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We construct an iterative algorithm for the solution of forward scattering problems
in two dimensions. The scheme is based on the combination of high-order quadrature
formulae, fast application of integral operators in Lippmann-Schwinger equations,
and the stabilized biconjugate gradient method (BI-CGSTAB). While the FFT-based
fast application of integral operators and the BI-CGSTAB for the solution of linear
systems are fairly standard, a large part of this paper is devoted to constructing a class
of high-order quadrature formulae applicable to a wide range of singular functions in
two and three dimensions; these are used to obtain rapidly convergent discretizations
of Lippmann-Schwinger equations. The performance of the algorithm is illustrated
with several numerical examples.
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1 Introduction

Forward scattering has been an active field of research in science, mathematics, and engi-
neering over the past several decades (see e.g. [3], [4]). The most straightforward method for
the solution of a forward scattering problem is to discretize the underlying PDEs directly,
replace the derivatives with finite differences, and solve numerically the resulting system of
linear algebraic equations. However, discretization of differential equations leads to matri-
ces with high condition numbers, with the attendant loss of accuracy, deterioration in the
performance of iterative methods, etc. Another approach is to convert the underlying PDEs
into integral equations of the second kind (normally referred to as the Lippmann-Schwinger
equation), discretize the latter via appropriate quadrature formulae, and deal numerically
with the resulting linear systems. This paper constructs a class of high-order quadrature
formulae applicable to the Lippmann-Schwinger equation in two and three dimensions.

1.1 Statement of the Problem

The forward scattering problem is the problem of determining the scattered field given the
parameters of the scattering structure and the incident field. In this section, we formulate
the two-dimensional forward scattering problem for the Helmholtz equation, and derive the
corresponding Lippmann-Schwinger equation.

The forward scattering problem we investigate arises from the time domain wave equation

∂2

∂2t
ψ(x, t) = c2(x) · ▽2ψ(x, t), (1)

where ψ(x, t) is the value of the scalar field at a point x at time t, and c(x) is the local speed
of wave propagation at a point x. In order to solve (1), we assume that

ψ(x, t) = ψk(x) e
i k c0 t, (2)

where k is a complex number with non-negative imaginary part, and c0 is the speed of wave
propagation outside of the scattering structure. Substituting (2) into (1), we obtain

(▽2 + k2)ψk(x) = k2 V (x)ψk(x), (3)

where
V (x) = 1 − (

c0
c(x)

)2. (4)

Equation (3) is the well-known Helmholtz equation, and the operator (▽2 + k2) is known
as the Helmholtz operator. For any point x outside the scattering object, c(x) = c0; therefore,
V (x) = 0 outside the scattering object. We represent the field ψk(x) at a point x as a sum
of two parts: the incident field ψin

k (x) and the scattered field ψscat
k (x), i.e.,

ψk(x) = ψin
k (x) + ψscat

k (x). (5)

The incident field satisfies the homogenous Helmholtz equation

(▽2 + k2)ψin
k (x) = 0, (6)

3



in some open region in R
2 containing the scatterer; the scattered field satisfies the Sommerfeld

radiation condition

lim
|x|→∞

√

|x| (∂ ψ
scat
k (x)

∂ |x| − i k ψscat
k (x)) = 0. (7)

Combining equations (3), (5), and (6), we obtain the equation for the scattered field

(▽2 + k2)ψscat
k (x) − k2 V (x)ψscat

k (x) = k2 V (x)ψin
k (x). (8)

In this paper, we view the equation (8) with ψscat
k satisfying the Sommerfeld condition (7)

as the principal formulation of the forward scattering problem. A standard approach to the
numerical solution of (8) is to convert (8) into the well-known Lippmann-Schwinger equation,
which is an integral equation of the second kind, as follows (see, for example, [5]).

Convolving (8) with a Green’s function for the equation

(▽2 + k2)Gk(x, y) = δ(x− y), (9)

we obtain

ψscat
k (x) − k2

∫

D

Gk(x, y)V (y)ψscat
k (y) dy = k2

∫

D

Gk(x, y)V (y)ψin
k (y) dy, (10)

which is an integral equation of the second kind; in (10) above, D denotes the region in space
where the scatterer is located. As is well-known, in two dimensions, the Green’s function
Gk(x, y) satisfying the condition (7) is

Gk(x, y) = − i

4
H

(1)
0 (k‖x− y‖), (11)

where H
(1)
0 (k‖x − y‖) is the Hankel function of the first kind of order zero. We will define

the operator L : L2(D) → L2(D) by the formula

L(ψ)(x) =

∫

D

Gk(x, y)V (y)ψ(y) dy, (12)

and observe that a large part of this paper is devoted to the construction of accurate dis-
cretizations of L.

1.2 Overview

A number of algorithms exist for the modeling of acoustic scattering; since we are interested
in frequency domain results, we have concentrated on frequency domain (as opposed to time-
domain) models. The usual approach to such problems is to convert the scattering problem
into the Lippmann-Schwinger equation, and solve the latter iteratively (integral equations of
the second kind being much more amenable to iterative techniques than the straightforward
discretizations of underlying partial differential equations (PDEs)). In addition, the use of
the Lippmann-Schwinger equation obviates the need to impose the radiation (Sommerfeld)
condition at the boundary of the grid, since the “background” Green’s function (11) imposes
the Sommerfeld condition automatically.
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Historically, there have been two problems associated with the numerical use of integral
equations in scattering calculations. First, the kernels of Lippmann-Schwinger equations
are dense, except when the background is extremely attenuating; since iterative techniques
require application of the matrix of the discretized integral operator to a sequence of re-
cursively generated vectors, the cost of the procedure is prohibitive, except for extremely
small-scale problems. This difficulty was overcome almost 40 years ago via the observa-
tion that the free-space Green’s function for the Helmholtz equation is translation invariant;
appropriately chosen discretizations of Lippmann-Schwinger equations result in Toeplitz ma-
trices, and the latter can be rapidly applied to arbitrary vectors via the FFT (Fast Fourier
Transform), resulting in algorithms with CPU time requirements proportional to N · log(N),
with N the number of nodes in the discretization of the problem. Various forms of this
approach have been widely used in electrical engineering and other fields, under the name
“k-space” methods; some of the existing codes are quite fast, even for discretizations involv-
ing hundreds of millions of nodes. However, the resulting solvers for the underlying PDEs
are usually not very accurate, due to the problem discussed in the following paragraph.

The second difficulty associated with numerical use of Lippmann-Schwinger equations
is due to the singular character of the Green’s function for the Helmholtz equation; in
two dimensions, the principal term of the singularity is of the form log(r), and in three
dimensions, it is of the form 1/r. As a result, kernels of Lippmann-Schwinger equations are
singular; the singularities are located on the diagonal, and in two dimensions are of the form

K(x, y) = log(|x− y|) + P (x, y) · log(|x− y|) +Q(x, y), (13)

with P,Q two smooth functions, and P (x, x) = 0 for all x ∈ R2; the corresponding form in
three dimensions is

K(x, y) =
1

|x− y| + P (x, y) · 1

|x− y| +Q(x, y). (14)

It is important to observe that in most cases, we do not have access to each of the functions
P,Q separately, but can only evaluate the whole kernel K given a pair of points (x, y). In
other words, standard integration techniques (such as product integration, etc.) can not be
used efficiently. The standard procedure in the literature (referred to as the “singularity
extraction”) is to subtract the principal singularity and treat it analytically, and apply the
trapezoidal quadrature rule to the remaining function. Since the latter is not smooth (having
infinite derivatives at x = y), the procedure converges slowly, normally behaving like a second
order scheme.

We introduce a class of quadrature formulae for functions of the form (13) in two di-
mensions and (14) in three dimensions. The approach is somewhat related to the Ewald
summation [6], and leads to quadratures that can be viewed as a version of the corrected
trapezoidal rule; it is easily combined with the FFT to obtain fast algorithms. While in
principle corrections of arbitrarily high order could be constructed, in practice both the
complexity of derivation and the number of corrections grow rapidly with the order. We
have designed corrections of orders 4, 6, 8, and 10; they require 1, 5, 13, and 25 corrected
nodes respectively.

The paper is organized as follows. In Section 2, we summarize several well-known math-
ematical facts to be used in the paper. In Section 3, we introduce analytical tools to be used
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in the construction of the algorithm. Section 4 describes the algorithm in detail, and contains
a complexity analysis. In Section 5, several numerical examples are used to illustrate the
performance of the algorithm. Finally, Section 6 contains generalizations and conclusions.

2 Analytical Preliminaries

In this section, we summarize several well-known mathematical facts to be used in the
sections below. All of these are either well known or easily derived from well-known results.

2.1 Notation

For an integer N ≥ 1, the two-dimensional discrete Fourier transform FN is a mapping
converting a two-dimensional complex sequence a = {aj1j2}, j1, j2 = −N, ..., N, into another
two-dimensional complex sequence A = {Ak1k2}, k1, k2 = −N, ..., N, defined by the formula

Ak1k2 =

N
∑

j1=−N

N
∑

j2=−N

aj1j2 e
− 2πi

(2N+1)
k1j1 e−

2πi

(2N+1)
k2j2 . (15)

It is easily verified that the inverse (FN)−1 of the mapping FN is given by the formula

(FN)−1(A)j1j2 = aj1j2 =
1

(2N + 1)2

N
∑

k1=−N

N
∑

k2=−N

Ak1k2 e
2πi

(2N+1)
k1j1 e

2πi

(2N+1)
k2j2, (16)

with j1 = −N, ..., N , j2 = −N, ..., N .
For a Helmholtz equation

∇2φ+ k2φ = 0 (17)

in two dimensions, the potential φ at a point x produced by a unit point source at x0 is
given by the formula

φ(x) = − i

4
H0(k‖x− x0‖), (18)

where k is a complex number such that Im(k) ≥ 0, and H0 is the Hankel function of the first
kind of order zero. The well-known Sommerfeld formula states that

H0(kr) =
1

π
·
∫ ∞

−∞

1√
k2 − λ2

· ei
√

k2−λ2x · eiλy dλ (19)

for any k ∈ C
+, r, x, y ≥ 0, and r =

√

x2 + y2 (see, for example, [9]).
Finally, we will need the identity

n
∑

j=0

fjgj = fn

n
∑

k=0

gk −
n−1
∑

j=0

(fj+1 − fj) · (
j

∑

k=0

gk), (20)

valid for two arbitrary finite sequences {fj}, j = 0, 1, 2, . . . , n,, {gj}, j = 0, 1, 2, . . . , n,. By
analogy with integration by parts, (20) is normally referred to as summation by parts; it is
easily verified by a substitution.
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2.2 High-Order Corrected Trapezoidal Quadrature Rules for Sin-
gular Functions in One Dimension

For a function f : [a, b] → R1 and integer n ≥ 2, the n-point trapezoidal rule Tn is defined
by the formula

Tn(f) = h

( n−1
∑

i=0

f(a+ ih) −
(f(a) + f(b)

