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ABSTRACT

Ve present a simple algoritha for maintsining
a replicated distriduted dictionary which
schieves high availability of dsta, rapid
processing of atomic aotioms, efficiesnt
utilization of storage, and toleramce to aode
or anetwork failures including 1lost or
duplicated messages. It does mot require
transsction logs, symchroaized olocks, or
other complicated sechanisms for its
operation, It schieves consistency
contraints which are comsidersdly weaker than
serial consistency but monetheless are
adequate for many dictionsry applications
such as electronic appointment calendars and
mail systoms, The degree of oonsistency
achieved depends on the particular history of
operation of the system in a way that is
intuitive and easily uaderstood. The
algorithm implements a "best effort”
. spproximation to full serial ocoamsistency,
relative to whatever ianternode commmaication
has ssccessfully taken place, so the
semantics are fully specified even uader
partial failure of the systea. Both the
correctness of the algerithm and the utility
of suck wveak semantics depend heavily on
special properties of the dictiomary
operatioas.

‘nu work was supported ia part by the Office
of Naval Research under Comtrset NOOO14-80—C-0221
and by the National Science Foundatioa uader Graats
MCS80-03337, MCS80-04111, and MNCS81-16678. The
zesearch was carried out im part at the University
of Washington.

1, Iatreduction

A common sxiom taken for the correctness of a
dstabsse system is that the tranmsactioas be
aexializable, that is, the results of any sequence
of transsotions should be the same as if they had
been performed in some serial order [3, 5§, 17, 19].
Serializability insures consistency of the database
when concurreat tramsactions sre bdeing processed
sssuming only that each tramssction is correct when
run alome.

Achieving serial comsistemcy in an unreliable
distributed enviroameat is coasiderably smore
difficult than in s central database, and much vork
has been done sddressing this problen

[2, 4, 9, 20). (Cf. [16] for a amice survey of
some of the issmes.) Reasons for distridbuting data
in the first place are to increase speed of access
snd to 4insure availadility of dats even vwhen
individual nodes or the metwork itself fails. Both
of these gbals roquire replication of the data,
which imtroduces the aev problea of keeping the
roplicated eopies up—~to—date. (ce.

{7, 8, 13, 15, 21].)

Unfortaunately, the two goals of availability
and serial coasisteacy stand somevhat inm coaflict.
For example, availability dictates that every mode
with & ecopy of the datadase bDe permitted to
contiane performiag tramsactioas on its local copy
oven when the setwork fails. Serislizadbility, om
the other hand, reguires that at most oae such mode
be sllowed to proceed under such comditioms, for
otherwise the copies degin divergiag snd reads can
roturas values ismconsistent with aay serisl ordering
of the tramsactioas.

Several suthors have aoted that measniagful
rosslts eanm oftea be obtaimed evea without serial
consistency vhea additiomal imformatiom about the
particslar tramsactioas is available [10, 11, 12].
Also, strict serialiszadility is oftem mot required
for gead-oaly tramsactioas [6, .8]. Ve present an
example of & problea which is adegquately served bdy
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8 database satisfying mwch veaker comditions and
give an algorithm for its solution., Our algorithm
schieves high availadility of data, rapid
processing of atomic sctions, efficient utilization
of storage, and tolerssce to aode or metwork
fsilures including lost or duplicated messages. It
does not require tramssction logs, synchronised
clocks, or other ocomplicated mechanisms for its
operation.

The degree of comsistency achieved by our
solution depends on the particular history of
operation of the system ia & way that is intuitive
and easily uaderstood. The algorithm implements a
"best effort” approximation to full serial
consistency, relative to whatever iaternode
communication has ssccessfully taken place, so the
semantics asre fully specified even under partial
failure of the system.

Johnson and Thomas [10] give an sigorithe for
8 similar problem which wuses timestamps to
serislize updates (cf. [14]) but permits arbitrary
reading. While it enjoys many of the same
advantages of ounr algorithm, it requires deleted
dictionary entries to be retained awntil all
processes have updated their copies of the
database. Also, their read semantics are somewhat
weaker than ours.

