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Abstract

In the present paper difference methods for Cauchy problem of p-order
differential equation in Banach space are investigated. Problems about Lax's
equivalence theorem, stability and convergence are discussed. Emphases will

be on finding some algebraic surveys of stability.
1.INTRODUCTION

In the present paper stability and convergence of the initial-value
problems of difference equations approximating p—order differential equations
are investigated. After suggesting the conception of p-order stability, an
equivalence theorem which is similar to Lax’s theorem in [1] is proven.
Finally we spent most of the investigation to find some interesting surveys of
stability. Many authors worked on these problems before, but for p > 1 only a

few results were given [2]. People might think that a high order differential
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equation ( system ) could be reduced to first order system with more unknowns,
so it seems unnecessary to consider high order problems. But as a matter of
fact it is not always successful to do that, and in many cases one prefer the
original to any motivated system. So it is worthy to investigate the
stability of the high order problems. Considering these facts we ask: Are
the concepts of stability and convergence in p > 1 the same as in p=1? We
shall point out the diference between variety p by introducing the conception
of 'p-order stability ' as the generalization of the ordinary one. As a

result we shall state some algebraic surveys in practical uses.

We consider initial value problems of p—order differential equation in
Banach space B as follows:
AODpu(t)+A DP u(t)+. . +A u(t)=0, 0<t<T, (1.1)
t 17t P

(u(o),ntu<o),...,of’1u(o>)=(u (1.2)

0’u1,.0-np_1) 2

where AO’ Al""’ Ap are linear operators (might be unbounded), their common

domain of definition D(A) is dense in B; Bys Ugseeesl

b1 € B; u(t) is the

single-parameter 'curve' , Diu(t), r=1,2,...,p are the notations of time
derivative [7], as follows:

r-k .k

r 4 T _ =
Dtu(t)— glt‘i‘;(o”“ ) 2 (-1) Cr u(t+kdt) r=1,2,...p.

k -°
where Cr=r!/[k!(r-k)!].

Definition 1. The classical solution of problem (1,1)(1.2) is such a
single— parameter curve u(t) that has first p—order differential derivatives

belonging to D(A) and satisfying (1.1), and D:u(t)-—>ur, r=0,1,...,p-1 as

t-->0. Denote the resolvent operator as E°(t), then u(t)=E°(t)(uo,u1,...,up_l)



) o o o _ . .
-EouO+E1u1+...+Ep_1up_1, Er(t). r=0,1,...,p~1 are linear operators in B.

Definition 2. If (1) D(A) is demse in B; (2) lEo(t)|= max {IE:(t)‘] <K,

then problem (1.1),(1.2) is well posed.

Now we suppose that the difference approximation of (1.1),(1.2) is as
follows:
c w9 o™ Tl scw¥ e 0l (1.3)
q-1 1 0
g2p, 0< (n-qAt T,

where At is the length of t-step, Ci=Ci(At)’ i=0,1,...,q are known beforehand.

For ©brevity we introduce the auxiliary Banach space B. As an element of

B u is a g-component vector:

C lul
w= vl , u,V,... € B
l.1
l.1
And denote
279 | lu(a=g=1at) |
- o795 | _ lu(n-g-2At) |
v = } : , u(nAt)= | . } (1.4)
|u® | lu(nAt) |

The norm of u might be defined as |E|={|u|2+|v|2+...}1/2 or
max{lul,lvl,...},
or any norm such that the following inequality of equivalence holds:
mlul ¢ max{lul,lvl,...} ¢ Mlul,

where M,m are constants., Initial value can be determined through a linear




transfornation:
=-0_,.p-15 ,
a "‘At S(At)(uo’ul’...’up-l) .
For example: .
|1 0 o ... o |
_ RE at At ath |
S(At)= 1/(AtP ): " 2! P | (1.5)
svsecc e - P"l
17777 '@Det [e-Datl’ [t |
1! 2! (p-01!

2. BASIC DEFINITIONS AND LAX'S THEOREM

We suppose that the scheme (1.3) is through direct substitution of the

derivatives by some differences.

