
Yale University
Department of Computer Science

Towards Automatic Generation of Multi-table Datapath from
Datapath-Oblivious Algorithmic SDN Policies

Andreas Voellmy Y. Richard Yang Xiao Shi

YALEU/DCS/TR-1504
Jan. 30 2015

Abstract

Despite the emergence of multi-table pipelining as a key feature of next-
generation SDN datapath models, there is no existing work that addresses the
substantial programming challenge of generating effective multi-tables auto-
matically. In this paper, we present Magellan, the first system that tries to
address the aforementioned challenge and beyond. Introducing a novel algo-
rithm called Map-Explore, Magellan extracts efficient multi-table pipelines
from a datapath oblivious, high-level SDN program written in a general-
purpose language and maximizes local switch processing. We implement a
prototype of Magellan for a Turing-complete programming language. Com-
paring the flow tables generated by Magellan with those produced from stan-
dard SDN controllers including OpenDaylight and Floodlight, we show that
Magellan uses between 46-68x fewer rules.

1 Introduction

Multi-table pipelining has emerged as the foundation of the next generation SDN
datapath models, such as recent versions of OpenFlow [9], Protocol-Oblivious For-
warding (POF) [23], RMT [3], and Flexpipe [20]. However, it remains a major
issue in SDN programming to fully utilize multi-table pipelining. Without the abil-
ity to automatically use multi-table pipelines in a given higher-level programming
model, SDN programmers may be forced to switch to a lower level programming
model where the powerful, but low level features of multi-tables are directly ex-
posed. This can create substantial programming complexity, leading to lower pro-
gramming productivity. To date, there is no previous study on automatic generation
of effective multi-table pipelines, from multi-table oblivious higher level programs.

This paper investigates how to compute effective multi-table pipelines from
algorithmic policies [24]. We choose the algorithmic policy model because it is
highly flexible and hence poses minimal constraints on SDN programming. As a
result of the generality, if we can compute high-quality multi-table pipelines for
algorithmic policies, we can use algorithmic policies as a powerful intermediate
language for implementing other high-level SDN programming models.

Computing effective multi-table pipelines from algorithmic policies, however,
is challenging. In particular, algorithmic policies are expressed in a general-purpose
programming language with arbitrary complex control structures (e.g., conditional
statements, loops), and the control structures of the program can be completely
oblivious to the existence of multi-tables. Hence, it is not clear at all whether one
can extract effective multi-table pipelines from such programs. We refer to this as
the multi-table extraction challenge. In the original paper [24] which proposed the
algorithmic policy model, the authors use an approach called trace trees to generate

1

flow table rules. Their approach, however, is limited to a single table setting. Even
in the single-table setting, one can show that the approach may generate ineffective
flow tables, not to say the setting of the more challenging multi-tables. Although
there is previous work on how to use multi-table datapath (e.g., [2, 22]), the setting
is that the tables and their pipelining are already given.

This paper introduces Magellan, the first system that addresses the multi-table
extraction challenge and beyond. The core of Magellan is a novel, substantial
algorithm called Map-Explore, which conducts a novel, efficient form of hybrid
symbolic (map) and direct (explore) execution of a multi-table oblivious program
written in a general-purpose language, resulting in a data-structure called mapper-
explorer graph. Considering and taking advantage of the computational capabili-
ties (e.g., only matching, availability of metadata as registers) of flow tables when
constructing the mapper-explorer graphs, Magellan maps mapper-explorer graphs
into flow tables, considering practical switch hardware constraints. Morevoer,
Magellan addresses an additional key challenge in SDN programming: efficient
flow table utilization and update under system dynamics. Using Map-Explore,
Magellan automatically generates flow tables that maximize local switch process-
ing and maintains switch-controller consistency despite system updates.