2

)

)

, (21)

where

h =
b− a

n− 1
, (22)

and is widely used as an approximation to the integral
∫ b

a
f(x) dx. It is second order con-

vergent, as long as the second derivative of f is continuous on [a, b]. In other words, if
f ∈ C2[a, b], then

∫ b

a

f(x) dx = Tn(f) +O(h2). (23)

For any function f ∈ C2m+2[a, b] with integer m ≥ 1, the well-known Euler-Maclaurin
formula (see, for example, [1]) states that there exists a real number ξ with a < ξ < b, such
that

∫ b

a

f(x) dx = Tn(f) +
m

∑

l=1

h2lB2l

(2l)!
(f (2l−1)(b) − f (2l−1)(a)) − h2m+2B2m+2

(2m+ 2)!
f (2m+2)(ξ), (24)

where Bk, k = 0, 1, 2, ... denote the Bernoulli numbers (see [1]). It is easily seen from (24)
that for any function f ∈ Cm[a−mh, b+mh] with integer m ≥ 3, it is possible to construct
quadratures of the form

T n
βm(f) = Tn(f) + h

m−1
2

∑

k=−m−1
2

(f(b+ kh) − f(a+ kh))βm
k , (25)

where βm
k are coefficients such that

∫ b

a

f(x) dx = T n
βm(f) +O(hm+1), (26)

with h defined by (22). The quadrature T n
βm is referred to as the (m+ 1)th-order endpoint-

corrected trapezoidal rule; for any given k and m, where m ≥ 3, and is odd, the coefficient
βm

k can be obtained via a direct calculation (see [7]).
While (21) and (25) are widely used for the numerical integration of smooth functions,

their use for singular integrands tends to encounter difficulties (see, for example, [11]). In
[7], a class of quadrature formulae is constructed for approximating integrals of singular
functions of the form

f(x) = φ(x) s(x), (27)
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where φ ∈ Cm[−b−mh, b+mh] with m ≥ 3, and s is an integrable function on [−b, b] with a
singularity at zero. For integers n ≥ 1, p ≥ 1, and odd m ≥ 3, the quadrature Uτhβm for the
functions with separable singularities (i.e., functions defined by (27)) is given by the formula

Uτhβm(f) = T ′n
βm(f) +

p
∑

j=−p

τh
j φ(jh). (28)

In (28),

T ′n
βm(f) = h









n
∑

j=−n
j 6=0

f(jh) −
(

f(−b) + f(b)

2

)









+ h

m−1
2

∑

k=−m−1
2

(f(b+ kh) − f(−b+ kh))βm
k ,

(29)
where the coefficients βm

k can be obtained via direct calculation (see [7]), h = b
n
, and the

coefficients τh
j can be obtained by solving the system of linear equations

p
∑

j=−p

xi−1
j τh

j =

∫ b

−b

(xi−1s(x)) dx− T ′n
βm(xi−1s), (30)

with xj = jh, and i = 1, 2, . . . , 2p+ 1. The quadrature formula (28) is of order 2p+ 2.

Remark 2.1 While (21) is the standard trapezoidal rule, and (25) is the trapezoidal rule
with endpoints corrections, (28) is the trapezoidal rule with corrections at both endpoints
and a singular point inside the interval. Here, the singular point is the center point, so the
scheme is sometimes called a “center-corrected trapezoidal rule.” The coefficients τh

j are
called correction coefficients.

Remark 2.2 The only difference between T ′n
βm(f) and T n

βm(f) is that T ′n
βm(f) does not

contain the term h · f(0), which may become infinite for f of the form (27).

2.3 Toeplitz Convolution

This section introduces two-dimensional Toeplitz convolutions and a procedure for the cal-
culation of two-dimensional Toeplitz convolutions via the two-dimensional discrete Fourier
transform. The Toeplitz convolution a ∗ b of finite two-dimensional complex sequences
a = {aj1j2}, j1, j2 = −N, ..., N, and b = {bj1j2}, j1, j2 = −2N, ..., 2N, is defined by the
formula

(a ∗ b)k1k2 =
N

∑

j1=−N

N
∑

j2=−N

aj1j2bk1−j1, k2−j2, (31)

where k1, k2 = −N, ..., N . The well-known convolution theorem states that the Toeplitz
convolution a ∗ b is equal to the inverse Fourier transform of the product of the Fourier
transform of a′ and b, where a′ is a two-dimensional sequence obtained by padding the
two-dimensional sequence a with zeros. In other words,

(a ∗ b)k1k2 = (F2N)−1
(

F2N(a′) · F2N(b)
)

k1k2
, (32)

8



where k1, k2 = −N, ..., N , and the coefficients of the two-dimensional complex sequence
a′ = {a′i1i2

}, i1, i2 = −2N, ..., 2N are defined by the formulae

a′i1i2
= ai1i2 , (33)

when −N ≤ i1, i2 ≤ N , otherwise
a′i1i2

= 0. (34)

Remark 2.3 While direct calculation of Toeplitz convolution (31) leads to time cost of order
O(N4), which is prohibitive for large scale problems, application of FFT to the formula (32)
reduces the time cost to O(N2 · logN) (see, for example, [2]). In this paper, FFT is used for
the fast calculation of Toeplitz convolution.

3 Mathematical Apparatus

In this section, we introduce analytical tools to be used in the construction of the algorithms.

3.1 Endpoint Corrected Trapezoidal Quadrature Rules in Two Di-
mensions

This section can be viewed as the extension of results of Section 2.2 to two dimensions.
For a function f : [a, b] × [a, b] → R1 and integer n ≥ 2, the two-dimensional trapezoidal

rule T 2D
n is defined by the formula

T 2D
n (f) =

n−1
∑

i=0

n−1
∑

j=0

f(a+ ih, a+ jh) · h2 · βij , (35)

where

h =
b− a

n− 1
, (36)

and βij equals 1 in the interior of the square [a, b]× [a, b], equals 1
2

in the interior of the edge,
and equals 1

4
on the corners of the square.

Further, if f ∈ C2[a, b] × [a, b], then

∫ b

a

∫ b

a

f(x, y) dx dy = T 2D
n (f) +O(h2). (37)

The proof consists of a straightforward application of one-dimensional trapezoidal rule (21)
to both directions in two dimensions, and thus omitted.

The following Lemma provides the two-dimensional version of the Euler-Maclaurin for-
mula.
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Lemma 3.1 Suppose that a function f ∈ C2m+2[a, b]× [a, b], integers m ≥ 1, n ≥ 2 . Then,

∫ b

a

∫ b

a

f(x, y) dx dy = T 2D
n (f) +

i=n−1
∑

i=0

m
∑

l=1

h2l+1 ·B2l · βi

(2l)!
·

(

∂2l−1

∂x2l−1
f(b, a + ih) − ∂2l−1

∂x2l−1
f(a, a+ ih) − ∂2l−1

∂y2l−1
f(a+ ih, b) − ∂2l−1

∂y2l−1
f(a+ ih, a)

)

+
m

∑

l=1

m
∑

l′=1

h2l+2l′ ·B2l · B2l′

(2l!)(2l′!)
·
(

∂2l+2l′−2

∂x2l−1 ∂y2l′−1

(

f(b, b)+f(a, a)−f(a, b)−f(b, a)
)

)

+O(h2m+2),

(38)

where T 2D
n (f) is defined in (35), h is defined in (36),

βi =

{

1 0 < i < n− 1
1/2 i = 0 or i = n− 1

, (39)

and Bk, k = 0, 1, 2, ... denote the Bernoulli numbers.

Proof. The Euler-Maclaurin formula (24) can be rewritten as
∫ b

a

f(x) dx = Tn(f) +
m

∑

l=1

h2lB2l

(2l)!
(f (2l−1)(b) − f (2l−1)(a)) +O(h2m+2). (40)

Hence,
∫ b

a

∫ b

a

f(x, y) dx dy =

∫ b

a

(

n−1
∑

i=0

f(a+ ih, y) · βi +

m
∑

l=1

h2lB2l

(2l)!
(f (2l−1)(b) − f (2l−1)(a)) +O(h2m+2)

)

dy. (41)

The conclusion of the Lemma follows immediately from applying the formula (40) to the
integrals in (41). �

The following Lemma provides a (2m+ 2)th-order endpoint-corrected trapezoidal rule in
two dimensions.

Lemma 3.2 Suppose that a function f ∈ C2m+2[a, b] × [a, b] with integers m ≥ 1, n ≥ 2,
h = b−a

n−1
. Then,

∫ b

a

∫ b

a

f(x, y) dx dy = T 2D,n

β2m+1(f) +O(h2m+2), (42)

In (42),

T 2D,n

β2m+1(f) = T 2D
n (f) + h2

n−1
∑

i=0

m
∑

k=−m

(

β2m+1
k βi·

(

f(b+ kh, ih)+ f(ih, b+ kh)− f(a+ kh, ih)− f(ih, a+ kh)
)

)

+h2
m

∑

k=−m

m
∑

k′=−m

(

β2m+1
k β2m+1

k′ ·

(

f(a+ kh, a + k′h) + f(b+ kh, b+ k′h) − f(a+ kh, b+ k′h) − f(b+ kh, a+ k′h)
)

)

, (43)
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T 2D
n , β2m+1

k , and βi are defined by (35), (25) and (39).

Proof. It is easily observed from the formulae (24), (25) that

m
∑

l=1

h2l+1B2l

(2l!)
f (2l−1)(a) =

m
∑

k=−m

f(a+ kh) · β2m+1
k · h2. (44)

Therefore,

m
∑

k=−m

h2 · f(a+ kh, a+ ih) · β2m+1
k =

m
∑

l=1

h2l+1B2l

(2l!)

∂2l+1

∂x2l+1
f(a, a+ ih), (45)

and

m
∑

l=1

m
∑

l′=1

h2l+2l′ · B2l ·B2l′

(2l!)(2l′!)

(

∂2l+2l′−2

∂x2l−1 ∂y2l′−1
f(a, a)

)

=

m
∑

l′=1

h2l′B2l′

(2l′!)
·
(

m
∑

k=−m

h · β2m+1
k

∂2l′−1

∂y2l′−1
f(a+ kh, a)

)

=
m

∑

k=−m

h2β2m+1
k ·

(

m
∑

l′=1

h2l′−1B2l′

(2l′!)
· ∂

2l′−1

∂y2l′−1
f(a+ kh, a)

)

=

m
∑

k=−m

m
∑

k′=−m

h2 · β2m+1
k β2m+1

k′ f(a+ kh, a+ k′h). (46)

Now, (43) follows immediately from the combination of (45), (46). �

3.2 High-Order Center Corrected Trapezoidal Quadrature Rules
for the Singular Functions in Two Dimensions

The following Lemma provides an estimate of the difference between the integral and the
end-point corrected trapezoidal quadrature for functions of the form x2p+2 · log(x2 + y2).

