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ABSTRACT

Multi-Grid Algorithms for Elliptic Boundary-Value Problems
Craig Carl Douglas

Yale University, 1982

This dissertation is primarily concerned with solving the large
sparse linear systems which arise in connection with finite-element or
finite-difference procedures for solving self-adjoint elliptic
boundary-value problems. These procedures can be expressed in terms of
abstract variational problems on Hilbert spaces, which we can solve
iteratively., Our (multi-grid) schemes involve a sequence of auxiliary
finite-dimensional spaces which do not have to be nested. We want to
approximate the solution using the largest (finite-dimensional) space.
These schemes are recursive in nature: they combine smoothing
iterations in a space with solving correction problems in smaller
spaces. Under certain circumstances, the solution to a problem can be
approximated well using smaller spaces. Since the smaller spaces are
required to have geometrically fewer unknowns than the largest space,
the savings in computation can be substantial. In fact, we prove that
these procedures are optimal order under appropriate conditions., This
theory is discretization independent and can be applied to problems

which do not arise from partial differential equations.

As examples, we consider three particular discretizations of

variable coefficient self-adjoint second order elliptic boundary-value

problems. The first is a finite—element discretization on a convex
domain in two dimensions. The second is a finite-difference
discretization in one dimension. The last is a finite-difference
discretization on the unit square. For the finite-difference
discretizations, we present a summary of sharper results that can be
proved when the number of grids is restricted to two. The proofs can
be found in Douglas [19]. We first investigate how the order of
interpolation affects the rate of convergence. We restrict our
attention to the cases of piecewise-linear and piecewise—cubic
interpolation between grids. This can be used to optimize the number
of smoothing iterations and correction recursions to minimize the

amount of work required.

We describe the implementation issues involved with a finite—
difference multi~grid FORTRAN code for general second order (possibly
nonself-adjoint) elliptic problems in rectangular domains. The code
uses more general multi-grid schemes than those defined initially,

Complexity bounds and numerical experiments are included.
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CHAPTER 1

Introduction

1.1 Motivation

In this dissertation, we discuss the iterative solgtion of large
sparse linear systems which arise in connection with finite—-element or
finite-difference procedures for solving self-adjoint elliptic
boundary-value problems. Suppose we use finite-differences to
discretize a problem to get a sparse system of linear equations of the

form
Au = F, (1.1)

where A is symmetric positive definite. For simplicity, assume that we
are solving a problem whose domain is the unit square, which we denote
by Q@ with boundary 89. A uniform mesh Q& with mesh spacing h can be
laid on Q. Then (1.1) can be rewritten as

ARy w32 ph

(1.2)

- £l

One way of solving for ab in (1.2) is by relaxation. For

instance, consider Gauss-Seidel [50]:

1. Generate an initial guess ug.

2. Compute u?+1 from ug by

nli‘+1 = et - Lh“24-1 - Kh“? 1/ 0%

where Lh, Kh. and DB are the lower, upper, and diagonal
parts of Ah.
3. Repeat step 2 until convergence.
A drawback to Gan:s—Sgidel is that its convergence rate is unacceptably
slow, Even for simple problems like Poisson's equation with Dirichlet

boundary conditions on the unit square, the convergence rate is only

1-o0?).

The number of iterations needed for acceptable convergence might
be decreased by choosing a better initial guess. Suppose we have two

grids ﬂqh and nh, where ¢ > 1 is an integer. The linear system

Aqhnqh = fqh

can be solved faster than

Once nqh has been solved for, we can use it to gemerate an initial
guess for ul', In fact, Southwell [46] proposed the following algorithm

in 1940:

Algorithm 1,1 (Southwell): (a) Solve the problem on 4B by any means
available.

(b) Interpolate ul® onto QP as the initial guess to ul,



(c) Perform relaxation sweeps on nh until convergence.

Although it was probably a known method at the time, this appears to be

the first published multi-grid algorithm.

Another possible method of reducing the number of iterations of
Gauss—Seidel is to compute corrections occasionally on a coarser grid.
In 1961, the Russian mathematician Federenko [22] proposed the first
iterative multi-grid algorithm. It also uses two grids, but
computation begins on ﬂh. Grid ﬂqh is used only to solve for

h

corrections to u' in a manner similar to iterative improvement. The

algorithm is as follows:

Algorithm 1,2 (Federenko): (a) Generate an initial guess for uh.
(b) Do n relaxation sweeps on Dh.
(c) Compute residuals on QP and "inject” them into qdb as the the

right-hand side. By this we mean compute

B om £ _ Ah“h,

then transfer the residuals at the points coincident between the two

grids:

(The factor of q2 above is there becauseA(qh)2 is factored

into £ jinstead of n2.)
(d) Starting with an initial guess of zero for eqh. solve the residual

correction problem

A9k gqh - gqh

to moderate accuracy using relaxation sweeps.

(e) Interpolate the solution eI! onto OB and add it to ub

(f) Repeat steps (b) - (e) until convergence.

We can represent Algorithm 1.2 schematically by

TN

b = bilinear interpolation
n = do n relaxation sweeps

Note that if we use zero as the initial guess to nh and do no

relaxation sweeps before solving only one residual correction problem,

we get Southwell’s Algorithm.

Federenko [22, 23] analyzed the convergence rate of Algorithm 1.2
for the model problem of the Poisson equation on the unit square.
Eigenfunctions of Ab were classified as "good” and "bad”. Good
eigenfunctions included omes that were smooth on gh and had few sign
changes:, bad omes changed signs often and oscillated rapidly. It is a
well known fact that relaxation methods tend to annihilate the bad
error components rapidly, but not the good ones. However, good
eigenfunctions on ﬂh are bad eigenfunctions on nqh. By using a coarser
mesh, we attempt to solve a new problem consisting of bad

eigenfunctions which can be annihilated quickly.



When q = 2, Federenko [23] proved that his algorithm required
O0(NlogN) operations for his model problem, where N is the rank of Ah.
Federenko also pointed out that the coarse grid problem could be
considered the fine grid in another two-level scheme, leading to the
first recursive multi-grid algorithm definition. In 1966, the Russian
mathematician Bakhvalov [8] extended Federenko's results to a finite—
difference discretization of a gemeral linear second order elliptic
boundary-value problem. He also showed that the operation count is

O(N) asymptotically in the number of levels used.

In 1971, Astrakhantsev [4] proved the same convergence result as
Bakhvalov, but for a finite—element discretization, Co—piecewise
linear polynomials were used as basis functions on triangular elements.
The domain assumed was two—dimensional, bounded, and simply connected.
The operation count derived for the nplti—grid scheme was not optimal,

however.

In the finite-difference area, Nicolaides [39] analyzed the
Dirichlet Poisson equation in a square in 1975. Brandt [15] published
a comprehensive, but not rigorous, work in 1977. Brandt uses local
mode (Fourier) analysis to investigate smoothing rates and grid
transfers. Recently, work in the area of problems with discontinuous
coefficients has been done by Alcouffe, Brandt, Dendy, Hyman, and
Painter [3, 17] and Kettler and Meijerink [35]. The use of multi-grid
combined with intermediate interpolation grids has been investigated by

Foerster, Stuben, and Trottenberg [24].

Finite-element analysis continued in 1977 when

Hackbusch [28, 29, 30] proved optimal order results for a gemeral
linear second order elliptic boundary-value problem. At about the same
time, Bank and Dupont [9] and Nicolaides [37, 38] independently proved
results similar to those of Hackbusch, but by different techniques.

Van Rosendale [49] extended the results of Bank and Dupont to the case

of locally refined grids,

Recently, multi-grid has been investigated as a preconditioning
method for the conjugate gradient method. Axelsson and Gustafsson [5]
and Kettler and Meijerink [35] have used multi-grid based on (modified)

incomplete decomposition preconditioning methods.

1.2 Outline of the Dissertationm

In Chapter 2, we discuss the iterative solution of an abstract
elliptic variational problem. Our schemes involve a sequence of
auxiliary finite-dimensional spaces which do not have to be nested. We
want to ;pptoxinnte the solution using the largest (finite-dimensional)
space. These schemes are recursive in nature: they combine smoothing
iterations in a space with solving correction problems in smaller
spaces. Under certain circumstances, the solution to a problem can be
approximated well using smaller spaces. Since the smaller spaces are
required to have geometrically fewer unknowns than the largest space,
the savings in computation can be substantial. In fact, we prove that
these procedures are optimal order under appropriate conditions. While
this theory is applied to solving the large sparse linear systems which
arise in connection with finite—element or finite-difference procedures

for solving self-adjoint elliptic boundary-value problems, it can be



applied to problems which do not arise from partial differential

equations,

In Chapters 3 — 5, we prove that the multi-grid schemes analyzed
in Chapter 2 converge for three particular discretizations of variable
coefficient self-adjoint second order elliptic boundary-value problems.
The first is a finite-element discretization on a conmvex domain in two
dimensions. The second is a finite-difference discretization in one
dimension. The last is a finite-difference discretization on the unit

square,

At the end of Chapters 4 and 5, we present a summary of sharper
results that can be proved when the multi-grid algorithms of Chapter 2
are restricted to two grids. The pr;ofs can be found in Douglas [19].
We first investigate how the order of interpolation affects the rate of
convergence. We restrict our attention to the cases of piecewise—
linear and piecewise-cubic interpolation between grids. This can be
used to optimize the number of smoothing iterations and correction

recursions to minimize the amount of work required.

In Chapter 6, we describe the implementation issues involved with
a finite-difference multi-grid FORTRAN code for general second order
(possibly nonself-adjoint) elliptic problems in rectangular domains.
The code uses more general multi-grid schemes than those defined in
Chapter 2. Implementation details and complexity bounds are included.

Numerical experiments and conclusions are included in Chapter 7.

CHAPTER 2

General Theory

In this chapter, we discuss the iterative solution of an abstract
elliptic variational problem. Our scheme involves a sequence of
finite-dimensional spaces Mj, i=1,2,... , k. Ve want to approximate
the solution using the largest space. Under certain circumstances, the
solution to a problem can be approximated well using smaller spaces.
Since we require the smaller spaces to have geometrically fewer
unknowns than the largest one, the savings in computation can be
substantial. In fact, we prove that these procedures are optimal order
under appropriate conditions. While this theory is applied to solving
the large sparse lihear systems which arise in connection with finite—
element or finite~difference procedures for :61ving self-adjoint
elliptic boundary-value problems in Chapters 3 — 5, it can also be
applied to problems which do not arise from partial differential

equations,

Our k-level scheme is related to the multi-grid techniques used by
Bank and Dupont [9], which is related to the techniques of Brandt [15],
Bakhvalov [8], Federenko [22, 23], Nicolaides [38, 39], and
Hackbusch [28, 29, 30]. The earlier proofs are for particular

discretizations of model elliptic boundary-value problems. Their



domains are covered by meshes or triangulations which are refined
uniformly. Only Van Rosendale'’'s proof [49] allows nonuniformly refined
domains. The proofs here use abstract function space arguments which
make no reference to the particular discretization, domain, or method
of refinement. Further, we do not require the solution spaces to be

nested as in the proofs of the cited references.
Assume we are given a triple,
{H, a(u,v), £(v)}, (2.1)

where H is a Hilbert space with norm ll-ll, a(u,v) is a continuous
symmetric bilinear form on H X H, and f(v):H -> R is a continuous
linear functional. Furthermore, we assume that there exists a constant

8, > 0 such that
a(v,v) 2 lo“vﬂ2 for all v ¢ H.

The bilinear form a(-,-) induces the energy morm
Mell? = aca,0).

We seek an approximation to the solution of

Problem 2,1: Given (H, a(u,v), f(v)}, find u & H such that

a(u,v) = f£(v) for all v ¢ H.

Problem 2.1 has a unique solution (see Ciarlet [16]).

We now consider the finite-dimensional approximation of

10

Problem 2.1, Let Mj, j 21, be a sequence of Nj—dinensionnl spaces,

Associated with each space uj is a continuous, symmetric, positive-

definite bilinear form ‘j(u.v) and a continuous, bounded linear form

fj(v). For some o ) 2, we require that

Ny o~ oNi . (2.2)

We will see that o is important: when ¢ > 2, we can comstruct optimal

order algorithms to approximate the solution to Problem 2.1.

We assume that linear operators exist which project ﬁ onto M. and
J

inject Mj into H for any j > 1:

Pj: H 3;;3) Mj and
(2.3)
ij: Mj i:‘f) H.
For j 2 1, the linear operators defined by
E.: : -
§ MJ_1 > Mj and (2.4}
R.: M

it ¥ oate” My

interpolate between adjacent solution spaces. One definition of Bj and

R
§ is
Bj = pjij—l and Rj = pj—lij‘ (2.5)
A natural extension is to define Rj as the adjoint of Ej:
*
R, =
P
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Figure 2-1: Space Operators

In this case,

- * ]

E, = i
i §-1Pj

pj—lij = Rj'

.
If we assume that pj = ij. then all of the operators can be defined in
terms of the injection operators ij. However, we will have occasion to
use more general operators than those in (2.5). Figure 2-1.shows the

relationship between these operators and the various spaces.
The finite-dimensional approximation of Problem 2.1 is
Problem 2,2: Given (Mj, 8;(z,v), £,(v)}, find uj & M; such that

lj(uj.v) = fj(v) for all v e Mj.

Associated with each space Mj are eigenvalues lgj)and

eigenfunctions (eigenvectors) &gjz 1¢ig Nj, satisfying

‘j(v.ﬁgj)) = xij’ (v,&ij))j for all v ¢ Mj,

12

where (.,.)j denotes the inmer product in Mj. Let 5;; be the Kronmecker

delta. Without loss of generality,
o« alD Do A,‘,j’ = A

G = sy 1N, ama (2.6)

With each space Mj. we define discrete norms

N ; N

Mol = 5~ 20008, fory = 5o (@),
s — i 7i " i°i

i=1 i=1
where we have suppressed the j subscript on the norm and -2 s <2,
Note that mvm1 = livll is the usual energy norm on level j.
Hereafter, we drop both the superscripts from the eigenvalues and
eigenfunctions (eigenvectors) and the subscript from the dimension of

the spaces.

We require bilinear forms of adjacent spaces to have a particular
relationship. As a consequence, the energy norms on two adjacent

spaces are uniformly consistent.

Bypothesis 2.3 (Energy Norm Consistency): Let j > 1 be an integer.

Then there exists a positive constant Cl, independent of j, such that

nj(Ejv,ij) = ¢ aj_l(v.w). for all v,w e uj-l'

Recall that llvlll2 = 'j(v,v). For any v e M;_;, this hypothesis

implies that the energy norm of v on level j=1 is equal to a constant
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times the energy norm of Ejv on level j.

We now define and analyze a k-level iterative procedure for
solving Problem 2.2. The process involves solving problems like
Problem 2.2 sequentially for j=1, 2,... , k. The k-level scheme has
three parameters: m and n, which determine the number of smoothing

iterations used; and p, which is used in a recursion iteration.