We implement a prototype of Magellan for a Turing-complete programming
language. Comparing the flow tables generated by Magellan with those imple-
mented by standard SDN controllers, for the layer 2 learning and routing bench-
mark, we show that Magellan uses between 46-68x fewer rules than systems in-
cluding OpenDaylight and Floodlight, since none of them used multi-tables.

Despite the substantial progress made by Magellan, there are limitations on
what Magellan can achieve with only flow tables. In particular, there are algo-
rithms that are simple to express in a general-purpose language but fundamentally
impossible to express compactly using flow tables.

The rest of the paper is organized as follows. We first illustrate the problem
and our basic ideas in Section 2. In Section 3, we present the system architecture
and details of the Map-Explore algorithm. We evaluate Magellan in Section 4 and
give related work in Section 5.

2 Basic Ideas

We start with a simple, but representative example to illustrate the basic challenges
and ideas. Section 3 presents an architecture to systematically implement the ideas.

2

2.1 State Read-only Policies
Example and programming model:
// Program: L2-Route
1. Map macTable(key: macAddress, value: sw)

2. onPacket(p):
3. srcSw = macTable[p.macSrc]
4. dstSw = macTable[p.macDst]
5. if (srcSw != null && dstSw != null):
6. return myRouteAlg(srcSw, dstSw)
7. else
8. return drop

Consider an example algorithmic policy, L2-Route, shown above, to imple-
ment routing on layer 2 addresses. In this example and throughout this paper, we
use the following algorithmic policy abstraction: each packet p, upon entering the
network at an ingress point, will be delivered to a user-defined callback function
named onPacket, also referred to as the function f . This function returns the path
that the packet should take across the network. We refer to this style of returning
the whole path as the global policy. A variation on this programming model is to
define a local, per-switch onPacket function. The results will be similar.

Although L2-Route looks simple, it includes key components of a useful al-
gorithmic policy: maintaining a set of system states, and processing each packet
according to packet attributes and current system states. Specifically, line 1 of
L2-Route declares its state variable macTable: a key-value map data structure
that associates each L2 endpoint to its attachment switch. Given a fixed packet,
L2-Route performs a lookup, using the macTable state variable, of the source and
destination switches for the packet, and then computes a route between the two
switches through the network.
Problem of previous work: The only previous work that handles general algo-
rithmic policies is [24], which uses a trace tree approach: a policy is repeatedly
invoked within a tracing runtime system that records the sequence of packet at-
tributes read by each invocation, and the recorded execution traces form a trace
tree; a trace tree can be compiled to a single flow table, where each leaf of the
tree corresponds to a rule in the flow table. Figure 1 shows the complete trace tree
and the flow table for L2-Route. For example, the bottom left result path0 is the
execution trace of a packet with macSrc 0 and macDst 0.

This example shows that the trace tree approach is inefficient in two ways.
First, it needs 296 invocations, which we call an exploration, to complete the
trace tree, due to its blackbox nature. Specifically, packet attributes p.macSrc and
p.macDst are free variables, in that they are formal arguments of f and hence do
not have actual value bindings until a specific invocation of f . Hence, a minimum
of 296 invocations is needed to complete the exploration of all possible bindings.

3

src

dst

path0 · · · p248−1

· · · dst

p··· · · · p296−1

0 248 − 1

0

Match Action
macSrc : 0,macDst : 1 p0
· · · · · ·
macSrc : 0xff...ff,macDst : 0xff...ff p296−1

Figure 1: Complete trace tree and flow table for L2-Route.
Second, with one rule for each leaf, the flow table will have 296 rules; this is clearly
impractical.
From blackbox to whitebox exploration: Since the preceding has shown that
the largely blackbox based trace-tree approach does not scale, it is intuitive to try a
whitebox based approach. A key benefit of a whitebox based approach is that it can
see derived free variables–variables that depend on packet attributes. The trace-tree
approach focuses only on packet attributes, but srcSw and dstSw in L2-Route are
free variables as well.
Algorithm 1 DirectExplore (PC, store)

