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Abstract. This paper explores the embeddings of multidimensional meshes into mini-
mal Boolean cubes by graph decomposition. The dilation and the congestion of the product
graph (G; x G3) — (H; x Hj) is the maximum of the dilation and congestion for the two
embeddings G; — H; and G — H,. The graph decomposition technique can be used
to form new embeddings based on existing embeddings while preserving the dilation and
congestion. It can also improve the average dilation and average congestion of existing em-
beddings. For three-dimensional meshes we show that the graph decomposition technique,
together with previously known techniques, yields dilation-two minimal-expansion embed-
dings of more than 96% of all three-dimensional meshes contained in a 512 x 512 x 512 mesh.
Previous embeddings have dilation 7 for all three-dimensional meshes. The graph decom-
position technique is also used to generalize the embeddings to meshes with wraparound
and many-to-one embeddings.

1 Introduction

Many linear algebra computations can be performed effectively on processor networks con-
figured as two-dimensional meshes, with or without wraparound. Processor networks con-
figured as two- or higher dimensional meshes are also effective for the solution of partial
differential equations whenever regular grids are appropriate. ‘

Embedding meshes in Boolean cubes by encoding the indices of each axis in a Gray code
[22] yields a nearest neighbor embedding of adjacent nodes [16]. However, if the length of
the axis is not a power of two, the Gray code embedding forces the number of processors
allocated to an axis to be a power of two. For meshes of high dimension, this may yield a
very poor processor utilization. Havel and Méravek [12] proved that any nearest-neighbor
embedding must have the same processor utilization as that offered by the binary-reflected
Gray code. Whenever the Gray code does not yield the maximum processor utilization,
an increased utilization can only be achieved if some adjacent mesh nodes are assigned to
Boolean cube nodes at a distance of at least two. The length of the path into which a mesh
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edge is mapped is the dilation of the edge, and the maximum dilation of any edge is the
dilation of the embedding. The expansion of the embedding is the ratio of the number of
cube nodes used for the embedding and the number of mesh nodes. For meshes that cannot
be embedded with minimal expansion and dilation one, the best known lower bound for
the dilation is two. The bound of dilation two is tight for two-dimensional meshes [4]. The
best known upper bound for the dilation is 7 for three-dimensional meshes [6], and 4k + 1
for k-dimensional meshes, k > 3 [5].

We show how graph decomposition can be used to provide effective embeddings for many
meshes, and how properties such as expansion, dilation and congestion are affected by graph
decomposition. The graph decomposition technique in combination with previously known
results [2], [4], [7], [14], [L3] yields dilation-two minimum-expansion embeddings of 96% of
all three-dimensional meshes £; X £3 X £3, such that 1 < £;,£3,£3 < 512. By using Gray
code embedding, only 29% of the meshes achieve minimal expansion for the considered
three-dimensional domain.

The outline of this paper is as follows. Notation and definitions are defined in the next
section, and some of the previously known results are briefly reviewed in Section 3. In
section 4, we prove theorems that transform embeddings of a mesh into one with lower
dimensionality or simplier form using graph decomposition. The embeddings of three-
dimensional meshes using graph decomposition is discussed in Section 5. We extend the
results to embeddings of meshes with wraparound in Section 6, and many-to-one embedding
in Section 7. Conclusion follows in Section 8.

2 Notation and definitions

V(G) is the vertex set and £(G) the edge set of a graph G. Hamming(z,y) is the Hamming
distance between z and y. |S| is the cardinality of a set S. Let j,, be the mth bit of the

binary representation of j with the least significant bit being the Oth bit. Let [z]; denote
9[logz =]

Definition 1 An embedding ¢ of a guest graph, G, into a host graph, H, is a one-to-one
mapping from each node ¢(i) in G to a unique node in H, and from each edge (4,5) in
G to a path in H starting at node () and ending at node ¢(j). The expansion of the

embedding ¢ is
o = VUL
£ V(G)

The expansion is a measure of processor utilization. Denote the path (an ordered set of
edges) corresponding to the edge e by p(e).