Algorithm 2,4: Given an integer k > 0 and [Mj‘ .j(-,o), fj('))g—l' we
want to approximate By & My, where a;(u;,v) = £, (v) for all v e M.
(a) If k = 1, then solve directly,
(b) If k > 1, then one iteration of the k-level scheme takes an

initial guess Zg Mk to a final approximation Zpen+l © Mk in three

steps:

(i) if n > 0, define Z;,1 (i< n, by
-1
‘zi-zi~1'V)k = A () - 8 (z; 1,v)], for all v ¢ M. (2.7)

(ii) Let q ¢ uk—l be the approximation of q & M, _; obtained by applying

p iterations of the (k-1)-level scheme to the residual equation
4@V = G EY - B ) (2.8)
- ?k_l(v). for all v ¢ L
starting from an initial guess zero, Then set

Zael = Zp t+ Eia. (2.9)

(iii) If m > 0, then define Zi» m¥2 (i  m+n+l, by (2.7).

14

Figure 2-2: Three-Level Example of Algorithm 2.4

Two iterations on level three, p = 2

Level
1 ds ds ds ds
/I N/ O\ /I N/ o\
2 n ntm m n ntm m
/ \/ \
3 n n+m m

ds = direct solve
n,m = number of smoothing iterations

In the correction recursion iteration (step (ii)), we
approximately compute the elliptic projection of the error in Mk—l
using p iterations of the (k-1)-level scheme applied to a problem of
Problem 2.2's form with j = k — 1, In the smoothing iterations (steps
(i) and (iii)), error components whose oscillation are "large"” are
damped. A simultaneous displacement procedure is used in this step.
Late; in this chapter we will see that A;l can be replaced by a
particular type of bound (see Hypothesis 2.6). We will also see that
(2.7) can be replaced by other iteratioms which are computationally
more attractive, but do not affect the character of our convergence
results. The use of this iteration simplifies the imitial analysis of
the convergence. Figure 2-2 contains a three—level, two-iteration
example of Algorithm 2.4 with p = 2, Note that computation begins with
the largest space and uses the smaller ones only to solve correction

recursion problems.

There are three cases of note in Algorithm 2.4: (a) when n > 0
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and m = 0, (b) whenn =0 and m > 0, and (c) whenn > 0 and m ) O.

Case (a) is the scheme analyzed by Astrakhantsev [4], Bank and

Dupont [9], Hackbusch [28, 29, 301, Nicolaides [37, 38], and Van
Rosendale [49] for finite-element discretizatioms of various elliptic
boundary-value problems. Federenko [22, 23] and Bakhvalov [8] analyzed
this case for finite-difference discretizations. Brandt [15] analyzed
(nonrigorously) cases (b) and (c) for finite-difference discretizations
using local mode analysis. The motivation for studying cases (b) and
(c) comes from trying to understand the behavior of a large finite-
difference program (which is described in Chapter 6). It was observed
empirically that case (b) sometimes required fewer correction

recursions to achieve the same accuracy as case (a).

Before proving a convergence theorem for Algorithm 2.4, we need to
state one definition and two more hypotheses. The first hypothesis is
a bound for the largest eigenvalues and the other is an error estimate
for the correction produced by the (k-1)-level iteration. Finally, we
prove a lemma describing what effect the smoothing iterations have on

the error.

Definition 2,5: The error on leyel k at the ith stage of Algorithm 2.4

will be denoted by
i S S O

The first hypothesis states what form the bound for the maximum

eigenvalue is assumed to have.

16

Hypothesis 2.6 (Maximum Eigenvalue): There exist positive constants §

and C,, each independent of j, such that
Ay < c2N§5.1gjgx.
The use of Al in the smoothing iteration (2.7) may be replaced by any
upper bound satisfying Hypothesis 2.6.
The last hypothesis is a norm estimate:

Hypothesis 2.7 (Approximating Error Estimate): For some a with

0 ¢ a 1, there exists a positive constant C3 such that
- a —~2ad
mEkq"‘n'“1—a < e N e W, .
For problems derived from elliptic boundary-value problems, the value
of a depends on the spatial domain.

The following lemma is used in the convergence proof to analyze

the effect of the smoothing on elements in the solution spaces.

Lemma 2,.8: Let n > 0 be any integer and Zg & "k' Then the smoothing

iteration (2.7) is a contraction operator:

We W < Weplll. (2.10)

Further, for every fixed 0 { w < 2 and 0  a L1,

Me W, < c/28% 2n+ a)™® Wegll,_,. (2.11)

Proof: Let N = Ny and A = Ay. From (2.7) we can deduce that
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-1
(°i'°i-l‘V)k = = N7 aple; 4,v), for all v e M, i1, (2.12)
We can expand €o in terms of the eigenfunctions:
N
o T 2B &;-
i=1
Using (2.12) we can show that
N n
ey = 2 Bi (1 - li/A) §i. (2.13)

i=1

Since (1 - ;.i//\)" £ 1, we have that

We W < m eolll.

The proof of (2.11) uses (2.10) and the Maximum Eigenvalue

Hypothesis:
N
Me w2 - P B3 A% -y m®
=
N -
= AT BEAT Mt - A n e
i=1

N
£ A® max 5% - )y2n| 2 ,u-a
xe[0,1] ) ?;I Pi ki

[

A (21 + )™ Mleg 2

< SN (2n 4 a)® Moy 2

w-a*

Taking the square root of both sides of this inequality completes the

18

proof.

The convergence of Algorithm 2.4 is established in the Theorem
2.9. In essence, this result says that the error on level k can be
reduced by any positive constant less than one provided the correction

recursion problem on level k-1 can be solved sufficiently accurately.

Theorem 2,9 (Convergence of Algorithm 2.4): Assume that Hypotheses
2.3, 2.6, and 2,7. Let p > 1 be any fixed integer. For any constant
0 <y <1 there exist a nonnegative integer I which depends only on p

and vy, such that

erarall < vllegll, for a11 min ) 1. (2.14)
Proof: This proof is motivated by the work of Bank and Dupont [9]. The
basic idea of this proof is to show that the smoothing iteration (2.7)
reduces the oscillatory components of the error (corresponding to the
larger eigenvalues) while the correction recursion iteration (2.8)
reduces the smoother components of the error. The proof is by
induction on the index k of the space. Assume the result is true for

1, 2, ... , k-1. Ve now prove the result for Mk,

By Lemma 2.8 (with v = 1 + a),

We < Meyl

and
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Me My, < 32N (20 +a)™® Wegl. (2.1%)

We can estimate the effect of the correction recursion iteration
(2.8). Using (2.8) and the Energy Norm Consistency Hypothesis, we have

for all ve "x—1-
a_ (v = CLa (e BV
x-119- 1 8xlepe %y
or
ak(EkE-en.Ekv) = 0, (2.16)

This shows that the exact solution q of the (k-1)-level correction
recursion problem corrects exactly all components in Z, which belomng to

uk—l‘ Take v = q in (2.16). Then
3 (B a-e B Q) = 0 => & (ETLED = 8y (e B )
= MWeall < WMemw ¢ Wegl .

Using this, the Energy Norm Consistency Hypothesis, and the induction

hypothesis gives us
WEy DM = V2 mgall < M2 Pam = 4PHEgN

< rPllegm. (217

20

We are now ready to estimate "|°m+n+1“|' We can define

nt1 = Egdmey

(E,q-e ) + E, (g-0).
If S® reflects the effect of m smoothing iterations on any v e uk, then

m
Cmtn+l = S Cpep-

Define C, = COC3. Using Lemma 2.8 (with w = 1), (2.15), (2.17), and
the Approximating Error Estimate Hypothesis yields
m,. - -
Weppnell < WSPCE G- )M + WsPE, (q-a)

< g% a+ 2N Mege ¢+ WE (D
<02l m+ ) VINTS e Wy, + vPllegll
< 160n + 220 + @72 + 42 eyl (2.18)
Choose I such that
Ci2m + @)% 2(2n + a)7®/2 < v - yP, for all mtn ) I,
Then

Wepnuall < v Meght.

Clearly, v and I can be chosen independent of the Nj’

QED

At first glance, it appears that choosing m = n in (2.18) would be

better than choosing either n = 0, m > O or n > 0, m = 0. However,
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special case proofs show that this is not necessarily true. Assume
that n > 0, m = 0. By modifying the proof of Theorem 2.9, we can show

that
We . M < 1c%2a+a)™/2 + 421 Weyll.

For n large, this bound for the error reduction looks like
ci/z (zn)—alz < e = y-qyP

So
n

> % ci/u c~2/u

is required to reduce the error by a factor of e. If & = &, the error

reduction (see (2.18)) looks like

Once again,

F Y % Ci/c gle - g.lla % C:/a 2e o gl/ay

is required to reduce the error by a factor of e. The amount of work,
which depends on n and 28, depends on the relative sizes of 2“+1c and

one. Thus, we have shown

Iheorem 2.10: Assume Theorem 2.9 holds. Define & = y — yP. Then
choosing n > 0, m = 0 in (2.18) is better than choosing = & > 0 only
when 2%%1¢ 5 1, Alternately, choosing = @ > 0 in (2.18) is better

only when 2“+la <1,

22

The practical significance of this is that if y — yp is large, it is
more efficient to do the smoothing at once, rather than splitting it
around the correction recursion. Similar analysis holds for the case

of n=0,m)> 0,

We now analyze the cost of one iteration of Algorithm 2.4. Let
F(N) be the cost of reducing the error by a factor of vy for a problem
with N unknowns. We assume that the cost of the smoothing iterations
(2.7) (or an iteration with similar properties) on level k can be
bounded by Cs(m+n)Nk = Cst, where CS is independent of k. The cost of

the correction recursion (2.8) is pF(Nk—l)' Thus,
F(Nk) ~ PF(Nk—l) + CgNy . (2.19)

Since Nk ~ aNk_1 (see (2.2)), the solution of (2.19) is (asymptotically

in k)
C7N. 2¢p<o
F(N) < C7N103N. Pp=oc (2.20)
CN'PP,  p .,
where the logarithms are base o [2].

Choosing 2 { p ¢ o leads to an optimal order algorithm, in the
sense that the error can be reduce by a fixed factor of ¥ each
iteration with work proportional to the number of unknowns. However,
we may want to reduce the initial error by a factor of N for some

fixed q. The obvious implementation would then require F(N)1logN
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Figure 2-3: Three-Level Example of Algorithm 2,11
operations. We assume the solutions nj of Problem 2.2 satisfy

One iteration (r = 1) on level three, p = 2
~qb

~-u. KN s 1,
IllpjnnJIII < ENj i

Level
where K is a constant independent of NG, Denote by ij the computed 1 ds\ /ﬂs\ /ds\ /ds\
solution of the j-level scheme (Algorithm 2.4). To avoid the extra » 2 n m\ /n n+m m\
logN factor, we use Bjﬁj_l as the initial guess to ., j > 1, and prove 3 n m
that the initial error is small. Approximate solutions ﬁj of finite—- ds = direct solve

n,m = number of smoothing iterations
dimensional Problem 2.2 are generated using the following:

Algorithm 2,11: Given an integer j > 0 and (Hi, ni(-,-). fi(o)}i=1, we (see (2.8)) in Figure 2-2 has ?k(v) - fk(v).

imat . V) = M.. :
Tene to spproximate “J ¢ Mj' vhere ‘j(“j v fj(V) for allve i The convergence properties of Algorithm 2.11 are stated in the
(a) If j =1, then solve Problem 2.2 directly.
Theorem 2.12.

(b) If j > 1, then starting from an initial guess z = Ej;j—l'
apply r iterations of the j-level scheme (Algorithm 2.4) to Problem 2.2 Theorem 2.12: Assume that Hypotheses 2.3, 2.6, and 2.7 hold. Let
to obtain Ej, r > 1 be any fixed integer. Suppose
This alg;tithn actually has four parameters. The first parameter, r, (i) "'Pju-njﬂl < KN}qsa j21,
determines the number of iterations of the j-level scheme to use. The
j—level scheme itself has three parameters: m and n, the number of (ii) "ij“'Eij—1“|" < Kqus' j 22, and
smoothing iterations and p, the number of correction recursion qb

Gid) We -0 ¢ NP,
iterations.
Figure 2-3 contains a three-level example of ome iteration (r = 1)
of Algorithm 2.11, For the correction recursion problems, p = 2,
Unlike Algorithm 2.4, computation begins with the smallest space and
winds its way "down" to the largest space. It is worth noting that
when n = 0 and Zg = 0 in Figure 2-2, the two algorithms become much

more similar. In this case, the first recursion correction problem
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Then

a) For any integer p > 1, there exists a noane ative integer I such
(a) 8 ’ 8 8

that for j 2 1,

-qd
“|nj—3jﬁ| < Kqu , for all m+n > I,

- —qb
(v) IIiju—ujm < zmj‘l

: i here
(c) the cost of computing g is bounded by caF(Nj)’ wher

Ca = or/(c-1) is independent of j.

Proof: (a) The proof is by induction on the index j of the space.
. he result
Assume the result is true for 1, 2, ... » j-1. Ve now prove t

e -3 1. After r iterations of the
for Ij. Define §; = “I“j ujlll for j 2

j-level scheme,
'Sj <7 ﬂluj—Bj'ij_lm
< ¥t |“nj-pjnﬂ| + “lpju—Ejpj_luﬂl +
|“Ej(pj_1n—nj_1)“| + “lBj(‘j_l-gj_l)lﬂ }
<7 LE@ w2 GHEONE,
Choose vy £ (2 + Cilz + C;llch&)-llr and I according to Theorem 2.9.

Hence,

~ -qb
°j £ KNj .

(b) This is a simple comsequence of the triangle imequality:

26
m%rnm < m%r%m+ﬂhf%m
~qb
£ ZKNJ .

(c) The cost of computing ij is bounded by

4
F(N;) + ¢ g FN) < ¢, F(Ny) ar/(o-1) = cg F(N)).

It is worth pointing out that r is independent of j. This tells us

that Algorithm 2,11 is optimal order whenever 2 £p<o.

In conclusion, we have shown that solutions to problems like

Problem 2.1 can be approximated in finite-dimensional spaces using an
optimal order procedure provided that o > 2, VWhen o = 2, the operation
count is O(Nklosz). In the next three chapters we verify that

Hypotheses 2.3, 2.6, and 2.7 hold for particular discretizations of

several elliptic boundary-value problems.



CHAPTER 3

Finite—~Element Analysis

In this chapter, we discuss the iterative solution of large sparse
linear systems which arise in comnection with finite—element procedures
for solving self-adjoint elliptic boundary-value problems. We show
that the algorithms and theorems of Chapter 2 apply to this case. We

will see that this is an optimal order result.
Our model is the Neumann problem

-V(PVu) + Su = f in Q

(3.1)

w, = 0onag,

where @ is a polygonal domain in Rz. We assume that P ¢ Cl(ﬁ),

S e C(0), and that there exist positive constants B, D, S, and 5 such

that

< P(x) {p, s <S(x) {5, for all xedl.

Most of our arguments apply to the Dirichlet problem

-V-(PVu) + Su = f in Q

(3.2)
u = 0 on 30
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with only minor modifications. We comment on the the extensions as

they arise.