1: if (PC, store) has been explored then
2: return
3: Mark (PC, store) as explored
4: ins = prog[PC]

5: switch (ins.type) do
6: case RETURN:
7: Save return value
8: return
9: default: . exploration

10: (x1, x2, . . . , xk) = variables used in ins

11: for (v1, . . . , vk) ∈ (store[x1], . . . , store[xk]) do
12: store′ = store[x1 7→ {v1}, . . . , xk 7→ {vk}]
13: (nextPC, store′) = EXECUTE(ins, store′)
14: Remove vars from store′ if not live at nextPC
15: DIRECTEXPLORE(nextPC, store′)
16: end switch

An algorithm that can convert an algorithmic policy f to flow table rules must
have computed the output that f returns on each possible value of packet attribute.

4

For this goal, given the structure of function f , we can design a naive white-box
exploration algorithm, DirectExplore to compute all outputs. The algorithm
models the execution state of f with a pair (PC, store), where PC is the program
counter, and store is the execution state, which is a symbolic store that consists
of a collection of variable-range bindings. Specifically, DirectExplore takes the
instruction at the current program counter (line 4) and identifies the variables used
in the instruction (line 10). Then it explores (line 11) all bindings allowed by the
current ranges of the variables. The initial range of each packet attribute is its
allowed set of values. For each binding, the algorithm can execute the instruction
(line 13), because each free variable has a single value and hence can be executed.
The execution of an instruction (DirectExplore) returns the next PC, which will
be the following instruction for a sequential instruction and jumped instruction if
conditional or jump instruction. DirectExplore recurses on this process. Note
that the variable store keeps the bindings (i.e., ranges of variables) along each
exploration path, recording the execution state. Using the memorization technique
(lines 1-2), DirectExplore avoids recursion when the bindings (i.e., the store)
are the same at the same PC. Conceptually, this happens when the execution paths
of different inputs merge. To increase merging, line 14 removes all variables from
the store that are not live at nextPC . This is safe, since non-live variables can not
affect further computation. One can verify that this algorithm computes all returns
of a given f .

Although simple, DirectExplore is not practical. For example, consider
applying this algorithm to L2-Route. It will repeat Line 10 248 times because
p.macSrc is a free variable and its range is 0 to 248−1. We define such statements
as non-direct executable statements:

Definition 1 A non-direct executable statement is one which has large fan out if
using DirectExplore.

Exploration at only low fan-out cut: Instead of giving up the simplicity of white-
box exploration using DirectExplore, we introduce a key novel idea: we revise
DirectExplore so that it conducts exploration (i.e., executes line 11) for only
statements whose free variables have small ranges. Consider line 5 of L2-Route.
At this statement, only srcSw and dstSw are accessed and each may have a low
range. Assume a network of 999 switches, and the lookup returns null if look
up fails. One can compute that exploring line 5 needs only 1M(= 1000 × 1000)

combinations. We say that line 5 has a “cut” with a small enumeration fan out.
Table mapping, not exploration: To generate flow table rules, we need to obtain
the mapping from packet attributes to return results. Since smart exploration may
start at the middle of a program (e.g., line 5 of L2-Route), the missing piece is to

5

obtain the mapping from input packet attributes to derived variables (e.g., srcSw
and dstSw respectively for L2-Route). A naive approach of obtaining these flow
table mappings is exploration (e.g., explores lines 3 and 4 of L2-Route), but this is
not possible.

Our second insight is that in the multi-table pipelines, this naive mapping ex-
ploration is unnecessary. Instead, one can recognize program statements with com-
pact flow table mappings which can perform these mappings in flow tables at run-
time. For example, the mapping from packet attributes to srcSw is simple: it is just
a simple flow table that one can construct given macTable , matching on keys of
macTable .