Definition 2 The dilation of an edge e € £(G) is the length of the path ¢(e):
dily(e) = |p(e)l.
The dilation of the embedding ¢ is

dil, = dily(e).
iy = max dil,(c)




The average dilation of the embedding ¢ is

1

ZC)] > dily(e).

e€E(G)

Definition 3 The congestion of an edge e € £(H) is the number of edges in G with images
including e:
cong,(e) = Y. He}no(e)l

e'€€(G)

The congestion of the mapping ¢ is

_ !
cong, = e‘lenga(,JI(I) cong,(e').

The average congestion is similarly defined.

3 Preliminaries

3.1 Dilation one embeddings

The following theorem due to Havel and Méravek [12] shows that for certain meshes, em-
bedding with minimal expansion and dilation one is impossible.

Theorem 1 [12] If an £y X £3 X +++ X £, mesh is embedded in an n-cube with dilation one,
then n > Y% [log, 4.

Theorem 1 was independently rediscovered in [3], [8], [14] and [11]. See [14] for the proof.
From the theorem follows that the expansion is in the range of 1 to 2%, The percentage
of meshes for which Gray code embedding [3], [15], [16], [22] yields minimal-expansion
embeddings decreases with the number of axes of the mesh. Determining the asymptotic
expansion for Gray code embedding is transformed to the following probability problem.
Let a;, i > 1, be a variable uniformly distributed over an interval (%, 1], and a; and a; be
independent variables for all ¢ # j. Then, the probability that 15, a; € (1/2P+1,1/2°]
is the asymptotic fraction of embedding k-dimensional meshes using Gray code embedding
with an expansion 28. For minimal expansion 8 = 0.

Let o € (1,1] and fi(c) be the probability that & < [1%, a; < 1. Then,

Theorem 2 [13] The fraction of all k-dimensional meshes for which a binary-reflected Gray

code embedding yields minimum ezpansion is fk(,}'—,) =2k(1 - %Z?;ol ll:,z), asymptotically.

Figure 1 shows fi(}) as a function of the number of dimensions, k. f(3)=201-ln2)~
0.61 and f3(1) = 4(1 —ln2 - %2) ~ 0.27.
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Figure 1: The asymptotic fraction of the domain ([£;]2/2) < ¢; < [4]2 for which minimum
expansion is attained by Gray code embedding. The right plot has a logarithmic scale for
the y-axis.

3.2 Reshaping techniques

Reshaping an £1 X £2 X -+ X £ mesh is the embedding of the mesh in an £ x €5 x --- X £},
mesh. The number of axes is preserved, but the length of the different axes are changed.
We only consider reshaping an £; X £3 mesh into an Nj X N, mesh, where Ny = 2™ and
N; = 2™, such that Ny Ny = [{1£3]2. Step embedding [1] and modified step embedding
yield dilation three. Folding [19], line compression [1], and modified line compression [4]
yield dilation two. Embeddings of a multidimensional mesh into another multidimensional
mesh of different shape and cardinality are studied in [17] and [21]. By making the reshaped
mesh having axes with lengths being powers of two, a Gray code embedding can be applied
to the reshaped mesh [15]. See [13] for a detailed discussion.

3.3 Direct cube embeddings

In [14], we gave three dilation-two, minimal-expansion embeddings of two-dimensional
meshes in Boolean cubes. The three meshes are of shapes 3 x 5, 7 x 9 and 11 x 11. The
congestion is two as shown in [13]. By using these three embeddings, graph decomposition
technique and Gray code embedding, all two-dimensional meshes with < 64 nodes can be
embedded into a minimal cube with dilation two and congestion two, with the exception
of the embedding of the 3 X 21 mesh. Minimal expansion and dilation embeddings for all
two-dimensional meshes in Boolean cubes was recently found by Chan [4]. However, the
congestion is not known for Chan’s embeddings. Moreover, Chan’s embeddings tempt to
have a larger average dilation than our direct embeddings especially for large meshes. Both
the average dilation and average congestion for our direct embeddings are one asymptoti-
cally. In [13], we further gave two dilation-two, minimal-expansion embeddings of a 3 x3 x 3




mesh and a 3 x 3 x 7 mesh in Boolean cubes. See [13] for further discussion and comparison
of various reshaping techniques, Chan’s methods and our direct embeddings.

