Abstract

This paper analyses the growth of the condition number of a class of modified moment matrices
that arise when computing least squares polynomials in polygons of the complex plane. It is
shown that if the polygon is inserted between two ellipses then the condition number of the
(o+1) x (n+1) modified moment matrix is upper bounded by 2m(n+1)%(x)?®, where m is the
number of edges of the polygon, and x>1 is a known ratio which is close to one if the two
ellipses are close to each other.
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1. Introduction

A classical problem that arises when solving the linear system Ax=Db, by iterative methods, is
to find a polynomial s(\) of degree <n-1 which is such that the residual polynomial
R(XA)=1-As(\) is small in a certain region H of the complex plane containing the sectrum of the
matrix A. In [7, 8] the region H was chosen to be a polygon, and the problem of interest was to
find a polynomial s of degree n-1 such that [[I-As(A)[|, is minimum, where ||.||  is the norm
associated with the L, inner product <.,.> with respect to the weight function w()\). In order to
compute the least squares polynomial s in some basis {tj}j=0,n one needs to compute the Gram
matrix Mn={<ti’tj>}i,j=0,n often referred to as the modified moment matrix, along with its
Choleski factorization. Similar problems are encountered when one uses polynomial acceleration
in eigenvalue algorithms [8] such as the subspace iteration algorithm, or when one is interested in
computing a polynomial approximation to the exponential of a matrix. A crucial difficulty that
arises then is to choose a good basis of polynomials, i.e. a basis for which the modified moment

matrix is not too badly conditioned.

It is a well known fact that, in general, the use of the power basis {1,)\,)\2, ..... ,A"} is to be
avoided for stability reasons [11, 12]. Instead, if for example one is interested in approximating a
given function in the interval [-1,+1], a better alternative is to use of the basis of Chebyshev
polynomials of the first kind {Tj()\)}j=0 o+ More generally, if the interval is [o,f] then a good
basis is {Tj[()\-c)/d]}j=0’n where ¢c=(f+a)/2, d=(f-a)/2. Assuming that the convex hull H can

be enclosed in the ellipse centered at ¢, and having focal distance d and major semi axis a, a

natural generalization is to use the following basis of polynomials:

— A-c ay L—
tj(k) = Tj(—d— )/ Tj(a) k=0,1,.n . (1)
This basis has been successfully used in [7], for computing least-squares polynomials of much
higher degrees than would have been allowed with the classical power basis. In this paper we will
analyse this basis in more detail and establish an upper bound for the condition number of its

Gram matrix.

In the real interval case, the idea of using modified moments instead of regular moments to
compute orthogonal polynonmials is well established and was first proposed by Sack and
Donovan [10]. Gautschi has analysed the condition numbers of the modified moment matrices in

that context [2, 3|, and has shown that the technique is reliable at least for finite intervals.

Although we will not show as a strong a resullt for the complex case, we will demonstrate that



the condition number will not grow too rapidly if the polygon is well approximated by the

enclosing ellipse.
2. Modified moment matrices and their condition numbers

2.1. Background

Consider a polygon H in the complex plane whose boundary dH consists of m edges E,
v=1,m, which join the vertices h , and h, of H. Note that in [7] H is convex, and symmetric
with respect to the real axis and is build with a particular procedure so that m is even. We will
not make such restrictions here. We denote by ¢ the center of the v-th edge and by d its half-
width, i.e.

¢ =%_(hu+hu-l) ’ du =—é—(hu_hu-l) (2)
On each edge we define the generalized Chebyshev weight

wN) =247~ (\=c)/? (3)

14 v

A weight function on the boundary of the polygon is then defined as the function whose
restriction to each edge E  is wu()\). An inner product on the space of complex polynomials P_of

degree not exceeding n is therefore defined by

<pa> = / J3g POV w0 O] = £ / PO () [0 (4)

=1

Assume that the convex hull H can be enclosed in the ellipse &(c,d,a) having center ¢, focal
distance d and major semi axis a. Consider the basis of shifted and scaled Chebyshev polynomials
(1). We will assume that c is real while d is either real or purely imaginary. To the basis (1) is

associated the (n+1)x(n+1) Gram matrix M_ whose elements m, ; are defined by

m; = <t 4> i,j==0,1,2..,n. (5)
Note that M_ is a hermitian positive definite matrix. In case H is symmetric with respect to the
real axis, then M is even real symmetric positive definite [9]. We will denote by 7(M_) the
spectral condition number of the matrix M_, i.e. the ratio of its largest eigenvalue to its smallest

one. The important question which we address here is to find an upper bound for the condition



number (M ).

