝐴 determines the
correspondence between outgoing questions triggered by
the transition systems’ external states. Compared with the
treatment of incoming questions, the roles of the system and
environment are reversed: the simulation proof can choose
𝑤𝐴 to relate the outgoing questions, and can assume that
any corresponding answers will be related at that world.

Definition 3.3 (Forward simulation). Given the simulation
conventions R𝐴 : 𝐴1 ⇔ 𝐴2 and R𝐵 : 𝐵1 ⇔ 𝐵2, and given the
transition systems 𝐿1 : 𝐴1 ↠ 𝐵1 = ⟨𝑆1,→1, 𝐷1, 𝐼1, 𝑋1, 𝑌1, 𝐹1⟩
and 𝐿2 : 𝐴2 ↠ 𝐵2 = ⟨𝑆2,→2, 𝐷2, 𝐼2, 𝑋2, 𝑌2, 𝐹2⟩, a forward
simulation between 𝐿1 and 𝐿2 is a relation 𝑅 ∈ R𝑊𝐵

(𝑆1, 𝑆2)
satisfying the properties shown in Fig. 6 as well as:

(𝜆𝑞1 . (𝑞1 ∈ 𝐷1)) [⊩ R◦𝐵 → ⇔] (𝜆𝑞2 . (𝑞2 ∈ 𝐷2))
→1 [⊩ 𝑅 → = → P≤ (𝑅)] →∗

2

We will write 𝐿1 ≤R𝐴↠R𝐵 𝐿2 when such a relation exists.

Horizontal Composition. The horizontal composition
operator described byDef. 3.2 preserves simulations. Roughly

7

PLDI ’21, June 20–25, 2021, Virtual, Canada Jérémie Koenig and Zhong Shao

speaking, whenever a new component instance is created
by a cross-component call, the simulation property for the
new instance can be stitched in-between the two halves of
the callers’ simulation property as described in Fig. 6(c).

Theorem 3.4 (Horizontal composition of simulations). For
a simulation convention R : 𝐴1 ⇔ 𝐴2 and transition systems
𝐿1, 𝐿

′
1 : 𝐴1 ↠ 𝐴1 and 𝐿2, 𝐿

′
2 : 𝐴2 ↠ 𝐴2, the following holds:

𝐿1 ≤R↠R 𝐿2 𝐿′
1 ≤R↠R 𝐿′

2
𝐿1 ⊕ 𝐿′

1 ≤R↠R 𝐿2 ⊕ 𝐿′
2

One interesting and novel aspect of the proof is the way
worlds are managed. Externally, only the worlds correspond-
ing to incoming and outgoing questions and answers are
observed. Internally, the proof of Thm. 3.4 maintains a stack
of worlds to relate the corresponding stack of activations in
the source and target composite semantics. See also §4.6.

Theorem 3.4 allows us to decompose the verification of a
complex program into the verification of its parts. To estab-
lish the correctness of the linked assembly program, we can
use the following result.

Theorem 3.5. Linking two Asm programs 𝑝1 and 𝑝2 yields
a correct implementation of horizontal composition:

Asm(𝑝1) ⊕ Asm(𝑝2) ≤id↠id Asm(𝑝1 + 𝑝2)

Vertical Composition. Simulations also compose verti-
cally, combining the simulation properties for successive
compilation passes into a single one. The convention used
by the resulting simulation can be described as follows.

Definition 3.6 (Composition of simulation conventions).
The composition of two Kripke relations 𝑅 ∈ R𝑊𝑅

(𝑋,𝑌) and
𝑆 ∈ R𝑊𝑆

(𝑌, 𝑍) is 𝑅 · 𝑆 ∈ R𝑊𝑅×𝑊𝑆
(𝑋,𝑍), defined by:

(𝑤𝑅,𝑤𝑆) ⊩ 𝑥 [𝑅 · 𝑆] 𝑧 ⇔ ∃𝑦 ∈ 𝑌 .𝑤𝑅 ⊩ 𝑥 𝑅 𝑦 ∧𝑤𝑆 ⊩ 𝑦 𝑆 𝑧 .

For the simulation conventions R : 𝐴 ⇔ 𝐵 and S : 𝐵 ⇔ 𝐶 ,
we define R · S : 𝐴 ⇔ 𝐶 as:

R · S := ⟨𝑊R ×𝑊S, R
◦ · S◦, R• · S•⟩

Theorem 3.7. Open forward simulations compose vertically
as depicted in Fig. 3.

3.4 Compiler Correctness
The passes of CompCertO are shown in Table 3. They can
be composed using the mechanisms we have just described.
Through techniques developed in §4 and §5, we can then
formulate a uniform simulation convention C : C ⇔ A for
the whole compiler and establish our main results.

Theorem 3.8 (Compositional Correctness of CompCertO).
For a Clight program 𝑝 and an Asm program 𝑝 ′ such that
CompCert(𝑝) = 𝑝 ′, the following simulation holds:

Clight(𝑝) ≤C↠C Asm(𝑝 ′) .

Table 3. Passes of CompCertO grouped by source language.
† indicates optional optimizations. Significant lines of code
(SLOC) measured by coqwc, compared to CompCert v3.6.

Language/Pass Outgoing↠ Incoming SLOC

Clight C↠ C +17 (+3%)
SimplLocals injp↠ inj -3 (-0%)
Cshmgen id↠ id +0 (+0%)
Csharpminor C↠ C +15 (+4%)
Cminorgen injp↠ inj -15 (-1%)
Cminor C↠ C +15 (+3%)
Selection wt · ext↠ wt · ext +46 (+1%)
CminorSel C↠ C +15 (+3%)
RTLgen ext↠ ext +12 (+1%)
RTL C↠ C +11 (+3%)
Tailcall† ext↠ ext +4 (+1%)
Inlining injp↠ inj +62 (+3%)
Renumber id↠ id -14 (-7%)
Constprop† va · ext↠ va · ext -15 (-1%)
CSE† va · ext↠ va · ext +6 (+0%)
Deadcode† va · ext↠ va · ext -5 (-0%)
Allocation wt · ext · CL↠ wt · ext · CL +46 (+2%)
LTL L ↠ L +18 (+8%)
Tunneling ext↠ ext +15 (+3%)
Linearize id↠ id -15 (-3%)
Linear L ↠ L +18 (+8%)
CleanupLabels id↠ id -10 (-3%)
Debugvar id↠ id -12 (-2%)
Stacking injp · LM↠ LM · inj +268 (+10%)
Mach M ↠M +184 (+49%)
Asmgen ext ·MA↠ ext ·MA +277 (+9%)
Asm A ↠A +566 (+10%)

Total +1,136 (+3%)

The simulation convention C formalizes the correspon-
dence between C and assembly interactions. By necessity, it
follows Clight and Asm in their use of the CompCert mem-
ory model, but is otherwise independent of the compiler.
In particular, C is not sensitive to the inclusion of optional
optimization passes. The details are discussed in §5.

Corollary 3.9. If M1.c, . . . , Mn.c are compiled and linked to
M1.s + . . . + Mn.s = M.s, we can use Thms. 3.4, 3.5 and 3.8 to
establish the following separate compilation property:

Clight(M1.c) ⊕ · · · ⊕ Clight(Mn.c) ≤C↠C Asm(M.s)

In other words, the horizontal composition of the source
modules’ behaviors is faithfully implemented by the com-
piled and linked Asm program M.s.

3.5 Towards Heterogeneous Verification
Although we focus in this paper on a symmetric form of
horizontal composition which models linking and mutual

8

CompCertO: Compiling Certified Open C Components PLDI ’21, June 20–25, 2021, Virtual, Canada

Net

IO

C

A

𝜎 Clight(𝐶)

𝜎NIC 𝜎 ′
io Asm(𝐶 ′ + 𝑝 ′)

C

𝜎drv

Clight(𝑝)

Asm(𝑝′) Asm(𝐶′)

𝜎io

Eqn. (5)

Eqn. (7)

Eqn. (6)

Thm. 3.8 Thm. 3.8

Thm. 3.5

Figure 7. Heterogeneous scenario outlined in Example 3.10,
depicted as a string diagram. Thin vertical lines represent
transition systems; their horizontal juxtaposition denotes
composition. Colored regions correspond to language inter-
faces and rectangles to simulation properties.

recursion, it is possible to define a more traditional operator

◦𝐴,𝐵,𝐶 : (𝐵 ↠ 𝐶) × (𝐴 ↠ 𝐵) → (𝐴 ↠ 𝐶) .
In 𝐿1 ◦ 𝐿2, calls propagate from the environment to 𝐿1, then
to 𝐿2, then back to the environment, but 𝐿2 cannot call di-
rectly into 𝐿1. The homogeneous case ◦𝐴,𝐴,𝐴 is an under-
approximation of ⊕ and therefore Thm. 3.5 applies:

Asm(𝑝1) ◦ Asm(𝑝2) ≤id↠id Asm(𝑝1 + 𝑝2)
These constructions would enrich our framework with the
structure of a double category, and make it possible to use
CompCertO in a heterogeneous context.