4 Embedding by graph decomposition

4.1 The theorem

In this section we state and prove a few properties of product graphs, and the embedding
characteristics of the product graph as a function of the embedding characteristics of the
graphs forming the product graph.

Definition 4 The (Cartesian) product graph Gy x G3 of a graph Gy and a graph G; is
defined as
V(Gy x G2) = {[us, v] | Vu; € V(G1),v € V(Ga)}, and

E(G1 x G2) = {([wi v, [wi, v;]) | Yui € V(Gy), (v, v;) € €(G2)}
U {([wi, vil, [w4, wi]) | Yoi € V(Ga), (uiy u5) € E(G1)}-

In the following, we will refer to the edges of the former set as Ga-type and of the latter
set as Gi-type. G1 x G5 can be derived by replacing each node of G; by G2 and replacing
each edge of G; by a set of edges connecting corresponding nodes of G3. Note that the
Cartesian product x is commutative and associative. Also, |V(G1x G2)| = |V(G1)|*|V(G2)|
and |£(G1 x Ga)| = [V(G1)| * [E(G2)| + [V(G2)| * |€(G1)l-

Theorem 3 Let p; be an embedding function which maps a graph G; into a graph H; with
expansion ¢;, dilation d;, and congestion c;, for i = {1,2}. Then, there exists an embedding
function o that maps the graph G = Gy x Gs into the graph H = Hy x Hy with ezpansion
€ = €163, dilation d = max(d;,d2) and congestion ¢ = max(cy,c2).

Proof: We prove the theorem by constructing an embedding function ¢. Let & =
{([wj, vl [wns v:])IV(u5, uz) € E(G1)} and S5* = {([ws, v;], [wi, v&))IV(vj, vk) € E(Ga)}. Cleatly,

£(G1 X G2) = (Uyiev(62)S1*) U (Uuiev(6:)S3")-

S;y% is a copy of Gy identified by node v; in G2. For the host graph H, we define 7, and
T, similarly. Hence,

g(Hl X H2) = (UviEV(Hz)Tlvi) U (UuiEV(Hx)%ui)‘

An embedding function ¢ is derived from ¢; and @; by letting any edge ([u;, v;], [uk, v;]) €
81" corresponding to the edge (u;,ux) € £(G1) be mapped to the path

{(lp1(w;), p2(vi)], [wr, w2(vi)]), ([w1, p2(vi)], [w2, pa(w)])s -+

([wp—15 p2(v:)); 1 (wa), p2(@)])} € T2
in H, where the edge (u;,u;) € £(G1) is mapped to the path

p1((uj,ur)) = {(w1(u;), w1), (w1, wa), -+, (wp—1, p1(ur))}



in H;. The mapping of edges in S;* are defined analogously. The dilation of any edge in
S} is the same as the dilation of the corresponding edge in £(G1), and the dilation of any
edge in S is the same as that of the corresponding edge in £(G2). From the definition
of ¢ it follows that any edge e € 87, ¢(e) C 7'1"’("‘). From the definition of a product
graph it follows that copies of Hy (H3) identified by different nodes in Hy (H1) are disjoint.
Therefore, the congestion of all edges in Hy x Hj is preserved. |

If the embedding function ¢; for ¢ = {1,2} yields the average dilation d;, the average
congestion ¢; and

|V(H1)| * |E(H2)|

L _ V(G| + [E(Ga)
|E(Hy x Ha)|

|E(G1 x Ga)|

and g =

then, the embedding function ¢ has the average dilation d = ady + (1 - a)d;, and the
average congestion ¢ = 8¢z + (1 — B)é;.

Corollary 1 Let p;, 1 < i < 7, be embedding functions that maps graphs G; into n;-cubes
with expansion ¢;, dilation d;, and congestion c;. Then, there erists an embedding function
@ which maps a graph Gy x G2 X +++ x G, into a }_; n;-cube with expansion ¢ = II]_,¢;,
dilation d = max; d;, and congestion ¢ = max;c;.

