Yale University
Department of Computer Science

Map Learning with Error Correction for Mobile
Robots

Sean P. Engelson and Drew V. McDermott

YALEU/DCS/TR-874
September 1991

Submitted to the IEEE Conference on Robotics and Automation 1992

This work was partially supported by the Defense Advanced Research Projects Agency,
contract number DAAA15-87-K-0001, administered by the Ballistic Research Laboratory.
The first author is supported by a graduate fellowship from the Fannie and John Hertz
Foundation.

Map Learning with Error Correction for
Mobile Robots

Sean P. Engelson and Drew V. McDermott

Yale University Department of Computer Science
P.O. Box 2158 Yale Station
New Haven, CT 06520
engelson@cs.yale.edu, mcdermott@cs.yale.edu

Abstract

For truly autonomous behavior, a robot must build representations of the
places in the world by exploring the world and finding and remembering
places of different sorts. The problem we address is how a robot can learn
such maps automatically. Several methods for map-learning have been re-
ported, but they all suffer from the problem of error accumulation. Since
all sensors have noise, and sensor interpretation often depends on violable
assumptions about the real world, any system which attempts to build a
consistent representation of its environment will make errors. The primary
emphasis on this problem in the literature has been on reducing errors
entering the map to begin with. We suggest that this methodology must
reach a point of diminishing returns, and explicit attention must be given
to the problem of robustness in the face of learning errors. We focus on
explicit error detection and correction. By identifying the possible types of
mapping errors, we can exploit structural constraints to detect and diag-
nose mapping errors. Such robust mapping requires little overhead beyond
that needed for non-robust mapping. It can also be integrated into exist-
ing mapping systems to make them more robust. We have implemented
a mapping system based on our ideas. Extensive testing in simulation
demonstrates the effectiveness of the proposed error-correction strategies.

1 Introduction

The problem of mobile robot navigation is getting the robot to a place it’s been
before. Some robots never need to revisit a place, but we will focus on those
that do. Furthermore, we will assume that it is necessary to revisit particular,
individual places, not just places with some interesting property. If a robot
needs to go to a place that is likely to have bananas, it does so by going to the
nearest place it knows about where bananas have been spotted, as opposed to
being guided by some kind of ‘banana tropism’. While tropisms based on local
information are useful, they are inefficient at best for large-scale navigation. We
will also assume that the robot builds up such lists by exploring the world and
finding and remembering places of different sorts. It might be given such lists by
a person, but it’s more interesting to study the problem of building the lists up
automatically.

However, there are several issues that must be resolved in systems which build
such representations. We must pin down what we mean by ‘place,’ and do so in a
way that supports efficient recording and recognition of places. Several methods
for automated map construction have been reported (see below), but they all
suffer from the problem of error accumulation. Since all sensors have noise, and
sensor interpretation often depends on violable assumptions about the real world,
any system which attempts to build a consistent representation of its environment
will make errors. In particular, the robot’s decision that it has been somewhere
before (more generally, that two places are the same) can never be perfectly
justified and always involves some margin of error. If a mistaken identification is
allowed to persist, then attempts to make the rest of the map consistent with it
will eventually turn the whole map into garbage. Hence, some mechanism must
be provided by which these errors can be detected and corrected. Interestingly,
this issue has been largely ignored in the literature, with the primary emphasis
being on reducing errors entering the map to begin with. We suggest that this
methodology must reach a point of diminishing returns, and explicit attention
must be given to the problem of robustness in the face of learning errors.

As we’ve said, the robot will always make mistakes when mapping. So we bite the
bullet and focus on correcting errors when they occur. If the robot can diagnose
mapping errors when it discovers problems with its map, then it should be able
to fix them as well. We have developed heuristic methods for doing just this. We
identify certain classes of mapping errors, and exploit topological and geometric
constraints to discover, diagnose, and correct mapping errors during robot exe-
cution. Every time a mapping decision is made, the system stores information
about the decision in the map. Then, when an inconsistency is discovered in the
map, the type of error responsible is diagnosed and the map adjusted appropri-
ately. The methods we use are heuristic in nature, since the problem is not yet
well-understood. Our architecture for robust mapping requires little overhead
beyond that needed for non-robust mapping. We have implemented a system
based on these ideas, and have extensively tested it in simulation. The remainder

of this paper discusses our system in more detail; it is organized as follows. After
we review the related work in robot mapping, we describe, in Section 3, our robot
model and the topological map structure it implies. Section 4 describes the map-
ping system architecture and the details of our error correction methods. We then
present and analyze the results of extensive testing of an implementation of our
system in simulation. Finally, we discuss future directions and the conclusions
we draw from this work.

2 Related Work

Much research on navigational mapping deals with problems of local metric rep-
resentation (eg., [3, 22, 2]), which is generally unsuitable in large-scale spaces.
Kuipers and Byun first develop the notion of a topological place graph based on
‘distinctive’ locations [15]. However, while they go to some length to avoid error
creeping into the map by using active experimentation, there is no provision for
error correction. Thus, they must rely upon unambiguous, error-free actions for
correctness; if this assumption is violated, errors accumulate. Levitt et al. also
utilize a topological map which avoids accumulation of navigation error, by using
local reference frames based on landmarks [16]. However, their system depends
heavily on reliable landmark acquisition; it is unclear how their system would
deal with mapping errors. Miller and Slack use information generated for reac-
tive local navigation to build rough geometrical maps of rocky terrain [21]. Their
maps are notable in that they can directly be used for reactive navigation.