Definition 1. Let u(t) be any single-parameter curve from D(A), then we
call
y(t,At)=[Cqu(t+th)—cq_lu(t+E:IAt)—cou(t)]/Atp—
- p
[AODtn(t)+...+Apu(t)] (2.1)

the approximate error of the difference equation (1.3) for u(t).

Definition 2. Let u(t) be any single-parameter curve from D(A), then the
approximate error of initial value is defined as follows:

2(at)=(a%a(0)) /atPL, (2.2)

Definition 3. For a set of single-parameter curve U={u(t) ¢ D(A)},
D(A)=B, which contains the classical solutions, ly(t,At)|-=>0 uniformly holds
for all t ¢ [0,T] as At-—>0+; operator Cq has uniformly bounded inverse such

that IC;I(At)l { K=const, then call the difference approximation (1.3)



consistent.

+
Definition 4, As At——>0 for any classical solution u(t) € U and its
corresponding difference solution u® that lu®-u(t)|-->0 can be derived from

In(At)|-->0, then call the difference equation (1.3) convergent.

If we denote

-1 -1 -1
Ic “c c-cC teeses C°C
| ¢ -1 "q g2 q O I
_ | I I
c(at)= | 1 | (2.3)
| . |
| . |
| 1|
then equation (1.3) will be
2ot A, (2.4)

The convergence condition is equivalent to
Ieat)® 3%-5(t) 1-->0, if In(At)[-=>0, nAt-->t as At—>0.

Definition 5. For operator (2.3) there exists a positive comstant T > 0 such

0 CAt <=

. r-1 n
that operator family {At® "C(At) |j (At < T

} be uniformly bounded, then call

difference equation (1.3) p—order stable.

While p=1 definition 5 is the same as in [1]. Now we turn to following

equivalence theorem.

Theorem 1. To any difference approximation of the well-posed problem

(1.1) and (1.2) stability and convergence are equivalent.
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Proof. C——>S: The only thing needs to be verified is that for every ueB
we have |Atp_16(At)nE| { K(u) <( += when 0C At < T, 0 { nAt { T, then from
resonance theorem of operator p—order stability could be derived. If not,
then there exists a sequence of {Ajt}:, Ajt——>0 as j——>«, such that
lAtp—la(Ajt)nl-—)w where 0 < Ajt (T, 0¢ njAjt £ T. Suppose njAjt—->t e [0,T]
as j——>», and denote ;j=Ajtp—13/lAjtp—IC(Ajt)nj§|1/2. ' Now we have
|Ej—0|=o([Ajtp_1]1/2), where @ is the zero element in B. According to
convergence theorem the solutions C(Ajt)nj ;j of the problem (1.1),(1.2)
should tend to  the trivial solution 0, but on the contrary

IC(Ajt)nj;j|=|Ajtp—1C(Ajt)nj;|1/2——>+w. So we have completed the first part

of this theorem.

S——>»C: Let u(t) & U be a classical solution and U” be a difference
solution, then the error of the approximate solution e = u(nAt)- u'  satsfies

the following equation:

o tat) At PT(t,AL) ,

20 = atP A (2.5)
where t(t,At) = (C;lr(t,At),O,...,O) ¢ B. Using the recurrence relation
above, we obtain

-1
En=At2 AP o)™ o (rae,at)+

-° p-1 n-
+AtP c(at) "n(At)
and

el ¢ TK maxlr(kAt,At) |+KIn(At) <

< TKMIC;1| max |r(kAt,At)] +Kln(At)[-->0 as At—->0,




Corollary. If the difference equation (1.3) approximating the p—order
differential equation is p+a-order stable (@)0) and the errors of the
approximation satisfy

lr(xAt,At) |, Inat) | ¢ Kp(at)at®
p(At)—=>0 as At—->0,

then we obtain the error estimate:
le®l ¢ K p(At).

Theorem 2. For weakly nonlinear equations p—order stability of El(At)
implies convergence, if the following conditions are satisfied:

(1)the right part F(t,u) of (1.1) has uniformly bounded Frechet

derivative F;(t,u);

(2)the difference operator in (2.4) C(At)u = EI(A)u + AtpEZ(At,u),

and EZ(At,u) has uniformly bounded Frechet derivative Ein(At,u).