Definition 2 A compact mappable statement is a programming statement satisfy-
ing the following two conditions: (1) its effect can be represented by a compact
flow table; and (2) its outcome has a small range.

Note that both compact and small are relative terms measured by quantity.
Hence, in real implementation, we define a predicate to determine the threshold.

Since a smart explorer obtains the effects of lines 3 and 4 of L2-Route with-
out real execution of them, we say that the smart explorer executes lines 3 and 4
symbolically.

Note that there exist statements that are simple but are not compact mappable
statements.

Proposition 1 Consider return p.macDst % n, where n 6= 2i for any i.
There is no compact flow table representation of this statement.

Such fundamentally challenging statements can be implemented through a reac-
tive, on-demand approach or through instructions provided by more expressive
forwarding models, such as POF [23].
Table linking using registers: The remaining issue is how to integrate the two
packet attribute mapping tables and the results of the exploration at line 5. This
turns out to be achievable through a novel use of standard datapath registers: the
system consists of three tables, where the first table matches on macSrc and en-
codes the outcome (srcSw) in a register, the second matches on macDst and en-
codes the outcome (dstSw) in a different register, and third (and final) flow table
matches on the two stored register values and sets the appropriate action to take
on the packet. This collection of flow tables, depicted in Figure 2, consists of
M +M +O2 rules, where M denotes the number of hosts listed in macTable and
O denotes the number of outcomes (e.g., 1000) in macTable. Hence, we obtained
a efficient multi-table pipeline with compact flow tables.
The mapper-explorer graph: Figure 3(A) illustrates the preceding insights. We
refer to the graph shown in the figure as a mapper-explorer graph. The first inverted

6

Figure 2: The optimized multi-flow-table pipeline for the L2-Route policy.
trapezoid (representing its reduction effect) shows the effect of looking up the free
variable p.macSrc in macTable . The second inverted trapezoid represents the
effect of looking up the free variable p.dstMac in macTable . The third node of
the figure represents the exploration in the middle of f .

Figure 3: The mapper-explorer graph of L2-Route.

2.2 State-updating Policies
An algorithmic policy may not only read states but also update them. Consider
an extension to L2-Route which saves the last packet sending time of a set of
monitored (say stolen) MACs:
1. Map macTable(key: macAddress, value: sw)
2. Map monitoredTable(key: macAddress, value: time)
3. onPacket(p):
4. if (p.macSrc in keys(monitoredTable)):
5. monitorTable[p.macSrc] = time()

... as before ...

Program rewriting and punt: This updated program introduces two features: the
if statement with free variable and the system update. These new features, however,
are relatively easy to handle by simply rewriting the program as follows:

7

y = p.macSrc in keys(monitoredTable)
if (y):

monitorTable[p.macSrc] = time()

With this rewriting, the table mapping technique is still applicable, and hence,
leading to a table with match based on the keys of monitorTable. It is possible
to explore the if (y) statement, since y has only two values. Furthermore, it is
straightforward to detect that the true case needs controller action (Punt) instead of
local switch action. The mapper-explorer graph is shown in Figure 3(B).

The preceding example has touched on many key ideas of our design: explo-
ration only on low fan-out statements, auto table from mapping statements, using
registers for method results passing, and automatic punt for system updates. The
key contribution of this paper is that we develop them into systematic techniques
for real, complex programs.

3 Magellan

The objective of Magellan is to implement the preceding basic ideas in general
settings, for real, complex policy programs. Figure 4 shows the key components
and work flow.

Figure 4: Magellan system components and workflow.

The design of Magellan faces two key challenges: (1) the complexity of a
general-purpose programming language, and (2) the complexity of handling realis-
tic datapath constraints. Magellan uses a modular design to decouple the handling
of the complexities, with mapper-explorer graphs being the central coordination
data structure.