Lemma 3.3 Suppose that n is a positive integer, a, h are two positive real numbers such
that h = a/n, and integers m, p are such that m ≥ p+ 1 ≥ 1. Then,

∫ a

−a

∫ a

−a

(x2p+2 · log(x2 + y2)) dx dy = T 2D,n

β2m+1(x
2p+2 · log(x2 + y2)) +O(h2p+4), (47)

with T 2D,n

β2m+1 defined by (43).

Proof. Here, we prove the case of p = 0 as an illustration; the proof for p > 0 is quite
similar. For simplicity, we will be denoting x2 · log(x2 + y2) by g(x, y). Then,

∂g(x, y)

∂y
=

2x2y

x2 + y2
, (48)
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∂3g(x, y)

∂y3
=

16x2y3

(x2 + y2)3 − 12x2y

(x2 + y2)2 , (49)

and
∂6g(x, y)

∂y6
= − 7680x2y6

(x2 + y2)6 +
11520x2y4

(x2 + y2)5 − 4320x2y2

(x2 + y2)4 +
240x2

(x2 + y2)3 . (50)

Replacing the derivatives in (24) with the appropriate finite differences, we rewrite (24) in
the form

∫ b

a

g(x) dx = Tn(g) +
1

12
h · (−g(b+ h) + g(a+ h) + g(b− h) − g(a− h))+

C1 · h4 · (g(3)(b) − g(3)(a)) − C2 · h6 · g(6)(ξ)

= T n
β3(g) + C1 · h4 · (g(3)(b) − g(3)(a)) + C2 · h6 · g(6)(ξ), (51)

where C1 and C2 are two constants independent of g, and ξ ∈ [a, b]. Therefore, for any
fixed x and g(x, y) = x2 · log(x2 + y2), the error ǫ(x) of the end-point corrected trapezoidal
quadrature in the y direction is

ǫ(x) =

∫ a

−a

g(x, y) dy − T n
β3(g) = C1 · h4

(

16x2a3

(x2 + a2)3
− 12x2a

(x2 + a2)2

)

+ C2 · h6 · g(6)(x, ξ). (52)

Summing up all the errors along the x axis, we obtain

ǫ =

∫ a

−a

∫ a

−a

(x2 · log(x2 + y2))dxdy − T 2D,n

β3 (x2 · log(x2 + y2)) ∼ 2 ·
n

∑

i=1

h · ǫ(ih)

≤ h ·
n

∑

i=1

(

C1 · h4

(

16(ih)2a3

((ih)2 + a2)3
− 12(ih)2a

((ih)2 + a2)2

)

+ h ·
n

∑

i=1

C2 · h6 · |g(6)(ξ)|max

≤ C1 h
4

∫ a

0

(

16x2a3

(x2 + a2)3
− 12x2a

(x2 + a2)2

)

dx+ C2 · h7

n
∑

i=1

240

(ih)4

∼ C1 · (3 − π) · h4 + C2 · h6 · log(h) ∼ O(h4). (53)

�

Theorem 3.4 below is an extension of the formula (28) to two dimensions. For an integer
p ≥ 0, it supplies a (2p + 4)th-order center-corrected quadrature formula on R

2 for the
functions of the form

f(x, y) = φ(x, y) · s(x, y), (54)

where φ : R2 → R, and

s(x, y) = log(x2 + y2) + P (x, y) · log(x2 + y2) +Q(x, y), (55)

with P,Q two smooth functions, and P (0, 0) = 0. Suppose that n, m are positive integers,
and a, h are two positive real numbers such that h = a/n. We define T ′2D,n

β2m+1(f) by the

12



formula

T ′2D,n

β2m+1(f) =
∑

(i,j)∈M

f(ih, jh) · h2 · βij + h2
n

∑

i=−n

m
∑

k=−m

(

β2m+1
k βi·

(f(a+ kh, ih) + f(ih, a+ kh) − f(−a + kh, ih) − f(ih,−a+ kh))
)

+h2

m
∑

k=−m

m
∑

k′=−m

(

β2m+1
k β2m+1

k′ ·

(f(−a+ kh,−a + k′h) + f(a+ kh, a + k′h) − f(−a+ kh, a + k′h) − f(a+ kh,−a + k′h))
)

,

(56)

where
M = {i, j ∈ Z : |i| ≤ n, |j| ≤ n, (i, j) 6= (0, 0)}, (57)

βi =

{

1 |i| < n
1/2 |i| = n

; (58)

in (56), coefficients βij equal 1 in the interior of the square [−a, a] × [−a, a], equal 1
2

in the
interior of the edge, and equal 1

4
on the corners of the square, and β2m+1

k are defined in (25).

Theorem 3.4 Suppose that φ ∈ C2p+2(R2) with p ≥ 0, integer m ≥ p+1, and s is a singular
function on R2 with a logarithmic singularity at (0, 0), i.e., of the form (55). Suppose further
that

U2D
τhβ2m+1(φ · s) = T ′2D,n

β2m+1(φ · s) +
∑

(i,j)∈W

τh
ij φ(ih, jh), (59)

where T ′2D,n

β2m+1(φ · s) is defined by the formula (56),

W = {i, j ∈ Z : |i+ j| ≤ p and |i− j| ≤ p}, (60)

and the coefficients τh
ij in (59) satisfy the system of linear equations

∑

(i,j)∈W

xi′−1
i yj′−1

j τh
ij =

∫ a

−a

∫ a

−a

(xi′−1yj′−1s(x, y)) dx dy − T ′2D,n

β2m+1(x
i′−1yj′−1s), (61)

with xi = ih, yj = jh, and (i′, j′) ∈ H, where H = {i′, j′,∈ Z : i′ ≥ 1, j′ ≥ 1, i′+j′ ≤ 2p+2}.
Then,

∫ a

−a

∫ a

−a

(φ(x, y) · s(x, y)) dx dy = U2D
τhβ2m+1(φ · s) +O(h2p+4). (62)

Proof. Applying the Taylor expansion to the function φ(x, y) at the point (0, 0) we have

φ(x, y) = P (x, y) +R(x, y), (63)

where

P (x, y) =

2p+1
∑

j=0

j
∑

i=0

1

j!

(

j

i

)

xiyj−i ∂j

∂xi∂yj−i
φ(x, y)|x=0, y=0 , (64)

13



and

R(x, y) =
1

(2p+ 2)!

2p+2
∑

i=0

(

2p+ 2

i

)

xiy2p+2−i ∂2p+2

∂xi∂y2p+2−i
φ(x, y)|x=ξ1, y=ξ2 , (65)

where ξ1, ξ2 ∈ [−a, a] × [−a, a]. Thus,

|
∫ a

−a

∫ a

−a

(φ(x, y) · s(x, y)) dx dy − U2D
τhβ2m+1(φ · s)|

6 |
∫ a

−a

∫ a

−a

(P (x, y) · s(x, y)) dx dy − U2D
τhβ2m+1(P · s)|+

|
∫ a

−a

∫ a

−a

(R(x, y) · s(x, y)) dx dy − U2D
τhβ2m+1(R · s)|. (66)

Now, we make the following three observations. Due to (61),

∫ a

−a

∫ a

−a

(P (x, y) · s(x, y)) dx dy − U2D
τhβ2m+1(P · s) = 0, (67)

and due to (59),

|
∫ a

−a

∫ a

−a

(R(x, y) · s(x, y)) dx dy − U2D
τhβ2m+1(R · s)|

6 |
∫ a

−a

∫ a

−a

(R(x, y) · s(x, y)) dx dy − T ′2D,n

β2m+1(R · s)| + |
∑

(i,j)∈W

τh
ij R(ih, jh)|. (68)

Due to formulae (47) and (61), it is obvious that

|
∫ a

−a

∫ a

−a

(R(x, y) · s(x, y)) dx dy − T ′2D,n

β2m+1(R · s)| ∼ O(h2p+4),

(69)

and the coefficients τh
ij are of the order h2, hence,

|
∑

(i,j)∈W

τh
ij R(ih, jh)| ∼ O(h2p+4). (70)

Finally, the conclusion of the Lemma follows from the combination of (66) – (70). �

3.3 High-Order Center Corrected Trapezoidal Quadrature Rules
for the Green’s Function for the Helmholtz equation

In this section, we prove Theorem 3.10, which is the principal analytical tool of this paper.
Theorem 3.10 describes the 10th-order center-corrected trapezoidal quadrature formulae for
the Hankel function. It can be viewed as a special case of Theorem 3.4 with p = 3, and the
singular function s the Hankel function H0.
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In the remainder of this paper, we will be using the following notation. For any k ∈ C+

and h > 0, we will define the complex numbers D0, D1, D2, D3, D4, D5, via the formulae

D0 =

∫ ∞

−∞

∫ ∞

−∞
H

(1)
0 (kr) dx dy −

∑

(p,q)6=(0,0)

H
(1)
0 (k

√

(ph)2 + (qh)2) · h2, (71)

D1 =

∫ ∞

−∞

∫ ∞

−∞
H

(1)
0 (kr)x2 dx dy −

∑

(p,q)6=(0,0)

H
(1)
0 (k

√

(ph)2 + (qh)2) · (ph)2 · h2, (72)

D2 =

∫ ∞

−∞

∫ ∞

−∞
H

(1)
0 (kr)x4 dx dy −

∑

(p,q)6=(0,0)

H
(1)
0 (k

√

(ph)2 + (qh)2) · (ph)4 · h2, (73)

D3 =

∫ ∞

−∞

∫ ∞

−∞
H

(1)
0 (kr)x2y2 dx dy −

∑

(p,q)6=(0,0)

H
(1)
0 (k

√

(ph)2 + (qh)2) · (ph)2(qh)2 · h2, (74)

D4 =

∫ ∞

−∞

∫ ∞

−∞
H

(1)
0 (kr)x6 dx dy −

∑

(p,q)6=(0,0)

H
(1)
0 (k

√

(ph)2 + (qh)2) · (ph)6 · h2, (75)

D5 =

∫ ∞

−∞

∫ ∞

−∞
H

(1)
0 (kr)x4y2 dx dy −

∑

(p,q)6=(0,0)

H
(1)
0 (k

√

(ph)2 + (qh)2) · (ph)4(qh)2 · h2. (76)

The following Lemma is a simple consequence of the Sommerfeld formula (19).

Lemma 3.5 For any k ∈ C
+, r, x, y ≥ 0, and r =

√

x2 + y2,

H0(kr) =
1

π
·
∫ ∞

−∞

1√
k2 − λ2

· ei·
√

2
2
·(
√

k2−λ2−λ)·x · ei·
√

2
2
·(
√

k2−λ2+λ)·y dλ, (77)

where r2 = x2 + y2, x, y ≥ 0.

The following two technical lemmas follow immediately from the Sommerfeld formula (19).