Basye et al. develop a probabilistic theoretical framework for map learning [4]
using Rivest’s reliable and probably almost always useful learning criterion [23].
They probabilistically eliminate errors in the learned map by using active explo-
ration, assuming limited directional certainty and globally recognizable places.
However, their methods use very simple models of perception and action and do
not use the rich geometrical and perceptual structure available. This structure
can help provide a way to deal with errors explicitly.

The method for dealing with mapping errors we develop can also be incorporated
into existing mapping systems with minimal modification. Virtually any system
that uses a place graph representation can be reformulated in our terms. Specif-
ically, Sarachik’s system for visual navigation [24] is particularly apposite. Her
system visually recognizes room shapes and finds doors, linking them together in
a place graph. A room’s perceived shape can be used as its perceptual descrip-
tion; its position can be described in a locally determined reference frame. Our
error correction machinery could then be applied virtually as is.

Mataric [17] uses constraints derived from knowledge of the robot’s underlying
behavior to derive a topological map based on linear graph segments. Yeap [27)
describes a hierarchical topological map, with place nodes described by 2D ge-
ometric models. Braunegg [6] develops a similar style of map, where rooms are

characterised by the geometric arrangement of vertical edges, measured by stereo
vision. Kriegman [13] describes a method for visually instantiating generic mod-
els of the robot’s surroundings, such as hallways, bringing top-down constraints
to bear on geometric interpretation. Atiya and Hager [2] use an interval-based
method to perform accurate model-based navigation using stereo vision.

3 Robot Modelling and Representation

The map-learning problem has been studied for some time, from a number of
viewpoints. There are two basic types of approach—metric and topological (see,
eg., [7, 9, 27, 26, 15]). The metric approach attempts to build up a detailed
geometric description of the environment from perceptual data. This has the
intuitive advantage of having a more-or-less well-defined relation to the real world.
However, no one has found a satisfactory representation of uncertain geometry;
and it is not clear that the volumes of information that one could potentially
gather about the shape of the world are really useful.

The topological approach, pioneered by Kuipers [14] and gaining wide currency
of late, represents the world as a graph with nodes representing places and arcs
encoding robot actions that take the robot from one place to another. Such
representations have two primary technical advantages. First, the action labels on
the arcs are just what the robot needs for navigational planning (which becomes
a kind of graph search). Second, because topological representations focus on the
structure of the paths rather than the structure of the surroundings, they appear
to be built out of a smaller volume of information.

3.1 Places and actions

We adopt the basic idea of Kuipers and Byun (described in [15]), with one twist:
instead of focusing solely on the connectivity of the path graph, we have the robot
attempt to learn its shape — the relative locations of the places — as it maneuvers
through the world. There are two fairly obvious reasons for this move: the metric
information can help in distingishing between perceptually similar places; and the
metric information is useful in deciding where to go and how to get there when
the map is used.

Following Kuipers and Byun, we assume that the robot has a repertoire of actions
that take it to the nearest ‘distinctive’ place, often passing through fairly large
swatches of territory. For example, there might be an action ‘Go to door’ that
takes the robot to a doorway in its vicinity, using a local tropism that heads for
shapes that look like doors. If there is no such entity visible, the action reports
that outcome, and does nothing. If there is more than one door, the robot winds
up at one of them (without noticing the choice). This action is called the ‘door
approacher.” We will also assume that there is a ‘door recognizer’ that can tell

if the robot is already located in a doorway. We will use the term place type to
refer to a class of place for which the robot has an approacher and a recognizer.
The approacher and recognizer are allowed to make occasional mistakes. Please
note that not all actions are place-type approachers.

Thus, a map includes a graph with nodes representing ‘places’, i.e., connected
regions of a particular type, and arcs labelled with sequences of actions, generally
concluding with an approacher. (Presently, we deal only with ‘point-like’ places,
small regions which can be treated as single points; the complexities of shape
representation will be investigated in future work.) However, there is more to the
graph. Each node has a record of what the place looks like, and what its position
is with respect to other nodes. These are our topics in the next two sections.

3.2 Perception

All doors look like doors, but the view is not the same from all doors, and this fact
enables the robot to tell one door from another. In principle, it could store the
view from every place, and identify two places only if their views are the same;
but of course the views will never be exactly the same. There are many reasons for
this variability, but the main one is that slight changes in the robot’s orientation
can make big differences in what it sees. Hence we must store a set of views for
each place, and allow a new view to match an old view only approximately. We
must now pin down what we mean by a view.

We consider two basic types of perceptual processes: measurers and classifiers.
The distinction is primarily in the type of results they produce; measurements
are continuous while classifications are discrete. A simple example of a measurer
is a stereo-based depth estimator. Place type recognizers are boolean-valued clas-
sifiers. Measurements have the advantage that noise can be quantified; indeed,
most reliable measurers can usefully be thought of as having bounded error (al-
lowing a small chance of outliers). Classifiers, on the other hand, are either right
or wrong, with no in-between. Thus, with the exception of place type recognition,
we focus on measurements when dealing with perceptual information.

A view of the world from a particular place may be thought of as a vector of
measurements, derived from processing sensory data in some fashion. These mea-
surements may denote physical properties of the environment such as its shape,
or purely visual properties like segmentation. In [12] we describe a measurement
scheme based on image signatures, arrays of approximate perceptual invariants.
If each element of a view has an error bound associated with it, we can match two
views if all corresponding elements match within the given error bounds. Thus
the robot’s current view could be that of a stored place if the view matches an
element of the place’s set of views. However, since outliers are possible, this may
still fail. The simplest fix is to allow a small number of mismatched elements
for a matched view; if the outlier probability is small enough (as it should be)
allowing one mismatch is sufficient. If a robot view is matched to a stored place

with an element mismatch, the new view is also added to the place’s view set,
as there is no way to tell which view contains the outlier. The main problem
with this approach is that perceptual ambiguity can be increased; however, this
doesn’t appear to be a serious problem in practice.