We seek a weak form solution of (3.1): find u e Hl(n) such that

a(u,v) = (£,v) for all v ¢ EN(D), (3.3)
where
a(u,v) = [ Pyu.Vv + Suv dx and
Q
(3.4)

(£,v) = [ fv dx.
Q2

Then there exists a unique weak solution u e Bl(ﬂ) for all f e Lz(n)
(see Ciarlet [16]1). The spaces H®, for s a positive integer, will be

the usual Sobolev spaces equipped with norms

el = 3 oful? = T (oPu,bfu).
ST rA R 2

The épnces H® for s positive and non—integral will be defined by
interpolation (see Agmon [1] or Lions and Magenes [36]). For s
negative, H® will be defined as the dual of H 3. The bilinear form

a(-,+) induces the energy norm Illnlllz = a(sw,u).

A modest amount of elliptic regularity for the solution of (3.3)

is required.
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Hypothesis 3.1 (Regularity): We assume there exists a constant
0 ¢ a <1, such that for all f ¢ H“-l there exists a unique solution

u e BI*® of (3.3) and

lally,, < ceso liell_,.
For a complete discussion of what values of a correspond to specific

domains 2, see Kellog [34] and Babuska and Aziz [7].

We now consider a finite-element approximation of (3.3). Let T ,

J
j 21, be a nested sequence of triangulations of Q. Take T, to be a

1
fixed triangulation. For T e Tl‘ denote the diameter of T by hT’ and
let hT-dT denote the diameter of the inscribing circle for T. Define
h1 ® max hT‘

TeT1

60 = min dT' and

Tch

fm g i
The constant 50 is a measure of the shape regularity of the triangles
in T1 and 61 is a measure of their uniformity. We construct T}, i>1,
inductively: divide every T ¢ Tj-l into u2 congruent triangles, where
B is independent of j. Whenm p = 2, this means we construct four
triangles in T} by pairwise comnecting the midpoints of the edges.
Each triangulation Tj will have shape regularity and uniformity

constants 8, and 8, and will have h; = max by = pl_jhl.
eT,
J
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With each triangulation T}, we associate the Nj—dimensionll space

Mj of co-piecevise linear polynomials. Following (2.2), we know that

Nj+1 ~ "Nj' (3.5)

where o = uz asymptotically. Since the triangulations are nested, we

have that Mj is a subset of Mj+1‘ j 2 1. The spaces Mj satisfy the
following standard approximation property [11, 12, 33, 44]: if u e HS,

1 s  1+a, then there exists a nj e Mj such that
s
ﬂn-njuo + hj“u-ujﬂl < C(By.8,0) By llall . (3.6)

We briefly remark on the Dirichlet model problem (3.2). The

definition of Tj' J 2 1, remains the same. Let Hj be a subset of Hg
and let it be the space of Co-piccewi:e linear polynomial associated
with T} satisfying the Dirichlet boundary conditions, Then Mj is a
subset of uj*l’ j 21, as before. With this modification, the
conclusions of the lemmas and theorems of this chapter will remain

valid.

Using the notation of Chapter 2, we define for each space Mj,

j21,
‘j(“'V) = a(u,v),
fj(v) = (f,v), and
(u,v)j = (u,v) for all u,ve Mj.

The interpolation and projection operators, Ej, Py and ij (see (2.3)
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and (2.4), are the natural projections and injections.

Associated with Mj are eigenvalues Agj)

, eigenfunctions égj), and
a maximum eigenvalue Ai of a(+,+) fulfilling the requirements of (2.6),

where 1 ¢ i < Nj. A simple homogeneity argument shows that
-2
Ay <& C(R,8,80.8,.0)8] (3.7

(see Strang and Fix [48])., For -2 ( s ¢ 2, we define discrete norms

X, N '
Mel? = 3= o2 s for v = T_o, lP, 3.9
8 i=1

where we have suppressed the j subscript on the norm. Note that
lnvlnl = llvill and |"v"lo is comparable to ﬂv“o. In fact, the proof of
the following norm equivalence is almost identical to Lemma 1 in Bank

and Dupont [9]:

Lemma 3,2: There exists a constant C = C(P.S.ﬂ.bo,sl,ﬁ) such that for
0<sg1,

chidll, < Wi, < clvl,.

In order to establish the convergence of Algorithms 2.4 and 2.11
for the finite-element case, we must verify Hypotheses 2.3, 2.6, and
2.7. It is immediate that (the Emergy Norm Consistency) Hypothesis 2.3
holds. Using (3.7) and the fact that N, ~ Ch;2 proves that (the

Maximum Eigenvalue) Hypothesis 2.6 holds.

A duality argument is used to verify (the Approximating Error
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Estimate) Hypothesis 2.7. When @ is an integer, this is a standard

result [16, 48].

Lemma 3,3: Let a be defined by the Regularity Hypothesis.

- 2a ;2a
Wae My < cu® n2% Woll,,, .

Proof: By duality and Lemma 3.2,

Ma-e M, , < clig-ell,_,

P
peged ol

H%Y, 1et n e B%*! be defined by

For p ¢
an,v) = (p,v) for all v ¢ H'.
Tnking v = E*en gives us
(prge)) = an,ae))
= l(n‘w;a-en), for any w ¢ M
By the Regularity Hypothesis and (3.6),
(poae)) < by y Mnlly,, Ma-e Ml
£ ot h: Hpll,_y Ma—e M.

Combining this with (3.9) yields

- a a o
Ma-e lly . < cu® B Wae, .

-1

Then

(3.9)

(3.10)
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However,
Ma-e M? = a(3e,,qe)
= - alge e ) (3.11)
< Mae W, WeM,,,.
Substituting (3.10) into the right—hand side of (3.11) gives us
Ma-e Wl < cu® g We My,
which we substitute back into (3.10) to complete the proof.
QED

This proves that Algorithm 2.4 converges at the rates specified by

Theorem 2.9 for the finite-element case of this chapter.

One of the advantages of finite—element methods is that the theory
of Chapter 2 can be applied using a variety of norms. As an example,
we prove a special case of Theorem 2.9 for the L2 norm. It is similar
to the results of Nicolaides [38] for the 12 norm and is the analogue
of Corollary 1 of Bank and Dupont [9]. To get L2 results, we assume
that the solution u has Hz regularity, i.e., @ = 1, This assumption

requires that Q be convex [26, 48].

Theorem 3.4: Assume the Regularity Hypothesis holds for a = 1. Let
P > 1 be any fixed integer. For any constant 0 < ¥ < 1 there exists a

nonnegative integer I, which depends only on p and ¥, such that

“°n+n+1"0 < vlleghy for a1l men > I,
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Proof: The proof is by induction on the index k of the space. Assume
the result is true for 1, 2, ... , k~1. We now prove the result for

M, . From (2.13) it is immediate that

e lly < Heglly. (3.12)
Using an argument similar to the proof of Lemma 2.8 shows that

-2.-2 -

e ll, < cu™?a2(2ne1) eyl (3.13)
Lemmas 3.2 and 3.3 with a = 1 yield

- 2.2

Ha-e ll, < cu by lle Il,. (3.14)

The analogue of (2.17) is derived using the induction hypothesis and

(3.12) - (3.14):
loally < 7P,
< yptllﬁ-enllo + lle_lly}
< rPeeu®sZlle ll, + Negllyd
< yP{cC2n+)7 4 1}lle,ll,
P
L Cr "°o“o'
Using an argument similar to (2.18) gives us

Mopinerlly < clizmn)22as)™ + ¢Pillegll,

and Theorem 3.4 follows.
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It is useful to associate with Mj a symmetric, positive definite
bilinear form bj("')' which is comparable to the L2 inner product. We
assume there exists a constant B, independent of h , such that

B

b,(u,v)
0 ¢ gt ¢ A0 ¢ §or all v e My, v # 0. (3.15)

(v,v)
For bj(-.-), we define generalized eigenvalues xi and eigenfunctions

Tir 144 KN, by

av.t) = X, bj(v,ti) for all v e LIP

o<x1$ng...ngj=7&j.
biTLT) = 8,,  and

2@l = Ty, 1Lk ON

It then follows that

alv,v) alv,v) -2
N, = max - p max —— ¢ C(P,S.D,SO.GI.B)h~ .
J veM, bk(v,v) veM, (v,v) 3
v#0J v£0

For =2 { s £ 2, define “Iv'"i'b similarly to "Ivl“i (see (3.8)). Note
that "lv"ll’h = Mvlll ana '“V'“o,b is comparable to llvlly. 1In fact, a
norm equivalence similar to 3.2 can be proved with ﬂlvﬂls p substituted

for livill .
s
The smoothing iteration (2.7),

(2-2, 3.v)p = A;l [£,(v) - ay(z; 1.1, for all v e My,
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requires the solution of a linear system involving the mass matrix at
every step. In practice this is too expensive., We can replace (2.7)

with the smoothing iteratiomn

bo(zs-z; 4,v) = A;I [(f,v) - a(zy_4,v)], for all v e M. (3.16)

There are numerous choices for bj("')' j 2 1. When the standard nodal
basis is used, (3.15) is satisfied by bj(~.') corresponding to the
diagonal of the mass matrix. This allows smoothing by an under-relaxed

Jacobi scheme.

The convergence of the k-level scheme (Algorithm 2.4) is
summarized by the following result. Its proof is almost identical to

the ones for Theorems 2.9 and 3.4.

Theorem 3,5: Assume the Regularity Hypothesis holds. Define the

k-level scheme (Algorithm 2.4) using (3.16) instead of (2.7). Let Il.ll
denote either the emergy or 12 norm (and be fixed). Let p > 1 be any
fixed integer. For any constant 0 < y ¢ 1 there exists a nonnegative

integer I, which depends only on p and vy, such that

o neall < vllegh for all mta » 1.

We conclude this chapter by noting that for the finite-element
method of this chapter, Algorithm 2.11 converges at the rate specified
by Theorem 2.12 for either the emergy or L2 norm. Let [l.ll denote

either of these norms. Then Theorem 2.12 can be rewritten as follows:
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Theorem 3,6: Assume the Regularity Hypothesis holds. Let r 2 1 be any

fixed integer. Suppose
(i) "n-nju < kY, 531, and

-3 q

(14) M -8 0 ¢ xn.

Then for any integer p > 1, there exists a nonnegative integer I such
that for j 2 1,

lluj-‘ajll < n} for all m+n ) I.

Moreover,

llo-%, d
w Ju £ 2Kng,
and the cost of computing Ej is bounded by CBF(Nj), where

Cg = or/(o-1) is independent of j and o is defined by (3.5).

It is worth pointing out that r is independent of j. This implies that

Algorithm 2,11 is optimal order whem 2 £p<o.

CHAPTER 4

One-Dimensional Finite-Difference Analysis

4.1 Introduction
In this chapter, we discuss the iterative solution of large sparse
linear systems which arise in connection with finite-difference

approximations to the model problem:

-(Pu)_ +Su = fin@ = (0,1)
= (4.1)
a(0) = u(1) = o.

We assume that f g Lz and there exist positive comstants p, p, s, and s

such that

p<LP(x) {p, s <S(x) ¢s, for all x ¢ . (4.2)

We seek a weak form solution of (4.1): find u e Hé(n) such that
a(u,v) = (f,v) for all veH,
where

a(u,v) = [ puv_ + Suv dx and
a x=x

(£,v) = [ ¢y ax.
Q
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Then there exists a unique weak solution u & H(Q) for all f ¢ L2(9)
(see Ciarlet [16]). The theory in this chapter restricts our attention

to problems where the solution u lies in
B = H 0B
The bilinear form a(+,-) induces the emergy norm Mulll? = a(u,u).

In practice, finite-difference approximations to (4.1) are solved
directly. In Section 4.2, we show that the algorithms and theorems of
Chapter 2 apply to this case, though the algorithms are not optimal
order. We analyze this problem in two parts. First, the case of P w 1
and .S = 0 in (4.1) is considered. Then we analyze the general case.

In Section 4.3, we consider the case when only two grids are used. We
present a summary of sharper results that are be proved in

Douglas [19]. We first investigate how the order of interpolation
affects the rate of comnvergence. We restrict our attention to the
cases of piecewise—linear and piecewise—cubic interpolation between
grids. This can be used to optimize the number of smoothing iterations

and correction recursions to minimize the amount of work required.

4.2 K Levels

In this section, we assume that the number of grids is arbitrarily
large. We prove that the theorems and algorithms of Chapter 2 apply to
a particular discretization of (4.1). Most of this section contains
analysis of a simple problem. At the end of this section, we extend

the analysis to the elliptic problem (4.1).

Let X > 1 and No > 0 be fixed integers. We define N; = 2N, +1,
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j 2 1. Following (2.2), we know that ¢ = 2, We define k uniform grids

ad, 1 ¢k, vy
-1

hk - (Nk +1) ",
h, = Zk-jhk, and

al ih .

- { j|1$i$Nj]

For the moment, we assume that Pw 1 and S = 0 in (4.1), The

general case will be analyzed at the end of the chapter. We discretize

(4.1) by approximating the second derivatives by central differences to

obtain a system of linear equations

Aknk = hf., (4.3)

where o, and fk approximate the solution uw and the right—hand side f on

ok, The Nk x Ny matrix Ay is given by

| 2 < |
-1 2 -1 |
| -1 2 -1 |
| . |
A = h;ll . (4.4)
| -1 2 -1 |
| -1 2 -11
| -1 2|

(see Varga [50]). Factoring and solving this algebraic system directly
requires only 5Nk multiplications and 3N, additions [25]. We will show
that the multi-grid algorithms of Chapter 2 require O(Nk1°5Nk)
operations to solve this problem to accuracy comparable to the

discretization error, i.e., D(N;Z),
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We associate & solution space Mj, 1 < j £k, with each grid. Let
N = N. Then
Moo= (vive rRV ) and
M, = (v |l ve My and (4.5)

v=<0,v.,,0,v,0, ... ,0,v 0> 1.
1 2 PN

The spaces Mk—Z' cee s Ml are defined recursively.
We define interpolation operators between adjacent solution spaces
E: M -
-1 > Mj and

R: Hj => uj—l

by means of the matrices

0 b-a 0 a
0 1
0 b 0 b 0 a
. 1
. a 0 b 0 b 0 a
. 1
E = a 0 b 0 b 0 a (4.6)
1 .
a 0 b 0 b 0
| 1 ol
| a 0 b-a 0|
and
R = ET,

In (4.6), we are taking advantage of two facts about the solution u:
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it is zero at the boundaries and it can be continued outside the domain

by reflection. We single out two choices of a and b for further study:

Definition 4,1: The piecewise—linear interpolant, Ez, is defined by
substituting a = 0 and b = 1/2 in (4.6). The piecewise-cubic

interpolant, E,, is defined by substituting a = -1/16 and b = 9/16.

For the multi-grid analysis of Chapter 2, piecewise—linear
interpolation will suffice. In Section 4.3, we will analyze the effect
of linear and cubic interpolation on the order of convergence of the
multi-grid algorithms of Chapter 2 when they are restricted to two

levels.