Algorithms suck as [7, 21] which wmse voting
schemes are able to provide both serial consistency
and data availability despite 1limited mode
failures, but 1ike all serializadle algorithms,
wpdates in all but onme subnet sre disallowed when
the network becomes partitionmed.

2. Distridbuted Dictiomaries

Abstractly, our problem is to maintain »
database consisting of a dictionarv, that is, s set
of elements with two spdate operstioms INSERT aand
DELETE, and s siagle query operatios LIST (ef.
1. INSERT(x) adds element x to the set,
DELETE(x) removes x from the set if it was there
and does nothing othervise, asd LIST returns an
enumeration of the elements curreatly ia the set.
All three operationms are considered to be atomic
transactions.

The database is to be implemented oa an
wareliable ametwork of processors. Ouwr goal is to
make the datadase highly availadle, even uander
coaditions ia which 4iadividusl =odes aad the
setvork are 30t alvays operstiomal. By
“available”, we meaz that axy operatiomal aode
should de sble to perform any of the basic datibase
operations at any time, regardless of the statss of

the rest of the system.

Back mode maintains its own copy or Yiey of
the database. and all operstions are performed
initielly only on the mode’s local viev. From time
to time s mode sends information sbout its view to
one of More other modes. A mods receiving such
informetion then updates its own view. We have in
offect added twvo mev operations: SEND(m) and
RECEIVE(m), where = is the message. As more and
RmOTre messages are sent, iaformation is thus
propagated throughout the ametwork, aad the
individual views of the data tend to comverge to
the view that would be "gcorrect” were this all
taking place in a ceatralized database.

Our notion of correctness depends mot only on
the particular wpdate and query operations
Tequested by the users of the system but also on
the internmal communications that have taken place,
sbost whick we make 20 sssumptioss. The intesmtion
is that in a ocorrectly fusctioning system, esmcugh
communicstion will take place so that every mode of
the system will know sbost s2 {asertion or deletion
shortly after it occurs, amd mo viev will be far
out of date. Hovever, our correctness condition is
simply that an ‘io-ont x is ia mode i's view iff i
knows of its imsertion but does not kmov of its
deletion.

Ve place two restrictions on the problem:

Ri. We assume that there is at most ome
occurrence of the operation INSERT(z)
for each element x, so that once an
eloment has been deleted from the set,
it can never sgain de reimserted.

B2, DELETE(x) is oaly legsl at s mode j if x
is curreatly ia j's view.

Ve need bdoth restrictioas for techmical reasons.
Among other thiags, they iasure that INSERT(x) can
asver follow DELETE(x), so if s node discovers that
both operations were performed sometime im the
past, then x definitely does not bdelong ia its
view. Also, both restrictioms arise natmrally in
many applications. One way to enforce restriction
Rl is to tag the sctual datum with a "timestamp”
which maiquely identifies the particular imsertion.
Thus, two attempts to insert the same datum will in
fact give rise to two differeat elements x and x'
with differeat timestamps. Restriction R2 is
satural in applicstioms where the oaly way to
specify an srgument to DELETE is to "poimt” at the
olement among the omes in the ourreat viev. Such
is gezerslly the case., for ezample, when the
olements are tagged vith timestamps. Note that we
do permit several deletions of the same element;
their offect is the sams as a single ons.



This abstract problem vas motivated by the
practical problem of bduilding s highly asvailable
electronic appointment ealeadar. Here the dats
items are individuoal appointments, ead an
appointment calendar is just a set of sppointments.
A user can read and modify bhis sppointmeats from
any node. He will see every appointmeant that it is
possidble to see, given the iaterprocess
communication that has actmally takea place. Ia s
fully working systea he would ses all but possidly
very recently entered asppointmeats. Aaythiag de
can see he can manipulate as if he were vorking onm
s centralized systesm. Finally, any chaages he
makes will be reflected at the other modes when the
system is again working, even 1f the astwork
happens to be unsvailable vhile he 1is actually
doing the modifications. Note that becsuse the
views are not always up-to—date, oconflicting
sppointments may not be discovered immediately.
Bence, it is necessary for the calendar system to
be able to handle comflicts st times other than
when an appointment is first estered. (This 1is
probably s desirable property aayway.)