3.3 Geometry

As in McDermott and Davis [20], the shape of the path graph is given by places’
relative positions. For the time being, we ignore the robot’s orientation at a place
by treating it as unknowable. We assume odometry can provide, after each move,
a set of points guaranteed to contain the robot’s actual relative motion. Thus,
place position estimates are represented by sets of possible positions. Positions are
represented relative to local reference frames to avoid unnecessary accumulation of
relative error. Geometric relations between frames are also explicitly represented,
giving rise to a reference graph—note that this graph only represents those re-
lations that are independently known. The use of local reference frames ensures
that relative uncertainty remains locally bounded. For efficiency, we approximate
uncertainty sets as intervals in IR? (see [1]). Our approach is also related to work
on statistical representation of uncertain spatial relationships [25]; however, the
interval representation simplifies computation significantly. Furthermore, in the
absence of good statistical models of robot motion, calculations based on sets of
feasible positions will be more reliable [2].

Matching and updating positional estimates is easily done using interval arith-
metic [1]. Two position estimates are consistent if they intersect one another. If
they are known in different reference frames, then the inter-frame transformation
is applied first. If the transform is not immediately known, we search the reference
graph and compose the intermediate transformations. Combining two different
position estimates for the same place is done by intersection. If they are given
with respect to different frames, the transformation betwen the frames can be up-
dated as well. Thus the robot can easily merge odometric position estimates with
previous place position estimates and consistently update the reference graph.

New reference frames are created whenever the robot’s positional uncertainty
grows too high; frames are merged when the uncertainty between them falls
low enough. This policy ensures locally bounded uncertainty. Also, if frames
are viewed as a packaging mechanism for places, related places will tend to be
packaged together under this policy, particularly if local sensor feedback is used
to improve odometry.

4 The Mapping System

The mapping system monitors execution in addition to maintaining the map;
the system must know where it is in its map to modify it appropriately. Due

to uncertainty in odometry and perception, the robot’s place in the map can be
ambiguous. Hence, the system maintains a set of tracks, alternative estimates
of the robot’s current state with respect to the map. Each track maintains a
position estimate with respect to a particular reference frame, a current view,
and place type, as well as remembering the last place node matched in the map.
Mapping proceeds as follows (refer to Figure 1). After each sequence of actions
bringing the robot to a place, all current tracks are updated to reflect odometric
and sensory readings. Then, there are a number of different operations that
can be performed on the tracks, each corresponding to a decision about the
state of the robot, the track, and the world. (A summary of the operations our
system uses is given in Table 1.) For example, one operation is Continuation,
where the robot decides it is at a place it could have predicted based on its
last position and the action just performed. For example, if there is an action
link labelled ‘Go to door’ from place-1 to place-2, the robot performs ‘Go to
door’, and the results are consonant with going from place-1 to place-2, then
a track which was at place-1 would be Continued to place-2. Some operations
correspond to decisions about the correctness of the map and adjust it accordingly.
Various possible operations are proposed, and then the system decides which
operations to perform. The operations chosen are then used to update the map
by adjusting place descriptions and adding new place nodes and action links.
Place nodes and action links examined may also be changed based on their long-
term usage statistics. Each track is then updated to reflect the robot’s new state
of knowledge. The tracks are filtered to choose the best n as robot state estimates
for the next step (keeping ambiguity under control). These components of the

system are described below; a more detailed discussion of its workings can be
found in [11].

4.1 Basic operations

What operations should the system include, and how should it decide which to
actually perform? There are several basic operations needed for mapping even
before considering error correction. Note that a track matches a place when
their position estimates match and the the track’s view matches the place’s view
set. If the map is correct and complete, the results of all actions taken will be
expected. Hence the first track operation is Continuation, which confirms an
expected transition along an action link from one place to another. If a matching
place exists, but there is no corresponding action link, the Linkage operation is
applied, confirming the destination and adding an action link to the map. This
operation performs a depth-limited search through the reference graph for a place
match. In both of these cases, the operation suggests a new position estimate
for the track and matched place. When there are multiple such updates to be
performed on a place (due to multiple tracks matching it) the union of the various
possibilities is the proper new estimate. The interval approximation to this is the
least bounding interval (LBI) of the different estimates. The position estimates

Sensors
Odometry
Y i’

| Track Operations

y

Decision T.rack
Processing Filter
/ \
Map update Track
/! Update
Y
History
Update

Figure 1: Mapping system architecture

of the tracks are then given by intersection of their projected positions with the
new place position estimate. Finally, if there is no matching place node, a place
node (and action link) is created by the Creation operation. Other operations
relating to error detection and correction are discussed below, as is the process
of deciding among operations.

4.2 Error correction

Our research addresses passive mapping, where the mapping process is indepen-
dent of the control of the robot. That is, no experimentation or directed explo-
ration is done; mapping is done while the robot carries out its normal activities,
by ‘eavesdropping’ on the controller. To detect and correct errors, we must iden-
tify the causes and effects of different mapping errors. One approach that might
be used is to record all decisions made by the system in a truth-maintenance
system (TMS) [18]. Then when an inconsistency is detected, the TMS would be
searched for a decision to fault to explain the problem. The faulty decision would
then be removed, and (part of) the map rebuilt, removing the inconsistency. Even
ignoring the great difficulty of credit assignment in this domain, this approach is
infeasible due to the enormous space required and the continually increasing time

required to correct errors. The approach we take, therefore, is to store a small
amount of extra information in the map such that errors can be detected and
corrected for, without knowing the precise cause of the error. Our results suggest
that this sort of learning is feasible in the domain of navigational mapping. The
types of errors possible and mechanisms to correct them are described below.

