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Abstract. Various aspects of the theory of random walks on graphs are surveyed. In
particular, estimates on the important parameters of access time, commute time, cover
time and mixing time are discussed. Connections with the eigenvalues of graphs and with
electrical networks, and the use of these connections in the study of random walks is
described. We also sketch recent algorithmic applications of random walks, in particular
to the problem of sampling.




0. Introduction.

Given a graph and a starting point, we select a neighbor of it at random, and move
to this neighbor; then we select a neighbor of this point at random, and move to it etc.
The (random) sequence of points selected this way is a random walk on the graph.

A random walk is a finite Markov chain that is time-reversible (see below). In fact,
there is not much difference between the theory of random walks on graphs and the theory
of finite Markov chains; every Markov chain can be viewed as random walk on a directed
graph, if we allow weighted edges. Similarly, time-reversible Markov chains can be viewed
as random walks on undirected graphs, and symmetric Markov chains, as random walks
on regular symmetric graphs. In this paper we’ll formulate the results in terms of random
walks, and mostly restrict our attention to the undirected case.

Random walks arise in many models in mathematics and physics. In fact, this is one
of those notions that tend to pop up everywhere once you begin to look for them. For
example, consider the shuffling of a deck of cards. Construct a graph whose nodes are all
permutations of the deck, and two of them are adjacent if they come by one shuffle move
(depending on how you shuffle). Then repeated shuffle moves correspond to a random walk
on this graph (see Diaconis 1988). The Brownian motion of a dust particle is random walk
in the room. Models in statistical mechanics can be viewed as random walks on the set of
states.

The classical theory of random walks deals with random walks on simple, but infinite
graphs, like grids, and studies their qualitative behaviour: does the random walk return to
its starting point with probability one? does it return infinitely often? For example, Pdlya
(1921) proved that if we do a random walk on a d-dimensional grid, then (with probability
1) we return to the starting point infinitely often if d = 2, but only a finite number of times
if d > 3. See Doyle and Snell (1984); for more recent results on random walks on infinite
graphs, see also Thomassen (1990).

More recently, random walks on more general, but finite graphs have received much
attention, and the aspects studied are more quantitative: how long we have to walk before
we return to the starting point? before we see a given node? before we see all nodes? how
fast does the distribution of the walking point tend to its limit distribution?

As it turns out, the theory of random walks is very closely related to a number
of other branches of graph theory. Basic properties of a random walk are determined
by the spectrum of the graph, and also by electrical resistance of the electric network
naturally associated with graphs. There are a number of other processes that can be
defined on a graph, mostly describing some sort of “diffusion” (chip-firing, load-balancing
in distributed networks etc.), whose basic parameters are closely tied with the above-
mentioned parameters of random walks. All these connections are very fruitful and provide
both tools for the study and opportunities for applications of random walks. However, in
this survey we shall restrict our attention to the connections with eigenvalues and electrical
networks.

Much of the recent interest in random walks is motivated by important algorithmic
applications. Random walks can be used to reach “obscure” parts of large sets, and also to
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generate random elements in large and complicated sets, such as the set of lattice points
in a convex body or the set of perfect matchings in a graph (which, in turn, can be used
to the asymptotic enumeration of these objects). We’ll survey some of these applications
along with a number of more structural results.

We mention three general references on random walks and finite Markov chains: Doyle
and Snell (1984), Diaconis (1988) and the forthcoming book of Aldous (1994).

Acknowledgement. My thanks are due to Peter Winkler, Andras Lukics and Andrew
Kotlov for the careful reading of the manuscript of this paper, and for suggesting many
improvements.

1. Basic notions and facts

Let G = (V, E) be a connected graph with n nodes and m edges. Consider a random
walk on G: we start at a node vo; if at the t-th step we are at a node v, we move neighbor
of v, with probability 1/d(v;). Clearly, the sequence of random nodes (v, : t = 0,1,...)
i1s a Markov chain. The node vy may be fixed, but may itself be drawn from some initial
distribution Py. We denote by P; the distribution of vy:

Py(7) = Prob(v; = 1).

We denote by M = (pi;)ijev the matrix of transition probabilities of this Markov

chain. So o
Pij = { l/d(i), lf ZJ e E? (1.1)

0, otherwise.

Let Ag be the adjacency matrix of G and let D denote the diagonal matrix with (D),; =
1/d(7), then M = DAg. If G is d-regular, then M = (1/d)Ag. The rule of the walk can
be expressed by the simple equation

Py =MTP,
(the distribution of the t-th point is viewed as a vector in IRV), and hence
P = (MT)'PR,.

It follows that the probability p!; that, starting at i, we reach j in t steps is given by the
ij-entry of the matrix M?.

If G is regular, then this Markov chain is symmetric: the probability of moving to u,
given that we are at node v, is the same as the probability of moving to node v, given that
we are at node u. For a non-regular graph G, this property is replaced by time-reversibility:
a random walk considered backwards is also a random walk. More exactly, this means that
if we look at all random walks (vo,...,v:), where vg is from some initial distribution Py,
then we get a probability distribution P; on v;. We also get a probability distribution
Q on the sequences (vg,...,v¢). If we reverse each sequence, we get another probability
distribution Q' on such sequences. Now time-reversibility means that this distribution Q'

3




is the same as the distribution obtained by looking at random walks starting from the
distribution P;. (We’ll formulate a more handy characterization of time-reversibility a
little later.)

The probability distributions Py, P;,... are of course different in general. We say that
the distribution Py is stationary (or steady-state) for the graph G if P, = Py. In this case,
of course, P, = P, for all t > 0; we call this walk the stationary walk.

A one-line calculation shows that for every graph G, the distribution

d(v)

2m

7(v) =

is stationary. In particular, the uniform distribution on V is stationary if the graph is
regular. It is not difficult to show that the stationary distribution is unique (here one has
to use that the graph is connected).

The most important property of the stationary distribution is that if G is non-
bipartite, then the distribution of v; tends to a stationary distribution, as t — oo (we
shall see a proof of this fact, using eigenvalues, a little later). This is not true for bipartite
graphs if n > 1, since then the distribution P; is concentrated on one color class or the
other, depending on the parity of t.

In terms of the stationary distribution, it is easy to formulate the property of time-
reversibility: it is equivalent to saying that for every pair ¢,j € V, 7(¢)pi; = m(j)p;i. This
means that in a stationary walk, we step as often from i to j as from j to i. From (1.1), we
have 7(i)p;; = 1/(2m) for ij € E, so we see that we move along every edge, in every given
direction, with the same frequency. If we are sitting on an edge and the random walk just
passed through it, then the expected number of steps before it passes through it in the
same direction again is 2m. There is a similar fact for nodes: if we are sitting at a node ¢
and the random walk just visited this node, then the expected number of steps before it
returns is 1/7(¢) = 2m/d(7). If G is regular, then this “return time” is just n, the number
of nodes.

2. Main parameters

We now formally introduce the measures of a random walk that play the most impor-
tant role in the quantitative theory of random walks, already mentioned in the introduction.

(a) The access time or hitting time H;; is the expected number of steps before node j
1s visited, starting from node z. The sum

w(1,7) = H(i,7) + H(j,2)
is called the commute tme: this is the expected number of steps in a random walk starting

at ¢, before node j is visited and then node 7 is reached again. There is also a way to
express access times in terms of commute times, due to Tetali (1991):

HG.j) =5 (fs(z‘.,j) + 3 m(w)ln(u, ) - n(u,i)l) . (21)
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This formula can be proved using either eigenvalues or the electrical resistance formulas
(sections 3 and 4).

(b) The cover time (starting from a given distribution) is the expected number of
steps to reach every node. If no starting node (starting distribution) is specified, we mean
the worst case, i.e., the node from which the cover time is maximum.

(c) The mizing rate is a measure of how fast the random walk converges to its limiting

distribution. This can be defined as follows. If the graph is non-bipartite, then pg;) -
d;/(2m) as t — 0o, and the mixing rate is

1/t
w_di|’

p = lim sup max |p;; Y

t—o0 %)

(For a bipartite graph with bipartition {V;,V,}, the distribution of v; oscillates between
“almost proportional to the degrees on V;” and “almost proportional to the degrees on
V5", The results for bipartite graphs are similar, just a bit more complicated to state, so
we ignore this case.)

