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1. Introduction

The well known results of Belaga, Motzin, and Winograd [1,4,7]
demonstrate that a polynomial of degree n requires n/2 multipliééfions
(divisions) and n additions (subtractions) when the coefficients of the
polynomial are algebraically independent. The model of computation they
employ allows the use of arbitrary additional complex numbers at no cost.
The selection of these numbers - called "preconditioning" - can depend in
any way whatever on the original polynomial. 1In Eontrast to these results,
as pointed out by Paterson-Stockmeyer [5] and Strassen [6], most polynomials
that one wishes to evaluate have rational coefficienﬁs, not algebraically
independent ones. The known results on rational polynomial evaluation
are as follows:

l. Paterson-Stockmeyer have shown that there are rational polynomials
that require ~Yn nonscalar multiplications (divisions) when
complex preconditioning is allowed. When only integer precondi-
tioning is ailowed and no division they show that there are 0-1
polynomials (polynomials with 0,1 as coefficients) that require
~Yn nonscalar multiplications. (We use ~ £(n) to mean a function

g(n) such that clf(n) < g(n) < czf(n) for some c > 0.)

1’bz
2. Strassen has shown that specific rational polynoﬁials require ~ n
total operations when complex preconditioning is allowed.
3. Lipton-Dobkin [3] have shown that there are Ofl polynomials that
_require ~ n/log n operations when finite preconditioning is allowed

(that is, all scalars used must lie in some fixed finite set).

In summary, Strassen has shown that a specific polynomial is hard to



evaluate when complex preconditioning is allowed. For weaker models
(integer or finite preconditidning) Paterson-Stockmeyer and Lipton-
Dobkin have shown the éxistence of hard 0-1 polynomials.

As Strassen states [6], an interesting open question is the con-
struction of hard 0-1 polynomials when complex‘preconditioning is allowed.
In this direction it is interesting to note that the coefficients of
Strassen's grow at‘double exponential rate, so they grow very fast indeed.
Essent;ally Strassen's results are based on the fact that whilé his.
coefficients are algebraically dependent they do not satisfy any relation
with "small" degree of height. Clearly this method cannot be directly
applied to any 0-1 polynomial: The coefficients of a 0-1 polynomial
satisfy a great number of very simple relations.

The main results of this paper are é‘step in the direction of
answering Sftassen's opeﬁ question. We restrict ourselves to proving the
existence of hard 0-1 polynomials. Our main résults"are Theorems 5 and 7.
Theorem 5 shows that there are 0~1 polynomialé,that require ~ n1/4/log n
nonscalar multiplications/divisions when arbitrary complex preconditioning
is allowed. Theorem 7 addresses a related question:

Can one find a 0-1 power series

(-]
z aix1 such that each initial
i=0
n i
segment I aix is a hard 0-1 polynomial?
i=0

The motivation for- this question is twofold. First, many interesting
polynomials that arise naturally are the initial segments of some power

series. Second, could it be that there are hard 0-1 polynomials of every



degree while all power series are easy? Theorems 7, 8, 9 show that this
cannot be so. More exactly they show that:
1. There is a 0-1 power series whose initial segments require

n1/4/10g n nonscalar multiplications/divisions when arbitrary

complex preconditioning is allowed.
2. There is a 0-1 power series whose initial segments require
1/2 i .  a . X cos s .
~n nonscalar multiplications when integer preconditioning is
allowed.
3. There is a 0-1 power series whose initial segments require
~ n/log n total operations when finite preconditioning is allowed.
It is interesting to note that these results on power series suggest

a number of questions about the interplay between polynomial evaluation

and language theory. These are discussed further in Section 3.

2, . Hard 0-1 Polynomials

Our model of computation is the standard one based on "straightline
programs." Suppose that p(x) is a polynomial with complex coefficients.
Thep Sl""'sm is a computation of p(x) over A where A < ¢ (¢ = the set
of complex numbers) provided for each step Si either

1. S. € au{x} or

i
2. s; = Sj ° s, where j,k<i and © ¢ {+,-,%x,%}. Aand
3. s =p.

The set A determines what type of preconditioning is allowed. The measure
of complexity used is either the total number of operations or the operations

of some specific type. A step Si = Sj ° Sk is a nonscalar * operation



are not in A, or o is + and S, is not

k

provided o is X and both Sj and Sk

in A.
The proof of the existence of hard 0-1.polynomials is essentially
" two steps. |
l. First, we show that "small" polynomials o 0-1 polynomials. That
is, the evaluation of polynomials with small coefficients (in a
sense to be made precise) can be reduced to the evaluation of not
too many (in a sense to be made precise) 0-1 polynomials. Thus
a acts here as an analogy to reducibility in the sense of auto-
mata theory.
2. Second, we show that there are hard small polynomials.
Of course, Theorem 5 is tﬁen a consequence of (1) and (2).