Position adjustment

The first type of error is place inconsistency, when a place’s position estimate
fails to contain its true position. This is caused by updating the place’s position
estimate by an incorrect match. To detect this situation, we define a place’s
nominal envelope as the LBI of the midpoints of all the position estimates ever
used to update the place’s position estimate. Interval midpoints are used instead
of whole intervals to reduce the size of the nominal envelope without reducing its
utility. The nominal envelope is guaranteed to eventually contain the place’s true
position, under unrestrictive statistical assumptions. The a-Match operation
allows a position match with a place when the projected position of a track
intersects the place’s nominal envelope. If the track is correct, and the match is
perceptually consistent, this suggests a place inconsistency. Hence, an a-Match
suggests a new position estimate as the LBI of the place’s old position estimate
and its nominal envelope. This new estimate will almost certainly contain the
true position. Thus the place’s position estimate is reset to a consistent (though
uncertain) state.

Another kind of positional error is track inconsistency, when a track is diverted by
an incorrect match. This can occur even when the map is correct, if an incorrect
match appears more plausible than a correct one. For example, uncertainty in a
track may become so great that it matches a known place where it should have
discovered a new one. This causes the robot’s state estimate to be in error, and
if left uncorrected can lead to erroneous map construction. Track inconsistency
is dealt with via a B-Match, which allows a track to match a place near its
projected position. The nearness threshhold is a parameter of the system. This
method assumes the track hasn’t wandered too far from true. This assumption
is reasonable if places are distributed sparsely in the environment, since bogus
matches will be rare. Thus, if a track gets diverted from true, it is unlikely that
a long sequence of incorrect matches will occur. Therefore, a 8-Match with the
correct place will be confirmed before track positioning error wanders too far.

Transient elision

Another category of errors are those whose detection depends on analyzing long-
term developments in the map. The simplest to deal with are transients. The
robot may incorrectly decide it is at a place of some type when it is not, or that
it can get from one place to another via a particular action. This may be due to
perceptual errors or transient environmental conditions (such as a person walking
by). This can be corrected for by maintaining statistics on expected vs. actual
encounters of place nodes, action links, and views. When one is encountered far

less often than it is expected, it is assumed to be transient and is removed from
the map. This is safe, since removing a non-transient this way results in little
change in navigational performance, since the removed map component would
be encountered very seldom. Also, even if a map component does not represent
anything real, but supports reliable navigation anyway, then as far as the robot
is concerned, it may be treated as real. It is also easy to see that transient elision
is effective in adjusting the map to slowly changing environments—outdated fea-
tures will be removed, while new features will be added through normal mapping.

Merging

If a place can appear different on different visits, the map will eventually contain
two place nodes representing a single place. If this is the case, then when the map
matures, the nodes will have equivalent action link sets and the same estimated
position. We do not assume that perceptual consistency can be used to correct
this problem in the absence of an accurate model of perception. So, if the system
can reasonably decide that two nodes have the same position and links to the rest
of the world, then the nodes should be merged. This can also be done for larger
subsets of the map by checking for isomorphisms.

This process can be approximated by maintaining merge histories, sequences of
potentially matching place pairs. Each such pair must have matching position
estimates. Futhermore, successive pairs of nodes must have consistent relative
positions. Creating and maintaining merge histories is done incrementally. Each
track is associated with a set of histories, which are extended, merged out, or
killed at each step, based on the track’s new place.

When there are two tracks at different places whose position estimates overlap,
a merge history is created between them. If two tracks with a merge history
between them move to a pair of commensurable places, the history is extended,
otherwise it is killed. This only happens, of course, if the places look similar
enough to match a single robot view. Commensurable place pairs which ap-
pear different are found during the spatial search for Linkages, and single-track
histories are created for them. They are extended analogously to dual-track his-
tories. When a history achieves a ‘critical mass’ demonstrating a sufficient level
of neighborhood consistency, all its place node pairs are merged. The notion of
criticality admits various definitions, the simplest of which (and the one which is
implemented) is that the number of distinct elements in the history must exceed
a given threshhold. From this it follows that a dual-track history whose tracks
converge to the same place has ‘gone critical’ regardless of its length (as it could
be extended indefinitely). A stricter notion of positional consistency is ensured
for merging, either:

¢ The two places cannot be farther than &, from each other, where sep is @
known lower bound on the distance between any two places, or

e The relative size of the intersection of the places’ position estimates is above

a given threshhold.

If the first condition holds, the two places nodes must represent the same place.
The second condition heuristically encodes a confidence in the nodes’ equivalence.
When two place nodes are merged, their view sets and act link sets are unioned
and their position estimates are combined. If the LBI of the position intervals
is smaller in width than 6., then the positional estimate of the new place is
the LBI of the two constituents, since uncertainty up to sp is acceptable and
slight inconsistencies can be corrected. Otherwise the new position estimate is
the intersection of the two estimates, by the usual rule of information combining.

Splitting

The dual of representing one place by multiple nodes is representing multiple
places by one node. Excessive odometric error may cause two nearby places to
appear as one; two place nodes may be merged erroneously. In any case, this
situation will cause inconsistency to creep into the place node. Without further
analysis, this can engender corruption elsewhere in the map as well. Moreover,
unecessary ambiguity is introduced to the map, making navigation harder and
less reliable. However, if we know that places are always at least some distance
0sep from each other, this problem can be corrected. The system detects when
this error has occurred, then splits the offending node into two.