The fact that the dilation for the embedding of a product graph is the maximum dilation
for the embedding of any graph used for the composition was observed in [20], [23], [18]
and [10]. The corollary is used implicitly in [15] for the embedding of meshes by binary-
reflected Gray codes, and in [7] and [14] for the embedding of two-dimensional meshes by a
combination of direct embedding and Gray code embedding.

Corollary 2 Let p; be an embedding function which maps an £i1 X Lig X +++ X £ mesh M;
into an n;-cube with expansion ¢;, dilation d;, and congestion c; for 1 <1 < r. Then, there
ezists an embedding function ¢ which maps an £y X £3 X +-- X £ mesh M into a (31— n:)-
cube with expansion ¢ = [[_; ¢;, dilation d < max; d;, and congestion ¢ < max;c;, where
L =Tlica lij for 1 < j < k.

Proof: It follows from Corollary 1 and the three facts below:

o The product graph of an £; X £3 X - -+ X £; mesh and an £] X £} X - -+ X £}, mesh is an
£y X £ X +++ X L X £ X £4 X +++ X £}, mesh.

e The product graph of an nj-cube and an na-cube is an (ny + na)-cube.

e [21] An £; X £3 X -++ X {} mesh is a subgraph of the mesh

(lllXlglX"'Xlrl)X(fuX£22X'°'Xl,2)xn'

X(l X Lo X == x L), i [[l; =4, Vi<ji<k |

1=1



Let M; be an £;; X £;3 X +++ X £;, mesh for ¢ = {1,2} and £; = {3;f3; for 1 < j <
k. The embedding function ¢ for an £; X £3 X --+ X £; mesh M being a subgraph of
M; x M; is defined in terms of the embedding functions ¢; for M; and 2 for M. Let
z = (21,29,*+,2),0 < z; < {; be a node in M, z = (21,22, -+,2%),0 < ; < £3; be a node
in M1, vy = (v1,%2,°**»¥%), 0 < ¥ < £2; be a node in My, and z; = y;{1; +2;,1 < < k. The
embedding of axis i of M consists of the embedding of £2; instances of axis £y;. Define

G1(¥1, 92, -1 Uks 1, T2, - -+, T) = 1((2Y, 29,0, T1))

z;, if y; is even,

1
where z. = :
! { £1; — 1 — z;, otherwise.

The function @; differs from the function ¢ in that a reflection of the embedding of axis ¢
of M, is performed for instances for which y; is odd. The function ¢ is defined as follows:

(21,22, 21)) =

02((y1,v2) - VB 1(¥1y Y20 -y Uiy T1, B2y o+ + 5 T)s

where “||” is the concatenation operator. If £1; = 27 then a binary-reflected Gray code
G is used for each axis of M; and ¢1((z1,22, -+, %)) = G(21)||G(z2)|]::-||G(zr). The
embedding function ¢ takes the form:

So((zly 22y zk)) =

e2((v1,92, -+, BNIG(y1, 20)|G (2, z2)|| - -~ 1| G, z4),
2o~ f G(=:), if y; is even,
where G(y;, i) = {G’(2"" —1-—1z;), otherwise.

An instance of axis ¢ of mesh M; is traversed for every node along axis ¢ of M,. All
edges along axis ¢ of M; have dilation one for every :. With a dilation d embedding of mesh
M, there exists at least one edge for some 7 that has dilation d for mesh M. By performing
the embedding of axis i of the mesh M by traversing all edges along axis ¢ of mesh M; for
every edge of axis ¢ of mesh Mj the average dilation is minimized. Let da(¢) be the average

dilation of the edges of axis ¢ in the mesh My, then the average dilation of the embedding
of the mesh M is

1+ Z {(dz( )—— 1)2(21— n:)—'"t(l — 1)(H lzj)/lzg}/

1=1

k . k n - dg(z)
>3 (2™ = (] 25279)/(2i2™) ~1+Z kzm

=1 j=1

The approximated term shows that the average dilation decreases as the length of axis ¢ of
mesh M; increases.