The details of these two steps are now presented.

Definition: Say (al,...,an) is a generalized 0-1 vector provided for some

x all a, lie in {0,x}.

Definition: Suppose that a = (al,...,an) is a vector of natural numbers.

Then define d(a) to be

.f.
min {kEVl,...,Vk generalized 0-1 vectors with Vl+...+Vk = a}

Lemma 1: The function d(a) satisfies the following:

1. d(al,...,an) = d(bl,...,bn) if a ,...,an is a permutation of b ,...,bn.

1
2. dla;s...,a) < dlb,...,b ) if {a;,...0a } c {bys...0b }.

1

3. d(al+b1,...,an+bn) S d(agseeara) + dlbseeesb ).

We use componentwise addition.




4. d(al,...,an) < d(1,2,3,...,t) where t = max (al,...,an).
5. d(al,...,an) < log*n+2 provided ajrecesa is an arithmetic progression.

6. d(al,...,an) < logt+2 where t = max (al;...,an).

Proof:

1. If m is a permutation of {1,...,n}, then define
n(al,...,an) = (an(l)""'an(n))' Now let us assume that

1
ﬂ(al,...,an) = (bl,...,bn)nand also that V +..5+Vk = (a ,...,an) for

1
some generalized 0-1 vectors. Then since 7 is additive,
w(vl)+ +w(vk) = 7( ) = (b b ).
L) - al,...,an — 1,..0' n .
Therefore, it follows that d(al,...,an) 2 d(bl,...,bn); the same )
argument with (al,...,an) and (bl,...,bn) interchanged shows that
. d(al,...,an) < d(bl,...,bn). Thus, Q(al,...,an) = d(bl""'bn)'
2.  We need only prove that
dajs..era) < d(al,...,an,b)
in order to prove (2): it follows by (1) and induction on n-m. Therefore,

suppose that V1+...+Vk = d(a ,...,an,b) for some generalized 0-1 vectors.

1
Then clearly
1
W +...+Wk = (al,...,an)
where W is the projection of v’ into the first n coo:dinqtéé. Hence,

d(al,...,an) < d(al""'an’b)f

k

3. Suppose that (al,..;,an) = Vl+...+V and (Bl,...,bn) = Wl+...+wm.

Then
,...~,an+bn) = vl+...+vk + W1+..'.+wm;

(al+bl

T All logarithms are to base 2.



hence, d(al’+b1""'an+bn) < d(al,...,an) + d(bl,...,bn).
Clearly {al,...,an} [ {l(...,t} where t = max (a,,...,a i hence,
d(al,...,an) < d(1,...,t) by (2).

Define f(n) to be the maximum value of d(al,...,an) provided al,...,an

is an arithmetic progression. We first assume that n is a power of 2.
Let ai = bi +c¢ for i=1l,...,n. Then by (1),

)

d(a ,..;,an) < d(al,a seeesd Jeeogd

1 3 2m-1'32"34

where n = 2m. Moreover, by (3),

2m

<
d(al,...,an) < d(al,a3,...,a2m_l,al,a3,...,a2m_l)
+ d(OIO’b .Q,O,C'C'o ..,C)
R i S —

m copies m copies

since al+c = a2,...,a2m_1+c =a, . By (2),
d(al,a3,...,azm_l,al,a3,...,a2m_l) = d(al,a3,...,a2mrl).
e < cos .
Therefore, d(al, ,an) d(al,a3, 'aZm-l) + 1. Clearly

ayragreeera, o is an arithmetic progression of length n/2; hence,
£(n) < £ (3) + 1.
Since £(1) = 1, it follows that f(n) < log n+l provided n is a power

of 2. Next suppose that n is not a power of 2. Now f(k) is clearly

"a nondecreasing function of k: this follows by (2) and the fact that

any arithmetic progression of lehgth k can be extended to one of
length k+l. Thus f(n) < f(n') where n' is the least power of 2 2 n;
hence, f(n) < £(2n) < log n+2.

Clearly (6) is an immediate consequence of (4) and (5). ]

Let COl(n) be the number of nonscalar * operations required to




evaluate any 0-1 polynomial of degree < n over C.

Lemma 2: For any natural numbers ajree-ra it follows that
COl(n) . d(ao,...,an) is an upper bound on the number of nonscalar *

operations needed to evaluate the polynomial

' i
p(n) = a;x

I e B =]

i=0

over C.