Example 3.10. Revisiting Example 1.1 we consider:
• a network interface card model 𝜎NIC : Net ↠ IO,
• device I/O primitives modeled as 𝜎io : IO ↠ C,
• a network card driver specified by 𝜎drv : C ↠ C,

Together, they implement a specification 𝜎 : Net ↠ C as:

𝜎 ≤id↠id 𝜎drv ◦ 𝜎io ◦ 𝜎NIC (5)

The interface Net models the flow of ethernet packets sent
and received by the network adapter, whereas IO models its
interaction with the CPU. Device I/O primitives are imple-
mented in unverified code and axiomatized in 𝜎io. The driver
itself can be implemented as a Clight program 𝑝:

𝜎drv ≤id↠id Clight(𝑝) (6)

To characterize the compiled driver, wemust use an assembly-
level specification for I/O primitives 𝜎 ′

io : IO ↠ A such that:

𝜎io ≤id↠C 𝜎
′
io (7)

Then per Fig. 7, the compiled driver 𝑝 ′ satisfies

𝜎 ≤id↠C Asm(𝑝 ′) ◦ 𝜎 ′
io ◦ 𝜎NIC

and a client program 𝐶 interacting with 𝜎 can be soundly
compiled into 𝐶 ′ and linked with the driver 𝑝 ′:

Clight(𝐶) ◦ 𝜎 ≤id↠C Asm(𝐶 ′ + 𝑝 ′) ◦ 𝜎 ′
io ◦ 𝜎NIC .

It is admittedly unclear whether the model presented
in this section, designed specifically for the verification of
CompCertO, could adequately capture the complexity of
hardware interfaces or the concurrency inherent in this kind
of composite system. However, our semantics and proofs can
be embedded into richer game models, where the approach
outlined in Example 3.10 could be realistically carried out.

4 Logical Relations for CompCert
The questions, answers and states used in the semantics
of CompCert languages are each composed of a memory
state surrounded by runtime values. Likewise, simulation
conventions and relations are constructed around memory
transformations and relate the surrounding values in ways
that are compatible with the chosen memory transformation.

4.1 Memory Extensions
For passes where strict equality is too restrictive, but the
source and target programs use similar memory layouts,
CompCert uses the memory extension relation, which allows
the values stored in the target memory state to refine the
values stored in the source memory at the same location.

By analogy with the relation 𝑣1 ≤v 𝑣2 introduced in §3.1,
we write𝑚1 ≤m 𝑚2 to signify that the source memory𝑚1
is extended by the target memory 𝑚2. Together, the rela-
tions ≤v and ≤m constitute a logical relation for the memory
model: loads from memory states related by extension yield
values related by refinement, storing values related by re-
finement preserves memory extensions, and similarly for the
remaining memory operations.

4.2 Memory Injections
The most complex simulation relations of CompCert allow
memory blocks to be dropped, added, or mapped at a given
offset within a larger block. These transformations of the
memory structure are specified by partial functions of type:

meminj := block ⇀ block × Z

We will call 𝑓 ∈ meminj an injection mapping. An entry
𝑓 (𝑏) = (𝑏 ′, 𝑜) means that the source memory block with
identifier 𝑏 is mapped into the target block 𝑏 ′ at offset 𝑜 .
As with refinement and extension, an injection mapping

determines both a relation on values and a relation on mem-
ory states, which work together as a logical relation for the
CompCert memory model. The value relation 𝑓 ⊩ 𝑣1 ↩→v 𝑣2
allows 𝑣2 to refine 𝑣1, but also requires any pointer present
in 𝑣1 to be transformed according to 𝑓 . The memory relation
𝑓 ⊩ 𝑚1 ↩→m 𝑚2 requires that any addresses of𝑚1 and𝑚2
related by 𝑓 hold values related by 𝑓 ⊩ ↩→v.

9

PLDI ’21, June 20–25, 2021, Virtual, Canada Jérémie Koenig and Zhong Shao

{ is reflexive and transitive

alloc :: ⊩ Rmem → = → = → ^(Rmem × Rblock)
free :: ⊩ Rmem → Rptrrange → option≤ (^Rmem)

load :: ⊩ Rmem → Rptr → option≤ (Rval)

store :: ⊩ Rmem → Rptr → Rval → option≤ (^Rmem)

Figure 8. Defining properties of CKLRs. Note the correspon-
dence with the types of operations in Fig. 4.

Since memory allocations create new block identifiers,
corresponding allocations in the source and target memory
states cause 𝑓 to evolve into a more defined mapping 𝑓 ⊆ 𝑓 ′.
This is handled by the following constructions.

4.3 Modal Kripke Relators
We defined general Kripke relations in §2.3. We add structure
to sets of Kripke worlds, specifying how they can evolve.

Definition 4.1. A Kripke frame is a tuple ⟨𝑊,{⟩, where
𝑊 is a set of possible worlds and{ is a binary accessibility
relation over𝑊 . Then the Kripke relator ^ is defined by:

𝑤 ⊩ 𝑥 [^𝑅] 𝑦 ⇔ ∃𝑤 ′ .𝑤 { 𝑤 ′ ∧𝑤 ′ ⊩ 𝑥 𝑅 𝑦

Example 4.2 (Injection simulation diagrams). Following up
on Example 2.4, Consider once again the simple transition
systems 𝛼 : 𝐴 → P(𝐴) and 𝛽 : 𝐵 → P(𝐵). An injection-
based simulation relation between them will be a Kripke
relation 𝑅 ∈ Rmeminj (𝐴, 𝐵) satisfying the property:

𝑠1 𝑠 ′1

𝑠2 𝑠 ′2

𝛼

𝑓 𝑓 ′

𝛽

∀𝑓 𝑠1 𝑠2 𝑠 ′1 . 𝑓 ⊩ 𝑠1 𝑅 𝑠2 ∧ 𝛼 (𝑠1) ∋ 𝑠 ′1 ⇒
∃𝑓 ′𝑠 ′2 . 𝑓 ⊆ 𝑓 ′ ∧ 𝛽 (𝑠2) ∋ 𝑠 ′2 ∧ 𝑓 ′ ⊩ 𝑠 ′1 𝑅 𝑠 ′2

(8)

The new states may be related according to a new injection
mapping 𝑓 ′. To preserve existing relationships between any
surrounding source and target pointers, the new mapping
must include the original one (𝑓 ⊆ 𝑓 ′). This pattern is com-
mon in CompCert and appears in a variety of contexts. By
using ⟨meminj, ⊆⟩ as a Kripke frame, we can express (8) as:

𝛼 [⊩ 𝑅 → P≤ (^𝑅)] 𝛽 .

4.4 CompCert Kripke Logical Relations
A CompCert Kripke logical relation (CKLR) must provides a
Kripke frame ⟨𝑊,{⟩, as well as a component relation for
every type involved in the CompCert memory model. These
relations must satisfy the properties given in Fig. 8. Note
that 𝑅mem is the central component driving world transitions,
as witnessed by the uses of ^ in Fig. 8. The surrounding
relations must be monotonic in 𝑤 , so that any extra state
constructed from pointers and runtime values will be able
to “follow along” when world transitions occur.

𝑚1

𝑓

𝑚2

𝑚′
1

𝑓 ′

𝑚′
2

(𝑓 ,𝑚1,𝑚2) {injp (𝑓 ′,𝑚′
1,𝑚

′
2)

Figure 9. External calls and memory injections. The source
and target memory states are depicted at the top and bottom
of the figure. Arrows describe the injection mapping. The
memory block on the left of the dashed line are present at
the beginning of the call. Memory blocks on the right are
allocated during the call, adding a new entry to the injection
mapping. The shaded areas must not be modified by the call.

Among other constructions, we can define the CKLRs ext
and inj, which correspond to CompCert’s memory exten-
sions and memory injections. Their component relations for
values and memory states coincide with the usual ones:

𝑊ext := 1 extval := ≤v extmem := ≤m

𝑊inj := meminj injval := ↩→v injmem := ↩→m

Simulation Conventions. Given a language interface X,
we can use the components of R ∈ CKLR to build a simula-
tion convention RX : X ⇔ X. For instance:

RC :=
〈
𝑊, (Rval × = × ®Rval × Rmem), ^(Rval × Rmem)

〉
.

We will often implicitly promote R to RX .
Note that in our model, accessibility relations are not di-

rectly involved in the interface of simulations. Instead, a
single world is used to formulate the 4-way relationship be-
tween pairs of questions and answers. In the definition above,
we allow world transitions in simulations by qualifying the
relation R•

C with the modality ^.

Parametricity. Since CompCert language semantics are
built out of the operations of the memory model, they are
well-behaved with respect to CKLRs.