Lemma 3.6 For any k ∈ C
+, and a ≥ 0,

∫ a

−a

∫ a

−a

H0(kr) dx dy =
4

π
·
∫ ∞

−∞

1√
k2 − λ2

·

ei·
√

2
2
·(
√

k2−λ2−λ)·a − 1

i ·
√

2
2
· (
√
k2 − λ2 − λ)

· ei·
√

2
2
·(
√

k2−λ2+λ)·a − 1

i ·
√

2
2
· (
√
k2 − λ2 + λ)

dλ, (78)

with r =
√

x2 + y2.

Proof. Substituting (77) into the left side of (78), and changing the order of integration,
we obtain

∫ a

−a

∫ a

−a

H0(kr) dx dy = 4

∫ a

0

∫ a

0

H0(kr) dx dy

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

·
∫ a

0

ei·
√

2
2
·(
√

k2−λ2−λ)·x dx ·
∫ a

0

ei·
√

2
2
·(
√

k2−λ2+λ)·y dy

=
4

π
·
∫ ∞

−∞

1√
k2 − λ2

· ei·
√

2
2
·(
√

k2−λ2−λ)·a − 1

i ·
√

2
2
· (
√
k2 − λ2 − λ)

· ei·
√

2
2
·(
√

k2−λ2+λ)·a − 1

i ·
√

2
2
· (
√
k2 − λ2 + λ)

dλ. (79)
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Lemma 3.7 For any k ∈ C
+, integer n ≥ 1, and a > 0,

n
∑

p=−n

n
∑

q=−n

H0(k
√

(ph)2 + (qh)2) · h2 · βpq (80)

=
4

π

∫ ∞

−∞

1√
k2 − λ2

· h2 ·
(

ei·
√

2
2
·(
√

k2−λ2−λ)·a − 1

ei·
√

2
2
·(
√

k2−λ2−λ)·h − 1
− 1

2
+

1

2
ei·

√
2

2
·(
√

k2−λ2−λ)·a
)

·
(

ei·
√

2
2
·(
√

k2−λ2+λ)·a − 1

ei·
√

2
2
·(
√

k2−λ2+λ)·h − 1
− 1

2
+

1

2
ei·

√
2

2
·(
√

k2−λ2+λ)·a
)

dλ, (81)

with
h = a/n, (82)

and βpq equals 1 in the interior of the (2n+ 1)× (2n+ 1) square, equals 1
2

in the interior of
the edge, and equals 1

4
on the corners of the square.

Proof. The trapezoidal sum (84) over the domain [−a, a] × [−a, a] is equal to four times
the trapezoidal sum over the domain [0, a] × [0, a]. In other words,

n
∑

p=−n

n
∑

q=−n

H
(1)
0 (k

√

(ph)2 + (qh)2) · h2 · βpq

= 4 ·
n

∑

p=0

n
∑

q=0

H
(1)
0 (k

√

(ph)2 + (qh)2) · h2 · β ′
pq, (83)

where β ′
pq equals 1 in the interior of the (n+1)×(n+1) square, equals 1

2
in the interior of the

edge, and equals 1
4

on the corners of the square. Substituting (77) into (83), and exchanging
the order of integration and summation, we obtain

n
∑

p=−n

n
∑

q=−n

H0(k
√

(ph)2 + (qh)2) · h2 · βpq (84)

4

π

∫ ∞

−∞

dλ√
k2 − λ2

· h2 ·
( n

∑

p=0

ei·
√

2
2
·(
√

k2−λ2−λ)·p·h − 1 + ei·
√

2
2
·(
√

k2−λ2−λ)·a

2

)

·
( n

∑

q=0

ei·
√

2
2
·(
√

k2−λ2+λ)·q·h − 1 + ei·
√

2
2
·(
√

k2−λ2+λ)·a

2

)

(85)

=
4

π

∫ ∞

−∞

1√
k2 − λ2

· h2 ·
(

ei·
√

2
2
·(
√

k2−λ2−λ)·a − 1

ei·
√

2
2
·(
√

k2−λ2−λ)·h − 1
− 1

2
+

1

2
ei·

√
2

2
·(
√

k2−λ2−λ)·a
)

·
(

ei·
√

2
2
·(
√

k2−λ2+λ)·a − 1

ei·
√

2
2
·(
√

k2−λ2+λ)·h − 1
− 1

2
+

1

2
ei·

√
2

2
·(
√

k2−λ2+λ)·a
)

dλ. (86)

. �
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Remark 3.1 As a → ∞, the exponential terms e(i·
√

2
2
·(
√

k2−λ2±λ)·a) in (78) and (81) tend to
zero; this fact will be used in Lemma 3.8 below.

The following lemma provides an analytical form for the difference between the inte-
gral (78) and the trapezoidal sum (81). Its proof consists of combining Remark 3.1 with
(78), (81).

Lemma 3.8 For any k ∈ C
+ and h > 0,

∫ ∞

−∞

∫ ∞

−∞
H

(1)
0 (kr) dx dy −

∞
∑

p=−∞

∞
∑

q=−∞
H

(1)
0 (k

√

(ph)2 + (qh)2) · h2

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

·
(

1

(iα1)(iα2)
− h2

4

eiα1h + 1

eiα1h − 1

eiα2h + 1

eiα2h − 1

)

, (87)

where
r =

√

x2 + y2, (88)

α1 =

√
2

2
(
√
k2 − λ2 − λ), α2 =

√
2

2
(
√
k2 − λ2 + λ). (89)

The following Lemma follows immediately from Lemma 3.8. It supplies an analytical
form for the difference
∫ ∞

−∞

∫ ∞

−∞

(

xi−1yj−1H0(k
√

x2 + y2)
)

dx dy−
∑

(p,q)6=(0,0)

(

(ph)i−1(qh)j−1H0(k
√

(ph)2 + (qh)2)
)

·h2,

(90)
with i = 1, j = 1.

Remark 3.2 (90) is the right hand side of the equation (61), and thus is directly used in
the calculation of coefficients τh

ij. Direct numerical subtraction of the integral and the sum in
(90) leads to loss of accuracy because of cancellation errors, especially when i, j are relatively
large. Lemma 3.9 below and Lemmas 6.1 – 6.5 in Appendix A, provide analytical formulae
for (90) with (i, j) = {(1, 1), (3, 1), (5, 1), (3, 3), (7, 1), (5, 3)}, i.e., D0 – D5 defined by (71) –
(76), so that cancellation errors are reduced.

Lemma 3.9 For any k ∈ C
+ and h > 0,

D0 =

∫ ∞

−∞

∫ ∞

−∞
H

(1)
0 (kr) dx dy −

∑

(p,q)6=(0,0)

H
(1)
0 (k

√

(ph)2 + (qh)2) · h2

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

·
(

1

(iα1)(iα2)
− h2

2
· eiα1h + eiα2h

(eiα1h − 1)(eiα2h − 1)

)

(91)

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

·
(λ2

4
− k2

24
)h2 + z1 + z2 + i

√

1
2
λh(y1 − y2) + y1y2

(iα1)(iα2)(1 + x1)(1 + x2)
, (92)

where the complex numbers x1, x2, y1, y2, z1, z2 are defined by the formulae

x1 =
eiα1h − 1

iα1h
− 1 =

∞
∑

n=1

(iα1h)
n

(n+ 1)!
, x2 =

eiα2h − 1

iα2h
− 1 =

∞
∑

n=1

(iα2h)
n

(n + 1)!
, (93)
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y1 = x1 −
iα1h

2
=

∞
∑

n=2

(iα1h)
n

(n+ 1)!
, y2 = x2 −

iα2h

2
=

∞
∑

n=2

(iα2h)
n

(n+ 1)!
, (94)

z1 = y1 −
(iα1h)

2

6
=

∞
∑

n=3

(iα1h)
n

(n+ 1)!
, z2 = y2 −

(iα2h)
2

6
=

∞
∑

n=3

(iα2h)
n

(n+ 1)!
, (95)

and r, α1, and α2 are defined by (88), (89).

Proof. Substituting (77) into
∑

(p,q)6=(0,0)

H
(1)
0 (k

√

(ph)2 + (qh)2) · h2, (96)

and exchanging the order of integration and summation, we obtain
∑

(p,q)6=(0,0)

H
(1)
0 (k

√

(ph)2 + (qh)2) · h2

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

·
(

h2

4

eiα1h + 1

eiα1h − 1

eiα2h + 1

eiα2h − 1
− h2

4

)

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

· h
2

2
· eiα1h + eiα2h

(eiα1h − 1)(eiα2h − 1)
. (97)

Now, (91) follows immediately from the combination of (97), (78), and Remark 3.1. Substi-
tuting (93) into (91), we obtain

1

(iα1)(iα2)
− h2

2
· eiα1h + eiα2h

(eiα1h − 1)(eiα2h − 1)

=
1

(iα1)(iα2)
− 1

2
· 2 + iα1h(1 + x1) + iα2h(1 + x2)

(iα1)(iα2)(1 + x1)(1 + x2)

=
x1 + x2 + x1x2 − 1

2
iα1h(1 + x1) − 1

2
iα1h(1 + x1)

(iα1)(iα2)(1 + x1)(1 + x2)
. (98)

Finally, (92) follows from the combination of (93), (94), (95) and (98). �

Remark 3.3 Introducing the notation z = λ
k
, we rewrite D0 in the form

D0 =

∫ ∞

−∞

∫ ∞

−∞
H

(1)
0 (kr) dx dy −

∑

(p,q)6=(0,0)

H
(1)
0 (k

√

(ph)2 + (qh)2) · h2

=
4h2

π

∫ ∞

−∞

d z√
1 − z2

·
(

1

(z2 − 0.5) · (kh)2
− 1

2
· ei

√
2

2
(
√

1−z2−z)kh + ei
√

2
2

(
√

1−z2+z)kh

(ei
√

2
2

(
√

1−z2−z)kh − 1)(ei
√

2
2

(
√

1−z2+z)kh − 1)

)

.

(99)

Thus, D0 is entirely determined by k and h, and is of the form h2 · f(k · h). Similarly, D1 is
of the form h4 · f(k · h); D2 and D3 are of the form h6 · f(k · h); D4 and D5 are of the form
h8 · f(k · h). In other words, except for the multiplicative factors (h2,h4, h6, or h8), D0 – D5

only depend on the product k · h.
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Remark 3.4 Even when Lemmas 6.1 – 6.5 are used, a certain loss of accuracy in the cal-
culation of D1 – D5 is encountered (see Remark 3.2 above). Thus, evaluating D0 in double
precision, one obtains roughly 13 digits; for D1 one gets 9 digits, and D2 D3 D4 D5 yield
even fewer digits.

To avoid this difficulty, we utilized extended (real *32) precision to precompute the
coefficients D0 – D5 for values of kh at appropriately chosen nodes on the boundary of the
square Ω = [0, 1]×[0, 1] in the complex plane, and used Lagrange interpolation to evaluate D0

– D5 for arbitrary points in Ω to 13 digits (see [8] for a detailed description of the technique).
Thus, in all of our numerical experiments reported in Section 5 below, the coefficients D0 –
D5 were obtained by interpolation, rather than computed “from scratch”.