The motivation for such a question is that any least squares problem using polynomials of
degree <n, will require the Choleski factorization of M . This is the case when one computes the
orthogonal polynomials with respect to <.,.>>, or when one solves the least squares problem that
arises from some acceleration techniques for solving linear systems [7, 8, 11, 12]. If the Gram
matrix is highly ill-conditioned it is difficult to compute the least squares polynomials in the
corresponding basis. This is to compare with near linear dependance of a system of vectors which
is often measured by the ratio of the largest to the smallest singular values of the system, i.e. by

the square root of the condition number of its Gram matrix.

2.2. Basic properties
We start by recalling some well known properties of the Chebyshev polynomials, see [6]. First

notice that the mapping

z= (X —c)/d (6)
transforms the ellipse &(c,d,a) in the A-plane into the ellipse &£(0,1,a) in the z-plane, where
a=2a/d. Then the polynomials (1) can be written as

HO=T )/ Ty(@), )
where Tj denotes the Chebyshev polynomial of the first kind of degree j and where A\ and z are
related by (6). Furthermore, the mapping

1=(w+w1)/2 (8)
maps the circle C(0,;) of center the origin and radius p>1 in the w-plane into the ellipse £0,1,a)

of the z-plane where a and p are related by

a=(p+p1)/2 (9)

or, equivalently

p=a+\/a2—l (10)
An important property is that the Chebyshev polynomial Tj can be expressed as

T,(z) = (w+w )2 (11)
where w and z are related by the transform (8). As a consequence, when z belongs to the ellipse
£0,1,a), we have Tj(z) = (plel’+pie1%) /2 where 0<0<2m, so Tj(z) reaches its maximum

modulus when =0, i.e. when z=a. By (7), this shows that the maximum modulus of the



polynomials t,j(k) on the ellipse &(c,d,a) is one.

In addition to the inner product <.,.> associated with the weight function w defined in

Section 2.1, we will sometimes also use the following inner product defined on &(0,1,a)

<p,q>v=/€(0’1’a) p(z) o(z) v(z)ldz],
with
v(z) = 517? 1 — 22 1/2

to which we associate the norm ||.|| . It is easy to verify that the polynomials

T(2)/T}(a) (12)

are orthogonal with respect to the above inner product [1] and that
2 __ 4 .
IT,(2)/T (@2 = 1 with
¢g=0and ¢ = 2/[pH+p73), for j5£0.
In what follows we denote by (.,.) the hermitian inner product in C™*! and by I|.]| its induced

norm. Next we recall two useful properties shown in [7], concerning the Gram matrices M .

Proposition 1: Let

) =Znt()  and o) =Eo40)

be any two polynomials of degree not exceeding n. Then the following expression for
the inner product <p,q> holds

<p,q>=(M n,0) (13)
where n= (1, nI,..nn)T and 8= (0, 01,..0n}T.

The second property is a formula used in [7] for computing the matrix M, .

Proposition 2: Let each of the polynomsial tj (\) be expressed on each edge E, as

i
= (v)
tj(>‘) = i Ti(f) ’ (14)
where £ =(A-c)/d, . (15)
Then the coefficients of the modi fied moment matriz M, are given by
m; =X T qgj]) %{'jl i=0,1,...j. (16)

where Y’1is defined by ¥’ o =2a,+ Y a
k=0 k=0 k=1



2.3. An upper bound for (M, )
Our main result will be proved with the help of three lemmas. In all of this section we assume
that the pclygon H is enclesed in the ellipse &(c,d,a).

Lemma 3: Let M, be the modified moment matriz of size (n+1) x (n+1) and
z=(€. )]—On any complex vector of length n+1. Then

(M,x,x) < 2 m (n+1) |[x][% (17)
Proof: By (13), we have

(M, xx) /a W JN =l p 2 (18)
where p(A\) = > €jtj( )
j=0
By the Cauchy-Schwartz inequality
O 1= 1 £ 5001 < [E 16 P12 (5 IR 12 (19
Remembering that the maximum modulus of each t; on &(c,d,a) is one and since the convex hull

H is inside the ellipse &(c,d,a), the maximum principle implies that each tj()\) has modulus not

exceeding one for \ belonging to dH. Hence from (19)

Ip(V) P < (n+1) || x ||?, for X € H.
Integrating both sides according to (18) and observing that the w-norm of the constant function

one is 2m (one can use the expression of m , from Proposition 2 to show it) we obtain (17)0

Our next lemma for establishing the main result is the following.
Lemma 4: Let x———(é’]) —0n be any nonzero vector of C**1 p\} = E f t; (A) and let
K, (p) be the constant dcfmed by

max M| =k (p) max A 20
€(c,],a) |P( )I n( ): oL |P( )I ( )
Then

| x [P < (5,(p))* (n+1) (M, x%) (21)
Proof: The proof will be split into 4 steps.