Theorem 4.3. For the languages 𝐿 ∈ {Clight,RTL,Asm},
∀R ∈ CKLR . 𝐿(𝑝) ≤R↠R 𝐿(𝑝)

4.5 External Calls in Injection Passes
Passes which alter the block structure of the memory use
memory injections (§4.2). The CKLR inj can be used for in-
coming calls, but it is insufficient for outgoing calls.

Example 4.4. The SimplLocals pass removes some local
variables from the memory. The corresponding values are
instead stored as temporaries in the target function’s local
environment, and the correspondence between the two is
enforced by the simulation relation. To maintain it, we need
to know that external calls do not modify source memory
blocks with no counterpart in the target memory.

10

CompCertO: Compiling Certified Open C Components PLDI ’21, June 20–25, 2021, Virtual, Canada

More generally, as depicted in Fig. 9, injection passes ex-
pect external calls to leave regions outside of the injection’s
footprint untouched. This expectation is reasonable because
external calls should behave uniformly between the source
and target executions. These requirements can be formalized
as a CKLR injp which includes the following components:

𝑊injp := meminj ×mem ×mem

𝑓 ⊩ 𝑣1 ↩→v 𝑣2

(𝑓 ,𝑚1,𝑚2) ⊩ 𝑣1 𝑅
val
injp 𝑣2

𝑓 ⊩𝑚1 ↩→m 𝑚2

(𝑓 ,𝑚1,𝑚2) ⊩𝑚1 𝑅
mem
injp 𝑚2

Then, (𝑓 ,𝑚1,𝑚2) {injp (𝑓 ′,𝑚′
1,𝑚

′
2) ensures that 𝑓 ⊆ 𝑓 ′ and

that the memory states satisfy the constraints in Fig. 9.

4.6 World Transitions and Compositionality
The CKLR injp illustrates a key novelty in the granularity
at which we deploy Kripke world transitions. Consider two
related executions with the shape:

𝑞 · 𝑠1 · 𝑠2 · 𝑚 · 𝑠 ′1 · 𝑠 ′2 · 𝑛 · 𝑠3 · · · 𝑠𝑘 · 𝑟

Each element of the sequence denotes a pair of related moves
or states. Here 𝑞,𝑚, 𝑛, 𝑟 each denote a pair of related moves
transferring control between components, whereas 𝑠𝑖 and 𝑠 ′𝑖
denote pairs of internal states of two different components.
We draw an arrow from a pair 𝑛 to an earlier pair𝑚 when
the world used to relate the source and target constituents
of 𝑛 is accessible from the world used for𝑚.
Traditionally, Kripke worlds evolve linearly with time:

𝑞 · 𝑠1 · 𝑠2 · 𝑚 · 𝑠 ′1 · 𝑠 ′2 · 𝑛 · 𝑠3 · · · 𝑠𝑘 · 𝑟

To enable horizontal compositionality, the challenge is then
to construct worlds, accessibility relations, and simulation
relations which are sophisticated enough to express owner-
ship constraints like the ones discussed in §4.5, which shift
as the execution switches between components.
In our open simulations, worlds can be deployed inde-

pendently for incoming and outgoing calls, in a way which
follows the structure of plays, as depicted here:

𝑞 ·𝑚1 · 𝑛1 · · ·𝑚𝑘 · 𝑛𝑘 · 𝑟

Internal states are not part of a component’s observable be-
havior, and individual simulation proofs can relate them in
arbitrary ways, as long as the simulation relation is compati-
ble with the simulation convention at interaction sites.

Two examples illustrate this flexibility. First, as explained
in §3.3, to handle nested calls between its components, a com-
posite simulation uses an internal stack of worlds. A situation
where𝑚1 and𝑚2 are internal calls and𝑚3 is an external call
can be described as:

𝑞 ·𝑚1 ·𝑚2 ·𝑚3 · 𝑛3 · 𝑛2 · 𝑛1 · 𝑟

Second, in simulations which use CKLRs, the simulation re-
lation is qualified as𝑤𝐵 ⊩ ^𝑅 to allow the world to evolve as

the execution progresses. Since ^^𝑅 = ^𝑅, per-step world
transitions (⊩ 𝑅 → ^𝑅) maintain the overall constraint:

𝑞 · 𝑠1 · 𝑠2 · 𝑠3 · · · 𝑠𝑘 · 𝑟
Moreover, this allows steps which do not individually con-
form to world transitions but do maintain ^𝑅 with respect
to the initial world (𝑤𝐵 ⊩ ^𝑅 → ^𝑅):

𝑞 · 𝑠1 · 𝑠2 · 𝑠3 · · · 𝑠𝑘 · 𝑟
For instance, recall that in the SimplLocals pass, the source
program may write to local variables which have been re-
moved from the memory in the target program (Example 4.4).
At a granular level, the corresponding steps break{injp by
writing to a memory block outside of the injection’s foot-
print (see Fig. 9). But since the block in question is allocated
after the function is invoked,{injp is satisfied with respect
to the initial world.

In combination, these two examples show how our frame-
work handles ownership constraints using conditions like
{injp already present in CompCert. It does not require so-
phisticated permission maps as in other approaches [22, 23].

5 Calling Convention
The simulation convention C : C ⇔ A used in the formula-
tion of Thm. 3.8 is constructed as follows:

C := R∗ · wt · CA · vainjA
The structure of C is explained below:

• The first component allows the caller to use CKLRs in
the set R := injp+ inj+ext+vainj+vaext. In particular,
it is used to satisfy the requirements placed on external
calls by the passes of CompCert.

• The component wt ensures that the arguments and
return values of the C-level calls are well-typed.

• The component CA ≡ CL · LM · MA formalizes the
structural aspects of the C calling convention, in par-
ticular the marshaling of C function arguments into
assembly registers and onto the stack. It guarantees
the preservation of callee-save registers and ensures
that the source-level execution does not have access
to the arguments region of the stack.

• The component vainjA ensures that calls are compati-
ble with memory injections and that global constants
have their prescribed values in the source memory.

In the remainder of this section, we explain how the passes
of CompCertO (Table 3) can be composed to build a compiler
which obeys the simulation convention C.

5.1 Refinement of Simulation Conventions
A refinement R ⊑ S captures the idea that the simulation
convention R is more general than S, so that any simulation
accepting R as its incoming convention can accept S as well.
The shape of the symbol illustrates its meaning: when R ⊑ S,

11

PLDI ’21, June 20–25, 2021, Virtual, Canada Jérémie Koenig and Zhong Shao

related questions of S can be transported to related question
of R; when we get a response, the related answers of R can
be transported back to related answers of S.

Definition 5.1 (Simulation convention refinement). Given
two simulation conventions R, S : 𝐴1 ⇔ 𝐴2, we say that R
is refined by S and write R ⊑ S when the following holds:

∀𝑤𝑚1𝑚2 .𝑤 ⊩𝑚1 S
◦ 𝑚2 ⇒ ∃ 𝑣 . (𝑣 ⊩𝑚1 R

◦ 𝑚2 ∧
∀𝑛1 𝑛2 . 𝑣 ⊩ 𝑛1 R

• 𝑛2 ⇒ 𝑤 ⊩ 𝑛1 S
• 𝑛2) .

We write R ≡ S when both R ⊑ S and S ⊑ R.

Theorem 5.2. For R : 𝐴1 ⇔ 𝐴2, S : 𝐴2 ⇔ 𝐴3, T : 𝐴3 ⇔ 𝐴4,
the following properties hold:

(R · S) · T ≡ R · (S · T) R · id ≡ id · R ≡ R
(·) :: ⊑ × ⊑ → ⊑

In addition, when R′ ⊑ R : 𝐴1 ⇔ 𝐴2 and S ⊑ S′ : 𝐵1 ⇔ 𝐵2,
for all 𝐿1 : 𝐴1 ↠ 𝐵1 and 𝐿2 : 𝐴2 ↠ 𝐵2:

𝐿1 ≤R↠S 𝐿2 ⇒ 𝐿1 ≤R′↠S′ 𝐿2 .

Building on the graphical language used in Fig. 7, we can
represent simulation convention refinements as boxes on
horizontal lines. For example, Thm. 5.2 enables the horizontal
gluing of the following tiles:

R′ RR′ ⊑ R

𝐿1

𝐿2

𝐿1 ≤R↠S 𝐿2 S S′S ⊑ S′

The composition of simulation conventions can be depicted
as the vertical juxtaposition of the corresponding lines. Re-
finement boxes can be replaced by distinctive shapes. This
is illustrated in Fig. 10, which outlines a proof of Thm. 3.8.

5.2 Composing CKLRs
The simulation convention obtained by composing the passes
of CompCertO (Table 3) involves a multitude of CKLRs.
Thankfully, ext and inj compose nicely.

Lemma 5.3. The CKLRs ext and inj compose as follows:

ext · inj ≡ inj · ext ≡ inj · inj ≡ inj ext · ext ≡ ext

The corresponding refinements can be depicted as varia-
tions on forks of the following kind:

inj inj
ext

inj inj
ext

However, intervening calling conventions (XY) and invari-
ants (wt, va) prevent us from using them to their full extent.
This is addressed in part by the following properties.