One could define the notion of “mixing time” as the number of steps before the
distribution of vy will be close to uniform (how long should we shuffie a deck of cards?).
This number will be about (logn)/(1 — p). However, the exact value depends on how (in
which distance) the phrase “close” is interpreted, and so we do not introduce this formally
here. In section 5 we will discuss a more sophisticated, but “canonical” definition of mixing
time.

The surprising fact, allowing the algorithmic applications mentioned in the intro-
duction. is that this “mixing time” may be much less than the number of nodes; for an
expander graph, for example, this takes only O(logn) steps!

Examples. To warm up, let us determine the access time for two points of a path on
nodes 0,...,n — 1.

First, observe that the access time H(k — 1,k) is one less than the expected return
time of a random walk on a path with k + 1 nodes, starting at the last node. As remarked,
this return time is 2k, so H(k — 1,k) = 2k — 1.

Next, consider the access times H(i, k) where 0 <7 < k < n. In order to reach k, we
have to reach node k — 1; this takes, on the average, H(z,k — 1) steps. From here, we have
to get to k, which takes, on the average, 2k — 1 steps (the nodes beyond the k-th play no
role). This yields the recurrence

H(ik)=H(G,k—1)+2k -1,

whence H(i,k) = (20 +1)+ (20 + 3)+... + (2k — 1) = k? — ¢2. In particular, H(0, k) = k?
(this formula is closely related to the well-known fact that Brownian motion takes you
distance v/ in t time).

Assuming that we start from 0, the cover time of the path on n nodes will also be
(n—1)?, since it suffices to reach the other endnode. The reader might find it entertaining
to figure out the cover time of the path when starting from an internal node.
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From this it is easy to derive that the access time between two nodes at distance k
of a circuit of length n is k(n — k). To determine the cover time f(n) of the circuit, note
that it is the same as the time needed on a very long path, starting from the midpoint, to
reach n nodes. Now we have to reach first n — 1 nodes, which takes f(n — 1) steps on the
average. At this point, we have a subpath with n — 1 nodes covered, and we are sitting at
one of its endpoints. To reach a new node means to reach one of the endnodes of a path
with 7 + 1 nodes from a neighbor of an endnode. Clearly, this is the same as the access
time between two consecutive nodes of a circuit of length n. This leads to the recurrence

fn)=fn-1)+(n-1),

and through this, to the formula f(n) = n(n —1)/2.

As another example, let us determine the access times and cover times for a complete
graph on nodes {0,...,n —1}. Here of course we may assume that we start from 0, and to
find the access times, it suffices to determine H(0,1). The probability that we first reach

t—1
node 1 in the t-th step is clearly ("—2) —L_ and so the expected time this happens is

n—1

o t—1
n— 1
0 = f— p— .
H(0.1)=) t (n_1> ——=n-1

t=1

The cover time for the complete graph is a little more interesting, and is closely
related to the so-called Coupon Collector Problem (if you want to collect each of n different
coupons, and you get every day a random coupon in the mail, how long do you have to
wait?). Let 7; denote the first time when ¢ vertices have been visited. So ™, =0 < 7, =
1 <7 <... <7, Now 14 — 7; is the number of steps while we wait for a new vertex
to occur — an event with probability (n —¢)/(n — 1), independently of the previous steps.
Hence

n—1
E(Ti—l --7',‘)2 )
n—1
and so the cover time is
n—1 n—1
Tn)——ZE(T,.H—T,)—Z " ~ nlogn

A graph with particularly bad random walk properties is obtained by taking a clique
of size n/2 and attach to it an endpoint of a path of length n/2. Let i be any node of the
clique and j. the “free” endpoint of the path. Then

H(i,j) = Qn®).

In fact. starting from ¢. it takes, on the average, n/2 — 1 moves to reach the attachment
node u: then with probability 1 — 2/n, we move to another node of the clique, and we have
to come back about n/2 times before we can expect to move into the path. But one can
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argue that on a path of length n/2, if we start a random walk from one end, we can expect
to return to the starting node n/2 times. Each time, we can expect to spend Q(n?) steps
to get back on the path.

Bounds on the main parameters. We start with some elementary arguments (as we
shall see later, eigenvalues provide more powerful formulas). Recall that if we have just
traversed an edge, then the expected number of steps before it is traversed in this direction
again is 2m. In other words, if we start from node i, and j is an adjacent node, then the
expected time before the edge ji is traversed in this direction is 2m. Hence the commute
time for two adjacent nodes is bounded by 2m. It follows that the commute time between
two nodes at distance r is at most 2mr < n3. A similar bound follows for the cover time,
by considering a spanning tree. It is an important consequence of this fact that these
times are polynomially bounded. (It should be remarked that this does not remain true
on directed graphs.)

The following proposition summarizes some known results about cover and commute
times. An O(n®) upper bound on the access and cover times was first obtained by Aleliunas,
Karp, Lipton, Lovasz and Rackoff (1979). The upper bound on the access time in (a), which
is best possible, is due to Brightwell and Winkler (1990).

It is conjectured that the graph with smallest cover time is the complete graph (whose
cover time is & nlogn, as we have seen, and this is of course independent of the starting
distribution). Aldous (1989) proved that this is true up to a constant factor if the starting
point is drawn at random, from the stationary distribution. The asymptotically best
possible upper and lower bounds on the cover time given in (b) are recent results of Feige
(1993a,b).

For the case of regular graphs, a quadratic bound on the cover time was first obtained
by Kahn, Linial, Nisan and Saks (1989). The bound given in (c) is due to Feige (1993c).

2.1 Theorem. (a) The access time between any two nodes of a graph on n nodes 1s at
most

(4/27n3 — (1/9)n* +(2/3)n — 1 if n = 0 (mod 3),
(4/27)n® — (1/9)n? 4+ (2/3)n — (29/27) if n = 1 (mod 3),
(4/27)n% — (1/9)n? + (4/9)n — (13/27) if n = 2 (mod 3).

(b) The cover time from any starting node in a graph with n nodes is at least (1 —
o(1))nlogn and at most (4/27 + o(1))n3.

(¢c) The cover time of a regular graph on n nodes is at most 2n?.

It is a trivial consequence of these results that the commute time between any two
nodes is also bounded by n?, and for a regular graph, the access time is at most 2n? and
the commute time is bounded by 4n?.

No non-trivial lower bound on the commute time can be found in terms of the number
of nodes: the commute time between the two nodes in the smaller color class of the complete
bipartite graph K, is 8. It is true, however, that x(u,v) > 2m/d(u) for all u and v (cf.
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Proposition 2.3 below, and also Corollary 3.3). In particular, the commute time between
two nodes of a regular graph is always at least n.

The situation is even worse for the access time: this can remain bounded even for
regular graphs. Consider a regular graph (of any degree d > 3) that has a cutnode u; let
G = G, UGy, V(G1)NV(G;) = {u}, and let v be a node of G, different from u. Then
the access time from v to u is the same as the access time from v to u in G, which is
independent of the size of the rest of the graph.

One class of graphs for which a lower bound of n/2 for any access time can be proved
is the class of graphs with transitive automorphism group; cf. Corollary 2.6.

Symmetry and access time. The access time from i to j may be different from the
access time from j to ¢, even in a regular graph. There is in fact no way to bound one
of these numbers by the other. In the example at the end of the last paragraph, walking
from u to v we may, with probability at least 1/d, step to a node of G,. Then we have to
walk until we return to u; the expected time before this happens more than |V(G;)|. So
a(u.v) > |V(Gy)|, which can be arbitrarily large independently of a(v,u).

Still, one expects that time-reversibility should give some sort of symmetry of these
quantities. We formulate two facts along these lines. The first is easy to verify by looking
at the walks “backwards”.

2.2 Proposition. If u and v have the same degree, then the probability that a random
walk starting at u wisits v before returning to u is equal to the probability that a random
walk starting at v visits u before returning to v.

(If the degrees of u and v are different, then the ratio of the given probabilities is
m(v)/m(u) = d(v)/d(u).)

The probabilities in Proposition 2.2 are related to the commute time k(u,v) in an
Interesting way:

2.3 Propbsition. The probability that a random walk starting at u visits v before returning
to u 1s 1/(k(u,v)w(u)).

Proof. Let ¢ denote the probability in question. Let 7 be the first time when a random
walk starting at u returns to v and o, the first time when it returns to u after visiting v.
We know that E(7) = 2m/d(u) and by definition, E(o) = k(u,v). Clearly 7 < ¢ and the
probability of 7 = o is exactly ¢g. Moreover, if 7 < o then after the first 7 steps, we have
to walk from w until we reach v and then return to u. Hence E(s — 1) = (1 — q)E(0), and
hence
_E(r) 2m
1= E(o)  d(u)k(u,v)’

A deeper symmetry property of access times was discovered by Coppersmith, Tetali
and Winkler (1993). This can also be verified by elementary means considering walks
visiting three nodes u, v and w, and then reversing them, but the details are not quite
simple.