1) Writing everything in terms of the z variable we have

B = £ 6T, (/T )
where z and A are related by the linear mapping (6). We will denote by q the resulting

polynomial in the variable z, i.e. we have g(z)=p(A\)=p(d z+c). From Section 2.2 we have

la(@) I, = £ &7 (1-¢) (22)




Moreover,

Il a(2) |2 = /5 o1 Iq(z )2 ¥(z) |dz| < A la()l 2 11 1(z) 113,
where 1(z) represents the consta,nt function unity. gince | 1(z) ll,=Il T, (2)/T, (@) ||,=1, the

above inequality yields

2 2 — max 2
fall <133>’<1’a) la(z)| < = X, ) [p(M)I
Hence
2 K 2 max 2, ‘
Il ally < (s (p) o Ip(M) (23)

2) Counsider
p(A) = E fj tj()\).
j=0
Using the expressions (14) this expression becomes
2 j ) » » ) N
pAN) =3 &35 AT =2 [E e ] T¢), for v=1,2,.m, (24)
j:o J i=0 L) 1 i=0 j=i L] J 1
or in condensed form
PN =(@GWx ),  v=Lm,
where G(*) is the upper triangular matrix whose nonzero entries are the ";f';), and t(€) is the (n+1})-

vector whose i component is Ti( ¢), i=0,n. We then have

PV E< 1 a® x 2146 |12 < (1) || 6¥) x ||
Thus, for A € dH,

Ip(\) 2 < (n+1) max | ) x |12 (25)

ry=1m

3) By using Propositions 1 and 2 we get

Iplf,=LX" |z: AAE PP

where L’ is as defmed in Proposnlon 2. Therefore,

eI, > 216 x| (26)
4) Using (22), (23), (25), (26) and (18) in this order we obtain

I < 1 a(2) P < (= (p))° max [p(A)] 2 < (n+1) (s (p)P max || GV x|
oH 1

V= ’m

< (ut1) ()P ZJ GV x 12 < (@) (s ()P [l 2 I, = (2+1) (,(p)) (Mxx) O

In the above lemma, nn(p) depends on the polynomial p. Let us define £ as the maximum of



all k (p) for p belonging to the space of polynomials of degree <n. As will be seen shortly x_ is
not infinite. With this definition we have the following corollary.
Corollary 5: The condition number of the modified moment matrix M satisfies the
inequality

2 .2
1M,) < 2m (n+1)” 6

Proof: Lemma 3 yields an upper bound for the largest eigenvalue of M_, while Lemma 4 yields

a lower bound when we replace nn(p) by & . Taking the ratio gives the above upper bound for

AM_)O

Thus, we have transformed the initial problem into that of finding an upper bound for & . It is
to be expected that x_ will increase to infinity as n goes to infinity but our goal is only to show
that it does not increase too fast in certain favorable circumstances. We now prove our third and
final lemma.

Lemma 8: Assume that the polygonal boundary 0H can be inserted between an inner
ellipse €(c,dp,ap) and an outer ellipse é(c,d,a), with d;<d. Then we have

n

) | (27)

a+\/ a,z—dl2
Fn S ( 2 12
al+\/ard1
Proof:

-1

K = [ max |p(A max A

[ (p)] [a M/ IR P\ ]
By the maximum principle we have

-1
£ (P)] = [max p(M) max  [p(A)]
[k, (p)] [ Ao P/ Ha) ]
We will now work with the z variable associated with the inner ellipse, i.e.
z=(\—c)/d;.

which maps the ellipses £(c,dj,a;) and é(c,d,a) into the ellipses £(0,1,a;/d;) and £0,d/d},a/d;)
respectively. We will set a;=a;/d;. As before we will denote by q(z) the polynomial in the
variable z which results from this mapping, i.e. we set q(z)=p(\)=p(dz-+c).