Problems on coarser grids are defined using the interpolation
matrices. Linear systems on coarser grids, Aj' 1<j <k, are defined

recursively:

T
Avi ™ By Apji By
Let r e RN be a right-hand side for level k. Then the (k-1)-level

problem is defined by

A, = ETr =g, Ten_, “4.n

where E is either the linear or cubic interpolant. For the analysis of
Chapter 2, E in (4.7) is the linear interpolant. Half the rows and
columns of Ak—l are zero. We can re—order the matrix so that the
nonzero rows and columns are the first Nk—l rows and columns. Then

Ak-l has a submatrix whose form is identical to Ak‘ The re—ordered

solution space "k-l has the form
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{ve M | v=¢ Vis Vas ees s ka . 0, ... ,0>1}.

The (k-i)-level problems are defined similarly.

Before the theory of Chapter 2 can be applied, we must complete
the definitions required for the triples used by Problems 2.1 and 2.2.
For j > 1, a bilinear form nj(-,-), a linear functional fj(v). and an

inner product (-;-)jAate defined by

aj(u.v) - nT A v

B

fj(v) = h f§ v, for all u,ve M and (4.8)

3 i’
(n,v)j = hj uT v.
The bilinear form lj(-.-) induces the energy norm

Wl = o a,m

for all u & Mj' Associated with each 'j("°) are N = Nj nonzero
eigenvalues lgj) and eigenvectors ng) satisfying (2.6). Let Aj be the

largest eigenvalue. For -2 ( s ¢ 2, discrete norms are defined by
N N R
Mol = 5>~ p2a{h® for v = 3, (P, 4.9
i=1 i=1

where we have suppressed the j subscript on the norm. Note that

"Iv“|1 = lllvll is the usval energy norm on level j. Hereafter, we drop

the superscripts from the eigenvalues and eigenvectors.

In order to establish the convergence of Algorithms 2.4 and 2.11
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for the finite-differemce case of this chapter, we must verify
Hypotheses 2.3, 2.6, and 2.7. We begin by showing that (the Energy
Norm Consistency) Hypothesis 2.3 holds. It is derived using the

definition of the linear systems Aj-l’ i>1.
Lemma 4,2: Let j > 1 be an integer. Then

aj(Ezv.Ezw) = aj_l(v,w). for all v,w e Mj—l'

Proof: For any v,w e Mj-l’

T
aj(Ezv.Ezw) (Eyv) Aj (Eyw)

- J T
= v (E2 Aj Ez) w

= tj~1(v.w).

That (the Maximum Eigenvalue) Hypothesis 2.6 holds is a simple

consequence of the explicit formula for the eigenvalues of A,

B

Lemma 4.3: Aj < 41:}2.

Proof: The eigenvalues of aj(-,-) are
= -2 - i
ki = ij (1 cos(xnhj)). 1¢ig Nj.

from which the result is derived.
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In order to prove that (the Approximating Error Estimate)
Hypothesis 2.7 holds, we must first prove two auxiliary norm estimates,
These estimates rely on the fact that the interpolating matrices E2 and

54 can be block diagonalized using a sine transform. Let

Q = [ QaB 1, where

(4.10)
Q, = {21312

» sin(anfh).

The columns of Q are the eigenvectors of the matrix Ak' Note that Q is

an orthogonal matrix. By direct computation, we can prove

Proposition 4,4: Let E be defined by (4.6) and Q by (4.10), Let axj be

the Kronecker delta function. Then

-1
[ aEa lij = [Q!m]i‘i

= %[1 + 2[bcos(inh;) + acos(3inh;)1}
LTI PR B

For i =1, 2, ..., (Nj—l)/Z. define

x, = % {1+ cos(iﬂhj) }  and

1 (4.11)
vy, = 53101~ cos(inhj) }.

We can visualize QIZZQ_1 by

46
I 2 2
L .o I
G, = | . l. (4.12)
| co. |
| . . |
:_ Y2 yz I
y1 y1|
Similarly, we define ;i and ;i for QE4Q-13
I, = 201410 9costinh) - cos(3inh,) 1} and
i 3 3 j cos(3inh; an
bt 1 1 (4.13)
y; = 3 {1- H [ 9cos(inhj) - cos(Sinhj) 11,
Note that
x, + y; = 1 and
- — (4.14)
L, +y; = 1
for all i =1, 2, ..., (Nj-l)IZ.
We now prove the two auxiliary nmorm estimates.
Lemma 4,5: Let k > 1 be an integer and u ¢ Hk. Then
min  (u - Ezv)r(u - Ev) < %h: ol A: u. (4.15)
veuk_l

Proof: Let N = N.. Since the odd numbered columns of E, are zero, the
odd numbered elements of v make no difference. This important

observation leads to the equality
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min  (u-EmT-Ev) = min (- EvT@-Ev.  (4.16
veMk_1 verN

It turns out that finding a v e RN which minimizes the right—hand side
of (4.16) is easier than finding a v e "1—1 which minimizes the left
side of (4.16). The remainder of the proof is divided into two
sections, First we find a minimizing v ¢ RN and bound the block
diagonalized form of the left side of (4.16). Then we show that this

bound is the diagonalized form of the right—hand side of (4.15).

Let

N N
u s > u, &i. and v = %__ \A &i.
i=1 i=1

Let i e {1, 2, ... , (N1)/2 } and then set j = N+ 1 - i, x = x;, and

Yy =5;. Then
[ QEZQ_IV l; = [QBavl; = x(v; - vy
and
-1
[ @B,q v ]j = [GEav]; = ylvy = v;).

The proof is now reduced to showing the result is true for an arbitrary

2x2 block and then summing over each 2x2 block. Define

S(Vi.vj) = (o, - vy + xvj)z + (nj -yvy ¢+ yvi)zp

which is (u - Ezv)T(“ ~ Eyv) restricted to a 2x2 block. Then
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2
B 2y vt ¢ 2yl -y )
and
- )
av, 8 av, &
J 1

Let f§ = xz + yz. We minimize g at the (nonunique) point

= -1 = -1
vy = ) u.x and Vj = B ujy.
Hence, the minimum value of g is
- = _ a2 2 2 2 2
g(vi,vj) = B {(y u, o+ xyuj) + (x L + xyni) }

< 23_2 { (y4 + xzyz)ni + (x4 + xzyz)u§ }

(4.17)

2871 ¢ yzui + xzui }

I~

4 { yzni + xzn§ 1,

where (4.11) and (4.14) are used to bound B 1,

Q can be used to diagonalize Ak’ When the right-hand side of

(4.15) is restricted to the 2x2 block, it becomes
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50
2 :
1.4 | Ai o 1“1 o, = holds using a duality argument when a = 1:
3af toyn | I
A 1 1oy |
. Lemma 4,7: Let k > 1 be a fixed integer. Then
lay 0121, |
- dyey | | |01 WEyg-e My < b2 Weyll
i 0 4x u | 2aeplll g y eyl 5.
2 2.2
= 4 { y2ni + 395 1, . Proof: Let p,n & M, satisfy
which is what we need to bound (4.17). Summing over each of the 2x2 An = p
. k = .
blocks completes the proof.
It is immediate that
QED u
Mol = .
For the discrete norms we need the following norm estimate: s “lp“lo (4.19)
Take p = E,g-e_. Th
Corollary 4,6: Let k > 1 be an integer. For 0 { s < 2 and u e M, 297%n en for all v e My,
- T T
-1 4 (E,g-e_)'v = (An)v.
min  (w- BT AL - B ¢ 4R ET T A (4.18) 297% Ay (4.20)
veMy 1
Us;ns v = Eyg-e_ in (4.20) and applying Corollary 4.6 (with s = 1) and
(4.19) gives us
Proof: We use Lemmas 4.3 and 4.5:
ME G- M2 = -
min (u-EmTA @-En ¢ A} min (a-EnT (8- EY 270l o (nEyamey)
veMk_l veuk—l
= 8, (n-Eyw,Bya7e;), for any weM, ,
A (hataTA2 )
=~ M 1 F
£ inf - .
st 1 T e Wn-Eyulll HE a-e M
> k { 3 hk u Ak u )
e al < by Wl MEyTe Il
QED <

by ol gl Eyge Il

We prove that (the Approximating Error Estimate) Hypothesis 2.7 - -
by MEya-e ol Eja-e Ml . (4.21)
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The error in the elliptic projection "lEza-euﬂl can be estimated.
e ge M2 = a,(Byd-ey, By )
= - 8 (Eyde,,e,)
< WEg-e Ml oMe ll 5. (4.22)
Substituting (4.21) into (4.22) gives us
MEae Ml < ny We Ml ,.

Substituting this back into (4.21) completes the proof.

- QED
We can replace the smoothing step (2.7),
(z;-z,_1.v) = A;llfk(v) - ap(z;_4,v)], for all v & My,
with
-1
z, = z;4 + N Cf - Ayz; 4 ). (4.23)
Also, we can replace the correction recursion step (2.8),
'k_l(a.v) = f,(Ev) - a(z,,Ev), for all ve My 4,
with
i = Bt - )} = % (4.24)
At x ~ Aa k1 .

We now state the convergence theorem. Its proof is identical to

the one for Theorem 2.9.
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Theorem 4,8: Define the k-level scheme (Algorithm 2.4) using (4.23)
instead of (2.7) and (4.24) instead of (2.8). Define a =1, Letp > 1
be any fixed integer. For any constant 0 < vy ¢ 1 there exists a

nonnegative integer I which depends only on p and v, such that
“l°n+n+1“| < 1|“eo“|, for all m+n ) I.
Further, the constant C4 in (2.18) is equal to 4.

Before we can show that the j-level scheme (Algorithm 2.11) holds,
we need to define projection and injection operators between the spaces

H and Mj. 1<j<k:

> M and

(see (2.3)). Ve define pj as evaluation of u ¢ H at the grid points of
ﬂj. We define ij as piecewise—linear interpolation. These operators

have properties which are worth pointing out.
emma 4,9: Let j be an integer. Then
(a) Pyi; = Identity on al, and
(b) ijEzpj—l = ij-lpj—l on 0371,

To show that the j-level scheme (Algorithm 2.11) holds, the

assumptions of Theorem 2.12 must be verified. Recall that for j 2 1,

Ej is computed (by Algorithm 2.11) and approximates the solution uy of

the j-level problem.
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Theorem 4.,10: Let j 2 1 be a fixed integer. Then the following holds:

(a) |||pju-uj||| L Kby, j 21
(b) “len~E2pj-1n“l S Ehg, j2z2
(c) “Inl—ﬁlﬂl < Kny

(d) Theorem 2.12 applies to the finite-difference case of this
tin
chapter and Algorithm 2.11 is an O(leogNj) method for approximating

the solution of (4.1).

Proof: (a) The proof of this requires that the solution u e C4[0,1] and

right-hand side £ & C2[0,11:
= (4 = .
Moo il < &, = knlle, My = Kn

(see Varga [50]1).
(b) The proof of this lies in the fact that the operator P is bounded

in the sense that
aj(pjv,pjv) < Ra(v,v), for all v e H,.

Using this reduces the proof to an interpolation estimate which

requires the use of Lemma 4.9:

54

“lpjn-Ezpj_luﬂl Iﬂpjn—pjijEzpj_ln"

= mpj(n—ijEzpj_lu)l"
< Kl“u-ij]zzpj_lulll

= Kmu—ij_lpj_luﬂl
< Ebg
(see Schultz [43]).

(c) Since the one-level problem is solved directly, we assume that it

is approximated to the order of truncation.

(d) Parts (a)-(c) are the requirements of Theorem 2.12. The operation

count comes from (2.20) with o = 2,

We conclude this section by comsidering (4.1) without the
restriction of Pw 1 and S m 0. We discretize (4.1) by central

differences to get an N, x N, linear system of equations
Ko = %
As before, we define
K_; = ERK_ . E,1<jCk and
- 2 -j+1 B2 L3 » an
'i Tx s
j(u.v) = w R, 1<¢j<k.

Once again, half the rows and columns of xk-l are zero. We can

re—order the matrix so that the first Nk—l the rows and columns are
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tridiagonal and the remaining rows and columns are zero. We define
Ma i = ij(u.v) and the discrete norms llllalll,, 0 ¢ s <2 andue L

are defined as usual. We can prove the following:

Theorem 4.11: Let j > 1 be a fixed integer. Then the following holds:
(a) Kj is symmetric and has Nj positive eigenvalues which are bounded
by Chgz. where C is independent of j.

(b) For B =0, 1, or 2, there exist positive constants CI.B and C2.ﬂ

such that

Cpp Mally < Miallly < ¢, o Mally for al1 u e N;.

- -1 .2
(©) Wig,g-e My < c;, b2 Wle .

Proof: Let j > 1 be a fixed integer.

(a) This is proved by direct computation.

(b) The proof for each of the three cases B = 0, 1, or 2 is different
and increasingly more complex. Recall from (4.2) that constants p, p.

s, and s exist such that
pCP(x) {p, s £S(x) s, for all x ¢ 0.
The proof of the case B = 2 requires that a constant p’' exist such that

el ¢ p.

The first two cases are straightforward. When B = 0, it is

immediate that
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C =

1,1 €, = 1.

When B = 1, Stiefel [47] proves that
C = (p+¢ )“1 and C = p+cs
1,1 R*tes 2,1 P 4

where ¢ is a constant independent of hj'

The proof for the case of B = 2 follows the argument for the
continuous case (see Schultz [43]). Let
D+nj = u, - nj and

D_uj = uyTug

be forward and backward difference operators. By direct computation we

can show that

3 WMol < Mally ¢ 3 Mo_ul,. (4.25)

The constants in (4.25) are not optimal, but they are independent of

hj. After discretizing (4.1), we are left with a system of equations

of the form
_D+pi-1/20-“i + S;u; = fy, (4.26)

where u is a grid function on ad which vanishes at the boundary points.

We will drop the subscripts from the remainder of the proof. Note that

D,PD_u = PD,D_u + (D,P)(D,u). (4.27)



Substituting (4.27) into (4.26) and re—arranging terms yields
Do = LMD -+,
So,
Mooy < 2t (' MDaly +Slally+ Wellg ).
Since our problem is elliptic, we knmow that
Woul? < 27t Wil

= 2_1 (f.n)j

I~

~1
e el Wl
-1
< e M el ool .
Hence,
-1
oy, < o™ Welly.
Using (4.25) and (4.29) gives us
Wally < ZWpally < 2™ Wellg,
Substituting (4.29) and (4.30) into (4.28) yields
-1 -1,— -
Wppoall, ¢ o~ { 2R)7°(3" +3) +1} e,
= 1
c;, Mem.
since Wlulll, = Wp,0_sll, and Wlll, = Welly, we have

Mall, ¢ ct) Meliy,
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(4.28)

(4.29)

(4.30)
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~whete Cl.2 is independent of hj’ An easier argument proves that
C . = p+ip +3).
2,2 2
This completes the proof of (b).
(c) Apply part (b) to Lemma 4.7,
QED

Theorems 4.8 and 4.10 can be rewritten using the [lll-lll norm instead of
the lll -ll norm. This proves that the variable coefficiemt Dirichlet
problem (4.1) can be solved using the theory of Chapter 2 using

O(NklogNk) operations.

4.3 Two Levels

In this section, we give a summary of sharper results that can be
proved when Algorithm 2.4 is restricted to two grids. The proofs can
be found in Douglas [19]. We first investigate how the order of
interpolation affects the rate of convergence. This can be used to
optimize the number of smoothing iterations and correction recursions
to minimize the amount of work required. We restrict our attention to
P=1 and S = 0 in (4.1) and the cases of piecewise—linear and

piecewise—cubic interpolation between grids.