2.4 Theorem. For any three nodes u, v and w,

H(u,v)+ H(v,w) + H(w,u) = H(u,w) + H(w,v) + H(v,u).
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An important consequence of this symmetry property is the following.

2.5 Corollary. The nodes of any graph can be ordered so that if u precedes v then
H(u,v) < H(v,u). Such an ordering can be obtained by fizing any node t, and order
the nodes according to the value of H(u,t) — H(t,u).

Proof. Assume that u precedes v in the ordering described. Then H(u,t) — H(t,u) <
H(v,t) — H(t,v) and hence H(u,t) + H(t,v) < H(v,t) + H(t,u). By Theorem 2.4, this is
equivalent to saying that H(u,v) < H(v,u).

This ordering is not unique, because of the ties. But if we partition the nodes by
putting u and v in the same class if H(u,v) = H(v,u) (this is an equivalence relation by
Proposition 2.4), then there is a well-defined ordering of the equivalence classes, indepen-
dent of the reference node t. The nodes in the lowest class are “difficult to reach but easy
to get out of”, the nodes in the highest class are “easy to reach but difficult to get out of”
It 1s worth formulating a consequence of this construction:

2.6 Corollary. If a graph has a vertez-transitive automorphism group then H(i,j) =
H(j,1) for all nodes i and j.

Access time and cover time. The access times and commute times of a random walk
have many nice properties and are relatively easy to handle. The cover time is more elusive.
But there is a very tight connection between access times and cover times, discovered by
Matthews (1988). (See also Matthews (1989); this issue of the J. Theor. Probability
contains a number of other results on the cover time.)

2.7 Theorem. The cover time from any node of a graph with n nodes 1s at most (1 +
(1/2) 4+ ...+ (1/n)) times the mazimum access time between any two nodes, and at least
(14(1/2)+...4+(1/n)) times the minimum access time between two nodes.

Let us sketch a simple proof for the somewhat weaker upper bound of 2log, n times
the maximum access time.

2.8 Lemma. Let b be the ezpected number of steps before a random walk visits more than

half of the nodes, and let h be the mazimum access time between any two nodes. Then
b < 2h.

From this lemma, the theorem is easy. The lemma says that in 2h steps we have seen
more than half of all nodes; by a similar argument, in another 2k steps we have seen more
than half of the rest etc.

Proof. Assume, for simplicity, that n = 2k + 1 is odd. Let «a, be the time when node v is
first visited. Then the time # when we reach more than half of the nodes is the (k + 1)-st
largest of the a,. Hence

Y a2 (k+1)8,

and so

= W) S g < 2h
b le E(ay) <2




Monotonicity. Let G' be obtained from the graph G by adding a new edge ab. Since
this new graph is denser, one expects that a random walk on it turns back less frequently,
and therefore the access times, commute times, and cover times decrease. As it turns out,
“this does not hold in general.

First, it is easy to see that some access times may increase dramatically if an edge is
added. Let G be a path on n nodes, with endpoints a and b. Let s = a and let t be the
unique neighbor of s. Then the access time from s to ¢ is 1. On the other hand, if we
add the edge (a,b) then with probability 1/2, we have to make more than one step, so the
access time from s to t will be larger than one; in fact, it jumps up to n — 1, as we have
seen.

One monotonicity property of access time that does hold is that if an edge incident
with t is added, then the access time from s to t is not larger in G’ than in G.

The commute time, which is generally the best behaved, is not monotone either. For
example, the commute time between two opposite nodes of a 4-cycle is 8; if we add the
diagonal connecting the other two nodes, the commute time increases to 10. But the
following “almost monotonicity” property is true (we’ll return to its proof in section 4).

2.9 Theorem. If G’ arises from a graph G by adding a new edge, and G has m edges,
then the commute time between any two nodes in G' 1is at most 14+1/m times the commute
time 1n G. In other words, the quantity k(s,t)/m does not decrease.

We discuss briefly another relation that one intuitively expects to hold: that access
time increases with distance. While such intuition is often misleading, the following results
show a case when this is true (IKeilson 1979).

2.10 Theorem. Let G be a graph and t € V(G).

(a) If we choose s uniformly from the set of neighbors of t, then the ezpectation of
H(s.t) 1s ezactly (2m/d(t)) — 1.

(b) If we choose s from the stationary distribution over V, then the ezpectation of

2m (1))
H(s,t) is at least d(r:) ( - %(—)) . So if we condition on s # t, the ezpectation of H(s,t)
, 2m

s at least (2m/d(t)) — 1.
(c) If we choose t from the stationary distribution over V, then the ezpectation of
H{(s,t) 1s at least n — 2+ 1/n.

(a) is just a restatement of the formula for the return time. The proof of (b) and (c)
uses eigenvalue techniques. It is easy to derive either from (b) or (c) that max, H(s,t) >
n — 1. We remark that the expectation in (c) is independent of s (see formula (3.3)).

Applications of the cover time and commute time bounds. Perhaps the first
application of random walk techniques in computer science was the following (Aleliunas,
Karp, Lipton, Lovasz and Rackoff 1979). Let G = (V, E) be a connected d-regular graph,
vo € V(G), and assume that at each node, the ends of the edges incident with the node
are labelled 1,2,....d. A traverse sequence (for this graph, starting point, and labelling)
is a sequence (hj.ha,...,hs) C {1,...,d}! such that if we start a walk at vy and at the
i'h step, we leave the current node through the edge labelled h;, then we visit every node.
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A universal traverse sequence (for parameters n and d) is a sequence which is a traverse
sequence for every d-regular graph on n nodes, every labelling of it, and every starting
point.

It is quite surprising that such sequences exist, and in fact need not be too long:

2.11 Theorem. For every d > 2 and n > 3, there exists a universal traverse sequence of
length O(d?n3 logn).

A consequence of this fact is that the reachability problem on undirected graphs is
solvable in non-uniform logspace. We do not discuss the details.

Proof. The “construction” is easy: we consider a random sequence. More exactly, let
t = 8dn3logn, and let H = (hy,...,h) be randomly chosen from {1,...,d}!. For a
fixed G, starting point, and labelling, the walk defined by H is just a random walk; so
the probability p that H is not a traverse sequence is the same as the probability that a
random walk of length t does not visit all nodes.

By Theorem 2.1, the expected time needed to visit all nodes is at most 2n2. Hence
(by Markov’s Inequality) the probability that after 4n? steps we have not seen all nodes is
less than 1/2. Since we may consider the next 4n? steps as another random walk etc., the
probability that we have not seen all nodes after t steps is less than 2~/ (4n®) = p—2nd

Now the total number of d-regular graphs G on n nodes, with the ends of the edges
labelled, is less than n9" (less than n? choices at each node), and so the probability that
H is not a traverse sequence for one of these graphs, with some starting point, is less than
nn"n =274 < 1. So at least one sequence of length ¢ is a universal traverse sequence.

The results of Coppersmith, Tetali and Winkler discussed above served to solve the
following problem: let us start two random walks on a graph simultaneously; how long does
it take before they collide? There are variations depending on whether the two random
walks step simultaneously, alternatingly, or in one of several other possible ways. Here
we only consider the worst case, in which a “schedule daemon” determines which random
walk moves at any given time, whose aim is to prevent collision as long as possible.

The motivation of this problem is a self-stabilizing token-management scheme for a
distributed computing network. The “token” is the authorization for the processor carrying
it to perform some task, and at any time, only one processor is supposed to carry it. Assume
that by some disturbance, two processors carry the token. They pass it around randomly,
until the two tokens collide; from then on, the system is back to normal. How long does
this take?

Let M(u,v) denote the expected number of steps before two random walks, starting
from nodes u and v, collide. ‘It is clear that M(u,v) > H(u,v) (v may never wake up to
move). Coppersmith, Tetali and Winkler prove the nice inequality

M(u,v) < H(u,v) + H(v,w) — H(w,u)
for some vertex w. Thus it follows that the collision time is O(n3).
3. The eigenvalue connection
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Recall that the probability p,J of the event that starting at ¢, the random walk will
"be at node j after t steps, is an entry of the matrix M?®. This suggests that the powerful
methods of the spectral theory of matrices can be used.