Let z4 be the point of &0,1,¢;) where the maximum of |q(z)| is reached. Then

[ (P)] ! > max la(z)|/|a(z)|
,l,al)
> min max la(z)/a(zs)|

q€EP z € £0,1,09)



In which P_ represents the space of polynonials of degree <n. Let q(z) be expressed in the basis
of Chebyshev polynomials as

q(z) = Eo 7 Tj (2)
and denote by 7 the vector with components 1, i=0,n. Using (11) we find that

K -1 > min  max S 0. (witw) S 1. witw,
Iz min me ()] Gy ()2

where w, and z, are related by the transform (8) and p; and o; by the relation (10). We can
rewrite the above inequality as
[£,(P)] " > min max w/w ™ [ 2, (wH4w™)/2] ] [S 0, (wa" 4w, ") /2 ]
i=0 i=0

n W€ C(0,p)

— LI mi i: (w4 é . n+jy *n-j
/ol glmfx[flaEXC(O,PI) LR (w7 VTR my (no )]

2w, m Q)

It is known that among all polynomials of degree 2n, such that Q(w,)=1, the one that minimizes

the infinity norm cn the circle is given by (w Jw4)?", see [4]. By replacing we finally get that

[k, (P) " > ( M )n

[W4]

In order to lower bound the term of the right hand side, we must now find the maximum: of |w,|
when z, belongs to the outer ellipse £(0,d/d,a/d}). Note that |w,| is the radius of that circle
which is mapped by (8) into the ellipse of center the origin and focal distance 1, passing through
the point z. For a larger radius [w,], the ellipse is larger. The largest possible [w,| corresponds to
the outmost confocal ellipse that intersects the outer ellipse &(0,d/d,a/d;). For d;<d, this is

realized when z, is on the major principal axis, i.e. when z,=a/dl. Hence the result by using

(10)O

As a result of corollary 5 and the above lemma we have the following final theorem.

Theorem 7: Assume that the polygonal boundary 0H can be inserted between an inner
ellipse &(c,dj,ap) and an outer ellipse &(c,d,a), with d;<d. Then the condition number of
the modi fied moment matriz M satis fies the tnequality

a+ az-d% 2n

arty a%—d? )

M) <2m (n+1)® (



2.4. Example

To illustrate the above theorem, let us assume that H is simply a rectangle centered at ¢ and
having half-length L along the real axis and half-width [. It is most natural to take as inmer
ellipse the ellipse centered at ¢ with major semi axis a;=L and minor semi axis l. This ellipse has
focal distance dI=(L2—12)1/ 2 To simplify, consider as outer ellipse the ellipse centered at c,
having focal distance d; and passing through the points (cZL)+il. We find the major semi axis

of this ellipse by using the following relation for an ellipse passing through c+L + il and ¢-L + il
12

where d2=d12, a2=a?, see [5]. Solving for a2 we find that a2= L(L+!) or a=[ L(L+/) /2. This

gives the growth ratio

o

=L (28)
L+l

When [< <L this ratio is close to 1. For example if /=0.01 and L=1, then x=1.0945. In this
case the bound of the theorem jyields 1'(Mn)§2.9x103 for n=10 and 1'(Mn)§6.5x104 for n=20.
When /=0.1 and L=1, then k=1.2549 and the bound of the theorem yields 1'(Mn)§9.1x104 for
n=10 and 1'(Mn)§3.1x107 for n=20. As a final example, let us take L=I[ which is in some sense
the worst case e example. Then the two ellipses become circles and as is easily seen the basis (1)
reduces to the basis of scaled monic polynomials ()\/R)j where R={/2L is the radius of the
enclosing circle. From (28) we get k=\2 and Theorem 7 yields T(Mn)§8(n+l)22“. Thus
M) <9.9x10° and 1'(M20)§3.7x109. Note that these are only upper bounds and one can expect

the actual condition numbers to be much smaller in general.

On the practical side, badly conditioned Gram matrices can easily be detected by computing
the Choleski factorization in a progressive way, i.e. by updating it as each column appears. By
doing so, one can stop just before the condition number becomes too large, and thus work with
the largest ‘numerically allowable’ degree n. In most cases, the Chebyshev basis enables us to
compute least-squares polynomials of orders as high as 50 with no major difficalty. However, as n
increases, another limitation which appears is computational cost since the number of required

arithmetic operations grows like O(m n3).
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