Lemma 5.4. For XY ∈ {CL, LM,MA} and R ∈ CKLR:

XY XY
R

R

X

Y

RX · XY ⊑ XY · RY

R∗

wt

CL

LM

MA
vainj

R∗

wt

CL

LM

MA
vainj

Clight(𝑝)

Asm(𝑝 ′)

inj

vainj

ext

inj

ext

ext

inj

vainj

ext

ext

injp

ext

. . .

Allocation

Tunneling

. . .

Stacking

Asmgen

Figure 10. Overall structure of the proof of Thm. 3.8. The
intersections marked with • denote parametricity properties
of Clight and Asm (Thm. 4.3). The simulation proof for C
passes, depicted as “. . . ” in the top part of the figure, can be
constructed incrementally (see Fig. 11). The other ellipsis de-
notes identity passes which can be composed transparently.

Using Lemmas 5.3 and 5.4 together, an incoming memory
injection can be fanned out across the compiler to satisfy the
requirements of all passes. Conversely, outgoing memory
transformations can be regrouped at the source level, where
we can require all components to be compatible with the
CKLRs in R. To express this requirement, we rely on the
Kleene algebra described in the next section.

5.3 Kleene Algebra
The sum of a family of simulation conventions allows the
caller to choose any one of them. The Kleene star allows a
choice of finite iterations.

Definition 5.5. Consider (R𝑖)𝑖∈𝐼 a family of conventions
with R𝑖 = ⟨𝑊𝑖 ,R

◦
𝑖 ,R

•
𝑖 ⟩ : 𝐴1 ⇔ 𝐴2 for all 𝑖 ∈ 𝐼 . We define the

simulation convention
∑

𝑖∈𝐼 R𝑖 := ⟨𝑊,R◦,R•⟩, where:

𝑊 :=
∑
𝑖∈𝐼

𝑊𝑖

(𝑖,𝑤) ⊩ R◦ := 𝑤 ⊩ R◦𝑖

(𝑖,𝑤) ⊩ R• := 𝑤 ⊩ R•𝑖 .

We will write R1 + · · · + R𝑛 for the finitary case
∑𝑛

𝑖=1 R𝑖 .
Finally, for R : 𝐴 ⇔ 𝐴 we define R∗ :=

∑
𝑛∈N R

𝑛 , where
R0 := id and R𝑛+1 := R𝑛 · R.
Theorem 5.6. The constructions ⊒, ·, +, ∗ work together as a
typed Kleene algebra. Moreover, the following properties hold:

∀𝑖 . 𝐿1 ≤R↠S𝑖 𝐿2

𝐿1 ≤R↠∑
𝑖 S𝑖 𝐿2

𝐿 ≤R↠S 𝐿
𝐿 ≤R∗↠S∗ 𝐿

Writing R =
∑

𝑖 R𝑖 , this enables refinements such as:

R∗
R∗

R∗

R∗

R∗

R∗
R∗ R𝑖

12

CompCertO: Compiling Certified Open C Components PLDI ’21, June 20–25, 2021, Virtual, Canada

inj

va

ext

inj

vainj

vainj
wt

R∗
va

vaext ext

inj
vainj
wt

RTL(𝑝𝑖)

RTL(𝑝 𝑗)

CSE

. . .

Figure 11. Incremental composition of C passes. Here the
correctness proof ofCSE is pre-composed without modifying
the overall simulation convention. This process is iterated
for the passes Deadcode through SimplLocals, and initiated
using the compatibility of RTL with CKLRs and wt.

5.4 Dealing with Invariants
With some care, we can make sure the typing invariant wt
is fairly well-behaved. The invariant va is more recalcitrant
to commutation, but can be built into two new CKLRs.

Lemma 5.7. If R is built from CKLRs, · , + and ∗,

R R
wt wt

wt
R R
wt wt

wt
wt wt
R

R

Lemma 5.8. The CKLRs vainj and vaext satisfy:
vaext ≡ va · ext vainj ≡ va · inj ≡ vainj · vainj

Using these properties, correctness proofs for the C passes
can be composed incrementally and selectively. This is illus-
trated in Fig. 11.

6 Related Work and Evaluation
A general survey, discussion and synthesis of various compo-
sitional compiler correctness results is provided by Patterson
and Ahmed [20]. We focus on CompCert extensions. Our
conceptual framework can be used to establish the taxonomy
presented in Table 4.

CompCert and SepCompCert. The original correctness
theorem of CompCert was stated as Cwp (𝑝) ⪯ Asmwp (𝑝 ′),
where Cwp and Asmwp denote the source and target whole-
program semantics. SepCompCert [10] later introduced the
linking operator + and generalized the correctness theorem
to the form discussed in §3.1.

Since external calls are not accounted for explicitly in this
model, their behavior is specified by a parameter 𝜒 shared
across all language semantics. The correctness proof assumes
that 𝜒 is deterministic and that it satisfies a number of health-
iness requirements, which roughly correspond to the R∗

component of our simulation convention (§5).

Contextual Compilation. CompCertX [6], later followed
by Stack-Aware CompCert [24], generalizes the incoming

Table 4. Taxonomy of CompCert extensions in terms of the
corresponding game models. The parameter 𝜒 : 1↠ C fixes
the behavior of external functions, whereas games on the left
of arrows correspond to dynamic interactions. CompCertO’s
model is parametrized a language interface𝐴 ∈ L ⊇ {C,A}.

Variant Semantic model

(Sep)CompCert [10, 16] 𝜒 : 1↠ C ⊢ 1↠W
CompCertX [6] 𝜒 : 1↠ C × A ⊢ 1↠ C × A
Comp. CompCert [23] C ↠ C
CompCertM [22] C × A ↠ C × A
CompCertO 𝐴 ↠ 𝐴

interface of programs fromW to C, characterizing the be-
havior not only of main but of any function of the program,
called with any argument values. This allows CompCertX
and its correctness theorem to be used in the layer-based
verification of the CertiKOS kernel: once the code of an ab-
straction layer has been verified, that layer’s specification
can be used as the new 𝜒 when the next layer is verified.
However, this approach does not support mutually recursive
components, and requires the healthiness conditions on 𝜒

to be proved before the next layer is added.

Compositional CompCert. The interaction semantics of
Compositional CompCert [23] are closer to our own model
but are limited to the language interface C. Likewise, the
simulations used in Compositional CompCert correspond
to our notion of forward simulation for a single convention
called structured injections, which we will write SI. Simula-
tion proofs are updated to follow this model, and the transi-
tivity of SI is established (SI · SI ≡ SI), so that passes can be
composed to obtain a simulation for the whole compiler.
Compositional CompCert also introduced a notion of se-

mantic linking similar to our horizontal composition (§3.2).
As in our case, semantic linking is shown to preserve simu-
lations (Thm. 3.4), however semantic linking is not related
to syntactic linking of assembly programs, and this was later
shown to present difficulties [22].

Another limitation of Compositional CompCert is the com-
plexity of the theory and the proof effort required. In par-
ticular, many assumptions naturally expressed as relational
invariants in the simulation relations of CompCert must be
either captured by SI or handled at the level of language
semantics, and many simulation proofs had to be largely
rewritten to adapt them to structured injections.

CompCertM. The most recent extension of CompCert is
CompCertM [22], which shares common themes and was de-
veloped concurrently with our work. While its correctness is
ultimately stated in terms of closed semantics, CompCertM
uses a notion of open semantics as an intermediate construc-
tion to enable compositional compilation and verification.

13

PLDI ’21, June 20–25, 2021, Virtual, Canada Jérémie Koenig and Zhong Shao

Table 5. Significant lines of code in CompCertO relative to
CompCert v3.6. See Table 3 for a per-pass breakdown of the
increase in size of pass correctness proofs, and overhead.py
in the development for the list of files included in each group.

Component SLOC

Semantic framework (§3) +566 (+10%)
Horizontal composition (§3.2) 698
Simulation convention algebra (§2.5) 1,209
CKLR theory and instances (§4) 2,756
Parametricity theorems (§4) 3,314
Invariant preservation proofs +604 (+8%)
Simulation convention refinements (§5) 1,837
Pass correctness proofs (Table 3) +1,136 (+3%)

Total 12,120

The open semantics used in CompCertM builds on inter-
action semantics by incorporating an assembly language
interface. The resulting model can be characterized roughly
as C ×A ↠ C ×A. Simulations are parametrized by Kripke
relations similar to CKLRs (§4). While simulations do not
directly compose, a new technique called refinement under
self-related context (RUSC) can nonetheless be used to de-
rive a contextual refinement theorem for the whole compiler
with minimal overhead.