-Proof: Let d(ao,...,an) = m. Then there are generalized 0-1 vectors

1
Vl,...,Vm such that Vv +...+Vm = (ao,...,an). Let

V% xJ

Pi (X) = 0 J e

R

J

where V; = the jth component of the vector v'. Then

.

m m n .
I P(x)= 3 I V.x
i=1 i=1 j=0
n . X
= I xJ z V%
3=0 i=1 J
n .
= I x a..
j=0  J
m .
Therefore, p(x) = I Pi(x). The number of nonscalar * operations
i=1

sufficient to evaluate p(x) is thus bounded by the total number of nonscalar
* operations required to evaluate all the Pi(x) polynomials. Each Pi(x)
is equal to bg(x) for some scalar b and some 0-1 polynomial q(x) of degree

< n; hence, each Pi(x) can be evaluated in COl(n) nonscalar * operations.

o e



Finally, the upper bound on the number of nonscalar * operations for
p(x) is

COl(n) . d(ao,...,an). 0

Lemma 3: There is a nontrivial polynomial H(al,...,an) of degree < nl8

(for n > n0 where no is some constant) such that if H(al,...,an) 0,

then

. 1/4 . . . Lyl
requires at least n / nonscalar * operations when arbitrary precondition-

ing is allowed.

Proof: Following Paterson-Stockmeyer [5], we first observe that if p(x)

1/4

can be computed with < n nonscalar * operations, then p(x) can be

computed by the scheme P for some mij,m!. in ¢:

1]
P: P_l = 1.

P = .

o ¥ :
For r—l,...,l? 1/4J.

n
r-1 r-1

P = z mr iPi or z m; iPi

To\i=1 ¥ i=-1 '

where or is x if r is odd and + if r is even. Finally,

-]
n
z mo

i=-1

.P..

p(X) = 11

The total number of operations - scalar and nonscalar - is

| L2“1/4J
2 1/2

3+ X (4r+5) < 4n
r=1




for n > no where no is some constant.

We now proceed to apply the method of Strassen's Theorem 2.5 to the
scheme P with the parameters mij'mij considered as indeterminates. Viewed

this way, P computes (by Strassen's Lemma 2.4)

w -
q(m) + I q; (m) -
i=1

for some polynomials+ qy where m is the vector of all the parameters mij'

mij. In the notation of Strassen

1/2

s < 4n1/2

d

ne.

For n > nl where nl is some constant.,

o -a/m -
gg m-2 _ n18(n 4vn -2)
Y ’(4/5 +1) n
- ds(m+1) qq
Now let H(al,...,an) be the nontrivial polynomial of degree < g that

exists by Strassen's theorem.TT Now suppose that al,...,a.n are natural

numbers such that H(al,...,an) # 0 and yet

g(m) need not be a polynomial, but are rational.

Tt The field k of Strassen's theorem is the éomplex numbers extended

by the indeterminates m,. and m',.
1] 1]
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n i
p(x) = I a.,x
i=1 *

1/4

can be done in < n nonscalar * operations; we will reach a contra-
diction. For some complex parameters t the scheme P computes p(x); hence,
P
p(x) = I q,(t)x" + g(t)
i=1 *

Thus H(al,...,an) = H(ql(t),...,qn(t)). But
4 H(ql(t)l~--lqn(t)) =0

by the method of Strassen's theorem; hence, H(al,...,an) = 0. This is

a contradiction. 0

Lemma 4: Suppose that q(xl,...,xk) is a polynomial of degree < g such
ces = < < g. ceoe
that q(xl, ,xk) 0 for all natural numbers O x, £ g Then q(xl, ,xk)

is identically O.

Proof: We will use induction on k. When k=1 thé result is an immediate
consequence of the fact that a polynomial of degree < g can have at most

g zeroes without being identically 0. Now suppose that k>l. Then

9

= i
q(xl,...,xk) - iio Pi(XZ""'xk)x]_

for some polynomials P ;,..,Pg of degree < g. Assume that q(xl,...,xk)

0

is not identically O. Then there is a Pd(xz,...,xk) that is not identically
0. Then

<X_.<g ... <x < i .o z 0;

30 X, g a0 X =<9 with Pd(xz, ,xk) 0;

. . . . s . ' '
for otherwise by induction Pd(xz,...,xk) is identically 0. Let XKyreeerXp

be such natural numbers. Then q(x,xé,...,xﬁ) is a polynomial in x of degree
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< g with g+1 zeroes; hence q(x,xé,...,xi) is identically 0. This contra-

. [ 1]
dicts the fact that Pd(xz,...,xk) # 0. 0

s

We are finally ready to prove our main result.

1/

Theorem 5: There are 0-1 polynomials that require ~ n 4/log n nonscalar

* operations when arbitrary preconditioning is allowed.

Proof: Let H(al,...,an) be as in Lemma 3. Let g = nl8, the degree of H.