Other places where this prodlem arises are in
distributed mail systems snd distributed {file
directory systems, both of which abstractly just
maintain dictioaaries. In a distributed mail
system, our solution could simplify the wusual
netvork msiler. The netvwork masiler would oanly have
to deliver s message to one of s user’s mailboxes;
the distridution of mail to the wuser's other
mailboxes would then be handled by our aslgorithm.
Indeed, if the recipient had s local maildbox, then
only the local mailer would be =needed aad the
netvork mailer would mot have to be iavoked at all.

3. Formal Problea Statement

For esch natural ammber N, let [N] = {1, 2,
wees N}J. Lot D de the domain of elements. Let OP

= ('INSERT(x)’, °*DELETE(z)' | = s D} U (’LIST’]) U

{*SEND(n)’, °'RECEIVE(m)’ | m is s message}l. Ve
formulate osr correctness coaditions in terms of s
partial order of events which <zepresents the
history of informatioa flow in the system.

Fiz a particular ezecution of the systea.
Each instance of aa operation { & OP corresponds to
sn gvent o, where gple) = { and pode(e) is the node
at which o occurs. Let E de the set of all eveats
occurring ia the ezecution, aad let D(B) = (zx s D |
ople) = INSERT(x) for some ¢ s B]). B is partially
ordered by "—>®, which is the least reflexzive aad
transitive relation ssch that:

P1. Bveats st the same node are totally
ordezed;

R, It 5 - SEND (m) amd oy - RECEIVE(m) for
the same messsge =, then Y - o,

Ve snov formalize s oorrect view of the
database. Ve represent our notion of "knows about”
by —>; henmce, when i has just performed event ',
it knows abont am event ¢ iff ¢ — e'. Let yjew:
E — 2D be defined as follows: x s view(e') iff

V1. there is an event e such that ¢ — o’
and op(e) = INSERT(x), and

V2. for every event o, if op(e) = DELETE(x),.
then o He’.

We nov define the N-mode gedundant dictionmary
problem to be the problem of finding a distributed
slgorithm on N sodes such that each mode can
process the operations of INSERT, DELETE, LIST,
SEND and RECEIVE, subject to restrictions R1 and
K2, and each node i maintains a correct view of the
data V‘. That is, in the partisl order of events
corresponding to the history of opoution in the
system, if ¢ is an event at node i, then just after
the occurrence of that event, VI1 = view(e).

4. The Algorithm

Aa obvious solmtion to ouwr dictiomary problea
is the followiag: Bach aode i maintains two sets,
Ii snd D,, which are the sets of elements that nmode
i kmows have been imserted and deleted,
rospectively. i's viev of the dictiomary is Vi -
I, - D;. To implemeat SEND(m), mode j sends a
message m containing IJ and DJ. Vhea s node i does
s RECEIVE(m), it updates its ows sets simply by
takiag unions.

The drawback to this solstion is that the set
Ii U D1 contains every elemeat that has ever been
in 1’s viev, aad this set grows withoat bounad, even
if the size of the viev is itself bdounded. Our
algoritka gets by with keepiag oaly the current
viev, V,, snd s snall amount of additiomal
iaformatioa which will de described shortly.

Clearly, it won’t do to update V‘ by replacing

it with V, U V,. for there ean be two reasons why

as olement x s V‘ 1 Vj might be missing from ome of
the sets V), ks {1,3):

1. x used to de ia 't but it has since deen
deleted, or

2. 2 wvas isserted so receatly that mode k
has a0t yet heard sbost it.

In case 2, x belongs in V, (and ia VJ. too), aad in
case 1, it should de iz meither.