The matrix M has largest eigenvalue 1, with corresponding left eigenvalue 7 and
corresponding right eigenvalue 1, the all-1 vector on V. In fact, MT7 = 7 expresses the
fact that 7 is the stationary distribution, while M1 = 1 says that exactly one step is made
from each node.

Unfortunately, M is not symmetric unless G is regular; but it is easy to bring it to a
symmetric form. In fact, we kow that M = DA, where A = Ag is the adjacency matrix of
G and D is the dlagonal matrix in which the i-th diagonal entry is 1/d(z). Consider the
matrix N = DY/2AD'/? = D=2\ D/2, This is symmetric, and hence can be written in

a spectral form:
n
N = Z Arvrof,
k=1

where A\; > Ay > ... > X, are the eigenvalues of N and v;,...,v, are the correspond-
ing eigenvectors of unit length. Simple substitution shows that w; = ,/d(i) defines an
eigenvector of N with eigenvalue 1. Since this eigenvector is positive, it follows from the
Frobenius-Perron Theorem that A\; =1 > A; > ... > A\, > —1 and that (possibly after
flipping signs) v; = (1/V2m)w, i.e., v1; = 1/d(i)/2m = /7 (). It also follows by standard
arguments that if G is non-bipartite then A, > —1.

Now we have

M'=D'?N'DT? =3 MDY uw DTV = Q + Y ALDY?upof D2
k=1 k=2

where Q;; = 7(j). In other words.

d(;)

pz] - 77(.7 + Z)‘L'Uluvk] TZ) (31)

If G 1s not bipartite then [Ax| <1 for k = 2,...,n, and hence

pi; ~ i) (t— o)
as claimed above. We shall return to the rate of this convergence later.

Spectra and access times. We start a more in-depth study of connections between
random walks and spectra by deriving a spectral formula for access times. Let H € RY*V
denote the matrix in which H;; = H(z, ), the access time from ¢ to j. Let I'(¢) be the set
of neighbors of node i. The key equation is that if ¢ # j then

H(z‘,j)—1+d() > H(.j)

vel' (1)
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(since the first step takes us to a neighbor v of ¢, and then we have to reach j from there).
Expressing this equation in matrix notation, we get that F = J + MH — H is a diagonal
matrix. Moreover,

Flpo=Jr+HTM -DTr=Jr=1,

whence ) 5
m
i =20 = @@
Thus F = 2mD, i.e.,
(I -M)H =J-2mD. (3.2)

We want to solve this “matrix equation” for H. Of course, this is not possible since I — M
is singular; in fact, with every X satisfying (3.2) (in place of H), every matrix X + 1aT
also satisfies it for any vector a. But these are all, as elementary linear algebra shows, and
so a can be determined using the relations

HG,i)=0 (ieV)

So if we find any solution of (3.2), we can obtain H by subtracting the diagonal entry from
each column.

Let M* denote the matrix 177, i.e., M} = 7(j) (note that M* is the limit of M* as
t — oo). Substitution shows that the matrix X = (I - M + M*)~1(J — 2mD) satisfies
(3.2). Diagonalizing M as above, we get the following formula:

3.1 Thedrem.

“. 1 v VksVkt
H(s,t) =2m ( kt )
; 1— X \ d(t)  /d(s)d(t)
As an immediate corollary we obtain a similar formula for the commute time:

3.2 Corollary.

n 2
. 1 Ukt Vks
Kk(s,t) =2 - .
(28 mk;l—/\k (,/d(t) ,/d(s))

Using that
l < 1 < 1
27 1=-X " 1-X
along with the orthogonality of the matrix (vis), we get

3.3 Corollary.

m (dTl") ¥ 827)) <o S TI3 (d(ls) * d(lt)) '

If the graph is regular, the lower bound is n. If we have a ezpander graph, which can
be characterized as a regular graph for which 1/(1 — Az) = O(1), then it follows that the
commute time between any pair of nodes is ©(n).

13




In these formulas, the appearence of 1 — Ay in the denominators suggest that it will
be necessary to find good bounds on the spectral gap: the difference 1 — Ay = A\; — As.
This is an important parameter for many other studies of graphs, and we shall return to
its study in the next section.

To warm up to the many applications of Theorem 3.1, the reader is encouraged to
give a proof of the week symmetry property of access times expressed in Theorem 2.4, and
of the expression for access times in terms of commute times (2.1). Another easy corollary
is obtained if we average the access time over all . We have

Z n(t)H(s,t) = Z Z ( — VktVks gg%)

t k= 2
-Zl_ (zvk, azl;)'z”“m)-

Using that vy is of unit length and it is orthogonal to v; for k > 2, we get the nice formula

n

Y rHs =Y - . v (3.3)
k=2

t

Note that this value is independent of the starting node s.

As another application, we find the access time between two antipodal nodes of the k-
cube Q. Let 0 = (0,...,0)and 1 = (1,...,1) represent two antipodal nodes of the k-cube.
 As 1s well known, we get an elgenvector vp of M (or A) for every 0-1 vector b € {0,1}*,
defined by (v); = (—1)**. The corresponding eigenvalue of M is 1— —(2/k)b-1. Normalizing
vp and subshtutmg in Theorem 3.1, we get that

H(0,1) -kZ() (1-(=1)).

To find the asymptotic value of this expression, we substitute (k) Z::_é ( P ,), and get

mon =iy 3 - S 7)) 0= sz(pﬂ zk:(p

J=1p=0 J=1

.

...n

)(1—( 1))

k-1 op k-1

2 _ 1 k
=k;0p+1 =2’.c 12211'—_J~2k'

j=0

(It is easy to see that the exact value is always between 2% and 2k+1)

As a further application, let us prove that “more distant targets are more difficult to
reach” (Theorem 2.10.b). The argument is similar to the proof of (3.3). We have

s d(s
ZW )HSf)—ZZ (ktditi — UktVks :1%)2)

sk2
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Using again that vy is orthogonal to v; for k£ > 2, we have

2m = 1
. Zs:vr(s)H(s,t) = d(rtn) ; T /\kv,zc,.

By the inequality between arithmetic and harmonic means (considering the vZ, as weights),

we have n e
2 k=2 T=xy Ukt D k=2 Vit
EZ=2 vit B ZZ=2(1 - ’\k)v%t
Now here . .
szt = 20’2“ —7(t) =1-n(t)
k=2 k=1
and o n n
Y A= =) (1= Mk =1-) Mo =1-(N),e=1.
k=2 k=1 k=1 .
Thus )
Z m(s)H(s,t) > —(1 = 7(t))?,
8 =0

which proves the assertion.

Perhaps the most important applications of eigenvalue techniques concern the mixing
rate, which we’ll discuss in a separate section.

Spectra and generating functions. One may obtain spectral formulas carrying even
more information by introducing the probability generating function

F(x) = Z:r.tMt =(I-zM)™1.

t=0

(the (7,7) entry Fjj(z) of this matrix is the generating function for the probabilities pfj).

Using this function, we can express other probabilities via standard techniques of
generating functions. As an example, let qu denote the probability that the random walk
starting at ¢ hits node j for the first time in the ¢-th step. It is clear that

t
t t—
Pl =D 4l
s=0
We can translate this relation in terms of generating functions as follows. Let
oo
Gij(z) = Z gi;a’,
t=0
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then :
Fij(z) = Gij(z)Fjj ().
So the matrix G(z) = (Gij(x)) arises from F(z) by scaling each column so that the diagonal

entry becomes 1.
We may use the spectral decomposition of M to get more explicit formulas. We have

Fij(x) d( ZZ(x/\k)tvkc'Uk] ‘/d(J ka.vk,l

t=0 k=1

Hence we also get the generating function

d(J
Gij(e) = ka'v’”l TAk Z YkiT "z x\kac

From this another proof of Theorem 3.1 follows easily, since
H(s,t) = G, (1).

By calculating higher derivatives, we can derive similar (though increasingly complicated)
formulas for the higher moments of the time a node ¢ is first visited.