Specifically, Magellan conducts static bytecode rewrite (Rewriter) and dynamic,
smart exploration (Explorer), to convert a policy in a general-purpose language to
the simple, language-independent mapper-explorer graph data structure. Guided

8

by the mapper-explorer graph and also considering key datapath constraints (e.g.,
number of tables), the table fitter performs a set of transformations on the mapper-
explorer graph to produce the final multi-table pipeline.

3.1 Compile-time Analysis

The Rewriter performs analysis on a language-independent, general-purpose byte-
code and outputs an equivalent program in an extended bytecode, called bytecode*.
The extended bytecode includes new BRK instructions for compact-mappable in-
structions, system state accesses (read/write) and packet field accesses. The Rewriter
applies data flow analysis to replace non-compact mappable statements with these
new instructions whenever possible. In addition, the analysis phase produces in-
formation, such as variable liveness, which is leveraged by runtime exploration.

3.2 The Map-Explore Algorithm

The basic structure of Map-Explore is easy to describe: it extends DirectExplore,
by detecting compact mappable statements and processing them in a new MAP case.
Hence, mappable statements are processed, essentially symbolically, compared
with a conventional executor. Another difference between DirectExplore and
Map-Explore is to process native instruction as fast as possible. This is achieved
by introducing the XStep method, that executes bytecode* instructions up to the
next BRK instruction. We omit the detailed code of XStep due to its simplicity.
Moreover, the execution of Map-Explore creates the mapper-explorer graph. In
this graph, each node has three attributes: an unique ID (line 2), which is a combi-
nation of the PC and the state of the store (e.g., using a hash); a type (RET, MAP,
EXEC); and the parameters specific to each type. The constructor Node() takes
a node id, a type, and the parameters of the type. One may use inheritance for a
strong typed language to define different types of nodes.

Only controller actions: The function f may include behaviors, in particular,
sending messages and/or updating state variables, that only the controller can do.
To support such behaviors, Map-Explore will detect such statements and send
packets back to the controller. In Map-Explore, the detection is in the UPDATE

case.
It is important to note that Map-Explore will only send packets to the controller

if they would execute update or send statements according to the program, in the
current system state. Hence as system state changes, further packets may no longer
be punted to the controller, even if the program contains update statements.

9

Algorithm 2 Map-Explore (PC, store): build mapper-explorer graph Gmx =

(Vmx, Emx)

1: ins = prog[PC], nid = (PC, store)

2: if nid ∈ V then return
3: switch (ins.type) do
4: case BRK.RETURN:
5: V = V ∪ {Node(nid, RET, ins.value)}
6: return
7: case BRK.MAP:
8: x = the free variable that ins maps.
9: outcomes = possible assignments to x by ins .

10: if |outcomes| < LIM then
11: V = V ∪ {Node(nid, MAP)}
12: store′ = store[x 7→ outcomes]

13: Remove vars from store′ if not live in nextPC .
14: nid′ = (nextPC, store′)

15: E = E ∪ {(nid, nid′)}
16: MAPEXPLORE(nextPC, store′)
17: return
18: case BRK.UPDATE:
19: V = V ∪ {Node(nid, PUNT)}
20: return
21: default: . Begin explore
22: (x1, x2, . . . , xk) = vars used in paths to next BRKs
23: V = V ∪ {Node(nid, EXEC)}
24: for (v1, . . . , vk) ∈ (store[x1]× . . .× store[xk]) do
25: store′ = store[x1 7→ {v1}, . . . , xk 7→ {vk}]
26: Remove vars of store′ not live on exit of PC .
27: (nextPC, store′) =XSTEP(ins, store′)
28: nid′ = (nextPC, store′)

29: E = E ∪ {(nid, nid′, [v1, . . . , vk])}
30: MAPEXPLORE(nextPC, store′)
31: end switch

10

Proposition 2 Programs whose BRK instructions are all compact-mappable will
only punt backs that must be punted to perform state updates.