As in Lemma 2.8, the initial error ey can be expanded in terms of

the eigenvectors:

The eigenvector expansion of €n+n+1 €0 be written in terms of an
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iteration matrix M and the initial error e,:

m,n,i,j
Cptntl = Mm,n,i,j eo- (4.31)
The iteration matrix Mm,n.i.j has four parameters:

m = number of smoothing iterations after solving the

correction recursion problem
n = number of smoothing iterations before solving the

correction recursion problem
i = either 2 or 4: whether E; or EI is used to project

onto the coarse grid
j = weither 2 or 4: whether Ez or E, is used to interpolate

onto the fine grid

The four iteration matrices of interest are denoted by

linear—~linear: “m,n.z.z
linear—cubic: Mm,n.2-4
cubic-linear: - Mm,n,4,2
cubic—cubic: Min.4.4

The convergence rate of the two—level version of Algorithm 2.4 is
determined by analyzing the spectral radius of each iteration matrix in

(4.31). Let
p(M) = spectral radius of a matrix M.
We can show that

P My mim,i,3) = POy 4 5 ).
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and
278, if 1 {n<ny
PMy 05,50 -
p -
__Kg__’ if n > By, © - e 1 as n =) ®,
(n+p)?
where
n, K P
linear—linear 3 1 1
linear—cubic 4 12 2
(4.32)
cubic-linear 4 12 2

cubic—cubic 4 1 1

When the number of smoothing iterations is three or less, linear—linear
is the most efficient to use. When the number of smoothing iterations
is quite large, either linear—-cubic or cubic-linear is the most

efficient.

Using the spectral radii of the iteration matrices, we can choose
the number of smoothing iterations and correction recursions so as to
minimize the amount of work required to reduce the error by a factor of
0 < e <1l. If each two-level iteration reduces the error by a factor
of p(n), where n is the number of smoothing iterations, then we want to

do r correction recursions so that
p¥(n) £ e

or



61

_in e
2 13- (4.33)

CHAPTER §

W ove that the optimal choice of n in (4.33) i
¢ can prov 8 pi chox * e Two-Dimensional Finite-Difference Analysis

0°

where By is defined in (4.32) for each iteration matrix.

5.1 Introduction
In this chapter, we discuss the iterative solution of large sparse
linear systems which arise in connection with finite-difference

procedures for approximating the solution of the model problem:

- (an)x - (Puy)y +8S = fin@Q= (0,1)x(0,1) (5.1
u = 0 on 39.

We assume that f e Lz(ﬂ) and there exist positive constants p, p, s,

and s such that

2 S P(x) p, s £S(x) <5, for all xed.

We seek a weak form solution of (5.1): find u e H; such that
a(u,v) = (f,v) for allveH,

where

a(a,v) = £ P(u v, + uyvy) + Suv dx and
£,v) = [ gy dx.
Q
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Then there exists a unique weak solution u e H(Q) for all f e Lz(n)
(see Ciarlet [16]). The theory in this chapter restricts our attention

to problems for which the solution lies in
B o= om0,
The bilinear form a(.,+) induces the energy norm Mal 2 = alu,u).

Finite-difference approximations to (5.1) are solved by a variety
of methods. Depending on the values of P and S, these include the fast
Fourier transform, cyclic reduction, sparse Gaussian elimination,
preconditioned conjugate gradiemt, and SSOR. None of these methods .is
optimal order. In Section 4.2, we show that the multi-grid algorithms
of Chapter 2 are optimal order for this problem. We analyze this
problem in two parts. First, the case of P= 1 and S = 0 in (5.1) is
considered. Then we analyze the general case. In Section 5.3, we
consider the case when only two grids are used. We present a summary
of sharper results that are proved in Douglas [19]. We first
investigate how the order of interpolation affects the rate of
convergence. We restrict our attention to the cases of piecewise—
linear and piecewise—cubic interpolation between grids. This can be
used to optimize the number of smoothing iterations and correction

recursions to minimize the amount of work required.

5.2 K Levels
In this section, we assume that the number of grids is arbitrarily
large. We prove that the theorems and algorithms of Chapter 2 apply to

a particular discretization of (5.1). Most of this section containms
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analysis of the Dirichlet Poisson problem. At the end of this section,

we extend the analysis to the separable elliptic problem (5.1).

Let k > 1 and ﬁo > 0 be fixed integers. We define ﬁj - Zﬁj—l +1,

j 2 1. We define k uniform grids nj. 1 < j <k, as products of the

one—dimensional domains ﬂj:
5 -1
by = (N, +1)7,
hj - zk_jhk, and
o = alxa

Each grid ﬂ% covers the interior of @ with Nj = ﬁ§ points, Following

(2.2), we know that o = 4,

For the moment, we assume that Pm 1 and S = 0 in (5.1). The
general case will be analyzed at the end of the chapter. We discretize

(5.1) by central differences to obtain a system of linear equations
Bu = Bt (5.2)
xk k'k’ .

where vy and fk approximate the solution u and the right-hand side f on

ﬂ%- The Nj x Nj matrix B, is given by
By = b (A, QIy + Iy0al,
where I is the N xN; identity matrix and A, is defined in (4.4).

We define solution spaces MJ, 1 <j <k, as the tensor-product of
the one-dimensional solution spaces defined in (4.5). Following the

techniques of Chapter 4, we define interpolation operators between
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adjacent solution spaces

E: ”5-1 -> M, and

b

T, -
R o= E: M- M.

The piecewise-bilinear and piecewise-bicubic interpolation matrices we

are interested in are temsor—products of their one-dimensional

equivalents:

E, = E,QB, and

E = E, OE,.
For the multi-grid analysis of Chapter 2, piecewise-bilinear
interpolation will suffice. In Section 5.3, we will analyze the effect
of bilinear and cubic interpolation on the order of convergence of the

multi-grid algorithms of Chapter 2 when they are restricted to two

levels.

Problems on coarser grids are defined using the interpolation
matrices. Linear systems on coarser grids, Bj' 1<j <k, are defined

recursively:

T
By ™ By Byju By
Let N= N, and r e R'XR" be s right-hand side for level k. Then the

(k-1)-level problem is defined by
B .3 = Er = ¢ Qe M (5.3)
x-1 1 k10 18 Vg :

where E is either the linear or cubic interpolant. For the analysis of
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Chapter 2, E in (5.3) is the bilinear interpolant. Three-fourths of
the rows and columns of B, _, are zero. We can re-order the matrix so
that the nonzero rows and columns are the first Nk—l rows and columns,
Then Bk-l has a submatrix whose form is identical to B,. The

(k-i)-level problems are defined similarly to (5.3).

Before the theory of Chapter 2 can be applied, we must complete
the definitions required for the triples used by Problems 2.1 and 2.2.
For j > 1, a bilinear form uj(-,v), a linear functional fj(v), and an

inner product (-;-)j are defined similarly to (4.8):

:j(u.v) = nT Bj v

£ = 82 £ v, for all mv e X

it j and

(u,v), = n? uT v.

j b]

The bilinear form lj(-,-) induces the energy norm
m nl|| 2 - ‘j (u,u)

for all u e MJ. Associated with each nj(°.-) are Nj nonzero
eigenvalues lpa and eigenvectors tpu satisfying (2.6). Let I\j be the
largest eigenvalue, For -2 ¢ s ¢ s, discrete norms “lvﬂl‘ are defined

similarly to (4.9).

In order to establish the convergence of Algorithms 2.4 and 2.11
for the finite-difference case of this chapter, we must verify
Hypotheses 2.3, 2.6, and 2.7. We begin by showing that (the Energy

Norm Consistency) Hypothesis 2.3 holds. It is derived using the
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definition of the linear systems Bj-l' j > 1. The proof is virtually

identical to the one for Lemma 4.2.
Lemma 5.1: Let j > 1 be an integer. Then

.j(Ebv’Eb') = 'j-l(v")' for all v,w e Mj-l'

That (the Maximum Eigenvalue) Hypothesis 2.6 holds is a simple
consequence of the explicit formula of the eigenvalues of Bj’
Lemma 5,2: /\j < sn}z.

Proof: The eigenvalues of :j(-,-) are given by

= + A, ’ i
xpm lp kw 1<£p,w g NJ

where Kp and A are eigenvalues of the one-dimensional matrix Aj (see

Isaacson and Keller [32]). The result follows from Lemma 4.3.

In order to prove that (the Approximating Error Estimate)
Hypothesis 2.7 holds, we must prove two auxiliary norm estimates first.
These estimates rely on the fact that the linear and cubic interpolants

Eb and Ec can be bléck diagonalized using a sine transform. Let
e, = aQa

where Q is defined in (4.10). Note that Qz is an orthogonal matrix.

Lemma 5,3: Set E to either Eb or Ec and E to the onme-dimensional

equivalent of E. Then

QZEQ;]' = QEQ, = (qE@ @ (E@.

Proof: Apply the matrix temsor-product identity
o, Om) iy Qup) = oy My O w, My

twice, where the ui are appropriate matrices.

We can visualize QZEbQ;I by

| |

| |

| |

L [

GBYG = . !

| |

| 1

1 |

where x, and Vi» i=1,2, ..., Nk—l‘ are defined by (4.11),

We now prove the two auxiliary norm estimates.
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Lemma 5.4: Let k > 1 be a fixed integer, N = Nk' and uw ¢ M,. Then

min (u - Ebv)T(B -Ewv h: ol B2 u.

veMk_l

Proof: Let N = Nk' As in Lemma 4.5

(5.4)
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min (o - EZV)T(“ - Ezv) = min (u- Ezv)T(n - Ezv). (5.5) Let Ui L “j' and “p be the elements of u corresponding to the 4x4

Ve NypN
LY veR KR block of QZquz (and similarly for v). Define
This is because the elements of v e uk—l which are required to be zero 2
g(w.v) = (v, - a(v;-v - A
correspond to the columns of E which are zero. It turas out that

finding a v ¢ RNXRN which minimizes the right-hand side of (5.5) is (ug +blvy - vy — vy + vp))2 +

easier than finding & v 8 M, , which minimizes the left side of (5.5). 2
(nﬂ telvy —vp - v+ ot

The remainder of the proof is divided into two sections., First we find
e minimizing v ¢ RNXRN and bound the block diagonalized form of the (o = dlw; = vy = vy + ,,-p))2
left side of (5.5). Then we show that this bound is the diagonalized

which is (u - Ebv)T(u = E,v) restricted to a 4x4 block. Then
form of the right-hand side of (5.4).

]
38 = g;— g = - 2:(ni - a(vi -v. ~v,+v))
i p n j P
Let
+ 2b(u_ + b(v, - v - +
" " n 1TV TVt
v ™ > u. &, and v = 2 v..(
i R i i
i3=1 ij vij i,5=1 j vij + 2¢:(u'l +olv; - A A vp))
Let i, j e {1, 2, ... , (N-1)/2} and set n = N+ 1 - i and
-2d(u - d(v, - v_-v, +
p=N+1-j. Define n iT TVt )
and
a = x
i xj. . c = Yi xj’ (5.6)
b = x, Ve and 4 = vy, Ve F 3 P
B T 38 T “Fv 8
n 3vj Hvi
Then the nonzero (i,j)th 4x4 block of QzEbQ2 is
Let B = a2 + b2 + c2 + a2, Then g is minimized at the (nonunique)
| a -a -a al
| | point
l-b b b—b:
-« o o = | v, o= plan, 5. = ples,
| i ! . !
l ¢ -4 -a al - -1 - -1
v = =
n B bun, and vp B dnp.
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Hence, the minimum value of g is
(0,9) = (u, - ap Man, - bu_ - cu; + du ))2 +
glu 17 e ey 3t 9%
(w_+bp Han, - bu_ - cu; + du )% +
17 % 7Y (]
(v + cB_l(l“ - bu,_ - cu; + du,))? +
i 3 (]

(v - ds-l(lui - bu, - cuy + dup))2

< 4ﬁ-2 {2 +c?+ dz)zni + ‘sznz + |2c2u

. N
(S

2 2
+ a“d“u” +
P

ap2u? 4 (2% 4?4 dz)zn'zl +b2e2a? + bzdzui +

. N

222 222

a“cTuy + b L + (az + b2 + d2 2

y2a 2.2 2

+c'd7u +
ct %

- N

.2d2u2 . b2d2“2 . c2d2n2 . (.2 + b2 + cZ)ZnZ }
i n i P
< 45'1 {2 +c2+ dzlni + [.2 +c2 4+ dzlui +

fa2 + b2 + d2]u§ + [.2 + b2+ cz]ug }

< 47t (1a? + yi + y§]n§ + 2+ . x§]u% +
2 2, 2
[b2 + xi + y?]ng + [.2 +xi+ xj]np }
Since B“l £ 4 and a? & a (and similarly for b, ¢, and d), we get

bed 2 2 2 2, 2
glu,v) ¢ 16 { [24 + ¥+ y}]ni + [2¢ + y; + xj]u'1 +

(5.7
[2b + xi + y§1u§ + [2a + xi + x?lug 1.
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Qz can be used to diagonalize Bk' VWhen the right—-hand side of

(5.4) is restricted to the 4x4 block, it becomes

2

-]
(™

= 4(yi+yj)
[“i u u, ul 4(y1+xj) 0

=
[

o

. _ﬂ‘

|

i

0 4(xi+yj) I
1

4(xi+x

= 16 { (y, +3)%% + (3, + x)%2 + (x, + yo2u? +
i it Ui i 3" i i

(xi + xj)zui }

E + [2¢c + yi + leuz +

2. 2
= 16 ( [2d + y° + 32
tt i+ yjle 3%

2 2,2 2 2, 2
[2b + 2] + yj]nj + [2a + 1§ + leup 1},

which is what we needed to bound (5.7). Summing over each 4x4 block

gives us the result,

For the discrete norms we need the following bound, whose proof is

virtually identical to the one for Corollary 4.6.

Corollary 5,5: Let k 2 1 be a fixed integer and N= N, For 0 { s < 2

x
and u g Mk,
min (3 - BT B® (w- Byv) ¢ 8% f28 oT B2 u, (5.8)
vsuk_1
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A duality argument proves that (the Approximating Error Estimate)
Hypothesis 2.7 holds when @ = 1. The proof is virtually identical to

the one for Lemma 4.7.
Lemma 5.6: Let k > 1 be a fixed integer. Then

We g My < 87262 We M.

We can replace the smoothing step (2.7),
-1
(zi-zi—l'V) = A G) -z, 1.V)], for all ve M,
with
z, = 1z + _1( f. - B .z } :
i -1 YA U f m Bz 1 (5.9
Also, we can replace the correction recursion step (2.8),
a1 (LEV) = £,(v) - a(z ,Ev).
with

- T ’
By ja = E(f -Bz )} = T _,. (5.10)

We now state the convergence theorems for the case of model

problem (5.1). Their proofs are virtually identical to the omes for

Theorems 2.9 and 4.10,
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Theorem 5,7: Define the k-level scheme (Algorithm 2.4) using (5.9)
instead of (2.7) and (5.10) instead of (2.8). Define a = 1. Letp>1
be any fixed integer. For any constant 0 ¢y <1 there exist a

nonnegatives integer I which depends only on p and v, such that

I“°n+n+lﬂ| < vllegll, for a1l mta > I.