The proof of theorem 2 is easy if ome replaces C(At) in (2.5) by El(At),
r(kAt,At) by C)(At,u(kAt)) - Ez(At,uk) - r(kAt,At) and uses
IT, (at, u(kat))-C, (at,u") | < Kle¥],

then a estimation can be deduced:

-1 -1
le%] ¢ At K 2 ¥l + K¢ § Ir(kAt,At) [+In(At) |}
=0 =0

-1
or 1e®] ¢ K cKoAt 2 Ir(kAt,At) [+Iq(At) |},
=0

From this theorem 2 is obvious.

Corollary. If E(At)=El(At)+Atp62(At), and Ez(At) is bounded, then p-order



stability of El(At) implies that of C(At).
3. CAUCHY PROBLEMS OF THE LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

Consider the high order differential equation with constant coefficients

as follows:

P p-1
2 12— &2 — 4. 4P Julx,t)=0 (3.1)
at? at? P :
3 L
(1’-—’...]-——:1)u(x’0) = (00’01’0..,0 _1) (3.2)
at at?P P
where Pi(%;)=Pi(g§1’%§2""’5;d)’ i=0,1,...,p are the polynomials of its
a_ 9 3 s .
arguments . ,3-,s.0e0374% u(x,t), 00,01,...,0p_1 are the [-dimensional
periodic function vectors with period of unity. We use the following

difference equation:
2 Bg(at) oY (x+BAx) =
1 . ati
= 3— Z Bg(At) u™" I (x+Ax) (3.3)
=0 .
. s . - j
where P is a d-dimensional vector(Bl,Bz,...,ﬂd). BAx (Blel....,BdAxd), BB,
j=0,1,...q are lrorder square matrices, Let

reeesk), (3.4)

2

Hx) = 2 vn(k)ezn(k’X)i,k=(k1,k .

2= D), .0 @),
a(x) = 2 e RN LA T (3.5)
k=0,41,12, ...
Using these Fourier expressions to (3.3) we easily obtain
H, (At,kAn) V1 (0) = By (At, ka0) VR (K) (3.6)

where vR(K)=(v2T T 1(x),...,v2(x)) ",
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lBq_, Hq ,... H_|
_ | 1 1 2 OI
HO(At,kAX)=I I I:
| I
I |

2n(k,Ax)i

and Hj=Hj(At,kAx) = Z Bg(At)e j=0,1,...,q. So we have

T (k) =G(At, KAX) TR (k)
HqIHq_1 ...Hq1H0 |
I 0 |
_ 0 I I
G(At,kAx)= . | .
|
|

I 0

The consistency conditions of the difference equation (3.3) are
Atr T
|-;T{q Hq(At,kAx)-

1
3_ jH_ (At,kAx)}-P_(27ki) [-=>0,
o :

r=0,1,...,Dp,

T
At T
| s7la Hq(At,kAx)—
1
erj(At.kAx)ll-—>O,

]
(=}

J .
r >p ,for fixed k as At—>0.

(3.7)

(3.8)

The p-order stability condition of the difference equation (3.3) becomes the

uniformly boundedness of the following matrix family:

nIO CAt <= }

p-15
{At® “G(At,kAx) OCaAt<T, k 1 °

(3.9)




Simply denote 6=kAx=(k1Ax1,k2Ax2,...,dexd)=(91,92,...,Od) because of the
arbitrary Ax we can take all Oi i=1,2,...,d as continuous parameters in

interval (0,1). So instead of (3.9) we turn to investigate matrix family:

p-1- A n;0 ¢ At < =
{At?”"G(At, ) IosnAtSI.e }. (3.10)
We often pay more attention on matrix EK0,0) and its family
(at? 160,020 ¢ At < Ty (3.11)

0<{nAt(T,6 °°

The uniformly boundedness of these matrices will be investigated in the
remaining part of this paper. Suppose G(At,0) be Lipsichtz continuous on

0<{At<{t and ogeig, i=1,2,...d.