Each place node maintains a set of estims, each consisting of a point position
estimate and an integer weight. An estim’s weight is a measure of its data support.
Every time a node’s position is updated, the midpoint of the constraining interval
is treated as a point estimate of the robot position and an estim at that point is
added to the node’s estim set with weight 1. The estim set is then reduced by
merging all estims whose position estimates are closer than 8p, by computing the
weighted average of their positions. Weights of composite estims are computed
as the sum of the weights of their primitive components.

To decide when to split, pairs of estims are tested to see if they indicate a split
(are splittable). Intuitively speaking, if a single place is being represented, than a
single estim will eventually accumulate enough weight to dominate all the others.
If multiple places are represented by a node, on the other hand, several estims
will dominate, each corresponding to a different place. If the different places
are encountered with similar frequency, then splittable estims will have similar
weights. If one of the places is much less likely than the other, however, the
statistics will be skewed and a split will not be indicated. This is reasonable,
since if the probabilities are that skewed, the place description will converge on
that of the more probable place; the less probable one should then be created
separately. And if it isn’t, the cost of retaining the ambiguity is low anyway,
since the low-probability place occurs infrequently.

Therefore, the following conditions determine if two estims are splittable. First,
they must be more than &, distant from one another, so that they represent
positions that can be different places. Second, both estims must have more weight

10

than a pre-determined threshhold, ensuring a minimal standard of evidence to
avoid flukes. Finally, the ratio between the estims’ weights must be close to one,
showing that they have a similar amount of evidence.

An issue requiring deeper inquiry is the fact that since a place may be approached
from different directions and we rely on relative odometry, the position sample
space can become biased, defeating the weight similarity condition. This problem
appears to require being able to quantify and compensate for the bias by corre-
lating directions the robot came from with corresponding estims. This is an area
for further research.

F==—====- b Fe-====- B r-=-=-=-- -
i ') ' ' '
1 ' ' ' ' '
~- ! ! ! ! ['
A ' | 1
| @ <l @-ia il ;
i < ' i ' v ! !
[TS ! 1 ' ' ' !
1 N <=t - - - = - L e e-e= - 4
~ '
BN B EN @ | , !
1 | 1 1 [}]
' 1 1 ' 1 '
] ' 1 !]]
' ' | ' . .
' 1 1 '
U 1] | !]
gy Jd | J4 b o eeee = = 4
(a) (b) (c)

Figure 2: Splitting a place node; the solid rectangle is the place’s position esti-
mate, the dashed rectangle its nominal envelope; the circles are splittable estims.
(a) Midline between the estims. (b) Applying the interval approximation. (c)
Final place position estimates derived.

Splitting nodes is simplified by transient elision. Both of the new nodes can be
given the same action links and view sets of their source, since incorrect parts
of the description will be elided as transients. However, the positions of the new
nodes should each contain the ‘true’ position of the place they correspond to.
This is approximated by splitting the original node’s nominal envelope along the
line equidistant between the two splittable estims (see Figure 2a). This assumes
that the true position of the place corresponding to an estim is closer to it than
to the other estim. The full position of each new place is the LBI of its part of the
nominal envelope and the original position estimate if the estim fall in the original
position estimate, and just the estim’s part of the nominal envelope otherwise (see
Figure 2). As noted, transient elision allows the system to just copy the action
links and view set of the original place. This problem of action links and percepts
can more properly be dealt with by keeping track of associations between estims
and links traversed and views recognized. This is complicated, however, by the

11

fact that tracking errors can cause these statistics to improperly reflect the actual

situation.

| Operation

|| When applicable

| Action performed

| Error corrected

|

Continuation || Matched expected | Update position | —
place estimate

Linkage Matched Update position es- | Incomplete map
unexpected place timate and add ac-

tion link
Creation No matches Add new place node | Incomplete map
and action link

a-Match View and type | Expand place nodes | Inconsistent place
match, and posi- | position interval position
tion match with
nominal envelope

B-Match View and type | Set track to be at | Incorrect track
match with nearby | the place position
position

Elision Node, link, or view | Object deleted from | Transient creation
encountered far less | the map
often than expected

Merging Extended consis- | Merge place nodes | Multiple nodes for
tent merge histories one place

Splitting Strong competing | Split place node A single node rep-
estims in a place resenting multiple

places

Table 1: Summary of mapping operations

4.3 Decision processing

Since different track operations reflect mutually conflicting decisions about the
state of the map and they can interfere with one another, it is necessary to decide
which track operations, out of those possible at each stage, to perform. Other
operations, for example Splitting, are done as soon as they are seen to apply. A
general framework in which to approach this problem is to assign each potential
operation a priority, and then perform only those with the highest priority.

The simplest such scheme is to assign each type of operation a fixed priority, .

based on general preference criteria. Clearly, Continuation and Linkage are the
highest priority operations. When there is only one current track, the assumption
is that it is correct, and hence a-Match is to be preferred over B-Match; the
reverse holds when there are multiple current tracks. Both are preferred over

12

Creation, as they will rarely interfere with a legitimate Creation, and they have no
catastrophic effects (only increasing local uncertainty). Our results show that this
priority scheme works quite well. However, a more principled approach would be
a dynamic priority scheme, taking into account some notion of which operations
are more likely to be ‘correct’ in the current context.

5 Results

To test a robotic mapping system, a large number of experiments must be run
in a variety of different environments, so that the generality and stability of
the method can be properly evaluated. However, this is difficult to do with a
real robot, as it is often hard to work in multiple controlled environments, and
running experiments is very time-consuming. Therefore experiments were run
on a simulated robot, designed with a realistic, though abstract, approach to
sensing and control error; worst-case assumptions were made where necessary.
The simulator is described in detail in [10]; a brief overview is given below.