Further, the constant C, in (2.18) is equal to 16-2%/2,

As will be seen in Section 5.3, the constant C4 is considerably

overestimated in Theorem 5.7.

Theorem 5,8: Theorem 2.12 applies to the finite-difference case of
this chapter and Algorithm 2.11 is an O(Nj) method for approximating

the solution of (4.1).

We conclude this section by comsidering (5.1) when it is mo longer
restricted to P = 1 and S = 0. We discretize (5.1) by central

differences to get an Nk x Nk linear system of equations

B = £y
As before, we define
T
kk_j - E Bk—j-u B, 1£j<K, and
~ T
lj(u,v) = u Ej v, 1£j <k
Once again, three—fourths of the rows and columns of Bk-l are zero., We

can re-order the matrix so that the first Nk-l rows and columns are

nonzero and the remaining rows and columns are zero. Ve define
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Mall? = :j(n.v) and the discrete norms lmn“"s. 0<¢s<2andus M,
are defined as usual. The following is the two-dimensional analogue of

Theorem 4.11.

Theorem 5,9: Let j > 1 be a fixed integer. Then the following holds:
(a) ﬂj is symmetric and has Nj positive eigenvalues which are bounded
by Ch}z, where C is independent of j.

(b) For B = 0, 1, or 2, there exist positive constants C1 and cz such

that

Cl,pmnlﬂa £ "llulm‘3 < Czlﬁ“lump for all u & M.

1/2

- 2
(¢) lIIIth—anlIll0 < 870 ¢y, on Me W, .

Proof: Let j > 1 be a fixed integer.
(a) This is proved by direct computation.
(b) This proof is similar to the proof of part (b) of Theorem 4.11. In

particular, if there exists a comstant p’ such that

0 < Imax P, yy” <P

then
G0 = G, = 1
[+ = (p+es)? C, = p+eos
1,1 R res) . T ’
C1 = (23 +3) + 1171, ana
C2’2 = p+p' +5s.

where ¢ is independent of h,,

3

16

(c) Apply part (b) to Lemma 5.6.

QED

Theorems 5.7 and 5.8 can be rewritten using the [ll.llll norm instead of
the Wl -l norm. This proves that Algorithm 2.11 is optimal order for

solving the variable coefficient Dirichlet problem (5.1).

5.3 Two Levels

In this section, we give a summary of sharper results that can be
proved when Algorithm 2.4 is restricted to two grids. The proofs can
be found in Douglas [19]. We first investigate how the order of
interpolation affects the rate of convergence. This can be used to
optimize the number of smoothing iterations and correction recursions
to minimize the amount of work required. We restrict our attention to
P=1 and S= 0 in (5.1) and the cases of piecewise—linear and

piecewise-cubic interpolation between grids.
As in Lemma 2.8, the initial error €y can be expanded in terms of
the eigenvectors:

€ " 2 B; &

i=1

The eigenvector expansion of €intl ©8D be written in terms of an

iteration matrix um'n’i’j and the initial error €

Cmtntl = Mm.n,i,j €0- (5.11)

The iteration matrix M X
' m,n,i,j has four parameters:
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m = number of smoothing iterations after solving the
correction recursion problem

n = number of smoothing iterations before solving the
correction recursion problem

i = either b or c¢: whether ﬁ? or E': is used to project
onto the coarse grid

j = either b or c: whether F‘b or E, is used to interpolate
onto the fine grid

The four iteration matrices of interest are demoted by

bilinear-bilinear: M
m,n,b,b

bilinear-bicubic: M
m,n,b,c

bicubic-bilinear: Mn,n,c.b

bicubic-bicubic: M
m,n,c,c

The convergence rate of the two-level version of Algorithm 2.4 is
determined by analyzing the spectral radius of each iteration matrix in

(5.11)., Let
p(M) = spectral radius of a matrix M.
VWe can show that

.75)%, if1<{ngn
0

Py 3,5

__Kg_' if n > 0y, ¢ > elasn->e=,
(n+2)

where
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no K

bilinear-bilinear 7 2

bilinear-bicubic 10 1
(5.12)

bicubic-bilinear 10 1

bicubic-bicubic 8 3

When the number of smoothing iterations is three or less, bilinear-

bilinear is the most efficient to use. When the number of smoothing
iterations is quite lirge, either linear—cubic or bicubic-bilinear is
the most efficient., Bicubic-bicubic is the least efficient choice no

matter how many smoothing iterations are used.

Using the spectral radii of the iteration matrices, we can choose
the number of smoothing iterations and correction recursion: so as to
minimize the amount of work required to reduce the error by a factor of
0 < e < 1. If each two-level iteration reduces the error by a factor
of p(n), where n is the number of smoothing iterations, then we want to

do r correction recursions so that

p¥(n) £ e
or
2 ikl (5.13)

We can prove that the optimal choice of n in (5.13) is



where n, is defined in (5.12) for each iteration matrix.

79

CHAPTER 6

Computational Aspects

6.1 Introduction
We have written a FORTRAN program which implements a class of
finite-difference multi-grid algorithms for approximating the solution

of elliptic boundary-value problems of the form
(P(x.y)ux)x + (Q(x.y)ny)y + V(x.y)nx +
W(x.y)ny + S(x,y)u = F(z,y) in 0 (6.1)
B(X:Y)“n + a(x,y)u = y(x,y) on 34,

where © is a rectangular region with boundary 8Q2. If a uniform mesh
with spacing h is applied to 2 and a modified upwind discretization [6]

of (6.1) is used, then we can define the approximate problem

ot = (e (-Dhy+(-DB), i =1, ..., 2, y=1, .., n’;l,

-]
]

~ h
ij “(xi.yj). for (xi,yj) e 0,

oy
2
]

~ h
ij F(Xi.yj). for (xi.yj) e Q.

and

80
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h h b h h h
Lii%i-1,5 * Rij®ien,5 * BigUi, 51

h h h

+ T?j“i.j+1 + Dij“ij (6.2)
2 h h
h Fij' i=1, ..., .
h
=1, «os , 0_,
fh i y

ij*

When the solution is sufficiently smooth, this provides an 0(h2)

approximation to the solution of (6.1) (see Varga [501).

Figure 6-1 contains a definition of the class of fixed multi-grid

algorithms implemented in the code. This class has nine arguments:

KLevel(MaxLev, CycleC, CycleF, SmB, SmN, SmL, Smlopt, Hopt, StLev),

MaxLev

CycleC

CycleF

SmB

SmL

SmN

Smlopt

Hopt

StLev

Maximum number of levels allowed.

The number of correction iterations used from all
but level MaxLev.

The number of correction iterations used from level
MaxLev.

The number of smoothing iterations performed before
the first correction.

The number of smoothing iterations performed after
the last correction.

The number of smoothing iterations performed on
iterations when SmB or SmL do not take precedence.

Whether smoothing iterations are to performed on the
coarsest grid or not (versus a direct solve).

Whether we are using the scheme H (see Definition
6.3).

Which level to begin the algorithm on. This is 1
for most of the schemes defined in this section.

Figure 6-1: Generalized Multi-Grid Algorithm

KLevef(Mleev. CycleC, CycleF, SmB, SmN, SmL, Smlopt, Hopt, StLev)
|

Generate f(StLev) and A(i), i =1, ... , StLev
Set CycleM(i) = CycleC, i =1, ... , StLev
CycleM(1) = 1 ; CycleM(MaxLev) = CycleF

Level = LevelM = StLev

Work(Level) = False ; Cycle(Level) =1

S: If Level = 1 and Smlopt = False SMOOTHING
Then Solve A(1)u(1) = £(1) directly
|__ Go to I
Else M = SmN -

| If Cycle(Level) = 0 Then M = SmB
If Cycle(Level) = CycleM(Level) Then M = SmL
| 1EM>0
| Then Work(Level) = True
| |__ Do M smoothing iterations
| Cycle(Level) = Cycle(Level) + 1
|_ If Cycle(Level) > CycleM(Level) Then Go to I
| C: Lev = Level - 1 CORRECTION
Work(Lev) = False ; Cycle(Lev) = 0
| Zero u(Lev)
If Work(Level) = True
Then Compute the residuals r(Level)
|__ Project weighted r(Level) as f(Lev)
Else Project weighted f(Level) as f(Lev)
If Level = MaxLev and Cycle(Level) = CycleM(Level)
and Hopt = True
| Then CycleM(J) =1, T =1, ... , Lev
|__SmB=0; SmL =1
Level = Lev
Go to S

I: Lev = Level + 1
If Lev > MaxLev Then ®Return®*
If Lev > LevelM
Then Generate A(Lev) and f(Lev)
| LevelM = Lev
| Work(Lev) = False ; Cycle(Lev) =1
__ If Lev < MaxLev Then CycleM(Lev) = CycleC
If Work(Lev) = True
Then u(Lev) = u(Lev) + Bilinear(u(Level))
Else u(Lev) = LIM(u(Level))
Level = Lev
| Go to S

INTERPOLATION
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The algorithm has three computational sections. The first is smoothing
(or direct solves on the coarsest level), the second is zresidual
cg:ggégion. and the last section is jnterpolation. In the latter
section, LIM is an 0(h4) interpolation scheme which will be defined in
Section 6.2. Note that this is a more gemeral mmlti-grid algorithm
than either k-level scheme (Algorithms 2.4 and 2.11) defined in

Chapter 2.

Brandt and his students have formulated a collection of multi-grid
algorithms which adnptiv?ly choose the number of smoothing iterations
on each level and subsequently decide whether to solve a residual
correction problem, interpolate onto the next fimer grid, or
stop [14, 15, 13, 18, 40]. The principal advantage of these adaptive
methods is that with good heuristics, the optimal number of correction
iterations is done (too many and CPU time is wasted, too few and the
solution is poor). However, fixed algorithms have three distinct
advantages over these adaptive methods. First, no heuristics are
needed to determine when to move from ome grid to the next (and no
potentially costly computation is needed to evaluate the hemristics).
Since stopping criteria are unnecessary (fixed methods are really
direct methods), we can precompute the operation count and choose which
level scheme uses the fewest number of operatioms. Finally,
convergence theorems exist for the fixed algorithms (see Chapters 2 — §

and [9, 28, 29, 30, 37, 38, 49]).

We can redefine Algorithms 1.1, 1.2, 2.4, and 2.11 using the

algorithm in Figure 6-1:

Definition 6.1: Algorithm 1.1 is defined by

KLevel(2, 1, 1, 0, m, m, s, false, 1),

where s is true if the coarse grid problem is solved by smoothing
iterations and false if it is solved directly. Algorithm 1.2 is

defined by

KLevel(2, 1, p, m, m, m, true, false, 2).

Algorithm 2.4 is defined by

KLevel(k, p, p, n, n+m, m, false, false, k),

where k > 1 is the number of levels used. Finally, Algorithm 2.11 is

defined by

KLevel(k, p, p, n, n+m, m, false, false, 1).

We are particularly interested in four distinct k-level variants

of the algorithm in Figure 6-1. We refer to them as schemes R(a),

R(b), I and H. The first two are similar to the recursive multi-grid

cases (a) and (b) described after Algorithm 2.4:

Definition 6,2: We define scheme R(a) by

KLevel(k, p, p, m, m, 0, false, false, 1)

and scheme R(b) by

KLevel(k, p, p, O, m, m, false, false, 1).
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Scheme R(a) has been analyzed by Astrakhantsev [4], Bank and

Dupont [9]1, Hackbusch [28, 29, 30], Nicolaides [37, 38], and Van
Rosendnle [49] for finite—element discretizations of various elliptic
boundary-value problems. Federenko [22, 23] and Bakhvalov [8] analyzed
this case for finite-difference discretizations. Brandt [15] analyzed
(nonrigorously) scheme R(b) for finite-difference discretizations using

local mode analysis.

Ve represent a two—iteration four-level example of .the scheme R(a)

by

2% a5 as as  ds ds  ds ds  ds

4 \L/ \b / \L/ \b / \b/ \b / \b/ \b

] 0 m m 0 m m 0 m m 0

2h \L/ \b / \b/ \b
Q m 0 m m 0

B \L/ \b
Q m 0

= direct solve

= m smoothing iterations
= no smoothing iterations
= LIM interpolation

= bilinear interpolation

grod o
»

Where the use of LIM is indicated in the schematic above, standard
finite-element implementations use the equivalent of bilinear
interpolation [10, 27, 41]. Scheme R(a) always performs smoothing
iterations after residual transfers to coarser grids, but not always

after interpolation.

A two-iteration four-level example of scheme R(b) can be

represented as:
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o8t a5 as ds ds d

s ds ds ds
\L/ \b / \L/ \b / \L/ \b / \L/ \b
n‘h . m m 0 n m 0 m m 0 m m
\L/ \b / \L/ \b
02h m m 0 m n
\L/ \b
ab m m

direct solve

m smoothing iterations
no smoothing iterations
LIM interpolation
bilinear interpolation

oroB a
»
oo ounon

As can be seen from the example of scheme R(b) above, smoothinmg
iterations are always performed after interpolation, but never after

residual transfers to coarser grids.

The reason for comparing schemes R(a) and R(b) is historical. At
one time, we viewed interpolation as disruptive, so we believed the new
error components (introduced by interpolation) should be smoothed. The
analysis in Sections 4.3 and 5.3 and Theorem 2.10 shows when this
imp:essi;n is false. Also, residual transfer can be dome in a
smoothing manner, so smoothing iterations are redundant. If no
smoothing iterations are performed on a grid before the first residual
correction and the initial guess is zero, then the residual is just the
right-hand side. This allows us to avoid computing residuals before

the first correction iteration.

The last two particular schemes we consider are iterative multi-

grid algorithms rather than recursive:
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Definition 6,3: We define scheme I by

KLevel(k, 1, p, M, 1, 1, false, false, 1)

and scheme H by

KLevel(k, p, p, 0, M, M, false, true, 1).

Scheme I, which was brought to our attention by Brandt [14], is
Federenko’s algorithm (Algorithm 1.2) iteratively extended to k-levels.
Scheme I performs smoothing iterations whenever computation changes
grids. A two-iteration four-level example of the scheme I can be

represented as:

8h

Q ds ds
\L / \b
ot n 1
\L / \b
g2b 1 =n 1
" \L/ \b
Q m 1
ds = direct solve
m = m smoothing iterationms
1 = one smoothing iteration
L = LIM interpolation
b = bilinear interpolation

Scheme H is a hybrid combination of p-1 multi-grid iterations of scheme
R(b) on level k followed by ome half iteration of scheme I. As we will
see in Chapter 7, scheme H is almost as accurate as scheme R(b), but
requires less computation, A two—iteration four—level example of the

scheme H can be represented as:
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28t g5 as

ds ds ds
\L/ \b / \L/ \b / \L
ﬂ‘h' m m 0 m m 0 1
\L/ \b / \L
02h m m O 1
\L/ \b
qb n 1

direct solve

m smoothing iterations
no smoothing iterations
one smoothing iteration
LIM interpolation
bilinear interpolation

Cr=OoB A
U]
wnonouwonn

6.2 Implementation
In this section, we provide details of some of the implementation

issues raised in the last section. We define LIM interpolation and

residual projection., We also discuss why injection is not sufficient

for good convergence. Finally, we discuss how our FORTRAN multi-grid

subroutine library is assembled.