Corollary. If E(At,kAx)=§1(At,9)+Atp§2(At,9), and éz(At,e) is uniformly

bounded , then the uniformly boundedness of matrix family:

0 < At ( t}
0<{nAt<T,H8

implies the uniformly boundedness of matrix family (3.10).

{Atp"l'é1 (At, o)1

Theorem (Necessary Condition).If matrix family (3,11) is uniformly
bounded, then all the eigenvalues of matrix G(0,0) must satisfy following two
conditions:

(1)Ixj(o.e)lg1, for all j;
(2)to those ij(0,9)|=1 the order of its subblock in the

Jordan Canonical Form should not exceed p.
4 .BASIC LEMMAS

In this section we collect the general properties about multi-parameter
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matrices with all proofs omitted, including the properties about eigenvalues.

Let G(p)=G(p1.p2,...,ps) be s—parameter matrix with continuous elements.

Lemma 1. Let G(p) be continuous , then its eigenvalues kl(p), 12 (w)sene

are the continuous functions of p.

Lemma 2. Let G(p) be continuous , for H=H, Aj(po) and si be the
eigenvalue and its multiplicity j=1,2,...,r, and lli(po)—hj(po)|28>0 when i#j,

i,j=1,2,...,r then there exists an arbitrary small ball 81 with the centre Ko

and a non-degenerate matrix S(p) such that 1) IS(p)l, |S-1(p)| ¢ K-const; 2)

1

S(p)G(p)S “(p)=

In.. () *
Gl(l-l)':} 11 A, (p) v
I

|
.. I
|

where kij(p)-—>ki(p0); J=1,2,...,Si; i=1,2,...,r as p-)uo, and the elements

denoted as ¥ are uniformly bounded.

Lemma 3. If multi-parameter matrix

A (i
e " 'qzxq

and 1) all elements g are uniformly bounded; 2) |ki(u)| < 1+K S{Alt,q < p; 3)

{a <1, then the matrix family {Atp-lG(p)n| 0< nAt { T} is uniformly

|Xi(p)|

bounded, where p may depend on At.
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Now we return to another important lemma . Consider a matrix G(p) in a
small neighbourhood of a fixed point, for instance p0=0. Because of
continuity we have G(u)=G(0)+p(u)G1(u). where p(p)—->0, lGl(p)| { K as p—>0.
On the other hand matrix G(0) can be transformed into Jordan Canonical form,

e.i. there is a constant matrix T such that

1y ol Ia, e ol
L1, | % 2, e |
J=TG(0)T —=| . |, Ji=| . e |
lo Jrl lo xil
i=1,2...,1‘.
To G(p) we get
F(0)=T6(W)T L=T+p(w)C(w), lc(u) Ik (4.1)

Lemma 4. Suppose matrix J is of the form (4.1), for brevity,

J. ol Ic
1 , c(p)=I 1

I (p) C12(")=
0 le |021(p) sz(u)|

|
J== (4.2)

where Il contains all the subblocks with the same eigenvalue xl in G(0); Jz

contains the rest. Then there exists a transformation D(p) such that:

| 1 ol

| | 1
D(p)=| I, D (w)=l I,
IX(p) 1 | I-X(p) 1|
(4.3)
~ -1
D(W)J(p)D "=
le, (p) C (wl
=J+p(p) | 1 3 l;
l o Cz(p)l

further more there exists another trasformation E(p) such that:
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1 Y(wl 1 l 1 -y(wl
E(p)=| l, E “(p)=| |, (4.4)
l o Il l o Il

EGOD () F (D L (wE L (p)=

Ic4(p) o |
=J+p(p) | |
lo Cs(p)l

where C4(p),C5(u),X(u),Y(u) are uniformly bounded.

This 1lemma tells us that the parameter matrix can be divided into small
blocks according to the different trend of eigenvalues, so that investigation

of this matrix can be simplified.