3.3 Table Generation

With a given mapper-explorer graph, we can generate flow tables using a table gen-
eration algorithm. The table generation proceeds in three steps: (1) Graph2Tables,
which converts a mapper-explorer graph Gmx to a flow table graph Gft with the
same structure; (2) TableAggregation, which aggregates flow tables in Gft to
reduce the number of tables used; and (3) RegisterAllocation which encodes
program variables into dataplane-matchable registers.
Graph2Tables: Since mapper-explorer graphs are direct acyclic graphs, we de-
sign Graph2Table to process the nodes in a given mapper-explorer graph Gmx in
an inverse topological order, ending with without outgoing edges. Table IDs are
assigned in processing order, and therefore no table will have a rule that jumps to
a table with a lower or the same table id, satisfying OF specification [9].

The generation of the flow table for each node is mostly straightforward. A
RET or PUNT node generates a table with a single entry. The flow table for a
MAP node depends on the instruction type. For example, the table for a lookup
instruction t[pattr1, . . . , pattrn] consists of one rule per entry in t, where each
rule has a match condition that matches each packet attribute pattr i against the
corresponding entry’s key, and has an action that writes the entry’s value into a
logical register corresponding to the target variable of the instruction and then
jumps to the successor table. In addition there is one final rule at a lower priority
with no match condition (unrestricted match) and setting the logical register to null

prior to jumping. Other instruction types are mapped to tables in appropriate ways.
The entries of the flow table created for an exploration (EXEC) node match

entirely on the logical registers. Each rule jumps to its successor in the graph and
prior to jumping writes values to all logical registers whose values have changed
between the node’s store and the successor’s store.
Table Aggregation: We apply simple heuristics to reduce the number of tables
used. In particular, we inline any tables for leafs (RET and Updates) and inline any
tables that are jumped to by exactly one rule. Inlining these cases can not increase
the number of rules used, and may reduce the number of tables required.
Register Allocation: The flow tables produced by Graph2Table use one logi-
cal register per program variable. For switches supporting several actual registers,
such as Open vSwitch [19], we adapt graph coloring register allocation from com-
pilers, to map the potentially large number of logical registers to a small number
of actual registers. Different register allocation algorithms may be developed for

11

switches that provide only one wide, maskeable metadata register.

4 Preliminary Evaluation

In this section, we demonstrate that Magellan improves end-to-end performance
over existing systems by proactively generating compact forwarding rules and
thereby eliminating many flow table misses. Our prototype consists of 5500 lines
of code and includes an OpenFlow 1.3 controller.
Control Systems: We compare Magellan with a range of SDN systems, including
OpenDaylight (ODL) (Helium), Floodlight (1.0), POX [21] (forwarding.l2_learning
module from 0.2.0), Pyretic (latest version), and Maple (0.10.0). POX, Pyretic
and Maple are academic systems supporting novel policy languages and compil-
ers, while ODL and Floodlight are industry-developed open source controllers that
form the basis of commercial systems. We run controllers on a 2.9 GHz Intel dual
core processor with 16 GB 1600 MHz DDR3 memory with Darwin 14.0.0, Java
1.7.0_51 with Oracle HotSpot 64-Bit Server VM, and Python 2.7.6.
Network: We evaluate all systems using Open vSwitch (OVS) version 2.0.2, which
supports both OpenFlow 1.0 and OpenFlow 1.3.4. We vary the number of hosts
attached to a switch, with each host attached to a distinct port.
Workload: We evaluate a policy available in each system from the system’s au-
thors (with minor variations), L2 learning. After allowing appropriate initialization
of hosts and controller, we then perform an all-to-all ping among the hosts, record-
ing the RTT of each ping and measure the time for all hosts to complete this task.
After completing the task, we retrieve and count all Openflow rules installed in the
switch.
Results: Figure 5 lists the number of rules, task completion time, and median ping
RTT for each system with H = 70 and H = 140 hosts and Figure 6 charts the
median ping RTTs1. We observe that for 70 hosts, Magellan uses 33x fewer rules
than Maple, ODL and Floodlight, while for 140 hosts, Magellan uses between
46-68x fewer rules than other systems. This rule compression is due to leveraging
multi-table pipelines. Other systems generate rules into a single table, and therefore
generate approximately H2 rules, while Magellan generates approximately 2 ∗H
rules.