Then by Lemma 4 there is a (al,...,an) such that-H(al,...,an) # 0 and

0 < ai < g for i=1l,...,n. By Lemma 3, with a. =0

o
n i
z aix
i=0
. 1/4 . : '
requires n nonscalar * operations. By Lemma 2,
1/4
C01(n) d(ao,...,an) 2 n .
Therefore, by Lemma 1 part (6),
- Cop (M) 2 a4 (18 1og n+2). O

3. Hard 0-1 Power Series

In this section we study the complexity of the initial segments to

power series whose coefficients are 0-1.

\

Definition: Let DA(a) be the number of nonscalar * operations required
to evaluate

k
p(x) = ao+...+akx
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over A where a is a 0-1 string of length k+l. Also we will say that

p(x) is the polynomial that corresponds to a.

Lemma 6: For any 0-1 strings o and B,T

D, (aB) + D, (a) + 2 log la] +1 =2 D, (B).

o el |8]-1
Proof: Let g(x) = z aix and r(x)

i=0 i=6

I
™M
™
o
-]
L)

Then

p(x) = g(x) + xlalr(x) is the bolynomial that corresponds to aB. Now in
order to evaluate r(x), the polynomial that corresponds to B, proceed as
follows:

1. Compute p(x).

2. Compute g(x).

3. Form g(x) = p(x) - q(x).

4. Compute xlal.

5. Form h(x) = g(x)/xla'.
The above computatién clearly takes at most

DA(QB) + DA(a) + 2 1ogrlal + 2

PO

nonscalar * operations. Now é(x) = xlalr(x), and so h(x) = r(x). O

©

Suppose that I aixl is a power series. Then the polynomials
i=0 ' '

are the initial segments of the given power series. The next theorem

T Ial = length of a and af is the concatenation of a and B.
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shows that there are power series with 0-1 coefficients such that their

initial segments are hard infinitely often.

Theorem 7: There is a 0-1 power series whose initial segments of length

1/

n infinitely often require ~ n 4/log n nonscalar * operations when

arbitrafy complex preconditioning is allowed.

Proof: Let pk(x) be a 0-1 poiynomial of degree 2k that requires
€ Zk/4
k
nonscalar * operations where € > 0; it exists of course by Theorem 5. Then

let ak be the 0-lbstring of the coefficients of pk(x). Also let

12
0 =00 .0

be the infinite 0-1 string formed by concatenating together all the at's.

By Lemma 6 for all k,

D (al...ak) + D (al... k—l) + 2 log al...ak-l[ + 22D (ak).
A A A
. k/4
by the definition of at, DA(ak) > f——i——- . Thus,
k/4
1 k-1 1 k g' 2
cee e 2
D, (a «” ") + D, (a a’) M
for large k and some €' > O since lal...a _ll < 2%l Thus either DA(al...ak)

or DA(al...ak_l) exceeds
et 2k/4
2k :

In either case we have shown that there is an initial segment of length

between 2k—l and 2k+2 which requires 2 m nonscalar * operations. Since

e
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k was arbitrary the theorem is proved. gd
The same type of reasoning also yields:

Theorem 8: There is a 0-1 power series whose initial segments of length
n infinitely often require ~ nl/z nonscalar * operations when only integer

preconditioning is allowed.

Theorem 9: There is a 0-1 power series whose initial segments of length
n infinitely often require ~ n/log n total operations when finite precon-

ditioning is allowed.

It is interesting to note in passing a connection between these
results and language theory. Let o be the 0-1 infinite sequence that is
constructed in Theorem 7. Also let

. +
L= {ao,...,ai i = 0}.

By construction L is recursive. (Actually one must choose ai to be
lexicographically smallest 0-1 string of length 2k such that the
corresponding polynomial requires the specified number of operations.)

The exact complexity of L is of some interest since it

‘ hopéfully would help one understand what makes a 0-1 polynomial hard. 1In

this direction we have
Theorem 10: L cannot be context-free (Book-Lipton [2]).

Proof: Suppose that L was context free. Then a "pumping lemma" argument

¥ o is the ith symbol in a.
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shows that for some strings a and b with b nonempty,
abi € L for all i =2 O.

Now select ény X € L with le 2 |a|. Then x must be the prefix of abi
for some i: this follows since there is exactly one string of each
iength in L.

Thus o is an ultimately periodic string. We will now show that the
polynomial that correséonds to any initial segment is easy to evaluate.
In order to prove this it is sufficient to show that for any string B the

polynomial that corresponds to g" (B concatenated n times) is easy to

evaluate. Now this polynomial is equal to

n k-1 .
5 D Bika+.1
m=0 i=0
which is in turn equal to
n k-1 s
X z i"l .
m=0 i=0

This polynomial can be evaluated in log n + O(k) total steps; hence, L

cannot be context free. O
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