In order to be able to distinguish thess two
cases, esch node maintains the following
information im sddition to its ocurreat viewv of the
datsbase:

1. Bach node i has 2 ocell "clock,”. BEach
reference to eloel‘ returns & positive

sumber that is larger thaz all previous
vaiues returned. ((:ltmki can be

implemented by s physical clook or by s
counter that gets imcremeanted oa each
reference. Ve talk about the values of

clock, as bdeing ®times”, dut they need
bear no relation to real time nor to the
values of cloek’ for any j ¢ i.)

2. Bach x in the viev is tagged with s pair
(c:ox. T!). whers ore . the “crestor” of

z, is the node at which x was originally
inserted, and '1', is the time, asccording

to the clock of cre,, ot which the

insertion took place.

3. Each node i maintains a table t,. ti(J)

is i's posting time for imsertioms which
took place at mode j.

The posting times tell how current i’s knowledge is
about insertions that have occurred at the other
nodes: i knows about an inmsertion st mode j iff
the time at which that operstion occurred
(according to cloekj) is £ t;(9).

Given a view V, a posting time vector t, and
an element x, we define a predicate:
del(V,t,x) iff [z 4 Vand T t(en:)].

It will follow that dol(V‘. ty. x) bholds iff node 1§
knows that z has been deleted. Ve nov describe hov
node i processes each of the kinds of operations.

Algorithm

INSERT(x): t‘(i) := olock,;

ore, := i;

T := tl(l):
V‘ o V‘ 1] [1).

DELETE(x): V; := ¥V, - {z}.

LIST: Return V‘.

Sead the message ma = (V,. t‘>.

RECEIVE(m): Let m be the message <V, t);
Vo= (ze (v, UV |
~4e1(V,,t,,2) and ~del(V,t,2) };
ty(k) := max{ t,(x), T(k) ) for all
k s IN].

Initially, ti(J) = closk, = 0 and V, = ¢ for
all 4, j.

5. Proof of Correctaess

Before stating and proving the correctaness of
this slgorithm, we need some more motation. For
esch event o ¢ E, let Vel (respectively tle]) be
the valme of Vo 4.(e) (respectively t“de(e))
immediately after completing o, Let inxlol be the
predicste T, < tlel(cre,). Let del [o] = del(V[e],
tlel, x). Note that dol‘[cl iff x 4 Vle] and
ins’[o]. Ve will show that V(e] correspoads to the
curreat view, unx[o] means thet x is known to have
been inserted aand dol‘[o] means that z is known to
have been deleted.

Lot ¢ L3¢’ iff ¢ — o', o ¥ o', and for all
", if ¢ =) ¢” = o', then ¢" = ¢ or " = ¢'. If

o 4347, we say that ¢ is sz immediate predecessor
of ¢ and o' is an immediate successor of e.

Lemma 1: If e = o', then tlel(i) ¢
tle’l1 (1),

Thus, posting times sre monotome over "— ",

Preof: Obvious by inspection of the algoritha
and the oconditions on c!ock‘. ]

Lemma 2: If x s V[e’'], then there exists ¢ s
E such that op(e) = INSERT(x) asd ¢ — o',

Preof: This follows by am easy imduction on
®—)®, wsing the fact that imitially all V, = ¢, 0

Lemma 3: Let x ¢ D(E), ¢’ s E. Then ins [e’]
422 there exists ¢ s E such that op(e) = INSERT(x)
aad ¢ = o',

Preof: =>: Assume inx(o') snd x & D(B).
First, tle’l(oze,) 2 T, > 0. Lot ¢” bs minimal in
E such that " = o' and tle")(ore) =
tle’l(cre,). Inspection of the ocode shovs that
node(e”) = ere, aad op(e”) = INSERT(y) for some Yy &
D, for ia every othe: case, at lesst ome immediate
predecessor f of o” has tlf)(ere ) = tle®l(cre ),
contrary to the minimality of e”. S8iace x s D(E),
there eoxzists ¢ s B with op(e) = INSERT(x) and



node(e) = ore . By coadition ‘P1, either ¢ —> o”
or e = o. If ¢” = e, we have T tle')(cre,)
= tle”](crey) <« t[o)(ore’) = T, (since op(e) =
INSERT(x)), & ocontradiction. Hence, o — o”

- o',

[CH Immediate by the code for INSERT and
Lemma 1. 0

Lemma 4:
dol‘lo'].