‘4. The electrical connection

Let G = (V,E) be a connected graphand SC V. A function ¢: V= IRiscalled a

“harmonic function with set of poles S” if

(v > (u)=4(v)

u€l'(v)

holds for every v ¢ S (the set S is also called the boundary of the harmonic function).
Not surprisingly, harmonic functions play an important role in the study of random walks:
after all, the averaging in the definition can be interpreted as expectation after one move.
They also come up in the theory of electrical networks, and also in statics. This provides
a connection between these fields, which can be exploited. In particular, various methods
and results from the theory of electricity and statics, often motivated by physics, can be
applied to provide results about random walks.

We start with describing three constructions of harmonic functions, one in each field
mentioned.

(a) Let ¢(v) denote the probability that a random walk starting at node v hits s
before it hits t. Clearly, ¢ is a harmonic function with poles s and . We have #(s)=1
and ¢(t) = 0.

More generally,.if we have a set S C V and a function ¢y : S — IR, then we define
o(v) for v € V \ S as the expectation of ¢o(s), where s is the (random) node where a
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random walk starting at v first hits S. Then #(v) is a harmonic function with pole set S.
Moreover, ¢(s) = ¢o(s) for all s € S.

(b) Consider the graph G as an electrical network, where each edge represents a unit
resistance. Assume that an electric current is flowing through G, entering at s and leaving
at t. Let ¢(v) be the voltage of node v. Then ¢ is a harmonic function with poles s and t.

(c) Consider the edges of the graph G as ideal springs with unit Hooke constant (i.e.,
it takes h units of force to stretch them to length h). Let us nail down nodes s and t
to points 1 and 0 on the real line, and let the graph find its equilibrium. The energy is
a positive definite quadratic form of the positions of the nodes, and so there is a unique
minimizing position, which is the equilibrium. Clearly all nodes will lie on the segment
between 0 and 1, and the positions of the nodes define a harmonic function with poles s
and ¢.

More generally, if we have a set S C V and we fix the positions of the nodes in S (in
any dimension), and let the remaining nodes find their equilibrium, then any coordinate
of the nodes defines a harmonic function with pole set S.

Let us sum up some trivial properties of harmonic functions. Clearly, ¢(v) lies between
the minimum and maximum of ¢ over S. Moreover, given S CV and ¢o: S — IR, there
is a unique harmonic function on G with pole set S extending ¢o. (The existence follows
by either construction (a) or (c); the uniqueness follows by considering the maximum of
the difference of two such functions.)

In particular it follows that every harmonic function with at most one pole is constant.
We denote by ¢, the (unique) harmonic function with poles s and ¢ such that ¢ (s) =1
and (1) = 0.

Another consequence of the uniqueness property is that the harmonic functions con-
structed in (a) and (c), and (for the case |S| = 2) in (b) are the same. As an application
of this idea, we show the following useful characterizations of commute times (see Nash-
Williams 1959, Chandra, Raghavan, Ruzzo, Smolensky and Tiwari 1989).

4.1 Theorem. (i) Consider the graph G as an electrical network as in (b) and let R,
denote the resistance between nodes s and t. Then the commute time between nodes s and
t 1s ezactly 2mR;.

(ii) Consider the graph G as a spring structure in equilibrium, as in ezample (c), with
two nodes s and t nailed down at 1 and 0. Then the force pulling the nasls is

1  2m
Ry K(s,t)
The energy of the system is
1 m
2Ry K(s,t)

Note that equation (2.1) can be used to express access times in terms of resistances
or spring forces (Tetali 1991).

17




Proof. By construction (b), ¢4(v) is the voltage of v if we put a current through G from
s to t, where the voltage of s is 0 and the voltage of ¢ is 1. The total current through the
network is Zuer(t) #st(u), and so the resistence is

-1

Ry = Z ¢st(u)

u€l'(s)

On the other hand, (a) says that ¢,(u) is the probability that a random walk starting
at u visits s before ¢, and hence d—(lt_) 2 uer(y) $st(u) is the probability that a random
walk starting at t hits s before returning to ¢. By Proposition 2.3, this probability is
2m/d(t)k(s,t). This proves assertion (i). The proof of (ii) is similar.

Using the “topological formulas” from the theory of electrical networks for the resis-
tance, we get the following characterization of commute time:

4.2 Corollary. Let G be a graph and s,t € V. Let G' denote the graph obtained from G
by identifying s and t, and let T(G) denote the number of spanning trees of G. Then
T(G")

k(s,t) =2m——=

(G)

The following fact is called Raleigh’s Principle in the theory of electrical networks.
We derive it as a consequence of Theorem 4.1.

4.3 Corollary. Adding any edge to a graph G does not increase any resistance Ry;.
Consequently, no commute time k(s,t) is increased by more than a factor of (m + 1)/m.

In fact, it suffices to prove that deleting an edge from a graph G cannot increase the
energy of the equilibrium configuration in the spring structure (c). Clearly, deleting an
edge while keeping the positions of the nodes fixed cannot increase the energy. If we let
the new graph find its equilibrium then the energy can only further decrease.

Combining Corollaries 4.2 and 4.3, a little algebraic manipulation gives the following
inequality for the numbers of spanning trees in a graph G and in its subgraphs G — e,
G — f,and G — e — f, where e and f are two edges of G:

T(G - &)T(G - f) > T(G)T(G — e — f). (4.1)

5. Mixing rate

In several recent applications of random walks, the most important parameter is the
mixing rate. Using eigenvalues, it is an easy task to determine the mixing rate in polyno-
mial time (see below), but this result does not tell the whole story, since, as we shall see,
the underlying graph in the cases of interest is exponentially large, and the computation
of the eigenvalues by the tools of linear algebra is hopeless. Therefore, combinatorial tech-
niques that lead to approximations only but are more manageable are often preferable.
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Two main techniques that have been used are coupling and conductance. In this section
we discuss these techniques; in the next, we give several applications in algorithm design.

Mixing rate and coupling. We shall illustrate the methods for bounding the mixing
rate on a special class of graphs. (For reasons of comparison, we will also apply the other
methods to the same graph.) These graphs are the cartesian sum CJ of k circuits of length
n, where n is odd. The node set of this graph is {0,...,n—1}*, and two nodes (z1,...,z&)
and (y1,...yk) are adjacent iff there exists an ¢, 1 <1 < k, such that z; = y; for j # ¢ and
z; =y £ 1 (mod n).

Let us start a random walk (vo, vy, ...) on C¥ from an arbitrary initial distribution Po.
To estimate how long we have to walk to get close to the stationary distribution (which is
uniform in this case), let us start another random walk (wg,w;,...), in which wq is drawn
from the uniform distribution. Of course, wy is then uniformly distributed for all ¢.

The two walks are not independent; we “couple” them as follows. The vertices of C*
are vectors of length k, and a step in the random walk consists of changing a randomly
chosen coordinate by one. We first generate the step in the first walk, by selecting a
random coordinate j, 1 < j < k, and a random ¢ € {—1,1}. The point v4; is obtained by
adding ¢ to the j-th coordinate of v;. Now the trick is that if v; and w, agree in the j-th
coordinate, we generate wy4; by adding ¢ to the j-th coordinate of wy; else, we subtract ¢
from the j-th coordinate of w;. (All operations are modulo n.)

The important fact is that viewing (wg,ws,...) in itself, it is an entirely legitimate
random walk. On the other hand, the “coupling” rule above implies that once a coordinate
of vy becomes equal to the corresponding coordinate of wy, it remains so forever. Sooner
or later all coordinates become equal, then v, will have the same distribution as wy, i.e.,
uniform.