5.1 Simulated environment

Our simulator provides a point robot moving in IR?. The structure of the envi-
ronment is given by a 2D occupancy grid—individual cells are either full (walls)
or empty (space). Filled cells have a single numerical ‘substance’, representing a
measurement of some intrinsic property of the material, eg. texturedness. Empty
cells have an optional place type; the two currently used are door and corner,
assigned to the configurations shown in Figure 3a. This categorization is used to
implement place type approachers and recognizers.

o 4<f

Door Corner Door Corner

(2) (b)

Figure 3: (a) Place type classification patterns (the circle indicates the classified
cell). (b) Stable view directions for place types.

Place type actions are built upon the notion of fizations, which are visual markers
for places of particular types (a kind of effective designator, see [19]). The robot
can obtain a fixation on a place of a particular type if one is in its field of vision.

13

It can then use the resulting fixation to go to the place. Fixations only remain
valid as long as the robot doesn’t move; an invalid fixation is useless. There is
also error inherent in getting a fixation—there is a chance that a bogus fixation
will be found, pointing in a random direction. When a fixation is approached,
the robot moves to the position indicated—if the place type is recognized, the
approacher succeeds, otherwise it fails. The corner approacher has a chance of
performing according to two additional error modes; a corner can be missed and
the next corner ahead (if any) is approached, and the robot could mistakenly turn
a corner and find the next one ahead of it. The place type recognizer has a chance
of misclassifying the robot’s current place. Other actions available include turning
in place by fixed amounts and aligning with an adjacent wall or with the door
the robot is in. In addition to a success flag, each action returns an odometric
estimate of the robot’s relative motion as a random interval containing the true
motion, of size proportional to the distance travelled.

The perceptual primitive is the view, which is simply a list of numbers, each
representing a visual measurement of the substance of some object. The robot’s
field of view (typically 7 /4 radians) is sampled at evenly-spaced angles, and the
nearest filled cell in each direction is seen. Such measurements have unbiased
uniform bounded error added to them; there is also a chance that the measure-
ment will be contaminated and chosen uniformly from the universe of posible
measurement values. Since we use no statistical assumptions in perceptual pro-
cessing, the only important property of the uncontaminated noise distribution is
its boundedness. To improve perceptual stability, we assume that the robot can
approximately orient its camera stably relative to its current place type before
taking an image; stable camera directions for doors and corners are shown in
Figure 3b. The camera’s actual direction is randomly chosen from an interval
about the true angle.

5.2 Experiments

To test the system’s ability to correct for mapping errors, we ran experiments
primarily in two simulated worlds. The CONFUSION world (Figure 4) has two
identical door-corner pairs (on the right), and all places look alike. This exercises
the system’s ability to use splitting intelligently to tease out the true structure
of the world. The LOOKTWICE world (Figure 5) has a simple structure, but the
range of views possible from any one place is large. This tests the use of merging
to achieve parsimonious representation. Also, the distance between places is large,
leading to more geometric uncertainty. Both worlds, of course, also test transient
elision and a/B-Matching.

The mere fact that a learned map ‘looks right’ is no guarantee that it is a good
one, since there is quite a bit of hidden information. A map that looks good at
one point, may easily become garbage in the near future. There are, however,
some possible methods for measuring mapper success. The first we examine is

14

ROBOT S10ULATOR E 8K rosor Braw E=E

Figure 4: The CONFUSION world and a typical map learned. The upper map
picture shows the topological structure with symbols denoting place types. The
lower picture shows the reference frame and place position estimates as intervals.
Note that links only mean that a sequence of actions is known to get from one
place to another—no geometric interpretation is implied.

based on the concept of expectation error—the error inherent in allowing the
robot to rely on the map to predict its expected position after each move. We
can measure this by calculating the sum-of-squared-distance (SSD) between the
robots actual relative motion and predicted relative motion for each track after a
move. For a track estimate given by a set of possible motions S and a true motion
x, we have the SSD as [5 ||z — y||? dy. If the system is effective at mapping, we
would expect the average SSD per move (SSD/M) to asymptotically converge on
a small constant. In Figure 6 we plot cumulative SSD/M against time (robot
moves). Figure 6a shows SSD/M for several runs in CONFUSION superimposed,
demonstrating the basic properties of the SSD/M curves. When the system starts
mapping, it doesn’t yet have strong expectations, so they cannot be violated. As
the robot moves and uncertainty increases, the SSD/M quickly grows. Then
the SSD/M begins to plummet and approaches a stable level, as map error get
corrected and the system settles down. Note that stable convergence does not
always occur; instability is possible, though very infrequent. Figure 6b and c
show average SSD /M over 10 runs for CONFUSION and LOOKTWICE; both curves
indicate proper average convergence.

Another measurement of mapping error is the average number of error corrections
per move. This can be examined by looking at the average number of map
adjusting operations per move (MAO/M). The map adjusting operations are
Create, a/B-Match, Splitting, and Merging. Plots of MAO/M against time are
given in Figures 7 and 8. They have the same qualitative shape as the SSD/M
plots, indicating convergence. In Figure 9 .we see some of the effect of varying
noise levels on the algorithm. Figure 9a shows curves for increasing odometric

15

X] ROBOT S1OULATOR ROBOT BRAIR [=]rs
4 L A %
x [l ,-" .
' .. -* .
' e o '
' S JPt s '
: St / :
' AR H
: il o :
. oo R
RS ¢
: . S :
. 2N .]
. ., . N
1 N \ '
1 . -~ . 1]
H TN \ !
. ‘\,‘_ N '
: RN g :
Vs T ~ Vool
E " Tl M . “\ :
' Saa. \
Y IR
: A A
. s .
ROBOT BRAIN (=]

Eh

.
.
.
M .
.
’
]
4
IS
s
r
. v
n 0y
’
g)
\.