Lemma 5. Let matrix J(p)=J+p(p)C(p), J consists of Jordan subblocks of
p-order with the same eigenvalue xo at p=0, where p(p)-——>0, IC(p)I<K as p——>0.
Then in the neighbourhood of p=0 we have the estimation of eiginvalues as
follows:

D12, (w4 l<p(w 1P

2)Ixi(p)—xj(p)Igzx[p(p>]1/P. (4.5)
5. ALGEBRAIC SURVEY OF THE STABILITY

In this section we shall give some sufficient conditions for checking
stebility of the difference equationms. They are often very useful in

practice.

THEOREM 1. Let G(At,8) be continumous on region O¢At(T, ogeig1,

i=1,2,...,d; all the norms of the eiginvaluie not exceed 1+KAt; for any fixed 90
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matrix G(O,Go) satisfies: 1)|Xi(0,6°)|$1; 2)multiplicity of those eiginvalues

|ki(0,00)|=1 should not exceed p, then matrices (3.10) are uniformly bounded.

THEOREM 2. (P=1) If matrix G(At,0)fits the necessary condition, and 1)
all the norms of the eiginvalues of G(At,0) should not exceed 1+KAt; 2) for any
neighbourhood of 90 G(At,9)=G(0,9°)+p(At,O—GO)C(At,9) and p(At,O—Go)——>O,
lc(at,0) 1<K as At——>0,6-—>8  satisfy Ixi(At,e)—xj(At,e)szp(At,e—eo) or

1-maxlxi(At.e)ngp(At,e—eo), then matrix family (3.10) is uniformly bounded.

THEOREM 3. (high order) If matrix G(At,0) fits following
conditions(A),(B) or (A),(B'), then matrix family(3.10) is uniformly bounded.
(A)The norm of any eiginvalue of G(At,0) does not exceed 1+KAt, for
any fixed 8_ |G(At,9)—G(0,9°)|=0(p(At,9—0°)). and p(At,8-0 )—>0,
and [p(At,O—Oo)ll/pzxAt as At,8-0 —>0.
(B) For any fixed 90 |l(0,6°)|$1; if r Jordan subblocks of p-order
contain the same eigenvalue x(o,eo), then the r x p corresponding
eigenvalues can be sorted into r groups:
{Xi’j(At,9)|j=1,2,..,p}. i=1,2,...,r ,
to them the following inequality holds:
lki’j(At,G)—lipijt,e)|2K[p(At,6-9°)]1/p i#i; (5.1)
(B') Instead of (5.1) in (B) we can impose
lli’j(At,G)—A(O,eo)|2K[p(At,9—9°)]1/p. (5.2)

and one of following two conditions to be satisfied:
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(2) KlAtz[p(At.O—Oo)lllp 2 K At; (5.3)
(b) all Xi’j(At.G) are within an angle of circumference
with A(0,0o) as its vertex.
The proofs of theorem 1,2 are omitted. We give some key steps of the proof

about theorem 3 briefly. The whole idea is that the boundedness of (3.10) can

n|0< At <<

. ) . . p-1
be reduce to that of a special kind of matrix family {At™ “J(At,0) 0<nAt (T

}
in a small neighbourhood of a point (0,90), then using matrix function formula
we obtain

p-1 n_, p-1 _
At® “J(At,0) =At [f(l11)1+(J xlll)f(lll.l Y+.. .t

12

(F-Ap D (G=h,  DEGy L)) (5.4)

r,p-1
. . _.n
where difference quotients f(kll)—kll,....and

f()"ll'"”}‘ )=

r,p-1
=—1-§xndkllr1r1(k—k )]
Zﬂi k j kJ ’
c
and C is a closed contour with all xi j(At,e) in it , So we turn to estimation

of every term in (5.4) , the most difficult ome is
= - - p_lt
0=(J-2, D ... (T A, -1 DA

1 n
e an/ [AMG-A )]
c k j

Corollary. In theorem 3 we can combine (B),(B') to handle m+mo
multi-eigenvalue X(0,0o) that m eigenvalues satisfy (B’) and the rest satisfy

(B) then the conclusion still valid.
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the interesting applications of these theorems to the readers.

Theorem 3 is the most useful in the hyperbolic equation and high order

differential equations.
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