To make this argument precise, let us look at the steps when the j-th coordinate is
selected. The expected number of such steps before the two walks will have equal j-th
coordinate is the average access time between two nodes of the circuit on length n, which
is (n? — 1)/6. So the expected number of steps before all coordinates become equal is
k(n? — 1)/6. By Markov’s inequality, the probability that after kn? steps v; and w; are
still different is less than 1/6, and so the probability that after ckn? steps these points are
still different is less than 67 ¢. Hence for any T that is large enough,

|S|

|P(or € S) = | = |P(vr € S) = P(wr € 5)| < P(wr # vr) < 6~ T/(kn"),

We obtain that the mixing rate is at most 6=1/(kn") <1 — g

This method is elegant but it seems that for most applications of interest, there is no
simple way to find a coupling rule, and so it applies only in lucky circumstances.
Mixing rate and the eigenvalue gap. An algebraic formula for the mixing rate is
easily obtained. Let A = min{|Az],|Ar|}, then from (3.1) it is easy to derive:
5.1 Theorem. For a random walk starting at node 1,

) — (g M t
|Pu(5) — ()] < d(z’)’\‘
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More generally,
7(5) \¢

|Pt(S)_'7r(S)| S 7r(z)

So the mixing rate is at most A; it is not difficult to argue that equality must hold
here. Thus we obtain:

5.2 Corollary. The mizing rate of a random walk on a non-bipartite graph G is A =
max{| Az}, [Anl}.

In most applications, we don’t have to worry about A,; for example, we can add d(7)
loops at each point ¢, which only slows down the walk by a factor of 2, but results in a
graph with positive semidefinite adjacency matrix. The crucial parameter is Ay, or rather,
the “spectral gap” 1 — ;. Note that log(1/)) ~ (1 — X))~

Theorem 5.1 concerns the convergence to the stationary distribution in terms of the
total variation distance, which seems to be the most important for applications. Other
measures have other, sometimes technical, adventages. For example, using the x? measure
has the adventage that the distance is improving after each step (Fill 1991):

. )2
Z (PHI(],T)(_W(J )‘Z Pt(J)Tr(—j;"(J)) .

J

As an application of Theorem 5.1, let us determine the mixing rate of a random walk
on an n-dimensional cube. This graph is bipartite, so we add loops; let’s add n loops at
each node. The eigenvalues of the resulting graph are 0,2,4,...,2n, and so the eigenvalues
of the transition matrix are 0,1/n,2/n,...,(n—1)/n,1. Hence the mixing rate is (n—1)/n.

Next, let us do the graph C}, where n is odd. The eigenvalues of Cy; are 2 cos(2rr/n),
0 < r < n. Hence the eigenvalues of the adjacency matrix C,’f are all numbers

2cos(2rym/n) + 2cos(2ram/n) + ... + 2cos(2rgm/n)

(see e.g. Lovasz 1979, exercise 11.7). In particular, the largest eigenvalue is (of course) 2k,
the second largest is 2(k — 1) 4+ 2 cos(2n/n), and the smallest is 2k cos((n — 1)x/n). From
this it follows that the mixing rate is

1 2 2m?
l—z<1—0087)’&’1—m.

The eigenvalue gap and conductance. Let G be a graph and S C V, S # 0. Let
V(S) denote the set of edges connecting S to V' \ S. We define the conductance of the set
SCcV,S#0by

V(S|
2mr(S)n(V \ S)

&(5) =
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and the conductance of the graph by
® = min ®(9),

where the minimum is taken over all non-empty proper subsets S C V. If the graph is
d-regular, then the conductance of S is

n|V(S)|

*5) =TS\ ST

To digest this quantity a little, note that |V(S)|/2m is the frequency with which a
stationary random walk switches from S to V '\ S; while n(S)n(V \ S) is the frequency
with which a sequence of independent random elements of V, drawn from the stationary
distribution 7, switches from S to V'\ S. So ® can be viewed as a certain measure of how
independent consecutive nodes of the random walk are.

Sinclair and Jerrum (1988) established a connection between the spectral gap and
the conductance of the graph. A similar result for the related, but somewhat different
parameter called ezpansion rate was proved by Alon (1986) and, independently, by Dodziuk
and Kendall (1986); cf. also Diaconis and Stroock (1991). All these results may be
considered as discrete versions of Cheeger’s inequality in differential geometry.

2
5.3 Theorem. %— <1-X <.

We'll sketch the proof of this fundamental inequality; but first, we state (without
proof) a simple lemma that is very useful in the study of the spectral gap.

5.4 Lemma.

1— Ay = min (z; —xi)? : m(i)x; =0, (i m?=—1——
’ ' 2m

ijEE(G) i

(each edge ¢ is considered only once in the sum).

Proof of Theorem 5.3. To warm up, let us prove the upper bound first. By Lemma
5.4, it suffices to exhibit a vector z € IRV such that

Z m(i)z; =0, Z n(3)z? = 1/(2m), (5.1)

and

Z (z; —z;)* = ®. (5.2)

ijEE(G)
Let S be a set with minimum conductance, and consider a vector of the type

_fa, ifies,
Ti= b, ifieV\S.
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Such a vector satisfies (5.1) if

a=TVAS) [ T5)
2mn(S)’ 2mn(V \ S)’

and then straightforward substitution shows that (5.2) is also satisfied.
To prove the lower bound, we again invoke Lemma 5.4: we prove that for every vector
z € RY satisfying (5.1), we have

Z (z; —z;)2 > ?83 (5.3)

1J€E(G)

Conductance enters the picture through the following inequality, which is, in a sense,
the *“(;-version” of (5.3).

5.5 Lemma. Let G be a graph with conductance ®. Let y € IRV and assume that
m({i: vi >0})<1/2, n({i: yi <0})<1/2 and Y, 7w(¢)|yi|l =1. Then

> lyi—yil 2 me.
(1,7)€EE

Proof of the Lemma. Label the points by 1,...,n so that
Y1 <P Sy <0=yqy1=...=ys < Ys+1 < ... < Yn.

Set S; = {lz} Substituting y; — yi = (yi41 — ¥i) + -+ + (y; — yj—1), we get

. n—1 n—1
o lwi =yl =D VSO — i) 22m@ Y (yirr — yi)n(S)n(V \ Si).
(i,j)EE i=1 i=1

Using that 7(S;) < 1/2 for ¢ < t, n(S;) > 1/2 for ¢ > s + 1, and that y;4; — y; = 0 for
t <1< s, we obtain

-t n—1
N7y =l 2m®Y (i —y)n(S) +m@ Y (i1 —yi)n(V \ Si)
(i,j)EE i=1 i=t+1

=mo Z 7(1)|yi| = m®.

Now we return to the proof of the theorem. Let = be any vector satisfying (5.1).
We may assume that 2; > 23 > ... > z,. Let k (1 £ k < n) be the index for which
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m({1,....k—=1}) < 1/2 and 7({k + 1,...,n}) < 1/2. Setting z; = max{0,z; — zx} and
choosing the sign of z appropriately, we may assume that

1 1 1 1
. 2 . . 2 _ - - .
Z m(i)z] > 3 Z () (z; —zx)* = Z m(i)z? — zx Ew(z)x, + = xk - + 2::: > e
Now Lemma 5.5 can be applied to the numbers y; = 2?/ 3", n(:)2?, and we obtain that
Z |22 — 212] > m@Zr(i)z?.
(i,))€E i
On the other hand, using the Cauchy-Schwartz inequality,

1/2 1/2

Yool =< ) (mi-2)? Y Gitz)

(i.J)EE (1,J)€EE (i,)€E

Here the second factor can be estimated as follows:

Z (zi +2j)? <2 Z (22 + 2)---47712:71'@)2

(i,J))EE (i,7)€EE

Combining these inequalities, we obtain

2
SoGimnrtz | Y -] )Y i)

(1,5)€E (i,7))EE (1,))EE

2 2
> d?m? ( 7r( )z; ) /4m )22 <I>4m 2:71'(2)2,2 > %——

Since trivially

doo(@i—z) 2 ) (- z5),

(1,J)EE (1,7)€EE
the theorem follows.

5.6 Corollary. For any starting node 7, any node j and any ¢t > 0,

|P'(j) - =(j)] < d(z;(l‘%z)'

In another direction, Chung and Yau (1993) considered a refined notion of conduc-
tance. replacing 7(S)7(1V"\ S) in the denominator by some power of it, and showed how this
relates to higher eigenvalues. Diaconis and Saloff-Coste (1992) used similar inequalities to
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get improved bounds on the mixing time, in particular on the early part when the distri-
bution is highly concentrated. Theorem 5.3 is a discrete analogue of Cheeger’s inequality
from differential geometry, and these inequalities are discrete analogues of the Harnack,
Sobolev and Nash inequalities known from the theory of the heat equation, and in fact,
these results represent first steps in the exciting area of studying “difference equations” on
graphs as discrete analogues of differential equations.

Conductance and multicommodity flows. Conductance itself is not an easy parameter
to handle; it is NP-hard to determine it even for an explicitly given graph. But there
are some methods to obtain good estimates. The most important such method is the
construction of multicommodity flows. Let us illustrate this by a result of Babai and
Szegedy (1992).

5.7 Theorem. Let G be a connected graph with a node-transitive automorphism group,
with diameter D. Then the conductance of G is at least 1/(dD). If the graph 1is edge-
transitive, its conductance is at least 1/D.