..

..
.

Figure 5: The LOOKTWICE world and a typical map learned. The upper map
picture shows the topological structure with symbols denoting place types. The
lower picture shows the reference frame and place position estimates as intervals.
Note that links only mean that a sequence of actions is known to get from one
place to another—no geometric interpretation is implied.

noise levels, of MAO/M averaged over 10 runs in CONFUSION. Figure 9b shows
curves for increasing camera angle noise levels, of MAO/M averaged over 10 runs

in LOOKTWICE. It is clear that the convergence is delayed somewhat, but not
overly so, by increasing sensor error.

A third way to evaluate the performance of our system is to define a criterion for
deciding that a mapping run has converged, and look at the fraction of mapping
runs that converge in a certain number of moves. We can reasonably say that a
map has stabilized if only the expected stable number of map-adjusting operations
are performed on it for 100 moves. Radical map-adjusting operations are those
that change the structure of the place graph: Creation, Splitting, Merging, and
Place Elision. The expected number of Splittings per move in a stable map
is 0, since all places should be known. The expected number of Creations or

16

- -
o
- -
=t -
=
- -
i » [] s s - L] | » » »] - » i [] [] » E] L1]

Figure 6: SSD/M vs. time for 700 moves, sampling each 20 moves. Note that ?
the important thing here is the shape of the curves, not the absolute scale. (a) |
Several CONFUSION runs. (b) Average of 10 CONFUSION runs. (c) Average of 10 !
LOOKTWICE runs.

3y 2y
™ o
£ .y
o [
o L
L [
" . -

Figure 7: Plots of average MAO/M against time in CONFUSION. (a) A single
run. (b) Average over 10 runs.

17

Figure 8: Plots of average MAO/M against time in LOOKTWICE. (a) A single
run. (b) Average over 10 runs.

Figure 9: MAO/M vs. time vs. noise. (a) Average MAO/M over 10 runs in
CONFUSION, with odometric error = {0.1,0.15,0.2,0.25} xdistance travelled. (b)

Average MAO/M over 10 runs in LOOKTWICE, with maximum view angle error
= {0.1,0.2,0.3} radians.

18

Motion | Angular # stable # stable # stable
World Noise Error by 200 moves | by 300 moves | by 400 moves
CoNFuUsiOoN | 0.1 0.1 6 9 10
CONFUSION | 0.15 0.1 6 8 10
CONFUSION | 0.2 0.1 7 9 10
CONFUSION | 0.25 0.1 8 10 10
LookTwicE | 0.1 0.1 10 10 10
LooKTwICE | 0.1 0.2 9 10 10
LookTwicE | 0.1 0.3 8 10 10

Table 2: Mapper convergence statistics. 10 simulation runs were done for each
world/parameter setting.

Mergings/Place Elisions per move in a proper map depends on the chances of
measurement outliers appearing—when more than one occurs in a view, then a
Creation will almost certainly be performed. Eventually, the transient will be
Merged or killed. If the probability of a measurement outlier is p and the number
of elements in a view is n, then the expected stable number of Creations (or
Mergings + Elisions) per move is given by:

n
Came =3 (7) 1=
=2

In our simulations, p = 0.01 and n = 8, thus Ceaple = 0.027—so0 if no more than 3
Creations or Mergings/Place Elisions occur in 100 moves, we declare than a map
to be stable. Table 2 shows the fraction of 20 test runs that converged under this
definition within certain numbers of moves. Note that convergence time appears
to be unaffected by increasing noise (the seeming trend of improvement with
increasing noise is likely due to our small sample size).

6 Future Directions

Our primary short-term goal is to implement our system on a mobile robot. We
have already done some work on developing primitives to support perceptual
matching in our model [12]. Place type approachers can be implemented using
known behavior-based techniques [17, 8]. In addition to having a more realistic
testbed, more extensive analysis of the system’s performance can be done, using
methods of data analysis to determine the convergence and stability properties of
the system. Furthermore, although parts of the system can be formally motivated,
it is quite difficult to formally characterize our problem as a whole; this also forms
an important thrust of our work for the near future.

One specific area that needs to be explored further is the principled design of
dynamic preference criteria for track operation. One approach would be to take
into account the ‘explored-ness’ of regions of the world. Continuation is preferred

19

to Linkage only if all possible actions have been well-explored in the current area,
otherwise prefer neither. Prefer Creation to o/ 3-Match in unexplored areas, a/3-
Match to Creation in well-explored areas, and neither in in-between areas. Of
course, formalizing these notions is a difficult question in and of itself. Priority for
individual operations (rather than just operation types) could use these notions
along with a confidence in a track being correct—an operation of a lower priority
type may take precedence if the system is particularly confident in its track.
These ideas should be formalizable in the framework of decision theory [5] by
formulating expressions for the utility and cost of performing each operation in
given circumstances.

Though we partially utilize the structure of the environment to correct errors,
there are also useful sources of information that are not currently taken into ac-
count. For example, the fact that a particular approacher succeeds or fails from
a particular place provides a strong local functional constraint on the robot’s
location; the only functional constraint currently used is long-term trajectory
consistency, whose application depends on the robot’s behavior (which the map-
per does not control). Thus, it would be desirable to incorporate active methods
into our mapping system. Currently, it often takes quite some time for the robot
to converge on a map; one cause of this is the undirected nature of the robot’s
exploration—essentially a random walk. However, since we use a passive map-
ping strategy, exploration is easily incorporated. Furthermore, unlike mappers
that rely on active strategies, our system can easily accomodate interleaving ex-
ploration with other goal-directed behavior.