This approach has many advantages. As in CompCertO,
CompCertM avoids much of the complexity of Composi-
tional CompCert when it comes to composing passes, and
the flexibility of simulations makes updating the correct-
ness proofs of passes much easier. CompCertM also charts
new ground, and goes beyond CompCertO in several direc-
tions. The RUSC relation used to state the final theorem is
shown to be adequate with respect to the trace semantics
of closed programs. CompCertM has improved support for
static variables and module-local state, and the verification
of the assembly runtime function utod is demonstrated.

In other aspects, CompCertM inherits limitations of previ-
ous approaches whereas CompCertO goes further. Because
the compiler correctness theorem is not itself expressed as a
simulation, it fails requirement #2 laid out in §1.3. Moreover,
the parametrization of simulations does not offer the same
flexibility as our notion of simulation convention. As a con-
sequence, a cascade of techniques (repaired interaction se-
mantics, enriched memory injections, the mixed simulations
of Neis et al. [19]) are deployed to enforce invariants which
find a natural relational expression under our approach.
An interesting question for future work will be to deter-

mine to what extent the techniques used by CompCertM and
CompCertO could be integrated to combine the strengths
of both developments. As a first step we present a detailed
comparison of the two developments in Appendix A [13].

CompCertO. To give a sense of the overall complexity
of CompCertO, we list in Table 5 the increase in significant
lines of code it introduces compared to CompCert v3.6. As
shown in Table 3, our methodology comes with a negligible
increase in the complexity of most simulation proofs. Al-
though SLOC is an imperfect measure, and a 1:1 comparison
between developments which prove different things is dif-
ficult, our numbers represent a drastic improvement over
Compositional CompCert, and compare favorably or are on
par with the corresponding sections of CompCertM.
Our use of the simulation conventions injp, CL, and LM

in particular underscores the benefits of our approach. The
corresponding passes are the root of much complexity in
Compositional CompCert, CompCertX and CompCertM. For
instance, to express the requirement on the areas protected
by injp, both Compositional CompCert and CompCertM
introduce general mechanisms for tracking ownership of
different regions of memory as part of an extended notion of
memory injection. By contrast, our framework is expressive
enough to capture a compositional version of the healthiness
conditions imposed in CompCert on external functions. Con-
sequently, very few changes were needed to update most
injection passes.

Likewise, the preservation of callee-save registers ensured
by the Allocation pass, and the subtle issues associated with
argument-passing in the Stacking pass have been the cause
of much pain in previous CompCert extensions, but they
were fairly straightforward to address in our framework.
This demonstrates the power of an explicit treatment of ab-
straction, made possible by our notions of language interface
and simulation convention.

7 Conclusion
The distinguishing feature of CompCertO is the expressivity
of our model, which allowed us to formulate a more precise
correctness theorem and offered flexibility in the formal-
ization and deployment of our composition techniques. Its
design builds on our experience with certified abstraction
layers [6, 8, 12], and aims to address some of the limitations
associated with their use of CompCertX.

Looking forward, we hope this work will not only provide
a compiler to be used in the verification of large-scale het-
erogeneous systems, but also represent a contribution to the
conceptual apparatus required for this challenging task.

Acknowledgments
We would like to thank Arthur Olivera Vale, Yuting Wang,
our shepherd Magnus Myreen, and anonymous referees for
helpful feedback that improved this paper significantly. We
also want to thank Yuyang Sang, Pierre Wilke, and Yu Zhang
for their help with the Coq development. This research is
based on work supported in part by NSF grants 1521523,
1763399, and 2019285.

14

CompCertO: Compiling Certified Open C Components PLDI ’21, June 20–25, 2021, Virtual, Canada

References
[1] Samson Abramsky. 2010. From CSP to Game Semantics. In Reflections

on the Work of C.A.R. Hoare. Springer, London, 33–45. https://doi.org/
10.1007/978-1-84882-912-1_2

[2] Andrew W Appel, Lennart Beringer, Adam Chlipala, Benjamin C
Pierce, Zhong Shao, Stephanie Weirich, and Steve Zdancewic. 2017.
Position paper: the science of deep specification. Phil. Trans. R. Soc. A
375, 2104 (2017), 20160331. https://doi.org/10.1098/rsta.2016.0331

[3] Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine
Demange, Cătălin Hriţcu, David Pichardie, Benjamin C Pierce, Randy
Pollack, and Andrew Tolmach. 2014. A verified information-flow
architecture. In Proceedings of the 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’14). ACM,
New York, NY, USA, 165–178. https://doi.org/10.1145/2535838.2535839

[4] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare logic for
certifying the FSCQ file system. In Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP ’15). ACM, New York, NY, USA,
18–37. https://doi.org/10.1145/2815400.2815402

[5] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman,
Adam Chlipala, and Arvind. 2017. Kami: A Platform for High-
Level Parametric Hardware Specification and Its Modular Verification.
Proc. ACM Program. Lang. 1, ICFP, Article 24 (Aug. 2017), 30 pages.
https://doi.org/10.1145/3110268

[6] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,
Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu
Guo. 2015. Deep Specifications and Certified Abstraction Layers. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’15). ACM, New York, NY,
USA, 595–608. https://doi.org/10.1145/2676726.2676975

[7] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vil-
helm Sjöberg, and David Costanzo. 2016. CertiKOS: An Extensible
Architecture for Building Certified Concurrent OS Kernels. In Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and
Implementation (OSDI’16). USENIX Association, Berkeley, CA, USA,
653–669. https://dl.acm.org/doi/10.5555/3026877.3026928

[8] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan NewmanWu, Jérémie
Koenig, Vilhelm Sjöberg, Hao Chen, David Costanzo, and Tahina Ra-
mananandro. 2018. Certified concurrent abstraction layers. In Proceed-
ings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2018). ACM, New York, NY, USA,
646–661. https://doi.org/10.1145/3192366.3192381

[9] Claudio Hermida, Uday S. Reddy, and Edmund P. Robinson. 2014.
Logical Relations and Parametricity - A Reynolds Programme for
Category Theory and Programming Languages. Electron. Notes Theor.
Comput. Sci. 303 (March 2014), 149–180. https://doi.org/10.1016/j.
entcs.2014.02.008

[10] Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and
Viktor Vafeiadis. 2016. Lightweight Verification of Separate Com-
pilation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (St. Petersburg,
FL, USA) (POPL’16). ACM, New York, NY, USA, 178–190. https:
//doi.org/10.1145/2837614.2837642

[11] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, et al. 2009. seL4: formal verification of
an OS kernel. In Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles (SOSP ’09). ACM, New York, NY, USA,
207–220. https://doi.org/10.1145/1629575.1629596

[12] Jérémie Koenig and Zhong Shao. 2020. Refinement-BasedGame Seman-
tics for Certified Abstraction Layers. In Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS ’20). ACM,
New York, NY, USA, 633–647. https://doi.org/10.1145/3373718.3394799

[13] Jérémie Koenig and Zhong Shao. 2021. CompCertO: Compiling Certi-
fied Open CComponents. Yale Univ. Technical Report YALEU/DCS/TR-
1556; https://flint.cs.yale.edu/publications/compcerto.html.

[14] Dexter Kozen. 1998. Typed Kleene algebra. Technical Report TR98-1669.
Cornell University. https://hdl.handle.net/1813/7323

[15] Ramana Kumar, Magnus Myreen, Michael Norrish, and Scott Owens.
2014. CakeML: A Verified Implementation of ML. In Proceedings of
the 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’14). ACM, New York, NY, USA, 179–
191. https://doi.org/10.1145/2578855.2535841

[16] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-
mun. ACM 52, 7 (July 2009), 107–115. https://doi.org/10.1145/1538788.
1538814

[17] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart.
2012. The CompCert Memory Model, Version 2. Research report RR-7987.
INRIA. http://hal.inria.fr/hal-00703441

[18] Xavier Leroy and Sandrine Blazy. 2008. Formal verification of a C-like
memory model and its uses for verifying program transformations. J.
Autom. Reason. 41, 1 (2008), 1–31.