Magellan completes the all-to-all ping 1.2x faster than ODL and 1.4-1.6x faster
than Floodlight. The median RTT is substantially improved, with Magellan re-
ducing RTT experienced by hosts by 2x versus ODL and between 7x and 10x

1Tests of Maple at 140 hosts and of Pyretic at both 70 and 140 hosts failed and these measure-
ments are therefore omitted.

12

System Hosts Rules Time (s) Med RTT(ms)
Maple 70 4767 51 2.0
POX 70 18787 96 9.7
Floodlight 70 4699 37 2.1
OpenDaylight 70 4769 32 0.6
Pyretic 70 - ¿ 1500
Magellan 70 142 25 0.3
Maple 140 - -
POX 140 13107 389 11.9
Floodlight 140 16451 200 6.1
OpenDaylight 140 19349 150 1.2
Pyretic 140 - -
Magellan 140 282 123 0.6

Figure 5: End-to-end performance comparison.

PO
X

M
ap

le

Flo
od

lig
ht

O
D
L
M

ag
el
la
n

70 hosts

PO
X

Flo
od

lig
ht

O
D
L

M
ag

el
la
n

140 hosts
0

2

4

6

8

10

12

Time HsL

Figure 6: Comparison of Median ping RTT in SDN systems when performing an
all-to-all ping task.
for Floodlight. This improvement is due to Magellan’s proactive rule compilation
which generates all rules early in the task - as soon as host locations are learned.
In contrast, all other controllers (except Pyretic) generate rules only when a sender
sends a first packet to a receiver, and hence other systems continually incur flow
table misses during the task.

5 Related Work

High-level programming models: We classify existing models into two cate-
gories: “tierless” and split-level. In a split-level model (e.g.the Frenetic languages
[8, 15, 16, 1]), a controller program outputs a new stateless network policy after
each relevant event. Magellan provides a tierless programming model, in which
programmers specify forwarding behaviors as a packet handling function which
has access to system (i.e., control) state. FlowLog [17] and FML [11]) provide
tierless programming with limited expressivity (non-recursive Datalog variants).

13

All the preceding programming systems focus on compiling to a single flow table.
Low-level SDN control systems: The main mechanism currently available to SDN
programmers to handle multi-table pipelines is to use lower-level SDN control sys-
tems and APIs (e.g., [6, 7, 10, 13, 18]). In particular, NOX [10] offers C++ and
Python APIs for raw event handling and switch control, while Beacon [6], Flood-
light [7] and OpenDaylight [18] offers a similar API for Java. These APIs require
the programmer to manage low-level OpenFlow state explicitly, such as switch-
level rule patterns, priorities, and timeouts, and hence add substantial SDN pro-
gramming complexity. In Magellan, such low level details are transparent to the
programmers.
Configuration languages for multi-table pipelines: Several researchers inves-
tigate how to make multi-table hardware pipelines hardware easier to use. Con-
current NetCore [22] provides a typed programming language for specifying flow
tables. P4 [2] provides languages for specifying parsers, flow tables, and process-
ing order through flow tables. The objective of both systems is for users to specify
the tables. In contrast, Magellan does not require that programmers specify flow
tables; instead, tables are automatically generated.
Symbolic execution and program analysis: A key idea of our design is to avoid
direct executions. A related technique is symbolic execution (e.g., [12, 14, 5]),
which executes a program using symbolic expressions to model inputs and system
state. Symbolic execution has been used ([4, 5]) to provide systematic analysis and
testing of programs. Our system is a novel application of symbolic execution for
program compilation in the context of SDN.