Proof. For each pair i, of points, select a shortest path P;; connecting them. Let P
denote the family of these paths and all their images under automorphisms of G. The

2
automorphisms of G. Moreover, P contains exactly g paths connecting any given pair of
points.

We claim that every edge occurs in at most Dg(n — 1) paths of P. In fact, if an edge
e occurs in p paths then so does every image of e under the automorphisms, and there
are at least n/2 distinct images by node-transitivity. This gives pn/2 edges, but the total

total number of paths in P (conting multiplicities) is (n)g, where g is the number of

number of edges of paths in P is at most Dg (Z), which proves the claim.

Now let S C V(G), |S| = s < |V(G)|/2. The number of paths in P connecting S to
V(G)\S is exactly gs(n—s). On the other hand, this number is at most |V(S)|- Dg(n—1),
and hence ( )

. gs(n—s s n—s
>0 o, .
V(S)I 2 Dg(n—-1) D n-1

Hence the conductance of S is
AV(S) , m 11
ds(n—s) " n—-1dD = dD
This proves the first assertion. The second follows by a similar argument.
Let us use Theorem 5.7 to estimate the mixing rate of C¥ (where n is odd). This

graph has an edge-transitive automorphism group, and its diameter is k(n — 1)/2. Hence
its conductance is more than 2/(kn), and so its mixing rate is at most

] 1
T 2k2n2

We see that the bound is worse than the coupling and eigenvalue bounds; in fact, depending
on the relative value of n and %, the mixing rate may be close to either the upper or the
lower bound in Theorem 5.3.
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If we look in the proof of Theorem 5.7 at all paths connecting a given pair {u,v} of
nodes, and take each such path with weight 1/n%g, we get a flow from u to v with value

1/n2. The little argument given shows that these g flows load each edge with at most

D(n —1)/n?. The rest of the argument applies to any graph and shows the following:

5.8 Proposition. If we can construct in G a flow fy, of value n(u)m(v) from u to v for
each u # v, and the mazimum total load of these (;) flows on any edge is at most v, then
the conductance of G is at least 1/(2mx~).

This proof method has many applications (Jerrum and Sinclair 1989, Diaconis and
Stroock 1989, Fill 1991). But what are its limitations, i.e., how close can we get to the
true conductance? An important theorem of Leighton and Rao (1989) shows that we never
lose more than a factor of O(logn).

5.9 Theorem. Let G be a graph with conductance ®. Then there ezists a system of flows
fuv of value w(u)m(v) from u to v for each u # v, loading any edge by at most O(logn)/m®.

There are many refinements and extensions of this fundamental result (see e.g. Klein,
Agraval, Ravi and Rao 1990); Leighton et al 1991), but these focus on multicommodity
flows and not on conductance, so we do not discuss them here.

Shortcuts. In the last paragraphs we have sketched the following steps in estimating the
mixing rate:

mixing rate — eigenvalue gap — conductance — multicommodity flows.

It is possible to make “shortcuts” here, thereby obtaining bounds that are often sharper
and more flexible.

Diaconis and Stroock (1991) and Fill (1991) prove the following lower bound on the
eigenvalue gap, shortcutting the notion of conductance. We define the cost of a flow f as

2. fle).

5.10 Theorem. Assume that there ezists a flow fy, of value mw(u)w(v) from u to v for
each u # v, such that the mazimum total load of these (3) flows on any edge is at most v,
and the cost of each flow fu, 18 at most fr(u)mw(v). Then

1

Ay <1 — ——.
2= 2mpBy

Lovasz and Simonovits (1990, 1992) introduced a method that estimates the mix-
ing rate directly using conductance or related parameters, without the use of eigenvalue
techniques. This makes the method more flexible. We formulate one application that is
implicit in these papers:

5.11 Theorem. Lett € Z, and assume that for each 0 < s <t and 0 < z < 1, every
level set A= {v €V : P*(v) >z} has conductance at least 1p. Then for every SCV,

2\ ¢t
P(s)-x(s) < VI (1-5) -
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In other words, if the convergence P! — = is slow, then among the level sets of the
P! there is one with small conductance. Other applications of this method include results
where sets S with “small” measure 7(S) are allowed to have small conductance.

6. Sampling by random walks

Probably the most important applications of random walks in algorithm design make
use of the fact that (for connected, non-bipartite graphs) the distribution of v, tends to the
stationary distribution 7 as ¢ — oco. In most (though not all) cases, G is regular of some
degree d, so 7 is the uniform distribution. A node of the random walk after sufficiently
many steps is therefore essentially uniformly distributed.

It is perhaps surprising that there is any need for a non-trivial way of generating an
element from such a simple distribution as the uniform. But think of the first application
of random walk techniques in real world, namely shuffling a deck of cards, as generating a
random permutation of 52 elements from the uniform distribution over all permutations.
The problem is that the set we want a random element from is exponentially large (with
respect to the natural size of the problem). In many applications, it has in addition a
complicated structure; say, we consider the set of lattice points in a convex body or the
set of linear extensions of a partial order.

Enumeration and volume computation. The following general scheme for approx-
imately solving enumeration problems, called the product estimator, is due to Jerrum,
Valiant and Vazirani (1986), and also to Babai (1979) for the case of finding the size of
a group. Let V be the set of elements we want to enumerate. The size of V is typically
exponentially large in terms of the natural “size” k of the problem. Assume that we can
find a chain of subsets V5 C V; C ... V,, = V such that for each ¢,

(a) |Vo| is known (usually |Vp| = 1);
(b) |Vi41]/|Vi] is polynomially bounded (in k);
(¢) m is polynomially bounded;

(d) we have a subroutine to generate a random element uniformly distributed over V;,
for each 1 <7 < m.

Then we can estimate the ratios |V;41|/|Vi| by generating a polynomial number of
elements of V;4; and counting how often we hit V;. The product of these estimates and
of |Vu| gives an estimate for |V|. This scheme leads to a randomized polynomial time
approximation algorithm (provided (a), (b), (c¢) and (d) are satisfied and the subroutine
in (d) is polynomial). '

The crucial issue is how to generate a random element of V; in polynomial time. We
discuss this question for V;,, = V; in virtually all applications of the method, every V; itself
is of the same type as V, and so the same arguments apply (this phenomenon is called
“self-reducibility”).

As mentioned above, random walks provide a general scheme for this. We define a
connected graph G = (V. E) on which a random walk can be implemented, i.e., a random
neighbor of a given node can be generated (most often, the nodes have small (polynomial)
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maximum degree). By adding loops, we can make the graph regular and non-bipartite.
Then we know that if we stop after a large number of steps, the distribution of the last
node is very close to uniform. Our results about the mixing rate tell us how long we have
to follow the random walk; but to find good estimates of the mixing rate (on the spectral
gap, or on the conductance) is usually the hard part.

This method for generating a random element from a combinatorial structure was ini-
tiated by Broder (1986) for the problem of approximating the number of perfect matchings
in a graph. A proof of the polynomiality of the method was given by Jerrum and Sinclair
(1989) for the case of graphs with minimum degree at least n/2. Whether the method can
be modified to handle the case of sparse graph is an open problem.

Let us sketch this important result. Let G be a graph on n nodes with all degrees at
least n/2. We want to generate a random perfect matching of a graph G on n nodes (n
even), approximately uniformly. Therefore, we want to define a graph whose nodes are the
perfect matchings, and do a random walk on this graph. However, there is no easy way to
step from one perfect matching to another; therefore, we extend the set we consider and
include also all near-perfect matchings (i.e., matchings with n/2 — 1 edges). We connect
two near-perfect matchings by an edge if they have n/2 — 2 edges in common, and connect
a perfect matching to all near-perfect matchings contained in it, to obtain a graph H. The
degrees in H are bounded by 3n; we add loops at the nodes to make H regular of degree
3n.

Now one can construct a multicommodity flow (basically following the tranformation
of one matching to the other by alternating paths) to show that 1/®(H) is polynomially
bounded in n. Hence we can generate an essentially uniformly distributed random node
of H by walking a polynomial number of steps. If this node corresponds to a perfect
matching, we stop. Else, we start again. The assumption about the degrees can be used to
show that the number of perfect matchings is at least a polynomial fraction of the number
of near-perfect matchings, and hence the expected number of iterations before a perfect
matching is obtained is polynomially bounded.