[19] Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin,
Derek Dreyer, and Viktor Vafeiadis. 2015. Pilsner: A Compositionally
Verified Compiler for a Higher-order Imperative Language. In Proceed-
ings of the 20th ACM SIGPLAN International Conference on Functional
Programming (Vancouver, BC, Canada) (ICFP 2015). ACM, New York,
NY, USA, 166–178. https://doi.org/10.1145/2784731.2784764

[20] Daniel Patterson and Amal Ahmed. 2019. The Next 700 Compiler
Correctness Theorems (Functional Pearl). Proc. ACM Program. Lang. 3,
ICFP, Article 85 (July 2019), 29 pages. https://doi.org/10.1145/3341689

[21] Tahina Ramananandro, Zhong Shao, Shu-Chun Weng, Jérémie Koenig,
and Yuchen Fu. 2015. A Compositional Semantics for Verified Separate
Compilation and Linking. In Proceedings of the 2015 Conference on
Certified Programs and Proofs (Mumbai, India) (CPP ’15). ACM, New
York, NY, USA, 3–14. https://doi.org/10.1145/2676724.2693167

[22] Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon
Kang, and Chung-Kil Hur. 2019. CompCertM: CompCert with C-
Assembly Linking and Lightweight Modular Verification. Proc. ACM
Program. Lang. 4, POPL, Article 23 (Dec. 2019), 31 pages. https://doi.
org/10.1145/3371091

[23] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W.
Appel. 2015. Compositional CompCert. In Proceedings of the 42nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Mumbai, India) (POPL ’15). ACM, New York, NY, USA,
275–287. https://doi.org/10.1145/2676726.2676985

[24] Yuting Wang, Pierre Wilke, and Zhong Shao. 2019. An Abstract Stack
Based Approach to Verified Compositional Compilation to Machine
Code. Proc. ACM Program. Lang. 3, POPL, Article 62 (Jan. 2019),
30 pages. https://doi.org/10.1145/3290375

[25] Jianzhou Zhao, Santosh Nagarakatte, Milo MK Martin, and Steve
Zdancewic. 2012. Formalizing the LLVM intermediate represen-
tation for verified program transformations. In Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’12). ACM, New York, NY, USA, 427–440.
https://doi.org/10.1145/2103621.2103709

15

https://doi.org/10.1007/978-1-84882-912-1_2
https://doi.org/10.1007/978-1-84882-912-1_2
https://doi.org/10.1098/rsta.2016.0331
https://doi.org/10.1145/2535838.2535839
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/3110268
https://doi.org/10.1145/2676726.2676975
https://dl.acm.org/doi/10.5555/3026877.3026928
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1016/j.entcs.2014.02.008
https://doi.org/10.1016/j.entcs.2014.02.008
https://doi.org/10.1145/2837614.2837642
https://doi.org/10.1145/2837614.2837642
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3373718.3394799
https://flint.cs.yale.edu/publications/compcerto.html
https://hdl.handle.net/1813/7323
https://doi.org/10.1145/2578855.2535841
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
http://hal.inria.fr/hal-00703441
https://doi.org/10.1145/2784731.2784764
https://doi.org/10.1145/3341689
https://doi.org/10.1145/2676724.2693167
https://doi.org/10.1145/3371091
https://doi.org/10.1145/3371091
https://doi.org/10.1145/2676726.2676985
https://doi.org/10.1145/3290375
https://doi.org/10.1145/2103621.2103709

PLDI ’21, June 20–25, 2021, Virtual, Canada Jérémie Koenig and Zhong Shao

A Detailed Comparison with CompCertM
Since CompCertM is the state of the art when it comes to
compositional extensions of CompCert, we provide in this
appendix a discussion of the similarities and differences be-
tween CompCertM and CompCertO.

In some ways, CompCertM and CompCertO aim to solve
different problems. CompCertM is a complete platform for
the modular verification of composite C–assembly programs.
By contrast, the goal of CompCertO is only to provide a pre-
cise formulation of CompCert’s correctness theorem, with
the aim of integrating it into a more general framework. We
expect this framework to provide a verification infrastruc-
ture, in the same way certified abstraction layers provide a
verification infrastructure around CompCertX.

Nevertheless, there is some amount of overlap between
the techniques used in both projects, and we hope that the
detailed comparison below can provide a useful discussion
of the design space explored by both approaches.

A.1 Semantics in CompCertM
The CompCertM verification framework involves both the
original closed semantics of CompCert (1 ↠ W), and a
more compositional semantics modeled after the interaction
semantics of Compositional CompCert (C ↠ C).
To support hand-written assembly functions which do

not follow the C calling convention, some functions can
be specifically designated to be called using the assembly
language interface A instead of C. In particular, this feature
is used to demonstrate the verification of the builtin function
utod used by compiled programs, whereas its behavior was
previously axiomatized by CompCert. However, this facility
is not used for assembly functions invoked in the usual way
or compiled from C code, and does not otherwise have any
bearing on CompCertM’s approach to compiler correctness,
so we elide it in our discussion below.
CompCertM does not directly define horizontal compo-

sition of open semantics (Definition 3.2), but uses a similar
construction to give a closed semantics to a collection of open
components, modeling both the conventional invocation of
main and cross-component interactions:

∀𝑖 . 𝐿𝑖 : C ↠ C ⊢ [𝐿1 ⊕ · · · ⊕ 𝐿𝑛] : 1↠W

Adequacy of the compositional semantics AsmC (−) with
respect to the original closed semantics Asm[−] is then es-
tablished as the trace containment property

[AsmC (𝑝1) ⊕ · · · ⊕ AsmC (𝑝𝑛)] ⊇ Asm[𝑝1 + · · · + 𝑝𝑛] , (9)

similar in its role to Thm. 3.5.

A.2 Compiler Correctness
The correctness of each pass of CompCertM is established
using a notion of open simulation similar in principle to the

ones described in §3.3. These open simulations are parame-
terized by a notion of memory relation R which mirrors our
use of CKLRs, so that they correspond roughly to ≤RC↠RC .
The challenge is then to achieve horizontal and vertical

compositionality, while making it possible for different com-
piler passes across different compilation units to use different
memory relations. To this end, CompCertM eschews direct
composition of open simulations in favor of a novel contex-
tual technique dubbed refinement under self-related contexts
(RUSC). This technique works in the following way.

First, every possible form of the simulation relation is
shown to be adequate with respect to the closed semantics.
More precisely, the following property is established for
every memory relation R ∈ R used in CompCertM:

∀𝑖 . 𝐿𝑖 ≤RC↠RC 𝐿′
𝑖

[𝐿1 ⊕ · · · ⊕ 𝐿𝑛] ⊇ [𝐿′
1 ⊕ · · · ⊕ 𝐿′

𝑛]
(10)

Next, consider a particular R ∈ R and suppose that 𝐿𝑖 = 𝐿′
𝑖

for all but a single component 𝐿𝑘 . Then as long as the fixed
components are self-simulating under R, a simulation of the
form 𝐿𝑘 ≤RC↠RC 𝐿′

𝑘
can be used to replace 𝐿𝑘 by 𝐿′

𝑘
while

preserving the observable behavior of the whole program.
Iterating this strategy for the components𝑘 = 1, . . . , 𝑛, we are
free to use for each of the components any vertical succession
of passes, as long as the source and target components are
self-simulating under every possible R ∈ R.

The result is a very flexible approach which achieves hor-
izontal and vertical compositionality with only minimal re-
quirements. Every pass of CompCert can be easily extended
to an open simulation by using the corresponding memory
relation. CompCertM even demonstrates a memory relation
which allows reasoning about module-local state and the
introduction of a new Unreadglob optimization.

A.3 Symbol Tables
Compared with our work, CompCertM also has a more so-
phisticated handling of symbol tables.

CompCertO relies on a global symbol table which is used
as-is by every module. This prevents us from verifying the
Unusedglob pass of CompCert: when components access
locally undeclared symbols, these accesses may become valid
in in the context of a larger symbol table. These “rogue”
accesses may in turn be invalidated by compilation if the
component providing the symbols do not actually access or
export them, causing their removal by Unusedglob.

By contrast, in addition to the global symbol table which
results from linking, CompCertM assigns to each component
a more restricted local symbol table, which is used for all the
component’s accesses. This prevents “rogue” accesses from
occurring in the first place.

16

CompCertO: Compiling Certified Open C Components PLDI ’21, June 20–25, 2021, Virtual, Canada

A.4 Expressing the Calling Convention
On the other hand, the use of RUSC in CompCertM imposes
a series of design choices introducing their own complexity,
which CompCertO’s more direct approach can avoid.

Most immediately, RUSC imposes a homogeneous treat-
ment of the semantics of source and target programs. Like
that of Compositional CompCert, the compositional seman-
tics AsmC (−) of CompCertM is formulated in terms of the
C language interface, with the the C calling convention built
into its definition. Consequently, AsmC (−) is by design an
under-approximation: it must model as undefined any as-
sembly execution which does not realize a C-level behavior.
Unfortunately, the simple definition used in Compositional
CompCert actually fails in this regard: it can assign incorrect
C behaviors to assembly executions which violate the calling
convention, breaking property (9).
To an extent, this reflects the inherent complexity of the

kind of data abstraction performed by calling conventions;
specifically, the correspondence between C and assembly
behaviors involves dual nondeterminism. On one hand, the
environment is free to choose among many valid assembly
representations of a given C query. In particular, registers
which do not encode relevant information can be assigned
arbitrary values. On the other hand, the system can choose
among the valid assembly representations of the C reply:
caller-save registers may be left in unspecified states, and
the assembly execution is free to allocate additional or larger
memory blocks.
As a result, in the context of the transition systems and

forward simulations used in most of CompCert, the connec-
tion between the C interface and the mechanics of assem-
bly semantics is difficult to express. Nevertheless, this was
successfully achieved in CompCertM at the cost of some
complexity:

• For incoming calls, in order to simulate the way ar-
guments are passed across assembly functions, the
assembly semantics allocates a stack block and stores
the arguments there. It also assigns opaque handles to
the registers unconstrained by the C calling conven-
tion, in the form of pointers to newly allocated empty
memory blocks, preventing their use by the assembly
program. When the call returns, the semantics checks
that callee-save registers maintain their original values
and frees the simulated caller stack block.