6 Acknowledgements

We thank Jose Faleiro for engaging discussions. We thank Xin Wang, Yichen Qian
and Huaming Guo for suggestions.

References

[1] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger,
and D. Walker. Netkat: Semantic foundations for networks. In Proceedings of
the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, pages 113–126, New York, NY, USA, 2014. ACM.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:

14

Programming protocol-independent packet processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, July 2014.

[3] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, and M. Horowitz. Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 99–110,
New York, NY, USA, 2013. ACM.

[4] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs. In Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI’08, pages 209–224, Berkeley, CA, USA, 2008. USENIX Associ-
ation.

[5] M. Dobrescu and K. Argyraki. Software dataplane verification. In 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 101–114, Seattle, WA, Apr. 2014. USENIX Association.

[6] D. Erickson. The beacon openflow controller. In Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
HotSDN ’13, pages 13–18, New York, NY, USA, 2013. ACM.

[7] Floodlight OpenFlow Controller. http://floodlight.
openflowhub.org/.

[8] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story,
and D. Walker. Frenetic: A network programming language. In Proceedings
of the 16th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP ’11, pages 279–291, New York, NY, USA, 2011. ACM.

[9] O. N. Foundation. Openflow switch specification 1.4.0. Open Networking
Foundation (on-line), Oct. 2013.

[10] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. Nox: Towards an operating system for networks. SIGCOMM
Comput. Commun. Rev., 38(3):105–110, July 2008.

[11] T. Hinrichs, J. Mitchell, N. Gude, S. Shenker, and M. Casado. Practical
declarative network management. In in ACM Workshop: Research on En-
terprise Networking, 2009.

[12] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, July 1976.

15

[13] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. Jackson, A. Lambeth, R. Lenglet, S.-H.
Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan, S. Shenker, A. Shieh,
J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang. Network
virtualization in multi-tenant datacenters. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14), pages 203–216,
Seattle, WA, Apr. 2014. USENIX Association.

[14] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient state merging in
symbolic execution. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’12, pages
193–204, New York, NY, USA, 2012. ACM.

[15] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A compiler and run-
time system for network programming languages. In Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’12, pages 217–230, New York, NY, USA, 2012. ACM.

[16] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker. Composing
software-defined networks. In Proceedings of the 10th USENIX Confer-
ence on Networked Systems Design and Implementation, nsdi’13, pages 1–
14, Berkeley, CA, USA, 2013. USENIX Association.

[17] T. Nelson, A. D. Ferguson, M. J. G. Scheer, and S. Krishnamurthi. Tierless
programming and reasoning for software-defined networks. In Proceedings
of the 11th USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI’14, pages 519–531, Berkeley, CA, USA, 2014. USENIX
Association.

[18] OpenDaylight. http://www.opendaylight.org.

[19] Production quality, multilayer open virtual switch. http:
//openvswitch.org/.

[20] R. Ozdag. Intel Ethernet Switch FM6000 Series - Software De-
fined Networking. http://www.intel.com/content/
dam/www/public/us/en/documents/white-papers/
ethernet-switch-fm6000-sdn-paper.pdf.

[21] POX. https://openflow.stanford.edu/display/ONL/POX+
Wiki.

16

[22] C. Schlesinger, M. Greenberg, and D. Walker. Concurrent netcore: From
policies to pipelines. In Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’14, pages 11–24, New York,
NY, USA, 2014. ACM.

[23] H. Song. Protocol-oblivious forwarding: Unleash the power of sdn through
a future-proof forwarding plane. In Proceedings of the Second ACM SIG-
COMM Workshop on Hot Topics in Software Defined Networking, HotSDN
’13, pages 127–132, New York, NY, USA, 2013. ACM.

[24] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak. Maple: Simplifying
sdn programming using algorithmic policies. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 87–98.
ACM, 2013.

17