Now, we are ready to formulate Theorem 3.10, which is the principal analytical tool of
this paper (together with Lemmas 6.6, 6.7, 6.8). Theorem 3.10 describes the 10th-order
center-corrected quadrature formula for the Green’s function for the Helmholtz equation in
two dimensions; this theorem is a special case of the high-order center-corrected trapezoidal
rule for singular functions in two dimensions (see Theorem 3.4) with p = 3, and s(x, y) =

H
(1)
0 (k

√

x2 + y2). The 4th-order, 6th-order, and 8th-order center-corrected quadratures are
similar and listed in Appendix B (see Lemma 6.6, 6.7 and 6.8). All the proofs are quite
similar to that of Theorem 3.4, and are omitted.

Theorem 3.10 Suppose that n ≥ 1 is an integer, and a, h are two positive real numbers
such that h = a/n. Suppose further that φ : R2 → C is a function such that φ ∈ c8(R× R),
and that φ is zero outside the square [−a, a] × [−a, a]. Then, for any k ∈ C

+,
∫ a

−a

∫ a

−a

φ(x, y) ·H0(k
√

x2 + y2) dx dy = Uτh(φ ·H0) +O(h10). (100)

In (100),

Uτh(φ ·H0) = T ′2D
(φ ·H0) +

∑

p,q∈S

τh
pqφ(ph, qh), (101)

where
S = {p, q ∈ Z : |p+ q| ≤ 3 and |p− q| ≤ 3}, (102)

T ′2D
(φ ·H0) =

∑

(p,q)6=(0,0)

(

φ(ph, qh) ·H(1)
0 (k

√

(ph)2 + (qh)2)
)

· h2, (103)

and

τh
00 = D0 −

49

18

D1

h2
+

7

9

D2

h4
+

3

2

D3

h4
− 1

18

D4

h6
− 1

2

D5

h6
, (104)

τh
±10 = τh

0±1 =
3

4

D1

h2
− 13

48

D2

h4
− 19

24

D3

h4
+

1

48

D4

h6
+

7

24

D5

h6
, (105)

τh
±20 = τh

0±2 = − 3

40

D1

h2
+

1

12

D2

h4
+

1

24

D3

h4
− 1

120

D4

h6
− 1

24

D5

h6
, (106)

τh
±30 = τh

0±3 =
1

180

D1

h2
− 1

144

D2

h4
+

1

720

D4

h6
, (107)

τh
±1±1 =

5

12

D3

h4
− 1

6

D5

h6
, (108)
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Figure 1: The 25 correction nodes

τh
±1±2 = τh

±2±1 = − 1

48

D3

h4
+

1

48

D5

h6
. (109)

Remark 3.5 For simplicity, we assume here the function φ to be zero outside the square
[−a, a]×[−a, a]. Thus, the endpoint corrected trapezoidal rule T ′2D,n

β2m+1(φ·H0) in Theorem 3.4

reduces to the standard trapezoidal rule T ′2D(φ · H0), and the integral and the sum on the
square [−a, a] × [−a, a] are identical to those in R2. This simplification allows the direct
use of the analytical formulae for D0 – D5 (see Lemma 3.9 above and Lemmas 6.1 – 6.5 in
Appendix A).

Remark 3.6 Combining Remark 3.3 with the definitions (104)–(109), we observe that each
of the coefficients τh

pq in (104)–(109) has the form h2 · f(k ·h); we will refer to the coefficients
τh
pq as correction coefficients.

Remark 3.7 The set S defined in (102) contains 25 pairs of integers (p, q); in other words,
corrections at 25 points around the singularity are required to construct a 10th-order quadra-
ture formula (see Figure 1). In general, for any integer p ≥ 0, 2p2 + 2p+ 1 correction nodes
are needed to obtain a quadrature of order 2p+ 4.

3.4 Fast Numerical Application of Discretized Lippmann-Schwinger

Operators

In this section, we combine the 10th-order quadrature formula for the integral (100) with the
FFT to obtain a fast procedure for the application of discretizations of the operator (12).
We will denote by D the square [−a, a] × [−a, a] in R2.

Suppose that N ≥ 1 is an integer, h is a positive real number, and S is a set defined
in (102). Suppose further that the coefficients τh

i1i2
are defined in (104)–(109). Then, we

define a two-dimensional complex sequence H = {Hi1i2}, i1, i2 = −2N, ..., 2N, as follows:

Hi1i2 = H0(k
√

(i1h)2 + (i2h)2) + τh
i1i2
/h2, (110)
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when (i1, i2) ∈ S and (i1, i2) 6= (0, 0);

H00 = τh
00/h

2, (111)

and
Hi1i2 = H0(k

√

(i1h)2 + (i2h)2), (112)

otherwise. We define a complex sequence Φ = {Φi1i2}, i1, i2 = −N, ..., N, to be the two-
dimensional sequence defined by the formula

Φi1i2 = φ(i1h, i2h), (113)

where φ : R2 → C is a two-dimensional c8-function which is zero outside D.

Lemma 3.11 Suppose that the integers n, l1, l2 are such that n ≥ 1, −n ≤ l1 ≤ n, −n ≤ l2 ≤
n, and that the real numbers a, x, y are such that a > 0, −a ≤ x ≤ a, −a ≤ y ≤ a. Suppose
further that φ : R2 → C is a c8-function which is zero outside the square [−a, a] × [−a, a].
Then for any k ∈ C

+,
∫ a

−a

∫ a

−a

φ(x′, y′) ·H(1)
0 (k

√

(x− x′)2 + (y − y′)2) dx′ dy′

=
∑

−n≤i1≤n

∑

−n≤i2≤n

Φi1i2 ·H(l1−i1)(l2−i2) +O(h10), (114)

where h = a/n, x = l1h, y = l2h, the two-dimensional sequence Φ = {Φi1i2}, i1, i2 = −n, ..., n
is defined in (113), and the two-dimensional sequence H = {Hj1j2}, j1, j2 = −2n, ..., 2n is
defined in (110) – (112).

Proof. Due to (100), (101),
∫ a

−a

φ(x′, y′) ·H(1)
0 (k

√

(x− x′)2 + (y − y′)2) dx′ dy′

=
∑

(i1,i2)∈I′

φ(i1h, i2h) ·H(1)
0 (k

√

(l1h− i1h)2 + (l2h− i2h)2) · h2

+
∑

(p,q)∈S

τh
pq φ(l1h+ ph, l2h + qh) +O(h10), (115)

where
I ′ = {i1, i2 ∈ Z : |i1| ≤ n, |i2| ≤ n, (i1, i2) 6= (l1, l2)}, (116)

and S is defined in (102). Now, (114) follows immediately from the combination of (115)
and the definitions in (110) – (113). �

Remark 3.8 Obviously, (114) is the Toeplitz convolution of the two-dimensional sequences
Φ, H , and as such, it can be rapidly calculated via the FFT (see Section 2.3 above). Thus,

∑

−n≤i1≤n

∑

−n≤i2≤n

Φi1i2 ·H(l1−i1)(l2−i2) = (F2n)
−1(F2n(Φ′) · F2n(H)

)

l1l2
, (117)
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where −n ≤ l1 ≤ n, −n ≤ l2 ≤ n, and the two-dimensional sequence Φ′ = {Φ′
ij}, i, j =

−2n, ..., 2n, is defined by

Φ′
ij =

{

Φij if |i| ≤ n and |j| ≤ n
0 if |i| > n or |j| > n

. (118)

Remark 3.9 For any point x outside the square [−a, a] × [−a, a], integral (12) is approx-
imated via the standard trapezoidal rule. This approximation is 10th-order convergent, as
long as φ ∈ c10(R2) .

4 Description of the Procedure

This section describes the algorithm of the present paper in some detail. We start with an
informal description, follow with a more detailed one, and finish with a complexity analysis.

4.1 Informal Description of the Algorithm

Below, we describe an FFT-based 10th-order iterative algorithm for the solution of the
Lippmann-Schwinger equation

ψ(x) − k2

∫

D

Gk(x, y)V (y)ψ(y) dy = k2

∫

D

Gk(x, y)V (y)φ(y) dy (119)

in two dimensions, where D = [−a, a]× [−a, a], Gk is the Green’s function for the Helmholtz

equation in two dimension, i.e., Gk(x, y) = − i
4
· H(1)

0 (k‖x − y‖), and V (x) denotes the
potential at a point x. Here, ψ(x) and φ(x) are the scattered and the incident fields at a
point x, respectively.

As discussed in Remark 3.9, once the scattered field ψ in the domain D is known, the
scattered field ψ outside D can be calculated via the standard trapezoidal rule applied to
(119). Therefore, we focus on obtaining the solution of (119) for x ∈ D. Obviously, (119)
can be written as the linear system

(1− A)ψ = Aφ, (120)

where ψ is the unknown scattered field in D, φ is the given incident field in D, 1 is the
identity operator, and A is the integral operator in (119). As discussed in Section 3, we
use (114) to approximate the integral operator A on the functions ψ, φ. With the help of
FFT (see Remark 3.8), we apply the discretized version of A rapidly to arbitrary vectors, and
solve the linear system (120) iteratively. We use one of the most popular iterative solvers,
BI-CGSTAB (the stabilized bi-conjugate gradient method) (see [10], [12]).

4.2 Detailed Description of the Algorithm

Comment [Choose principal parameters.]
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Set the size of the scattering structure to [−a, a] × [−a, a].
Set the initial position of a point source to (x0, y0) to generate the incident field.
Choose precision ǫ to be achieved for the iterative solver.
Choose an integer n; set h = a

n
; set the number of nodes discretizing a side of the square

to 2n+ 1, so that the total number of nodes in the discretization is N = (2n+ 1)2.
Choose the wave number k for the incident and the scattered fields.
Construct a two-dimensional sequence {Vij}, i, j = −n, ..., n via the formula Vij =

V (ih, jh).

Stage 1

Comment [Construct the values of the the Green’s function.]

For the user-specified h and k, calculate the correction coefficients D0, D1, D2, D3, D4, D5

in (71)–(76) via interpolation (see Remark 3.4).
Construct the two-dimensional sequence H via the formulae (110) – (112) on the square

[−2a, 2a] × [−2a, 2a], and calculate its Fourier transform using the two-dimensional FFT.

Stage 2

Comment [Construct the right hand side of the linear system (120).]

For a point source (x0, y0), construct a two-dimensional sequence Φ = {Φij}, i, j =
−n, ..., n for the discretized incident field on the domain [−a, a]×[−a, a] via the formula (113).
Construct the two-dimensional sequence f = {Φij · Vij}, i, j = −n, ..., n.

As in Remark 3.8, use the two-dimensional FFT to calculate the Toeplitz convolution of
the sequences H and f .

Stage 3

Comment [Solve the linear system using iterative solvers.]

Use the iterative solver BI-CGSTAB to solve the linear system (1 − A)ψ = Aφ to the
predetermined precision ǫ. The multiplication Aψ is done via the combination of FFT and
the Toeplitz convolution of the two-dimensional sequences H and g, where g = {Ψij · Vij},
i, j = −n, · · · , n with Ψij = ψ(ih, jh) (see Remark 3.8).