4.2 The strategy
The general strategy for mesh embedding by graph decomposition is the following:

1. If the number of nodes along any axis is a power of two then the embedding of all
nodes along that axis is by a binary-reflected Gray code. For instance, the embedding
of a 12 x 16 x 20 x 32 mesh is reduced to the problem of embedding a 12 x 20 and a
16 x 32 mesh.

2. For the axes with lengths not being powers of two, a decomposition is sought into
meshes for which good embeddings are known, and the product of the expansions for
the decomposed meshes is minimized. For instance, the embedding of a 12 X 20 mesh
can be reduced to the embedding of a 3 X 5 and a 4 X 4 mesh. Embedding a 3 x 25 x 3
mesh can be reduced to the embedding of two 3 x 5 meshes.

3. If the axes lengths are not powers of two, but can be increased slightly without in-
creasing the size of the cube for a minimal expansion of the original mesh, then the
mesh may be extended and the procedure just mentioned applied to the extended
mesh. For instance, a 3 X 3 X 23 mesh can be extended to a 3 X 3 X 25 mesh, which
is treated with the scheme above.

5 Embeddings of three-dimensional meshes

For three-dimensional meshes, we use these direct embeddings extended with the two-
dimensional result in [4], and the graph decomposition technique. We achieve dilation-two
minimal-expansion embeddings for 96% of the three-dimensional meshes contained within,
or equal to, a 512 x 512 x 512 mesh.

Performing a dilation-two embedding of a two-dimensional mesh defined by any pair of
axes, and a Gray code embedding of the third axis results in one of the relative expansions

[Lila]2[t3]2 [L2t3]2[b]2 or [€341]2[L2]2
[G1£283]2 ° [lilals]s ' [1l283]2

The relative expansions are either equal to one or two. Note that more than one relative
expansion may be one, such as for a 5 X 10 x 11 mesh, or no relative expansion may be
one, such as for the 6 x 11 x 7 mesh. Choosing the two axes that have the lowest values of
£1/[€1]2, £2/[€2]2, and £3/[L3]2, for the two-dimensional embedding results in the smallest
relative expansion. For instance, for a 5 X 6 X 7 mesh, the first two axes (of length five and
six respectively) should be chosen for the two-dimensional embedding.

Another example where graph decomposition is effective is in the case of embedding a
21 X 9 x 5 mesh. It can be embedded with minimal expansion by combining the 7 x 9 x 1
direct embedding with the 3 x 1 x 5 direct embedding. Another effective decomposition is
the product of a 21 x 3 X 1 mesh and a 1 X 3 x 5 mesh.

The fraction of three-dimensional meshes, for which the decomposition technique com-
bined with the two- and three-dimensional embedding techniques yield minimal-expansion
embeddings with a dilation of at most two, is given in Figure 2. In the figure, S;(¢) is the cu-
mulative percentage of meshes that have a relative expansion ¢ by applying the embedding
methods with an index less than or equal to ¢ below:
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Figure 2: The cumulated percentage of the £; X £3 X {3 meshes where 1 < £; < 2" for
1<n<9.

1. Apply Gray code embedding.

2. Apply the modified line compression technique [4] to any pair of axes and apply Gray
code to the third axis.

3. Apply the 3 x3 x 3 or 3 x 3 x 7 embedding combined with Gray code by Corollary 2.

4. For an {1 X£3x {3 mesh, find £5€5 > £, such that [£1£5]2[£5¢3]2 = [€1£2£3]2, Corollary 2
and [4]. The procedure is repeated for decomposing £; and £3.

For a mesh of size less than or equal to 512 x 512 x 512, the cumulated percentages grows as
the sequence: 28.5%, 81.5%, 82.9%, 96.1%. Applying the method in [4] to any pair of axes,
only allows about 81.5% of the meshes to achieve minimal expansion. Since the congestion
for a product graph is the maximum congestion of any graph used for the composition, any
three-dimensional mesh composed from any two-dimensional mesh with a congestion two
mapping and Gray code have congestion two.