7 Conclusions

Though the problem of robot map learning has been much investigated, little
attention has been paid to discovering and correcting the errors that must in-
evitably creep into any map constructed. We have described a novel approach
which performs reliable mapping by explicitly detecting and correcting mapping
errors. We show that such error correction can be done without keeping track of
all mapping decisions ever made. The methodology makes use of environmental
structure to determine the essential information needed to correct mapping er-
rors. We also show that it is not necessary for the decision that caused an error
to be specifically identified for the error to be corrected. It is enough that the
type of error can be identified. Furthermore, since our method performs pas-
sive mapping and we make no demands on the behavior of the robot, the ideas
described here can easily be integrated into other robot mapping systems. The
system described has been implemented; extensive testing in a realistic simulation
environment demonstrates its effectiveness.

20

Acknowledgements

Many fascinating discussions with Greg Hager, Dave Kriegman, and P. Anandan
helped these ideas come to fruition. The report was much improved with the help
of careful reading by Michael Black.

References

[1] G. Alefeld and J. Hertzberger. Introduction to Interval Computation. Aca-
demic Press, New York, NY, 1983.

[2] Sami Atiya and Greg Hager. Real-time vision-based robot localization. IEEE
Robotics and Automation, (submitted), 1992.

[3] Nicholas Ayache and Olivier D. Faugeras. Maintaining representations of the
environment of a mobile robot. IEEE Trans. on Robotics and Automation,
5(6), 1989.

[4] Kenneth Basye, Tom Dean, and Jeffrey S. Vitter. Coping with uncertainty
in map learning. Technical Report CS-89-27, Brown University Department
of Computer Science, June 1989.

[5] James O. Berger. Statistical Decision Theory and Bayesian Analysis.
Springer-Verlag, New York, 1985.

[6] David J. Braunegg. MARVEL: A System for Recognizing World Locations
with Stereo Vision. PhD thesis, MIT, 1990.

[7] Raja Chatila and J. Laumond. Position referencing and consistent world
modeling for mobile robots. In Proc. IEEE Int. Conf. on Robotics and Au-
tomation, pages 138-170, Washington, D.C., 1985.

[8] Jonathan Connell. A Colony Architecture for an Artificial Creature. PhD
thesis, MIT, 1989. Technical Report 1151.

[9] Alberto Elfes. Sonar-based real-world mapping and navigation. IEEE Jour-
nal of Robotics and Automation, RA-3(3):249-265, 1987.

[10] Sean P. Engelson. The abstract robot simulator manual. Technical Report
(forthcoming), Yale University Department of Computer Science, 1992.

[11] Sean P. Engelson and Drew McDermott. Robotic map learning with explicit
error correction. Technical Report (forthcoming), Yale University Depart-
ment of Computer Science, 1992.

[12] Sean P. Engelson and Drew V. McDermott. Image signatures for place recog-
nition and map construction. In Proceedings of SPIE Symposium on Intelli-
gent Robotic Systems, 1991. (to appear).

21

[13] David J. Kriegman. Object Classes and Image Contours in Model-Based
Vision. PhD thesis, Stanford University, 1989.

[14] Benjamin Kuipers. Modeling spatial knowledge. Cognitive Science, 2:129-
153, 1978.

[15] Benjamin Kuipers and Yung Tai Byun. A robust qualitative method for
robot spatial reasoning. In Proceedings of AAAI-88, pages T74-779, 1988.

[16] T. S. Levitt, D. T. Lawton, D. M. Chelberg, and P. C. Nelson. Qualitative
landmark-based path planning and following. In AAAI-87 National Confer-
ence on Artificial Intelligence, Seattle, Washington, 1987.

[17] Maja J. Mataric. A distributed model for mobile robot environment-learning
and navigation. Technical Report 1228, MIT Artificial Intelligence Labora-
tory, 1990.

[18] Drew McDermott. A general framework for reason maintenance. Technical
Report 691, Yale University Department of Computer Science, 1989.

(19] Drew McDermott. A reactive plan language. Technical Report 864, Yale
University Department of Computer Science, 1991.

[20] Drew V. McDermott and Ernest Davis. Planning routes through uncertain
territory. Artificial Intelligence, 22:107-156, 1984.

[21] David P. Miller and Marc G. Slack. Global symbolic maps from local navi-
gation. In Proceedings of IJCAI-91, pages 750-755, 1991.

(22] Hans P. Moravec and Alberto Elfes. High resolution maps from wide angle

sonar. In JEEFE International Conference on Robotics and Automation, pages
138-145, 1985.

[23] Ronald L. Rivest and Robert Sloan. Learning complicated concepts reliably
and usefully. In Proceedings of AAAI-88, pages 635-640, 1988.

[24] Karen B. Sarachik. Visual navigation: Constructing and utilizing simple
maps of an indoor environment. Technical Report 1113, MIT Artificial In-
telligence Laboratory, 1989.

[25] Randall Smith, Matthew Self, and Peter Cheeseman. Estimating uncertain
spatial relationships in robotics. In Proceedings of the Second Workshop on
Uncertainty in Artificial Intelligence, Philadelphia, PA, 1986.

[26] Charles Thorpe, Martial H. Hebert, Takeo Kanade, and Steven Shafer. Vi-
sion and navigation for the Carnegie-Mellon Navlab. IEEFE Trans. on Pattern
Analysis and Machine Intelligence, 10(3):362-373, 1988.

[27] Wai K. Yeap. Towards a computational theory of cognitive maps. Artificial
Intelligence, 34(3), April 1988.

22