We use a fourth order interpolation procedure whenever an initial
guess is interpolated onto a grid. We define such a procedure to

2h onto ﬂh by combining one~dimensional cubic

interpolate u
interpolation and what is called the Local Inversion Method, or
LIM [31]. Specifically, we do the following:

1. Use cubic interpolation to obtain the solution at the
midpoints of the "lines” of the coarse grid:

—— Xt

.

. |

. * = coarse grid points

XeeeooooX

| . | X = fine grid points where we are
= . : interpolating the solution
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2. Use the difference equation to solve for the interpolant at
the midpoints of the "boxes” of the coarse grid:

s
[ | * = coarse grid points

.
[ | X = fine grid points at midpoints

f...+...f of coarse grid linmes

| I + = fine grid point at midpoint
[ | of coarse grid box
X

If (xi,yj) e ot corresponds to the midpoint of the box in

the diagram above, then

h h h h

h .k h
Ui T Dty T Lyymioa,s T RiyUiea,g ~ Byt

ij

_ h h 4
Tiyuh,gen 1/ DY + 0.

VWe found that by using fourth order interpolation to make an initial
guess, coupled with bilinear interpolation for corrections, ome or two
of the residual correction iterations were eliminated as compared to

using only bilinear interpolation was used.

In Algorithm 1.2, the correction iterations are dome by first
computing residuals on ﬂh and then injecting them (multiplied by four)
into ﬂzh at the points that are coincident between the two grids. In
order to include the information stored in the residuals at the points
not coincident between a! and HZh. we project weighted residuals.
Weighting also smooths the residuals. Graphically, the weighting is

given by the stencil
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b and a?h, ) et the

where we use ¥, at points coincident between @
other points in the five-point discrete operator (on Dh), and w2 at the

four remaining points. If
oSS Ahnh,

then define

£2b

ij = '0 T

h
2i-1,25-1 *

B B h B
M1 Umim2,050 * m3500,0502 * Tpam1,05 * Tai,25-1 ) *

B h h h
Y2 Urai2,25-2 * 252,25 * T21,25-2 * T21,25 )-

We explored the use of three different sets of weights, two

standard temsor-product rules and one nonstandard rule:
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% LY v,
| | |
| 64 | 16 4 |
R¥W1 — — - |
36 36 36 |
16 8 4
RW2 e e
16 16 16
208 | 16 4
RW3 —_— — —
= 72 72 72 A

For each set of weights, '0’ '1' wz,
Wo + 4 (W1 + wz) = 4

instead of the customary one because we assume that f2h has a factor of
(21)2 in it instead of h® (see (6.2)). We found that weighting RW1
works best when the first order terms in (6.1) are not dominant, When
they are dominant, weighting RW2 works best. When (6.1) is the
Laplacian or the residuals are very smooth, weighting RW3 works better

than either RW1 or RW2.

We found that strict injection of residuals sometimes has an

unpleasant side effect: the first correction to the approximation to

uh decreases its accuracy. The second correction restores the accuracy

h to what it was before the first correction

of the approximation to u
was applied. Thereafter, corrections improve the accuracy. Further,
we found that this phenomenon disappears when either residual weighting

is used or smoothing iterations are performed before injecting
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residuals from n2h into n‘h. We prefer weighting since it costs less

than a smoothing iteration.

Our FORTRAN code is organized into a number of modules. There is
an interactive driver subroutine which sets parameters used by the
multi-grid subroutines, calls the library subroutines to solve a
problem, and translates error codes into English. Since the driver is
interactive, parameters and multi-grid algorithms can easily be
changed. The driver is not needed if we are willing to set up the

parameters the subroutine library requires.

We specify the differential equation using subprograms. Since the
coefficient matrices are large and sparse, it is inefficient to store
them in a dense manner. We have employed standard techniques similar
to, but not identical to, those in the Yale Sparse Matrix

Package [20, 21].

The computation is split into five modules for flexibility (e.g.,
a pre-conditioned conjugate gradient or SOR procedure could be
substituted for the Gauss—Seidel relaxation subroutine below).
Computation on the coarsest grid is treated as a special case. This
module is highly dependent on the direct solver employed. We use the
nonsymmetric solvers NDRV and TDRV and the symmetric ordering
subroutine ODRV in the Yale Sparse Matrix Package [20, 21]. The
ordering subroutine ODRV produces a minimum degree ordering based on
the upper triangular part of Ah. NDRV stores the matrix factorization
while. TDRV does not. If sufficient memory is available, NDRV is

computationally more attractive than TDRV since with it the coefficient
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matrix for the coarsest grid does not have to be re-factored for each

direct solve.

The flow of computation on the finer grids follows the algorithm
in Figure 6-1. When making a right-hand side for the next coarser
grid, residuals are computed in one subroutine and weighted in another.
Interpolation is performed in a subroutine, whether we want a first
approximation to a solution or are adding a correction to an already
existing approximate solution. Each smoothing iteration is one Gauss—

Seidel relaxation sweep.

6.3 Complexity

In this section, we derive asymptotic multiply counts for three
subclasses of the class of algorithms defined in Figure 6-1. If N is
the number for unknowns in the finest grid Qh. we show that for certain
choices of parameters the algorithms in each subclass require O(N)
operations (asymptotically). In particular, the analysis applies to
the schemes R(a), R(b), I and H, which we defined in Section 6.1. Then
we show that the cost of assembling all of the coefficient matrices is
only one—third higher than the cost of assembling only the coefficent
matrix for the finest grid. Finally, we show that the storage
requirements for the subroutine library discussed in Section 6.2 are

proportional to the number of unknowns in the finest grid.

Table 6-1 contains the cost of each phase of the genmeral multi-
grid algorithm as well as the specific costs for the subroutine library

described in Section 6.2. Consider the class of algorithms
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Table 6-1: Generalized Multi-Grid Algorithm Costs

Operations Value of constant in for each
subroutine library

ClN 5.00 smoothing iteration or
residual computation

CN 0.75 residual weighting

CiN 2.25 LIM interpolation

C4N 0.75 bilinear interpolation

CsN . 1.50 difference between LIM

and bilinear interpolation

KLevel(K, p, p, R, By, Ry, ¢y vy 1)

with finest grid nh. Recall from Figure 6-1 that Ro is the number of
smoothing iterations before the first correction, RL is the number of
smoothing iterations after the last correction, and RN is the number of
smoothing iterations otherwise. Schemes R(a) and R(b) fall into this

class. The cost of doing smoothing iterations on ﬂh. residual

projection from ﬂh, and interpolation to nh while doing p iterations of

a k-level scheme is given by

Mults(N, p. Ry, R, Ry = IC; + {(p-1) (Ry*1) + Ry + Ry }Cy
+ (-D{C, + ¢ )N (6.3)
= C,N.

The cost of doing these operations on coarser grids is not included in

(6.3).
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We begin by giving a work estimate. All logarithms are base four

in the analysis. Define

-1 ifx<0

Sign(x) = 0 if x

[}
(-]
.

+1 if x>0
Theorem 6.4: Let RO' R;, and Ry be fixed nonnegative integers. The
total number of multiplies T for any algorithm in the class
KLevel(k, p, p, Ro, R;, Ry, false, false, 1)
approaches the following limits asymptotically (im k):
(a) p=1: T => 1[C + R, C,IN
3163 * B Gy

(b) p

"
[
-

- 1
> z[c3 + Ry + 1+ 5Rp *+ RLIC; +Cy) + Cy

1..
~ 38ign(Ry)C5IN

= s - 2
(¢) p=3: T = 4[C3 + {2(Ry + 1) + 3Ry + Ry 1IC; + 2{C, + C4}

- Zsign(R)C5IN

(d) p

"
IS
=]

-> [C3 + {3(Ry + 1) + Ry + RLIC;
+ 3(C2 + C4] - Sign(Ro)CS]NlogN

+ 31Sign(RCy ~ RYC,IN

(&) p=> @ T => [Cc - Sign(RyC5IN'BP + §Sign(Ry)CsN.
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Proof: Let N be the number of unknowns on level k. For each multi-grid
jteration of the recursive k-level schemes we solve p (k-1)-level
problems. Level k-1 has approximately N/4 unknowns, so the cost of

solving all of the (k-1)-level problems is given by

p Mults(N/4, p, R

o R, Ry - JIR)Cy + Siga(Rp)Cs(p = DI.  (6.4)

The term
Nig ¢, + Sign(Ry)Cs(p - 1)1
4'%0%1 1gni{RglCstp

in (6.4) is a correction. On the first (k-1)-level problem we are
solving for the solution, so there are no smoothing iterations
involving Ro. Since in the definition of Mults(-) Ro is assumed to
always play a role, the extra multiplies counted must be subtracted.
For the remainder of the (k-1)-level correction recursion problems,
when Ro > 0, LIM interpolation is not used. We can inductively deduce

that the total cost of a k—level scheme is
TotMults(k, N, p, Ry, By, Ry)
-i -4
P » P» » . -
= ) [p' Mults(4 °N, p Ro Ry Ry - 4 R, C,N
i=0

- sign(R)) ¢ ((p/a)} - 47HIN)
oS (6.5)

Bl el o,
= N (/)7 T RyCN D4

. 1 i_ 4
- ngn(Ro)CsN > ((p/4)" - 4 7).

i=0

Asymptotically,
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k = 1logN,
SO
a-Ge™H, irpce
§f§ (p/#)} => { 1ogN, ifp=4. (6.6)
i=0

(p/4)1+108N _ 4
(p/4) - 1
As p => @ in (6.6),

1+logN

(p/4) -1 =

oy (p/ayYosN o (logp)-1, 6.7
(p/4) - 1

Substitution of (6.6) and (6.7) into (6.5) yields the desired results.

QED

Substituting the subroutine library’s constants from Table 6-1 into

Theorem 6.4 gives us

Corollary 6.5: For the subroutine library described in Section 6.2, we

have:

(a) p=1: T -> [3 + SRL]N

. - 1 b - §i
(b) p=2: T -> [172 + 10{RN + 3Ry + RL) Slgn(Ro)]N

() p=3: T -> [51+200R + 2Ry + By} - 4Siga(R)IN
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-4 T - 3 _3
(@) p=4: T => [215 + 5{3Ry + Ry + Ry} - 3Sign(R,) INlogN
+ [28ign(R)) - 63RIN.
We can use Corollary 6.5 to compute the number of multiplies used

by the two recursive schemes singled out in Section 6.1, Substituting

Ro = RN =m and By = 0 into Corollary 6.5 gives us

Corollary 6,6: For the subroutine library, the total number of

multiplies for the scheme R(a) is asymptotically (in k):

(a) p=1: T -> 3N

W p=2: T - M6} + 13%m]N
(c)p=3: T => [47+ 53§m1n
(@ p=4 T -> [20}+ 20mINLogN + [2 - 63mIN.

Substituting Ry = 0 and Ry = Ry = m into Corollary 6.5 gives us

Corollary 6,7: For the subroutine library, the total number of

multiplies for scheme R(b) is asymptotically (in k):
(a) p=1: T => [3 + 5mIN

M p=2: T => [17% + 20mIN
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Corollary 6,9: For the subroutine library, the total number of

(¢) p=3: T -> [51+ 60mIN
multiplies for scheme I is asymptotically (in k):

) 2
(@ p=4 T -> [213 + 20mINL0gN. (@p=1: T - 9N

"
[ ]
-

U
v

() p 125 + 62mIN

Iterative multi-grid schemes do not fall into the class of

algorithms that Theorem 6.4 analyzes. For a particular subclass of 1 1
() p=3: T -> [403 + 133mIN

iterative schemes we have

L}
H
-

1
v

Theorem 6,.8: If we let Ro, R, and Ry be fixed nonnegative integers, (d) p '[55§ + 20mIN

then the total number of multiplies T for any algorithm in the class
The last theorem combines the multiply count of scheme R(b) with

KLevel(k, 1, p, Ro. Ry, Ry, false, false, 1)
that of scheme I.

approaches the following limit asymptotically (in Xx):
Theorem 6,10: For the subroutine library, the total number of

T - 3[‘01 +Cy) + (p - DRy +2)Cy +Cy + c, 1IN, multiplies for scheme H is asymptotically (in k):
() p=2: T -> [18} + 10mIN
Proof: For scheme I,
e, (b) p=3: T -> [453 + 4omIN
T = [(C +Cy) + (p - 1Ry +2)C; + Cy + C}IN %:3 4

() p=4: T -> [1653 + 15uINlogN + [263 + 15mIN.
= 21(c, + €p) + (p - DI(RY + 2)C; + Cy + CyHIN.

QED Proof: For scheme H, Ro =0 and Ry =R =m. Forp>1,

Let Ro =Ry =m and Ry = 1. Substituting the particular values of p

into Corollary 6.8 gives us
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T = (p - 1)TotMults(E-1, N/4, p, 0, m, m)

) <2 O
+ Mults(N, p, 0, 1, m) + [C1 + Cy + C3IN %:T 4

= (p - 1)TotMults(K-1, N/4, p, O, m, m)
1
+ Mults(N, p, 0, 1, m) + 3[Cy + Cy + C3IN.

Substitution of particular values of p into the above equation proves
the result.

QED

We now turn to analyzing the cost of assembling the c&efficient
matrices associated with each grid. A coefficient matrix is generated
and saved for each level. At each point in a grid, functions are
evaluated to get the values of P, Q, V, W, and S for the differential
equation (6.1). If Ni is the number of unknowns in the grid associated

with each level i, i =1, 2, ... , k, then we have the following bound:

Theorem 6,11: Assembling the multi-grid coefficient matrices requires
one—third more function evaluations than assembling just the finest-

grid coefficient matrix asymptotically in k.

Proof: On the finest grid, SNk function evaluations are required. The

number of function evaluations required by multi-grid is

ST = S
S52 N, = 5N > 4 -> (5N;) as k =) =,
i=0 = P
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We can derive bounds for the number of multiplies needed to assemble a

coefficient matrix Ah:

Proposition 6,12: Let N be the rank of Ah. Excluding the cost of the

function evaluations, the cost of assembling Ad is

4N ¢ Cost < 15N,

The variation in the cost in Proposition 6.12 comes from whether or not
any of the terms V, W, and S in (6.1) are zero. Thus, the following

bound is immediate from Theorem 6.11 and Proposition 6.12:

Corollary 6.13: Assembling the multi-grid coefficient matrices costs
one-third more than assembling just the coefficient matrix for the

finest grid asymptotically in k.

When the coefficient functions are expensive to evaluate, they can
be evaluated once on the finest-grid and saved in tables. In this
case, additional function evaluations are inexpensive table look-ups
and the cost of assembling the multi-grid coefficient matrices is about
the same as just assembling the finest—grid matrix, This is the

technique used to assemble the right—hand sides.