For the three-dimensional meshes of 128 nodes or less, the 5 x 5 x 5 mesh is the only
mesh for which we do not know of a minimal-expansion dilation-two embedding, if it exists.
For three-dimensional meshes with up to 256 nodes, there are four additional meshes for
which the same statement applies: 5 X 7x 7,3 x 9x 9,5 x5 x 10and 3 x 5 x 17.

6 Embeddings of wraparound meshes

Lemma 1 [21] Let £; = L) and {; be even for all1 < i < k. Then, the £; X £3 X ++- X {4

wraparound mesh is a subgraph of the product graph of the £{ X £ X -++ X £} mesh and the
£ x £5 X - -+ x £} mesh (both without wraparound).

Proof: Every £. x £ mesh for which £.¢ is even contains a 1ing of size £.£! as a subgraph

[21]. 1
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Figure 3: A linear array of size {;, {; odd, embedded in the product graph of a linear array
of size [£;/2] and a l-cube. The [£;/2] linear array has a dilation d embedding.

Lemuna 2 Let ¢, be an embedding G — I and @y be an embedding I — H. Then, there
exists an embedding function ¢ : G — H such that

dil,(e) < Y dily,(e:).
ei€pi(e)

Lemma 3 An {; x £ X -+ X £}, wraparound mesh M can be embedded into a minimal
hypercube with dilation < d + 1, if there ezists an embedding ¢ that maps the [{1/2] X
[€3/2] X -+ X [£/2] mesh My into a minimal hypercube with dilation d and [[I%_; 42 =
2 [T1E 1 [4:/2]]2. The dilation is < d, if all £;'s are even.

Proof: Consider the embedding of a 2[£;/2] x 2[£3/2] X -+ X 2[£;/2] wraparound mesh
M. By the assumptions of the lemma, Theorem 3, and Lemma 1 the wraparound mesh M
can be embedded into a minimal hypercube with dilation d. (The 2 x 2 x -++ x 2 = 2% mesh
is taken as the mesh Mj.)

We now embed the wraparound mesh M in the wraparound mesh M by removing one
hyperplane for each axis ¢ of odd length. The edge in the mesh M connecting nodes on
the two sides of the removed hyperplane is simulated by a length-two path through the
removed hyperplane in M. In the Boolean cube embedding of M the removed hyperplane
connects to two neighboring hyperplanes through two sets of edges of dilation one and d,
respectively. The edge of M which is a path of length two in M has a dilation of edges of
d +1 in the cube embedding, according to Lemma 2. I

Figure 3-(a) demonstrates the sth coordinate of the product graph of the mesh M; and
the k-cube for which [£;/2] = 5. All the horizontal edges have dilation < d due to the
embedding ¢. All the vertical edges have dilation one. It is easy to see from Figure 3-(b)
that if £; = 9, then the node « is removed and the dilations of the two edges incident to
the removed node are < d and one, respectively. So, the dilation for the new “logical edge”
(the dashed edge in the figure) is < d + 1.

Intuitively, the mesh I is partitioned into 2* submeshes of the form [£;/2] x [£3/2] x
*++ X [£x/2]. The submeshes are labeled M;, 0 < i < 2*, such that submesh i and submesh
Jj are adjacent if Hamming(s,j) = 1. Submesh i = (ig_1ip_p---49) is reflected for axis
7 if 3, = 1 for all 7’s. After this reflection the same embedding function ¢ is applied
to all submeshes for their embeddings in their respective cubes. Figure 4 shows the four

10



Figure 4: Partitioning for the embedding of an wraparound mesh.

submeshes for a two-dimensional case, in which the submeshes M; and M3 are reflected
horizontally and the submeshes My and M3 are reflected vertically before the embedding
function is applied.

Clearly, if all the £;’s are even, then the condition [[J%: ;412 = 2*[T1X,[4/2]]2 is
satisfied. If this condition holds, then the expansion remains minimal by using a mesh with
wraparound of a slightly larger size (or of the same size) as an intermediate graph.