• For outgoing calls, a complementary process occurs.
Permissions are cleared on the arguments region of
the stack, ensuring that any access by the context will
result in an undefined behavior. After the call returns,
permissions are restored and the new register state is
constructed by copying the original values of callee-
save register and setting caller-save registers to undef.

Similar constructions must be introduced in the semantics of
the intermediate languages LTL, Linear andMach, and the

proof of (9) must show that they give a sound account of the
execution of the linked assembly program.

A.5 Mixed Forward-Backward Simulations
The changes described in the previous section introduce
nondeterminism in the initial states of AsmC (−). In turn,
this propagates to those internal states of [𝐿1 ⊕ · · · ⊕ 𝐿𝑛]
which correspond to cross-component interactions. As a con-
sequence, the forward simulations used in most of CompCert
are no longer a satisfactory reasoning principle.

To address this issue, CompCertM uses a notion of mixed
forward-backward simulation [19]. These mixed simulations
allow a fine-grained use of forward simulations for determin-
istic states, but requires amore complex backward simulation
when nondeterministic states are encountered.

A.6 CompCertO’s Simplifications
This series of complications is avoided in CompCertO in
two ways. First, our semantics of assembly is formulated
exclusively in terms of the language interface A. As such,
it characterizes the behavior of assembly components more
precisely and independently of the C calling convention,
rendering the proof of Thm. 3.5 straightforward. Secondly,
by formulating the C calling convention as a simulation
convention, we are able to circumscribe its inherent nonde-
terminism and avoid the use of nondeterministic transition
systems and sophisticated simulation properties.
Another aspect where CompCertO is simpler concerns

our treatment of injection passes. In the context of RUSC,
the per-pass simulations used by CompCertM must use the
same memory relation for incoming and outgoing calls. This
means that the guarantees provided by injections proofs on
incoming calls must be strengthened to correspond to their
own requirements on outgoing calls. The approach used
in CompCertO is more flexible, allowing us to assign the
convention injp ↠ inj for the passes SimplLocals, Inlining
and Stacking and to avoid the corresponding modifications
of proofs needed in CompCertM.

B Invariants
Several passes of CompCert rely on the preservation of in-
variants by their source program: when the semantics of a
language preserves an invariant, the preservation proper-
ties can assist in proving forward simulations which use the
language as their source. This allows us to decompose the
simulation proof, and in the case of RTL the preservation
proofs can be reused for multiple passes.
In CompCert, this technique is deployed in an ad-hoc

manner: for each pass using an invariant, the simulation
relation is strengthened to assert that the invariant holds
on the source state, and the preservation properties for the
source language are used explicitly in the simulation proof to
maintain this invariant. In CompCertO, this becomes more

17

PLDI ’21, June 20–25, 2021, Virtual, Canada Jérémie Koenig and Zhong Shao

involved, because the simulation convention must be altered
to ensure that invariants are preserved by external calls.

On the other hand, our simulation infrastructure offers the
opportunity to capture and reason about invariants explicitly,
and to further decouple preservation and simulation proofs.
In this section, we give an overview of our treatment of
invariants. For details, see common/Invariant.v in the Coq
development.

B.1 Invariants and Language Interfaces
First, we define a sort of “invariant convention”, which de-
scribes how a given invariant impacts the questions and
answers of the language under consideration.

Definition B.1. An invariant for a language interface 𝐴 is a
tuple P = ⟨𝑊, P◦, P•⟩, where𝑊 is a set of worlds and P◦, P•
are families of predicates on 𝐴◦, 𝐴• indexed by𝑊 .

Example B.2. Typing constraints for the language interface
C can be expressed as the invariant:

wt :=
〈
sig, P◦wt, P

•
wt
〉

®𝑣 <: sg.args
sg ⊩ vf [sg] (®𝑣)@𝑚 ∈ P◦wt

𝑣 ′ <: sg.res
sg ⊩ 𝑣 ′@𝑚′ ∈ P•wt

The proposition ®𝑣 <: sg.args asserts that the types of the
arguments ®𝑣 match those specified by the signature sg. The
proposition 𝑣 ′ <: sg.res asserts a similar property for the
return value 𝑣 ′.

Invariants can be seen as a special case of simulation con-
vention which constrain the source and target questions and
answers to be equal. This can be formalized as follows.

Definition B.3 (Simulation conventions for invariants). A
𝑊 -indexed predicate 𝑃 on a set 𝑋 can be promoted to a
Kripke relation 𝑃 ∈ R𝑊 (𝑋,𝑋) defined by the rule:

𝑤 ⊩ 𝑥 ∈ 𝑃

𝑤 ⊩ 𝑥 𝑃 𝑥

Then an invariant P = ⟨𝑊, P◦, P•⟩ can be promoted to a
simulation convention: P̂ := ⟨𝑊, P̂◦, P̂•⟩.

B.2 Typing Invariants
The typing invariant described in Ex. B.2 is used by the
Selection and Allocation passes. We have updated their cor-
rectness proofs as well as the preservation proofs found in
Cminortyping.v and RTLtyping.v to use our framework.
The invariant wt satisfies one key property: when a sim-

ulation convention R consists of a sequence of CKLRs and
other invariants, the following property holds:

wt · R · wt ≡ R · wt
This means CompCertO’s overall simulation convention can
eliminate the typing invariant for the Selection pass, retain-
ing only that used for Allocation. In turn, this facilitates the
simplification of the convention for the passes from Clight
to Inlining.

B.3 Value Analysis
The passes Constprop, CSE and Deadcode use CompCert’s
value analysis framework. Abstract interpretation is per-
formed on their source program, and the resulting infor-
mation is used to carry out the optimizations. The correct-
ness proofs for these passes then rely on the invariant va,
which asserts that the concrete runtime states satisfy the
constraints encoded in the corresponding abstract states.
We have updated the value analysis framework and the

associated pass correctness proofs to fit the invariant infras-
tructure described in this section. Value analysis passes use
the convention va · ext ↠ va · ext. Unfortunately, because
it combines constraints with mixed variance, the invariant
va does not propagate in the same way as wt. However, as
discussed in §5.4, we can define CKLRs which embed va,
allowing it to propagate across language boundaries.

B.4 Simulations Modulo Invariants
The top row in Fig. 12 illustrates the preservation of invari-
ants by transition systems. In the context of a transition
system 𝐿1 : 𝐴1 → 𝐵1, we consider three invariants working
together:

• an invariant P𝐴 for the language interface 𝐴;
• an invariant P𝐵 for the language interface 𝐵;
• a𝑊𝐵-indexed predicate 𝑃 on the states of 𝐿1.

The preservation of ⟨P𝐴, P𝐵, 𝑃⟩ is then analogous to a unary
simulation property, where P𝐴 ↠ P𝐵 play the roles of the
simulation conventions, and 𝑃 plays the role of the simula-
tion relation. In fact, when 𝐿1 preserves these invariants, the
following property holds:

𝐿1 ≤P̂𝐴↠P̂𝐵 𝐿1

Once we have established that the source language pre-
serves the invariants, we wish to use this fact to help prove
the forward simulation for a given pass. To this end, we de-
fine a strengthened transition system 𝐿P1 : 𝐴1 ↠ 𝐵1, with the
property that 𝐿1 ≤P̂𝐴↠P̂𝐵 𝐿P1 . For a target transition system
𝐿2 : 𝐴2 ↠ 𝐵2, it then suffices to show that 𝐿P1 ≤R𝐴↠R𝐵 𝐿2 to
establish:

𝐿1 ≤P̂𝐴 ·R𝐴↠P̂𝐵 ·R𝐵 𝐿2 .

Simulations from 𝐿P1 are easier to prove, because 𝐿P1 provides
assumption that the invariants hold on all source questions,
answers and states. The simulation diagrams reduce to those
shown in the bottom row of Fig. 12. However, since they
are formulated in terms of Def. 3.3, the standard forward
simulation techniques defined by CompCert in Smallstep.v
remain available.