The solution is the scattered field at the N discretization points in the square [−a, a] ×
[−a, a].

Stage 4

Comment [Calculate the scattered field at any point in the two-dimensional plane.]

Use interpolation to obtain the scattered field at any arbitrary point in the square [−a, a]×
[−a, a], based on the scattered field at the N discretization points. As in Remark 3.9, apply
the trapezoidal rule to (119) to obtain the scattered field at any arbitrary point outside the
square [−a, a] × [−a, a].
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4.3 Complexity Analysis

A brief analysis of the complexity of the algorithm is given below.
In stage 1, the construction of the two-dimensional sequence H costs O(N), where N is

the total number of the discretization points on the square [−a, a]×[−a, a], i.e., N = (2n+1)2.
The two-dimensional FFT costs O(N log(N)). Thus, the CPU time cost of the stage 1 is of
the order O(N log(N)).

In stage 2, the construction of the two dimensional sequences Φ, f costs O(N), and the
two-dimensional FFT costs O(N log(N)). Thus, the CPU time cost of the stage 2 is of order
O(N log(N)).

The CPU time cost of the stage 3 is of order O(Niter · N log(N)), where Niter is the
number of iterations required by the iterative solver to get the pre-determined precision ǫ.

In stage 4, the CPU time cost of interpolating the field at any point in [−a, a] × [−a, a]
O(N).

Summing up the CPU times above, we obtain the time estimate for the algorithm

T = α(Niter ·N log(N)) + β ·N + γ, (121)

where N is the total number of discretization points, Niter is the number of iterations required
by the iterative solvers to reach the precision ǫ, and the coefficients α, β, γ are determined
by the computer system, implementation, etc.

The storage requirements of the algorithm are determined by the total number of dis-
cretization points N and the number of iterations K performed before restarting the iterative
solvers, and are of the form

S = O(K ·N). (122)

5 Numerical Examples

The algorithm of Section 4 has been implemented in FORTRAN 77 in double precision.
In this section, we illustrate the performance of the scheme as applied to two scattering
objects: a Gaussian and a crude model of the human skull. The experiments were carried
out on a 2.8 GHz Pentium D desktop with 2 Gb of RAM and an L2 cache of 1 Mb. The
calculations reported in Tables 1 and 3 were carried out with a requested accuracy of 10−13;
the calculations reported in Tables 2 and 4 were carried out with a requested accuracy of
10−9. We restarted the BI-CGSTAB every 5 steps.

Tables 1 - 4 illustrate the numerical behavior of the scattered field at arbitrary far-field
points, generated by the potential V defined in (3); the incident field is produced by a single
point source. In Tables 1 and 2, we set the potential V (x, y) = e−40(x2+y2). Tables 3 and 4
illustrate the numerical behavior of the scattered field, generated by a model of the human
skull, as shown in Figures 2 and 3. The headings of the Tables are as follows:

k is the wave number defined in (2);
the computational grid is N ×N for a total of N2 discretization points;
the computational grid is sizeobj wavelengths × sizeobj wavelengths;
Nλ is the number of discretization points per wavelength;
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Figure 2: The human skull model
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Figure 3: The human skull model viewed from the top

Table 1: 10th order convergence of the algorithm for Gaussian objects
k N sizeobj Nλ Erel Niter tCPU

25 50 8λ 6.28 6.33E-06 16 1.2E-01
25 100 8λ 12.6 6.63E-09 16 5.9E-01
25 200 8λ 25.1 6.04E-12 16 2.6E+00
25 400 8λ 50.2 7.25E-13 16 1.1E+01
25 800 8λ 100 6.32E-13 16 5.5E+01
25 1600 8λ 201 - 16 2.4E+02
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Table 2: Gaussian objects with a fixed number of points per wavelength
k N sizeobj Nλ Erel Niter tCPU

25 50 8λ 6.28 6.33E-06 14 1.1E-01
50 100 16λ 6.28 3.80E-06 20 7.2E-01
100 200 32λ 6.28 4.44E-06 33 5.2E+00
200 400 64λ 6.28 8.26E-06 61 4.4E+01
400 800 128λ 6.28 1.60E-05 171 6.2E+02
800 1600 255λ 6.28 - 891 1.4E+04

Table 3: 10th order convergence of the algorithm for the simulated human skull
k N sizeobj Nλ Erel Niter tCPU

25 50 8λ 6.28 1.18E-04 134 1.1E+00
25 100 8λ 12.6 1.91E-07 133 4.7E+00
25 200 8λ 25.1 2.05E-10 134 2.1E+01
25 400 8λ 50.2 4.56E-12 135 9.7E+01
25 800 8λ 100 7.55E-12 132 4.7E+02
25 1600 8λ 201 - 132 2.0E+03

Table 4: The simulated human skull with a fixed number of points per wavelength
k N sizeobj Nλ Erel Niter tCPU

25 50 8λ 6.28 1.17E-04 97 7.6E-01
50 100 16λ 6.28 1.55E-05 165 5.8E+00
100 200 32λ 6.28 1.03E-05 328 5.2E+01
200 400 64λ 6.28 1.69E-05 756 5.5E+02
400 800 128λ 6.28 2.21E-05 3286 1.2E+04
800 1600 255λ 6.28 - 13568 2.1E+05
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Erel is the average of the relative errors of the solution for the scattered field at twenty
chosen far-field points;

Niter is the number of iterations used by the BI-CGSTAB;
tCPU is the CPU time required in seconds.
The following observations can be made from the tables above, and from the more detailed

numerical tests performed by the authors.
1. For smooth scattering objects, the numerical algorithm of Section 4 displays 10th-

order convergence; the CPU time required to obtain requested precision is proportional to
Niter ·N2 logN , where N2 is the total number of discretization points, Niter is determined by
the requested precision, the number of iterations before restarting the iterative solver, the
size and the structure of the scattering objects.

2. For sufficiently smooth scatterers, the relative precision of the solution is determined by
the number of discretization points per wavelength. For example, to obtain 5-digit precision,
we need roughly 6.5 points per wavelength. Thus, with our constraint of 2 GB RAM, five
digits can be obtained for scattering objects as large as 300 wavelengths × 300 wavelengths.

3. The number of iterations increases dramatically as the size of the scattering object
increases, as shown in Tables 2, 4.

6 Conclusions

In this paper, we construct an iterative algorithm for the solution of two-dimensional forward
scattering problems. The scheme is based on the combination of high-order quadrature
formulae, rapid numerical application of the integral operator in the Lippmann-Schwinger
equation, and the stabilized bi-conjugate gradient method (BI-CGSTAB). As illustrated via
several numerical examples, the scheme is (2p+ 4)th (p = 0, 1, 2, 3, ...) order convergent; the
computational complexity of the algorithm is O(Niter ·N2 logN), where Niter is the number
of iterations used by the iterative solver, and N2 is the total number of discretization points.

The approach we use for the design of high order center-corrected quadrature formulae
introduced in this paper is not limited to functions of the form (13) in two dimensions; it
is also applicable to functions of the form (14) in three dimensions, as well as many similar
situations. Furthermore, the method does not require access to each of the functions P , Q
separately in (13) and (14); it only requires the evaluation of the whole kernel K given a pair
of points (x, y). Quadrature formulae of order higher than 10 can also be constructed, though
the derivations become more tedious. Finally, the scheme is easily extended to rectangular
regions of the form [−a, a] × [−b, b], even though this paper only discusses on the square
region [−a, a] × [−a, a].

Acknowledgments. The authors would like to thank Mark Tygert for helpful discus-
sions.
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Appendix A

Lemmas 6.1 – 6.5 below provide analytical formulae for

∫ ∞

−∞

∫ ∞

−∞

(

xi−1yj−1H0(k
√

x2 + y2)
)

dx dy−
∑

(p,q)6=(0,0)

(

(ph)i−1(qh)j−1H0(k
√

(ph)2 + (qh)2)
)

·h2,

(123)
with (i, j) = {(3, 1), (5, 1), (3, 3), (7, 1), (5, 3)}. The proofs are straightforward and tedious,
and use the help of Mathematica.

Lemma 6.1 For any k ∈ C
+ and h > 0,

D1 =

∫ ∞

−∞

∫ ∞

−∞
H

(1)
0 (kr)x2 dx dy −

∑

(p,q)6=(0,0)

H
(1)
0 (k

√

(ph)2 + (qh)2) · (ph)2 · h2

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

·
(

2

(iα1)3(iα2)
− h4

2
· e

iα1h(eiα1h + 1)(eiα2h + 1)

(eiα1h − 1)3(eiα2h − 1)

)

(124)

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

· 2

α3
1α2(1 + x1)3(1 + x2)

·
(

(α2h)
2

12
+ 3z1 + z2 + 3y2

1 +
3

2
y1(iα1h) + 3y1y2 +

3

2
y1(iα2h) +

3

2
y2(iα1h)

+x3
1 + 3x2

1x2 + x3
1x2 −

1

2
iα2hy2 +

1

2
α2

1h
2(x2

1 + 2x1)

+
3

4
α1α2h

2(x1x2 + x1 + x2) +
1

4
iα2

1α2h
3(1 + x1)

2(1 + x2)

)

, (125)

where r, α1, α2, x1, x2, y1, y2, z1, z2 are defined by (88), (89), and (93)–(95).
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Lemma 6.2 For any k ∈ C
+ and h > 0,

D2 =

∫ ∞

−∞

∫ ∞

−∞
H

(1)
0 (kr) x4 dx dy −

∑

(p,q)6=(0,0)

H
(1)
0 (k

√

(ph)2 + (qh)2) · (ph)4 · h2

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

·
(

24

(iα1)5(iα2)
− h6

2
· e

iα1h + 11e2iα1h + 11e3iα1h + e4iα1h

(eiα1h − 1)5
· e

iα2h + 1

eiα2h − 1

)

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

· 1

α5
1α2(1 + x1)5(1 + x2)

·
(

2(iα2h)
2 + (iα2h)

3 + 5(iα1h)(iα2h)
2 +

3

10
(iα2h)

4 +
20

3
(iα1h)

2(iα2h)
2

+
5

2
(iα1h)(iα2h)

3 +
1

2
(iα1h)

4(iα2h) + 4x1(iα1h)
4 +

45

2
x1(iα1h)

3(iα2h)

+2x1(iα1h)
4(iα2h) + 45x2

1(iα1h)
3 + 25x2

1(iα1h)
2(iα2h) + 6x2

1(iα1h)
4

+
45

2
x2

1(iα1h)
3(iα2h) + 3x2

1(iα1h)
4(iα2h) + 15x3

1(iα1h)
3 + 4x3

1(iα1h)
4

+
15

2
x3

1(iα1h)
3(iα2h) + 2x3

1(iα1h)
4(iα2h) + x4

1(iα1h)
4 +

1

2
x4

1(iα1h)
4(iα2h)