Lemma 4 An {1 x €2 X ---X £}, wraparound mesh can be embedded into a minimal hypercube
with dilation < max(d,2), if there ezxists an embedding that maps the [£1/4] X [£2/4] X -+ - x
[£/4] mesh My into a minimal hypercube with dilation d and [[[%_; £;]2 = 4*[T15,[4:/41]2-

Proof: Consider the embedding of a 4[f;/4] x 4[£3/4] x -+ x 4[{;/4] wraparound mesh
M. Apply an argument similar to the one in the proof of Lemma 3. (The 4x4x---x4 = 4k
mesh is taken as the mesh M;.)

Figure 5-(a) and (c) shows one axis of the product graph of the mesh M3 and the 2k-
cube with [{;/4] = 5 and 4, respectively. All the horizontal edges have dilation < d, and all
the vertical edges have dilation one. Figure 5-(b) and (d) show an embedded linear array
of size 4[£;/4] (by ignoring the dashed edges). Consider the case where £; mod 4 # 0. We
wish to show that by removing one, two and three nodes, respectively, the newly formed
“logical edges” have a dilation of < max(d,2). When £; mod 4 = 3, remove node . When
£; mod 4 = 2, remove nodes 3 and y (but keep node a). When ¢; mod 4 = 1, remove all the
three nodes «, # and 7. The newly-formed “logical edges” are marked by the dashed edges
in the figure. Clearly, all the dashed edges preserve the property of the dilation < max(d, 2).

Since the above proof requires that [£;/4] > 3, it remains to be proved that if [£;/4] = 2
or 1, the lemma still holds. Figure 5-(e) shows for £; = 5, 6, 7 and 8. For 1 < ¢; < 4, the
lemma can be derived easily. I

Note that there exist several ways to embed a ring for Figure 5-(a) and (b) that preserve
the dilation of the edges. The selected embedding minimizes the average dilation.

Corollary 3 Any two-dimensional wraparound mesh £y x £y can be embedded into a minimal
hypercube with dilation at most two, if [£1€3]2 = 16[[£1/4][£2/4]]2 or both £y and {3 are
even. Any two-dimensional wraparound mesh £; X £y can be embedded into a minimal
hypercube with dilation at most three, if [£L1€2]2 = 4[[€1/2][€2/2]]2-
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Figure 5: A linear array of size £;, embedded in the product graph of a linear array of size
[£;/4] and a 2-cube, where the latter linear array has a dilation d and the 2-cube has a
dilation one embedding.
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Proof: The former follows from [4], Lemmas 4 and 3. The latter follows from [4] and
Lemma 3. I

7 Many-to-one embeddings

When embedding is performed in a many-to-one manner, we use load-factor instead of
ezpansion to measure the processor utilization.

Definition 5 The load-factor of an embedding ¢ : G — H is the maximum number of
nodes in the graph G which are mapped to the same node in the graph H, i.e.,

max { ) I{s«’(v)}ﬂ{v'}l}-

v'€V(H) veV(G)

Theorem 4 Let ¢; be an embedding function which maps a graph G; into a graph H; with
load-factor f;, dilation d; and congestion c¢; for i = {1,2}. Then, there exists an embedding
function which maps the graph G X Ga into the graph Hy x Hy with load-factor f = fi fa,
dilation d = max(dy,d2) and congestion ¢ = max( ficz, fac1). Further, for the graph Hix Ha,
the congestion of an H,-type edge increases by at most a factor of fa, and the congestion of
an H,-type edge increases by at most a factor of fy.

Proof: Consider a node u; € Hy and a node v; € Hy. There are at most f; nodes in Gy
that are mapped to node u;. Similarly, there are at most f; nodes in G that are mapped to
node v;. The corresponding product node in Hy X Ha, [u;, v;] contains at most f; fo nodes
in G1 X G3. The proof of dilation is similar to that in Theorem 3.

For the congestion, consider an edge in Hy X Hj. It is either an Hi-type edge or an
Hj-type edge. For edges of the Hj-type, the congestion is < ficp from definition of graph
product. Similarly, edges of the Hy-type have a congestion < facy. |

Lemma 5 Let ¢ be an embedding function which maps an £; X £y X +++ X £y mesh M
into an n-cube with load-factor f, dilation d, and congestion of the edges of the ith axis
. Then, there exists an embedding functwn ¢ which maps an llll X Lol X +++ X Lpl},
mesh M into an n-cube with load-factor f = fH, 1 £, dilation d =d, and congestzon

é = maxk_ {(c f=1 l;)/l:}

Proof: Consider the following two facts:

1. An £14} x €3 X £3 X - -+ X £; mesh M can be embedded into an n-cube with load-factor
f4}, dilation d, and congestion of the edges of the first axis ¢;.