Finally, we consider the amount of storage required by the
subroutine library. This implementation stores every discretization as
a nonsymmetric system of equations, even for self-adjoint problems.
Table 6-2 contains the storage requirements of the library for all

algorithms in class
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Table 6-2: Generalized Multi-Grid Algorithm Storage Requirements

Locations for
8N, Yale Sparse Matrix Package data structure
3Ni approximate solution,

right—-hand side, and
internal data structure, i =1, 2, ..., k

SNi coefficient matrix, i =1, 2, ..., k

N residuals
KlLevel(k, *, -+, Ry, R, , Ry, false, -, ).
Theorem 6,14: The total number of locations needed (excluding the

memory required by the Yale Sparse Matrix Package for the factorization

on the coarsest grid) is asymptotically (in k) given by

- 2
Storage > 113 Nk'

Proof: From Table 6-2,

" k1
Storage = [1+8 {417k >4ty N.
i=0
- 12y ke
3 k as .

QED

Corollary 6,15: With the same assumptions as in Theorem 6.14, the total

number of locations needed for self-adjoint problems should be given by

Storage -> 9Nk'

104
Proof: Since the problem is symmetric, the number of locations used by

the coefficient matrix on level i is 3N1, i=1,2, ... , k. So,

- ) =2 S
Storage = [1+6 { 417X+ 24 i 11 N,
i=0

and the result follows as before.




CHAPTER 7

Numerical Experiments

7.1 Experiments

In this section, we present results of nnmgrical experiments
comparing the particular multi-grid schemes of Section 6.1, In these
experiments, the domain @ is the unit square [0,1]x[0,1]. We find that
the molti-grid schemes R(a), R(b), I and B use less computer time and
require less storage than sparse Gaussian elimination to achieve
similar accuracy. However, the two-level schemes of Southwell and
Federenko (Algorithms 1.1 and 1.2) require more computer time than
sparse Gaussian elimination to achieve similar accuracy. We also
investigate the relative efficiencies of multi-grid and sparse Gaussian
elimination for the case in which a collection of partial differential
equations with the same differential operator, but with different

right-hand sides needs to be solved.

Our test problem is a variable coefficient, nonself-adjoint

equation:
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-x; x
- (T = () + (12 - Puy

+ (x - 1/2)ny -a/(1l+x+y) = finQ
u = 0 on 39,

where the right-hand side f is comstructed so that the solution is
u = xeX¥sin(nx)sin(ny). This problem is similar to Ellpack test

problem ome [42].

The amount of storage reported in Table 7-1 is the number of
single-precision words required for the approximate solutions, right-
hand sides, coefficient matrices, and factorization of the coarsest
grid matrix., The direct solve on the finest grid uses 0(NlogN) storage
for the five-point discretization (6.2) [45], where N is the number of
points in the finest grid. Im the multi-grid case, the ratio of
storage to N is slightly above that predicted in Theorem 6.14. The
discrepancy is caused by our discounting in Theorem 6.14 the space
required to save the factorization of the coarsest grid’'s coefficient
matrix. As can be seen in Table 7-1, most of the savings in space

occurs when just two or three levels are used.

The results for the test problem are summarized in Table 7-2. The
table contains data for finest grids of 17x17, 33x33, and 65x65. For
each fine-grid, we report the following data for p cycles (2 { p £ 4)
and two Gauss-Seidel relaxation sweeps per iteratiom of each of the

particular multi-grid schemes of Section 6.1:
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Table 7-1: Storage Requirements for the FORTRAN Multi-Grid Library

N . Levels
1 1 2 3 4 5
| |
17x17 9,547 13,219 | 4,803 4,168 |
33.0 45.17 16.6 14.4
33x33 41,153 66,179 20,979 15,716 15,081
37.8 60.8 19.3 14.4 13.8
65x65 | 187,663 . 96,743 63,268 58,005 57,370
44.4 22.9 15.0 13.7 13.6
Direct
solver TDRV NDRV NDRV NDRV NDRV NDRV

Storage (in single-precision words) and Storage/N

'There was not enough memory available to solve this problem.

— the time (in CPU seconds) to solve the discrete system of
equations, and

— the maximum absolute error (with respect to the solution of
the differential equation) at the grid points of the finmest
grid.

The timings were performed on a lightly loaded DEC-2060 computer

running TOPS-20.

From Table 7-2, we draw several comclusions for the test problem.

On the finest grid all of the multi-grid schemes achieve their accuracy

using much less CPU time than the direct solve. Consider the 65x65,

p = 2, 5-level case in Table 7-2. Scheme H and scheme R(a) require 1.7

CPU seconds, scheme R(b) requires 2.1 seconds, while the ODRV + TDRV
direct solve requires 38.8 seconds. There was not enough memory for

NDRV to solve the 65x65 problem without modifying the subroutine (the
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Table 7-2: Test Problem Results
NDRV + ODRV is used unless otherwise specified. All times are
in DEC-2060 CPU seconds. All errors are the maximum absolute
error with respect to the solution of the differential equation,
evaluated at the fine grid points.
(a) 17x17 Finest Grid
Direct Solve on Finest Grid: 0.531 CPU seconds
0.522 CPU seconds (TDRV)
2.02E-03 Maximum Error
Scheme P Level Scheme P Level
2 3 2 3
|
R(a) 1 0.084 0.027 | 1 1 0.103 0.026
8.07E-03 3.94E-02 ’ 7.33E-03 2.81E-02
2 0.122 0.104 2 0,143 0.094
2.11E-03 3.21E-03 2.02E-03 4.75E-03
I
R(a) 1 0.086 0.029 3 0.190 0.153 |
without 5.50E-02 1.95E-01 | 2.06E-03 2.54E-03
using |
LIM 2 0.132 0.102 4 0.238 0.193
1.14E-02 1.53E-02 2.02E-03 2.11E-03
3 0.190 0.204 H 2 0.144 0.102
2.37E-03 2.43E-03 2.02E-03 2,38E-03
4 0.225 0.343
1.86E-03 1.85E-03
R(b) 1 0.103 0.053
7.00E-03 2,20E-02
2 0.149 0.125
1,99E-03 2.09E-03
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(b) 33x33 Finest Grid

pirect Solve on Finest Grid: 3,902 CPU seconds (NDRV)
3.879 CPU seconds (TDRV)
5.09E-04 Maximum Error

Scheme P Levels
2 3 4
|
R(a) 1 0.569 0.125 0.067

2.02E-03 8.07E-03 3,94E-02

2 0.768 0.421 0.434
4.66E-04 5.01E-04 7.29E-04

R(a) 1 0.566 0.117 0.065
without 1.93E-02 5.50E-02 1.95E-01
using

LIM 2 0.767 0.375 0.427

1.02E-02 1.03E-02 1.05E-02

3 0.966 0.819 1.023
1.16E-03 1.23E-03 1.23E-03

4 1.167 1.286 1.910
4.75E-04 4.80E-04 4.80E-04

R(b) 1 0.650 0.223 0.168 |
1.96E-03 6.88E-03 2.14E-02

2 0.849 0.517 0.522
4 .58E-04 4.60E-04 4.63E-04

1 1 0.606 0.165 0.123 |
1.98E-03 7.26E-03 2.76E-02

2 0.800 0.388 0.343
4 .58E-04 7.09E-04 3.44E-03

3 1.006 0.601 0.563
5.26E-04 6.17E-04 1.18E-03

4 1.196 0.821 0.787
5.09E-04 5,21E-04 6.20E-04

H 2 0.801 0.418 0.402
4 ,58E-04 4.99E-04 5.25E-04

Direct Solve on Finest

Scheme

R(a)

R(a)
without
using
LIM

R(b)

(c) 65x65 Finest Grid

Grid:

1.24E-04 Maximum Error

not enough memory
38.8 CPU seconds

Levels

1

4.135
5.08E-04

5.009
1.10E-04

5.874
1.32E-04

0.691
2.02E-03

1.963
1.16E-04

3.619
1.32E-04

0.270
8.07E-03

1.726
1.21E-04

4.073
1.32E-04

0.219
3.95E-02

1.469
1.64E-04

4.831
1.32E-04

4.093
5.66E-03

5.032
1.07E-02

5.829
5.88E-04

6.773
2.44E-04

0.490
1.93E-02

1.982
1.06E-02

3.635
6.23E-04

5.649
2.51E-04

0.253
5.50E-02

1.701
1,.06E-02

3.936
6.26E-04

7.601
2.51E-04

0.127
1.95E-01

1.762
1.06E-02

4,532
6.26E-04

10.234
2.51E-04

4.511
5.04E-04

5.300
1.10E-04

1.145
1.95E-03

2.340
1.10E-04

0.683
6 .83E-03

2.086
1.11E-04

0.634
2,12E-02

2.149
1.11E-04

4.309
5.06E-04

5.127
1.10E-04

6.095
1.32E-04

6.944
1.27E-04

0.917
1,98E-03

1.808
1,28E-04

2.720
1.57E-04

3.586
1.28E-04

0.463
7.23E-03

1.377
4.62E-04

2.286
2,51E-04

3.227
1.41E-04

0.423
2.74E-02

1.336
3.15E-03

2.262
8.38E-04

3.177
2.55E-04

5.142
1.10E-04

1.949
1.18E-04

1.619
1.20E-04

1.664
1.21E-04

(NDRV)
(TDRV)
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DEC-2060 has an addressing limitation of 256K single—-precision words).

When p = 2 or 3, the multi-grid schemes actually require time
proportional to the number of unknowns in the finest grid, just as
predicted by Corollaries 6.6, 6.7, and 6.9 and Theorem 6.10. The
multiply counts in Section 6.3 accurately predict the difference
between the running times of the different schemes. The maximum number
of levels minimizes the storage required. While this will not always
minimize the time required, it will almost do this. Scheme H and
scheme R(a) are the fastest multi-grid schemes tested which achieve
accuracy comparable to a direct solve. Scheme R(b) requires
approximately 25% more time than either scheme H or scheme R(b) to
achieve similar accuracy. Scheme I costs more than the other
particular multi-grid schemes. To be fair, this scheme is best suited
to problems where a good initial guess to the finest grid solution

exists.

The use of LIM to generate initial guesses instead of bilinear
interpolation decreases the number of correction iterations required to
achieve accuracy similar to a direct solve. This is particularly
noticeable when many levels are being used. In a two—level scheme, the
direct solve provides a good enough approximation to the fine—grid

solution so that interpolation plays a lesser role.

Table 7-3 contains the results of timing the test problem without
including the re-ordering and factorization of the coarsest grid’s
coefficient matrix. We draw some conclusions about solving a sequence

of linear systems which have the same coefficient matrices. When

Table 7-3: Test Problem Timings Excluding Factorization Time

65x65

33x33

17x17

Fines} Grid

Direct

not enough memory

0.240 CPU seconds

0.043 CPU seconds

Solve

Levels

Levels

Levels
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solving systems of the form Au = f by sparse Gaussian elimination
techniques, backsolves take much less time than re—ordering and
facto;ing the matrix A, When the grids are small and two or more
iterations of a k—level scheme are used, two levels should be used to

ensure the lowest multi-grid running time.

When the computer charges are based only on CPU time, the sparse
Gaussian elimination techniques are less expensive than multi-grid if
sufficiently many systems are to be solved and the grids are small
enough. However, recall that for p = 2 or 3, the work estimate for
multi-grid is O(N), while for a backsolve, the work estimate is
O(NlogN). Thus, asymptotically (in N), multi-grid is less expenmsive

than sparse Gaussian elimination.

Even when the grids are small so that multi-grid requires more CPU
time than a backsolve, multi-grid schemes are very competitive when the
charge is determined by the kilo-core seconds rather than by the number

of CPU seconds. Suppose the charging algorithm is
Charge = (CPU seconds used) x (Memory used / 1000)%,

where w is a non—negative real number. We can determine for what
values of @ it is less expensive to use a multi-grid algorithm instead

of a direct solve on the finest grid. This requires solving

[(Direct solve time) / (Direct solve storage)]® )

(Multi-grid time) / (Multi-grid storage)

for v, i.e.,
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log[(Multi-grid time)/(Direct solve time)]

log[(Direct solve storage)/(Multi-grid storage)]

Consider the case of a 33x33 finest grid in Table 7-3. Scheme H is
less expensive than a direct solve whenever
.27 for two levels
@ 2 .28 for three levels.
.36 for four levels

Common values of w are 0, .5, and 1.

Table 7-4 contains the results of solving the test problem by
Gauss—-Seidel and the algorithms of Southwell and Federenko (Algorithms
1.1 and 1.2). In Sounthwell’s algorithm, we solve the coarse grid
problem directly using the Yale Sparse Matrix Package [20, 21]. For
Federenko’'s algorithm and Gauss—Seidel, we use an initial guess of zero
for the fine-grid solution. Some conclusions can be drawn from Table
7-4. First, the algorithms of Federenko and Southwell appear to work
equally well, but Gauss—-Seidel takes a yery lomg time. Second, mone of
these three methods are competitive timewise with a direct solve on the

fine grid or any of the k-level schemes defined in Section 6.1.

7.2 Conclusions

In conclusion, we find that the k-level schemes use substantially
less computer time and storage than sparse Gaussian elimination to
achieve similar accuracy. We can solve the test problems using fewer
correction iterations using LIM plus bilinear interpolation and

residual weighting than if we solve them using just bilinear




Table 7—-4: Test Problem Results for the Methods of Federenko,

Southwell, and Gauss—Seidel

All times are in DEC-2060 CPU seconds. All errors are the
maximum absolute error with respect to the solution of the differential equation,

evaluated at the points of the fine grid.

Southwell’s method uses NDRV.

Gauss—Seidel

Southwell’s Method

Federenko’s Method

Fine Grid

Time m Error Time m Error Time

Error

0.985
1.445

00 1.56E-02
50 2.13E-03

1
1

2 7.05E-03 0.127
10 5.41E-03 0.186

15 3.01E-02 0,348
0.540

15 1.91E-03

2
3

50 2,.54E-03 0.577
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interpolation. The two-level schemes of Southwell and Federenko
require more computer time than sparse Gaussian elimination to achieve

simil;r accuracy, but less than Gauss—Seidel.

When a collection of partial differential equations with the same
differential operator, but different right-hand sides is to be solved,
sparse Gaussian elimination is sometimes less expensive than multi-
grid. When the computer charging algorithm is based on CPU time
instead of kilo-core seconds, sparse Gaussian elimination is less
expensive if sufficiently many systems are solved, there is sufficient
memory available to save the factorizatiom of the coefficent matrix,
and the grids are small. When the computer charging algorithm is based
on kilo-core seconds, we have shown when multi-grid is less expensive
to use than sparse Gamssian elimination. Otherwise, multi-grid is less

expensive than sparse Gaussian elimination.

In this chapter, we have shown empirically that a variety of
multi-grid schemes can be implemented which lead to optimal order
solvers for self-adjoint problems. Whether scheme R(b), scheme H, or
scheme R(a) is used makes little difference since they all behave in a
similar manner. We have also shown that multi-grid methods compare
quite favorably with sparse Gaussian elimination, even for nonself-
adjoint problems. However, a warning about multi-grid methods is
warranted: implementing these methods for gemeral problems can be

extremely time consuming.
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