C Specialized Simulation Conventions
For the Alloc, Stacking and Asmgen passes, we the simula-
tion conventions CL, LM andMA to bridge the gap between
the language interfaces of the source and target programs.
These simulation conventions express the correspondence

18

CompCertO: Compiling Certified Open C Components PLDI ’21, June 20–25, 2021, Virtual, Canada

𝑞1 𝑠1 𝑠1 𝑠 ′1 𝑠1 𝑚1 𝑛1 𝑠 ′1 𝑠1 𝑟1

𝑞1 𝑠1 𝑠1 𝑠 ′1 𝑠1 𝑚1 𝑛1 𝑠 ′1 𝑠1 𝑟1

𝑞2 𝑠2 𝑠2
∗ 𝑠 ′2 𝑠2 𝑚2 𝑛2 𝑠 ′2 𝑠2 𝑟2

𝐼1 𝑡 𝑋1 𝑌
𝑠1
1 𝐹1

𝐼1 𝑡 𝑋1 𝑌
𝑠1
1 𝐹1

𝐼2 𝑡 𝑋2 𝑌
𝑠2
2

𝐹1

Figure 12. Simulation with invariants. Circles indicate questions, answers and states which satisfy the appropriate invariants.
When the transition system 𝐿1 preserves the invariants in the way shown in the top row, a simulation of 𝐿1 by 𝐿2 can
be established through the weakened diagrams shown in the bottom row. The resulting simulation uses the convention
P𝐴 · R𝐴 ↠ P𝐵 · R𝐵 , ensuring that the environment establishes and preserves the appropriate invariants on questions and
answers. The simulation relation 𝑃 · 𝑅 then ensures that the strengthened assumptions used by the weakened simulation
diagrams can be satisfied.

between the higher-level and lower-level representations of
function calls and returns.

We briefly discuss each one below. In the interest of clarity,
some technical details have been elided. We refer the reader
to the code for details, especially backend/Conventions.v,
backend/Mach.v, x86/Asm.v and driver/CallConv.v.

C.1 The Allocation Pass
The Allocation pass from RTL to LTL is the first pass to mod-
ify the interface of function calls. LTL uses abstract locations
which represent the stack slots and machine registers eventu-
ally used in the target assembly program. Abstract locations
contain arguments, temporaries and return values. The con-
tents are stored in a location map, passed across components
by the interface L alongside memory states. Up to RTL, ar-
guments are passed as standalone values, but in LTL they
are mapped to abstract locations.

To express the simulation convention used by Allocation,
we will use the following notations. For a signature sg and a
location map ls, we write args(sg, ls) to represent the argu-
ment values stored in ls. Likewise, retval(sg, ls) extracts the
contents of locations used to store the return value.

The simulation convention CL : C ⇔ L uses its world to
remember the signature associated with a call, and can then
be defined by:

CL :=
〈
signature, 𝑅◦

CL, 𝑅
•
CL

〉
®𝑣 = args(sg, ls)

sg ⊩ vf [sg] (®𝑣)@𝑚 𝑅◦
CL vf [sg] (ls)@𝑚

𝑣 ′ = retval(𝑠𝑔, 𝑙𝑠 ′)
𝑠𝑔 ⊩ 𝑣 ′@𝑚′ 𝑅•

CL 𝑙𝑠
′@𝑚′

To incorporate the typing invariant andmemory extension
used by Allocation, we can then use the convention:

wt · ext · CL↠ wt · ext · CL

𝑚1

𝑚2

®𝑣1

®𝑣2 ×

𝑚1

𝑚2

®𝑣1

®𝑣2 ✓

Figure 13. Separation of arguments in LM : L ⇔ M.

C.2 The Stacking Pass
The information which LTL and Linear store in abstract
stack locations is consolidated by the Stacking pass into in-
memory stack frames and machine registers. The simulation
proof uses a memory injection, and involves maintaining
separation properties ensuring that the source memory and
the regions of stack frames introduced by Stacking occupy
disjoint areas of the target memory.

With regards to the memory state, Stacking uses the CKLR
injp for outgoing calls. Since the new regions of stack frames
are outside the image of the source memory, and most of
them are local to function activations, the properties of injp
are largely sufficient (see also §4.6).

However, argument passing creates a particular challenge.
Most stack locations used by a given function activation are
allocated by the function itself, ensuring their protection by
injp. By contrast, in order to read incoming arguments, the
function accesses the caller’s stack frame. If the area used to
store arguments overlaps with the injected source memory
state, then the source program and external calls may alter
them in unexpected ways (Fig. 13).

In previous CompCert extensions, sophisticated techniques
were required to prevent this from happening. In our model,
we can simply encode the required separation condition in
the simulation convention LM : L ⇔ M. To achieve this,
LM requires the source memory state to be identical to the

19

PLDI ’21, June 20–25, 2021, Virtual, Canada Jérémie Koenig and Zhong Shao

target memory state, with the arguments region removed:

LM :=
〈
signature × regset ×mem × val, LM◦, LM•〉

ls = make_locset(rs,𝑚, sp) �̄� = free_args(sg,𝑚, sp)
(sg, rs,𝑚, sp) ⊩ vf [sg] (𝑙𝑠)@�̄� LM◦ vf (sp, ra, rs)@𝑚

The operation make_locset synthesizes a location map by
accessing the target-level machine registers and stack slots
corresponding to arbitrary abstract locations. The operation
free_args removes the argument region from memory.
For answers, the various data saved as (sg, rs,𝑚, sp) can

be used to encode various constraints:
rs′ ≡R ls′ rs′ ≡CS rs 𝑚′ = mix(sg, sp,𝑚, �̄�′)

(sg, rs,𝑚, sp) ⊩ ls′@�̄�′ LM• rs′@𝑚′

Here, ≡R ensures the ls′ and rs′ have identical contents for
machine registers, ≡CS enforces the preservation of callee-
save registers, and mix copies back the arguments region of
𝑚 into �̄�′ to obtain𝑚′.

Note that because of the complexity of the Stacking pass,
we use an intermediate simulation convention stacking[R]
to characterize the correctness proof, using R := injp for
outgoing calls and R := inj for incoming calls. This simula-
tion convention combines the CKLR and structural changes
together, making it easier to connect to the simulation rela-
tion used in the Stacking proof. To derive the more flexible
convention, we then use the following refinements:

injp · LM ⊑ stacking[injp] ↠ stacking[inj] ⊑ LM · inj

See driver/CallConv.v for details.

Remark C.1. Operations like free_args are used for similar
purposes in CompCertX and CompCertM, in different ways.

In CompCertX, the source and target program always share
the same initial memory state𝑚. To deal with the issues sur-
rounding argument passing, the correctness theorem evaluates
the source program on �̄� as well as𝑚, and checks that it doesn’t
go wrong. The required Stacking invariants can be established
from this side-condition, however this significantly increases
the size and complexity of the proof.

In CompCertM, a free_args operation is used prior to exter-
nal calls in the semantics ofMach and Asm: the arguments to
use for the external call are read from the arguments region,
then region is removed. After the call returns, the permissions
on the region are restored and the execution resumes. This fol-
lows the more general pattern in CompCertM where the calling
convention is modeled as part of the semantics of low-level
languages.

C.3 The Asmgen Pass
Asm introduces explicit registers for the program counter,
stack pointer and return address. The simulation convention
MA : M ⇔ A ensures that the appropriate components of
Mach-level queries are mapped to the new registers. In addi-
tion, we must ensure that the call returns the stack pointer

to its original value, and sets the program counter to the
return address specified by the caller. This is captured by:

MA :=
〈
val × val, MA◦, MA•〉

rs2 = rs1 ⊎ [sp := sp, ra := ra, pc := vf]
(sp, ra) ⊩ vf (sp, ra, rs1)@𝑚 MA◦ rs2@𝑚

rs′2 = rs′1 ⊎ [sp := sp, pc := ra]
(sp, ra) ⊩ rs′1@𝑚′ MA• rs′2@𝑚′

20

	Abstract
	1 Introduction
	1.1 Compositional Compiler Correctness
	1.2 Decomposing Heterogeneous Systems
	1.3 Contributions

	2 Main Ideas
	2.1 Game Semantics
	2.2 CompCertO
	2.3 Logical Relations
	2.4 Simulation Conventions
	2.5 Simulation Convention Algebra

	3 Operational Semantics
	3.1 Whole-Program Semantics in CompCert
	3.2 Open Semantics in CompCertO
	3.3 Open Simulations
	3.4 Compiler Correctness
	3.5 Towards Heterogeneous Verification

	4 Logical Relations for CompCert
	4.1 Memory Extensions
	4.2 Memory Injections
	4.3 Modal Kripke Relators
	4.4 CompCert Kripke Logical Relations
	4.5 External Calls in Injection Passes
	4.6 World Transitions and Compositionality

	5 Calling Convention
	5.1 Refinement of Simulation Conventions
	5.2 Composing CKLRs
	5.3 Kleene Algebra
	5.4 Dealing with Invariants

	6 Related Work and Evaluation
	7 Conclusion
	Acknowledgments
	References
	A Detailed Comparison with CompCertM
	A.1 Semantics in CompCertM
	A.2 Compiler Correctness
	A.3 Symbol Tables
	A.4 Expressing the Calling Convention
	A.5 Mixed Forward-Backward Simulations
	A.6 CompCertO's Simplifications

	B Invariants
	B.1 Invariants and Language Interfaces
	B.2 Typing Invariants
	B.3 Value Analysis
	B.4 Simulations Modulo Invariants

	C Specialized Simulation Conventions
	C.1 The Allocation Pass
	C.2 The Stacking Pass
	C.3 The Asmgen Pass