2. An ¢y x £} X - -+ x £} mesh M, can be embedded into an 0-cube (i.e., one-node cube)
with load-factor ]'[f=2 ¢!, dilation 0, and congestion 0.
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From Theorem 4, the mesh M; X M, can be embedded into an n-cube with load-factor
FIIE, £, dilation d, and congestion for the edges of the first axis ¢; 1%, £. Since the mesh
Misa subgraph of the mesh My x M3 [21,13], the load-factor, dilation and congestion for
the edges of the first axis also hold for the mesh M. Congestion for the edges of the ith
axis can be similarly derived to be bounded from above by (c; ]'[;’=1 AV

The property of the load-factor in this lemma was also observed in [9], independently.

Corollary 4 An £;27 X £3272 X+ -+ x £3,2™* mesh M can be embedded into an (ZE | ni)-cube
with dilation one, congestion ([[X; £;)/ min;{£;}, and load-factor optimal.

Proof: Simply apply Gray code embedding to ¢ in Lemma 5 in mapping a 2™ x 2"? X
-+« x 2"t mesh into a (£F_; n;)-cube with load-factor one, dilation one and congestion one.

Corollary 5 An £y x £y X -+« X £, mesh M can be embedded into an n-cube with dilation
one and load-factor optimal within a factor of two, if there exists £,2™ > {; for all1 <1 < k
such that [[1%; 42 = [T1, £2%72 and T ni > n.

Proof: Let n' = Y% n;. Let mesh M’ be of a form £{2™ x £427 x --+ x £{;2™. By
Corollary 4, the mesh M’ can be mapped into an n'-cube with dilation one and load-factor
optimal. Since the mesh M can be embedded into the mesh M’ with expansion < 2 (by one-
to-one mapping), the load-factor for mapping from the mesh M to the n'-cube is optimal
within a factor of two. For n' > n, we simply fold the cube until it reaches the right size.
Both the load-factor and optimal load-factor increase by a factor of A |

For example, a 19 x 19 mesh can be embedded in up to a 5-cube with dilation one and
load-factor optimal within a factor of two. This is because the 3 - 23 x 522 mesh contains
the 19 x 19 mesh and [19-19]2 = [3-23-5.22],. The load-factor is 15 and the optimal
load factor is [19-19/25] = 12.

8 Summary

A graph embedded by graph decomposition has a dilation and congestion equal to the
maximum dilation and congestion of the embedding of any of the graphs into which it
is decomposed. By applying the graph decomposition technique and using the dilation-
two embeddings for two-dimensional meshes [14], [4] and two dilation-two embeddings of
three-dimensional meshes, we have attained dilation-two minimal-expansion embeddings
into Boolean cubes for 96% of all three-dimensional meshes of a size less than, or equal to,
512 x 512 x 512.

The decomposition technique can be applied to the embedding of meshes with an arbi-
trary number of dimensions. We conjecture that a majority of the the higher dimensional
meshes can be embedded with dilation two using the existing two-, and three-dimensional
mesh embeddings of dilation two.
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The embeddings of wraparound meshes can be easily constructed out of the embeddings
for meshes without wraparound using the graph decomposition technique. As a special
case, for all two-dimensional wraparound meshes £; X £3, we have a minimal-expansion
embedding with dilation two if [£143]2 = 16[[£1/4][£2/4]]2 or both £; and {3 are even; and
with dilation three if [£1£2]2 = 4[[€1/2][€2/2]]2 (where [z]y = 2Mog221),

The embeddings of a large mesh into a smaller hypercube can be performed by decom-
posing the mesh into two smaller meshes, and applying a low-dilation embedding between
processors and a high-dilation embedding within processors.
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