+
15

2
x2(iα1h)

3(iα2h) +
1

2
x2(iα1h)

4(iα2h) + 50x1x2(iα1h)
2(iα2h)

+
45

2
x1x2(iα1h)

3(iα2h) + 2x1x2(iα1h)
4(iα2h) + 25x2

1x2(iα1h)
2(iα2h)

+
45

2
x2

1x2(iα1h)
3(iα2h) + 3x2

1x2(iα1h)
4(iα2h) +

15

2
x3

1x2(iα1h)
3(iα2h)

+2x3
1x2(iα1h)

4(iα2h) +
1

2
x4

1x2(iα1h)
4(iα2h) + 12w2(iα2h) + 30z2(iα1h)(iα2h)

+40y2(iα1h)
2(iα2h) + 15y1(iα1h)(iα2h)

2 + 30y1y2(iα1h)(iα2h) − 120u1 − 24u2

−180w1(iα1h) − 60w2(iα1h) − 60w1(iα2h) − 160z1(iα1h)
2 − 90z1(iα1h)(iα2h)

−80z2(iα1h)
2 + 35y1(iα1h)

3 − 40y1(iα1h)
2(iα2h) − 130y2

1(iα1h)
2

−180y2
1(iα1h)(iα2h) − 240y3

1(iα1h) − 120y3
1(iα2h) − 120y4

1 − 30y2(iα1h)
3

−180y1y2(iα1h)
2 − 360y2

1y2(iα1h) − 240y3
1y2 − 20z1(iα2h)

2 − 240z2
1 − 120z1z2

−360y2
1(iα1h) − 240y3

1 − 120y2
1(iα2h) − 240y1y2(iα1h) − 240y2

1y2

−24x5
1 − 120x4

1x2 − 24x5
1x2

)

, (126)

where

w1 = z1 −
(iα1h)

3

24
=

∞
∑

n=4

(iα1h)
n

(n+ 1)!
, w2 = z2 −

(iα2h)
3

24
=

∞
∑

n=4

(iα2h)
n

(n+ 1)!
, (127)

u1 = w1 −
(iα1h)

4

120
=

∞
∑

n=5

(iα1h)
n

(n+ 1)!
, u2 = w2 −

(iα2h)
4

120
=

∞
∑

n=5

(iα2h)
n

(n + 1)!
, (128)

and r, α1, α2, x1, x2, y1, y2, z1, z2 are defined by (88), (89) and (93)–(95).
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Lemma 6.3 For any k ∈ C
+ and h > 0,

D3 =

∫ ∞

−∞

∫ ∞

−∞
H

(1)
0 (kr) x2 y2 dx dy −

∑

(p,q)6=(0,0)

H
(1)
0 (k

√

(ph)2 + (qh)2) · (ph)2(qh)2 · h2

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

(

4

(iα1)3(iα2)3
− h6 · e

iα1h(eiα1h + 1)

(eiα1h − 1)3
· e

iα1h(eiα1h + 1)

(eiα1h − 1)3

)

(129)

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

· −4

α3
1α

3
2(1 + x1)3(1 + x2)3

·
(

1

240
(iα1h)

4 +
1

240
(iα2h)

4 +
3

4
z1(iα1h)

2 +
3

4
z2(iα2h)

2

+
9

2
(iα1h)(iα2h)(z1 + z2) +

15

4
z1(iα2h)

2 +
15

4
z2(iα1h)

2 − 3

2
y1(iα1h)

2(iα2h)

−3

2
y2(iα1h)(iα2h)

2 + 3u1 + 3u2 +
9

2
w2(iα1h) +

9

2
w1(iα2h)

+
3

2
w1(iα1h) +

3

2
w2(iα2h) −

9

4
(iα1h)(iα2h)(z1 + z2) + 3z2

1 + 3z2
2

+9z1z2 −
1

2
y1(iα1h)

3 − 1

2
y2(iα2h)

3 − 1

2
y2

1(iα1h)
2 − 1

2
y2

2(iα2h)
2

+
9

4
(iα1h)(iα2h)(3y1y2 +

1

6
y1(iα2h) +

1

6
y2(iα1h)) +

9

8
y1(iα1h)

2(iα2h)

+
3

8
y1(iα2h)

3 +
9

4
y2

1(iα1h)(iα2h) +
9

4
y2

1(iα2h)
2 +

3

2
y3

1(iα2h)

+
3

8
y2(iα1h)

3 +
9

8
y2(iα1h)(iα2h)

2 +
9

4
y1y2(iα1h)

2 +
9

4
y1y2(iα2h)

2

+
9

2
y2

1y2(iα1h) + 9y2
1y2(iα2h) + 3y3

1y2 +
9

4
y2

2(iα1h)
2 +

9

4
y2

2(iα1h)(iα2h)

+9y1y
2
2(iα1h) +

9

2
y1y

2
2(iα2h) + 9y2

1y
2
2 +

3

2
y3

2(iα1h) + 3y1y
3
2

−1

4
(iα1h)

2(iα2h)
2(2x1 + x2

1 + 2x2 + 4x1x2 + 2x2
1x2 + x2

2

+2x1x
2
2 + x2

1x
2
2) +

3

2
y2

1(iα1h) + y3
1 +

3

2
y2

2(iα2h) + y3
2 +

9

2
y2

1(iα2h)

+9y1y2(iα1h + iα2h) + 9y2
1y2 +

9

2
y2

2(iα1h) + 9y1y
2
2

−3

4
(iα1h)

2(iα2h)(x
2
1 + 2x1x2 + x2

1x2)

−3

4
(iα1h)(iα2h)

2(x2
2 + 2x1x2 + x1x

2
2) + 3x3

1x
2
2 + 3x2

1x
3
2 + x3

1x
3
2

)

, (130)

where r, α1, α2, x1, x2, y1, y2, z1, z2, w1, w2, u1, u2 are defined by (88), (89), (93)–(95), (127)
and (128).
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Lemma 6.4 For any k ∈ C
+ and h > 0,

D4 =

∫ ∞

−∞

∫ ∞

−∞
H

(1)
0 (kr) x6 dx dy −

∑

(p,q)6=(0,0)

H
(1)
0 (k

√

(ph)2 + (qh)2) · (ph)6 · h2

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

·
(

720

α7
1α2

− h8

2
· e

iα1h + 57e2iα1h + 302e3iα1h + 302e4iα1h + 57e5iα1h + e6iα1h

(eiα1h − 1)7
· e

iα2h + 1

eiα2h − 1

)

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

· 1

α7
1α2(1 + x1)7(1 + x2)

· (A+B), (131)

where

A = 60(α2h)
2 − 30(iα2h)

3 − 210(iα1h)(iα2h)
2 − 9(α2h)

4 − 105(α1h)(α2h)
3

−385(α1h)
2(α2h)

2 + 37800y2
1(iα1h) + 25200y3

1 + 7560y2
1(iα2h)

+15120y1y2(iα1h) + 15120y2
1y2 + 15120x5

1 + 5040x6
1 + 720x7

1 + 25200x4
1x2

+15120x5
1x2 + 5040x6

1x2 + 720x7
1x2 + 5040u1 + 720u2 + 12600w1(iα1h)

−360w2(iα2h) + 2520w2(iα1h) + 2520w1(iα2h) − 17220(α1h)
2z1

+6300z1(iα1h)(iα2h) + 1260z2(α1h)(α2h) − 4620(α1h)
2z2 + 15120z2

1

+2940y1(iα1h)
3 − 6090y1(α1h)

2(iα2h) − 34440y2
1(α1h)

2 − 18900y2
1(α1h)(α2h)

+50400y3
1(iα1h) + 12600y3

1(iα2h) + 25200y4
1 + 3150y2(iα1h)

3

−18900y1y2(α1h)
2 + 37800y2

1y2(iα1h) + 25200y3
1y2 − 840z1(α2h)

2 + 5040z1z2

+2310y2(α1h)
2(iα2h) + 630y1(iα1h)(α2h)

2 + 1260y1y2(α1h)(α2h)

−63(iα1h)
5 − 301(iα1h)

4(iα2h) + (α1h)
6 +

63

2
(α1h)

5(α2h) +
1

2
(α1h)

6(iα2h)

−2408x1(α1h)
4 − 3150x1(α1h)

3(α2h) − 315x1(iα1h)
5 − 1204x1(iα1h)

4(iα2h)

+6x1(α1h)
6 +

315

2
x1(α1h)

5(α2h) + 3x1(α1h)
6(iα2h) − 6300x2

1(iα1h)
3

+1680x2
1(α1h)

2(iα2h) − 3612x2
1(α1h)

4 − 3150x2
1(α1h)

3(α2h) − 630x2
1(iα1h)

5

−1806x2
1(iα1h)

4(iα2h) + 15x2
1(α1h)

6 + 315x2
1(α1h)

5(α2h) +
15

2
x2

1(α1h)
6(iα2h)

−2100x3
1(iα1h)

3 − 2408x3
1(α1h)

4 − 1050x3
1(α1h)

3(α2h) − 630x3
1(iα1h)

5

−1204x3
1(iα1h)

4(iα2h) + 20x3
1(α1h)

6 + 315x3
1(α1h)

5(α2h) + 10x3
1(α1h)

6(iα2h)

−602x4
1(α1h)

4 − 315x4
1(iα1h)

5 − 301x4
1(iα1h)

4(iα2h) + 15x4
1(α1h)

6

+
315

2
x4

1(α1h)
5(α2h) +

15

2
x4

1(α1h)
6(iα2h) − 63x5

1(iα1h)
5 + 6x5

1(α1h)
6

+
63

2
x5

1(α1h)
5(α2h) + 3x5

1(α1h)
6(iα2h) + x6

1(α1h)
6 +

1

2
x6

1(α1h)
6(iα2h), (132)
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B = −1050x2(α1h)
3(α2h) − 301x2(α1h)

4(iα2h) +
63

2
x2(α1h)

5(α2h)

+
1

2
x2(α1h)

6(iα2h) + 3360x1x2(α1h)
2(iα2h) − 3150x1x2(α1h)

3(α2h)

−1204x1x2(α1h)
4(iα2h) +

315

2
x1x2(α1h)

5(α2h) + 3x1x2(α1h)
6(iα2h)

+1680x2
1x2(α1h)

2(iα2h) − 3150x2
1x2(α1h)

3(α2h) − 1806x2
1x2(α1h)

4(iα2h)

+315x2
1x2(α1h)

5(α2h) +
15

2
x2

1x2(α1h)
6(iα2h) − 1050x3

1x2(α1h)
3(α2h)

−1204x3
1x2(α1h)

4(iα2h) + 315x3
1x2(α1h)

5(α2h) + 10x3
1x2(α1h)

6(iα2h)

−301x4
1x2(α1h)

4(iα2h) +
315

2
x4

1x2(α1h)
5(α2h) +

15

2
x4

1x2(α1h)
6(iα2h)

+
63

2
x5

1x2(α1h)
5(α2h) + 3x5

1x2(α1h)
6(iα2h) +

1

2
x6

1x2(α1h)
6(iα2h), (133)

and where r, α1, α2, x1, x2, y1, y2, z1, z2, w1, w2, u1, u2 are defined by (88), (89), (93)–(95),
(127) and (128).