If " = o' and dolx[o"]. then

Proof: It suffices to show that if o” iy e
and del [e”], then del le']. Since del [e”], then
z ¢ Vie”] and inxh"). By inspection of the oode
and restriction R1, x 4 Vie'l. By Lemma 1,
ins_le’], so del [e'] holds. 0

Lemms 5: Let x ¢ D(E), o' s E. Then dolx[o']
iff there exists o s B such that op(e”) =
DELFTE(x) and o” — eo'.

Proof: =)>: Assume dolx[o'l holds. Let ¢” s E
be minimal such that dolxlo") and ¢” = o¢'. Then
x 4 Vlie”] and n:‘[."]. so by Lemma 3, there exists
e & E such that op(e) = INSERT(z) and ¢ => o,

Let £ be such that ¢ = f 1,4 (possible since ¢ ¢
e”). =~del [f] by minimality of e”, and ins [f] by
Lemma 3; hence, x ¢ VIf]. Simce z ¢ Vie”], then
op(e”) is DELETE(x) or RECEIVE(a) for some =.
Hovever, if op(e”) = RECEIVE(m), thes x s V(e”] by
the code for RECEIVE (since ~del holds for all
predscessors of ¢”), s costradictios. Ve oconclude
that op(e”) = DELETE(x).

(=: Assume op(e"”) = DELETE(x) and ¢ = o',
x ¢ VIie"] by the oode for DELETE(z). By
restriction R2, there is an immediate predecessor b 4
of " such that x s view(f), By coaditioa V1,
there is an o s B such that ople) = INSERT(z) and o
= f. Thos, ins [e”] by Lemms 3, so lolx(o'). By
Lemms 4, dolx[o']. 0

We now show the correctness of our slgorithm:
Theorem: For all ¢’ s B, view(e’) = Vie'].

Proof: Suppose x s view(e'). By conditioa V1,
there exists ¢ —> o' ssch that op(e) = INSERT(x).
By Lemms 3, hu‘[o'l. By coaditios V2, for every
e* with op(e”) = DELETE(x), then o” fHe’. Henoe,
we can apply Lemmsa § to comclude -‘ox‘[o'l. s0o x 8
Vie'l.

Nov suppose x & V[e’]l. By Lemmes 2, ¢ — o'
and op(e) = INSERT(z) for some e¢ s E. BHence,
condition V1 holds for e’. Also, u:x[c'l holds by
Lemms 3. Lot op(e”) = DELETE(z). Since ~del [e’],
we conclude from Lemma 5 that o” /> e'. Thus,
condition V2 holds for e¢’, so x ¢ viev(e').

Vo comclude thst view(e’) = V{e’'l. D

6. Remarks aad Opea Problems

We have aot yet addressed the problem of
finding a good strategy for the mnodes to use in
deciding when and hov to communicate.

If each message can be received by only a
single process, then various strategies can Dde
imagined. At one extreme, 8 message transmission
from i to j could be attempted periodically for all
pairs 4. j, 1 ¥ j, resulting in a total of 8(N)
messsges to propagate information betveen all pairs
of nodes. On the other hand, given a spamning tree
in the metwork and a root, ome can propagate
information from every mode to every other using
oaly O(N) messages by first sending s wave of
messages up from the leaves to the zoot amd then
back down from the root to the leaves. However,
recovering from a metvork or mode failure requires
s special recovery procedure since the spanning
tree must be tobuilt; Ve lesve as an opesn problem
to find a robsst O(N)-message algoriths for
propagating data throsghout the system.

If & bdrosdcast facility is available, then
things are msck simpler, for each mode need only
broadosst s single message. There is still the
problem, bhowever, of hov often to do so. It is
olearly mot sufficient for a mode to broadcast oaly
when it has sev informatioa, for s 20de restarting
after a failure must have some means for being
brought wp—-to-date. Of sourse, varions protocols
oan be imagined to handle such situations, and we
leave that alsc as am opes prodlem.
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