Lemma 6.5 For any k ∈ C
+ and h > 0,

D5 =

∫ ∞

−∞

∫ ∞

−∞
H

(1)
0 (kr) x4 y2 dx dy −

∑

(p,q)6=(0,0)

H
(1)
0 (k

√

(ph)2 + (qh)2) · (ph)4(qh)2 · h2

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

·
(

48

α5
1α

3
2

− h8 · e
iα1h + 11e2iα1h + 11e3iα1h + e4iα1h

(eiα1h − 1)5
· e

iα2h · (eiα2h + 1)

(eiα2h − 1)3

)

=
4

π

∫ ∞

−∞

dλ√
k2 − λ2

· 1

α5
1α

3
2(1 + x1)5(1 + x2)3

· (C +D) (134)

where

C =
1

5
(α2h)

4 + 240u1 + 360w1(iα1h) + 144u2 + 360w2(iα1h)

+360w1(iα2h) + 72w2(iα2h) − 320z1(α1h)
2 − 540z1(α1h)(α2h)

−480z2(α1h)
2 − 300z1(α2h)

2 − 180z2(α1h)(α2h) − 36z2(α2h)
2 + 480z2

1

+720z1z2 + 144z2
2 − 70y1(iα1h)

3 − 240y1(α1h)
2(iα2h) − 210y1(iα1h)(α2h)

2

+30y1(iα2h)
3 − 260y2

1(α1h)
2 − 1080y2

1(α1h)(α2h) − 360y2
1(α2h)

2

+480y3
1(iα1h) + 720y3

1(iα2h) + 240y4
1 + 180y2(iα1h)

3 + 120y2(iα1h)
2(iα2h)

+30y2(iα1h)(α2h)
2 − 1080y1y2(α1h)

2 − 1260y1y2(α1h)(α2h)

−180y1y2(α2h)
2 + 2160y2

1y2(iα1h) + 1440y2
1y2(iα2h) + 1440y3

1y2 − 360y2
2(α1h)

2

−180y2
2(α1h)(α2h) + 1440y1y

2
2(iα1h) + 360y1y

2
2(iα2h) + 1440y2

1y
2
2 + 120y3

2(iα1h)

+240y1y
3
2 + 720y2

1(iα1h) + 480y3
1 + 720y2

1(iα2h) + 1440y1y2(iα1h)

+1440y2
1y2 + 720y1y2(iα2h) + 360y2

2(iα1h) + 720y1y
2
2 + 72y2

2(iα2h) + 48y3
2 + 48x5

1

+720x4
1x2 + 144x5

1x2 + 1440x3
1x

2
2 + 720x4

1x
2
2 + 144x5

1x
2
2 + 480x2

1x
3
2 + 480x3

1x
3
2, (135)
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D = 240x4
1x

3
2 + 48x5

1x
3
2 − 24y2(iα2h)

3 + 24y2
2(α2h)

2 − 3(iα1h)
4(iα2h)

−15(iα1h)
3(iα2h)

2 + (α1h)
4(α2h)

2 − 8x1(α1h)
4 − 135x1(α1h)

3(α2h)

−100x1(α1h)
2(α2h)

2 − 12x1(α1h)
4(iα2h) − 45x1(iα1h)

3(iα2h)
2 + 4x1(α1h)

4(α2h)
2

−90x2
1(iα1h)

3 − 150x2
1(iα1h)

2(iα2h) − 12x2
1(α1h)

4 − 135x2
1(α1h)

3(α2h)

−50x2
1(α1h)

2(α2h)
2 − 18x2

1(α1h)
4(iα2h) − 45x2

1(iα1h)
3(iα2h)

2 + 6x2
1(α1h)

4(α2h)
2

−30x3
1(iα1h)

3 − 8x3
1(α1h)

4 − 45x3
1(α1h)

3(α2h) − 12x3
1(α1h)

4(iα2h)

−15x3
1(iα1h)

3(iα2h)
2 + 4x3

1(α1h)
4(α2h)

2 − 2x4
1(α1h)

4 − 3x4
1(α1h)

4(iα2h)

+x4
1(α1h)

4(α2h)
2 − 45x2(α1h)

3(α2h) − 100x2(α1h)
2(α2h)

2 − 3x2(α1h)
4(iα2h)

−30x2(iα1h)
3(iα2h)

2 + 2x2(α1h)
4(α2h)

2 + 300x1x2(α1h)
2(iα2h)

+120x1x2(iα1h)(α2h)
2 − 135x1x2(α1h)

3(α2h) − 200x1x2(α1h)
2(α2h)

2

−12x1x2(α1h)
4(iα2h) − 90x1x2(iα1h)

3(iα2h)
2 + 8x1x2(α1h)

4(α2h)
2

+150x2
1x2(α1h)

2(iα2h) − 135x2
1x2(α1h)

3(α2h) − 100x2
1x2(α1h)

2(α2h)
2

−18x2
1x2(α1h)

4(iα2h) − 90x2
1x2(iα1h)

3(iα2h)
2 + 12x2

1x2(α1h)
4(α2h)

2

−45x3
1x2(α1h)

3(α2h) − 12x3
1x2(α1h)

4(iα2h) − 30x3
1x2(iα1h)

3(iα2h)
2

+8x3
1x2(α1h)

4(α2h)
2 − 3x4

1x2(α1h)
4(iα2h) + 2x4

1x2(α1h)
4(α2h)

2

+60x2
2(iα1h)(α2h)

2 − 50x2
2(α1h)

2(α2h)
2 − 15x2

2(iα1h)
3(iα2h)

2 + x2
2(α1h)

4(α2h)
2

+60x1x
2
2(iα1h)(α2h)

2 − 100x1x
2
2(α1h)

2(α2h)
2 − 45x1x

2
2(iα1h)

3(iα2h)
2

+4x1x
2
2(α1h)

4(α2h)
2 − 50x2

1x
2
2(α1h)

2(α2h)
2 − 45x2

1x
2
2(iα1h)

3(iα2h)
2

+6x2
1x

2
2(α1h)

4(α2h)
2 − 15x3

1x
2
2(iα1h)

3(iα2h)
2 + 4x3

1x
2
2(α1h)

4(α2h)
2

+x4
1x

2
2(α1h)

4(α2h)
2, (136)

where r, α1, α2, x1, x2, y1, y2, z1, z2, w1, w2, u1, u2 are defined by (88), (89), (93)–(95), (127)
and (128).

Appendix B

Here, we present the center-corrected quadrature formulae of orders 4, 6 and 8 for the integral
∫ a

−a

∫ a

−a

φ(x, y) ·H0(k
√

x2 + y2) dx dy. (137)

Lemma 6.6 (The 4th-Order Center-corrected Quadrature Formula). Suppose that
n ≥ 1 is an integer, and a, h are two positive real numbers such that h = a/n. Suppose
further that φ : R2 → C is a function such that φ ∈ c2(R × R), and that φ is zero outside
the square [−a, a] × [−a, a]. Then, for any k ∈ C

+,
∫ a

−a

∫ a

−a

φ(x, y) ·H0(k
√

x2 + y2) dx dy = Uτh

(

φ(x, y) ·H0(k
√

x2 + y2)
)

+O(h4). (138)

In (138),

Uτh

(

φ(x, y) ·H0(k
√

x2 + y2)
)

= T ′h
(

φ(x, y) ·H0(k
√

x2 + y2)
)

+
∑

p,q∈S

τh
pqφ(ph, qh), (139)
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where
S = {p, q ∈ Z : p = 0 and q = 0}, (140)

T ′h
(

φ(x, y) ·H0(k
√

x2 + y2)
)

=
∑

(p,q)6=(0,0)

(

φ(ph, qh) ·H0(k
√

(ph)2 + (qh)2)
)

· h2, (141)

and
τh
00 = D0. (142)

Lemma 6.7 ( The 6th-Order Center-corrected Quadrature Formula). Suppose that
n ≥ 1 is an integer, and a, h are two positive real numbers such that h = a/n. Suppose
further that φ : R2 → C is a function such that φ ∈ c4(R × R), and that φ is zero outside
the square [−a, a] × [−a, a]. Then, for any k ∈ C

+,

∫ a

−a

∫ a

−a

φ(x, y) ·H0(k
√

x2 + y2) dx dy = Uτh

(

φ(x, y) ·H0(k
√

x2 + y2)
)

+O(h6). (143)

In (143),

Uτh

(

φ(x, y) ·H0(k
√

x2 + y2)
)

= T ′h
(

φ(x, y) ·H0(k
√

x2 + y2)
)

+
∑

p,q∈S

τh
pqφ(ph, qh), (144)

where
S = {p, q ∈ Z : |p+ q| ≤ 1 and |p− q| ≤ 1}, (145)

T ′h
(

φ(x, y) ·H0(k
√

x2 + y2)
)

=
∑

(p,q)6=(0,0)

(

φ(ph, qh) ·H0(k
√

(ph)2 + (qh)2)
)

· h2, (146)

and

τh
00 = D0 − 2

D1

h2
, (147)

τh
±10 = τh

0±1 =
1

2

D1

h2
. (148)

Lemma 6.8 ( The 8th-Order Center-corrected Quadrature Formula). Suppose that
n ≥ 1 is an integer, and a, h are two positive real numbers such that h = a/n. Suppose
further that φ : R2 → C is a function such that φ ∈ c6(R × R), and that φ is zero outside
the square [−a, a] × [−a, a]. Then, for any k ∈ C

+,

∫ a

−a

∫ a

−a

φ(x, y) ·H0(k
√

x2 + y2) dx dy = Uτh

(

φ(x, y) ·H0(k
√

x2 + y2)
)

+O(h8). (149)

In (149),

Uτh

(

φ(x, y) ·H0(k
√

x2 + y2)
)

= T ′h
(

φ(x, y) ·H0(k
√

x2 + y2)
)

+
∑

p,q∈S

τh
pqφ(ph, qh), (150)

where
S = {p, q ∈ Z : |p+ q| ≤ 2 and |p− q| ≤ 2}, (151)
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T ′h
(

φ(x, y) ·H0(k
√

x2 + y2)
)

=
∑

(p,q)6=(0,0)

(

φ(ph, qh) ·H0(k
√

(ph)2 + (qh)2)
)

· h2, (152)

and

τh
00 = D0 −

5

2

D1

h2
+

1

2

D2

h4
+
D3

h4
, (153)

τh
±10 = τh

0±1 =
2

3

D1

h2
− 1

6

D2

h4
− 1

2

D3

h4
, (154)

τh
±20 = τh

0±2 = − 1

24

D1

h2
+

1

24

D2

h4
, (155)

τh
±1±1 =

1

4

D3

h4
. (156)
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