Other applications of this method involve counting the number of linear extensions of
a partial order (KKhachiyan and Karzanov 1991), eulerian orientations of a graph (Mihail
and Winkler 1993), forests in dense graphs (Annan 1993), and certain partition functions in
statistical mechanics (Jerrum and Sinclair 1990). See Welsh (1993) for a detailed account
of fully polynomial randomized approximation schemes for enumeration problems.

As another example, consider the fundamental problem of finding the volume of a
convex body. The exact computation of the volume is difficult, which can be stated,
and in some sense proved, in a mathematically exact way. Dyer and Frieze (1988) and
Khachiyan (1988) proved that computing the volume of an n-dimensional convex polytope
is #P-hard. Other results by Elekes (1986) and Barany and Firedi (1986) show that
for general convex bodies (given by, say, a separation oracle; see (Grétschel, Lovdsz and
Schrijver 1988) for background information on the complexity of geometric algorithms)
even to compute an estimate with bounded relative error takes exponential time, and the
relative error of any polynomial time computable estimate grows exponentially with the
dimension.

[\V]
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It was a breakthrough in the opposite direction when Dyer, Frieze and Kannan (1989)
designed a randomized polynomial time algorithm (i.e., an algorithm making use of a ran-
dom number generator) which computes an estimate of the volume such that the probabil-
ity that the relative error is larger than any prescribed positive number is arbitrarily small.
Randomization reduces the relative error of a polynomial time approximation algorithm
from exponentially large to arbitrarily small!

Several improvements of the original algorithm followed; here are some contributions
and their running time estimates (we count the number of calls on the separation oracle;
the x after the O means that we suppress factors of logn, as well as factors depending on
the error bounds): Dyer, Frieze and Kannan (1989) O*(n%"), Lovasz and Simonovits (1990)
O*(n'%), Applegate and Kannan (1990) O*(n!?), Lovéasz (1992) O*(n!?), Dyer and Frieze
(1991) O*(n?®), Lovéasz and Simonovits (1993) O*(n”), Kannan, Lovész and Simonovits
(1994) O*(nd).

Here is the general idea. Let I{ be a convex body in IR". Using known techniques from
optimization, we may assume that K contains the unit ball and is contained in a ball with
radius R < n3/2. Let I\; be the intersection of K and the ball about 0 with radius 2i/n
(1 =0,1.....m = [2nlogn]). Then Ky C K; C... C K, = K, vol(K;41)/vol(K;) < 2,
and vol(l) is known. Thus the general scheme for enumeration described above can be
adapted, provided we know how to generate a random point uniformly distributed in a
convex body.

For this, we use random walk techniques. There is some technical difficulty here, since
the set of points in a convex body is infinite. One can either consider a sufficiently fine
grid and generate a random gridpoint in K, or extend the notions and methods discussed
above to the case of an infinite underlying set. Both options are viable; the second takes
more work but leads to geometrically clearer arguments about mixing rates.

We define the random walk as follows. The first point is generated uniformly from the
unit ball B. Given v, we generate a random point u uniformly from the ball v; + B’ with
center v; and radius é (here the parameter § depends on the version of the algorithm, but
typically it is about €/y/n with some small positive constant €; B' = §B). If u € K then we
let vi41 = u; else, we generate a new point u and try again. This procedure corresponds to
the random walk on the graph whose vertex set is K, with two points z,y € K connected
by an edge iff |z — y| < 6.

The stationary distribution of this random walk is not the uniform distribution, but
a distribution whose density function is proportional to the “degrees” £(z) = vol(K N
(z + B"))/vol(B'). This quantity £(z) is also called the “local conductance” at z; it is
the probability that we can make a move after a single trial. If the stepsize is sufficiently
small then this quantity, however, is constant on most of K, and the error committed is
negligible.

(In several versions of the algorithm, the graph is padded with “loops” to make it
regular. More exactly this means that if u is chosen uniformly from vy + B’ and u ¢ K,
then we set v,4; = v;. So the two random walks produce the same set of points, but in
one, repetition is also counted. It turns out that for the description as given above, the
conductance can be estimated in a very elegant way as in Theorem 6.2 below, while in the
other version, points with small local conductance cause a lot of headache.)

28




Putting these together, we have the outline of the volume algorithm. The analysis
of it is, however, not quite easy. The main part of the analysis is the estimation of
the conductance of the random walk in K. The proof of the following theorem involves
substantial geometric arguments, in particular isoperimetric inequalities.

6.2 Theorem. The conductance of the random walk in a convez body K with diameter D
is at least const - 6§/(y/nD).

This implies that it takes only O*(nR?/6?) steps to generate a random point in K.

This theorem suggests that one should choose the stepsize as large as possible. In
fact, choosing § = R would give us a random point in K in a single step! The problem is
that if 6 is large, we have to make too many trials before we can move to the next point. It
is easy to calculate that in a stationary walk, the average “waiting time”, i.e., the average
number of points u to generate before we get one in K is

vol(K)//K l(z)dx

One can prove that this quantity is bounded from above by 1/(1 — é1/n), and hence it is
O(1) if & is chosen less than 1/(2y/n). This means that the number of unsuccessful trials
is only a constant factor more than that the number of steps in the random walk, which
is O*(R?n?) for this choice of the stepsize.

The issue of achieving an R that is as small as possible is crucial but does not belong
to this survey. With somewhat elaborate tricks, we can achieve R = O(y/n) and hence the
cost of generating a random point in K is O*(n3). One has to generate O*(n) points to
estimate each ratio vol(K;)/vol(K;;;) with sufficient accuracy, and there are O*(n) such
ratios. This gives the total of O*(n®) steps (oracle calls).

In virtually all applications of this method, the key issue is to estimate the conduc-
tance of the appropriate graph. This is usually a hard problem, and there are many
unsolved problems. For example, is the conductance of a “matroid basis graph” polyno-
mially bounded from below? (A matroid basis graph has all bases of a matroid (E, M) as
nodes, two being connected iff their symmetric difference has cardinality 2.) This is proved
for graphic matroids (Aldous 1990, Broder 1989, cf. the proof of Theorem 6.6), and for a
larger class of matroids called balanced (Mihail and Feder 1992). It is interesting to note
that the property of graphic matroids that allows this proof to go through is inequality
(4.1) for the number of spanning trees.

Metropolis filter. In many applications of random walks, the distribution we want to
generate a random element from is not uniform. For example, a randomized optimization
algorithm may be considered as a method of generating a random feasible solution from
some probability distribution Q that is heavily concentrated on optimal and near-optimal
solutions. To be more specific, let f : V — IRy be the objective function; then maximizing
f over V is just the extreme case when we want to generate a random element from
a distribution concentrated on the set of optimum solutions. If, instead, we generate a
random point w from the distibution Q in which Q(v) is proportional to (say) exp(f(v)/T),
where T is a very small positive number, then with large probability w will maximize f.
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The elegant method of random walk with Metropolis filier (Metropolis, Rosenbluth,
Rosenbluth, Teller and Teller (1953)) describes a simple way to modify the random walk,
so that it converges to an arbitrary prescribed probability distribution.

Let G = (V, E) be a graph,; for simplicity, assume that G is d-regular. Let F: V —
R4, and let vy be any starting point for the random walk. Let v; be the node where we
are after t steps. We choose a random neighbor u of v;. If F(u) > F(v,) then we move to
u; else, we flip a biased coin and move to u only with probability F((u)/F(v;), and stay at
v with probability 1 — F(u)/F(v).

It is clear that this modified random walk is again a Markov chain; in fact, it is easy
to check that it is also time-reversible (and so it can be considered as a random walk on a
graph with edge-weights). The “miraculous” property of it is the following:

6.3 Theorem. The stationary distribution QF of the random walk on a graph G filtered
by a function F 1s given by the formula

F(v)

Orl) = = Fw)

An additional important property of this algorithm is that in order to carry it out, we
do not even have to compute the probabilities Qr(v); it suffices to be able to compute the
ratios F(u)/F(v;) = Qr(u)/QF(v¢). This property of the Metropolis filter is fundamental
in some of its applications.

Unfortunately, techniques to estimate the mixing time (or the conductance) of a
Metropolis-filtered walk are not general enough, and not too many succesful examples
are known. One notable exception is the work of Applegate and Kannan (1991), who
proved that random walks on the lattice points in a convex body, filtered by a smooth
log-concave function, mix essentially as fast as the corresponding unfiltered walk. They
applied this technique to volume computation. Diaconis and Hanlon (1992) extended cer-
tain eigenvalue techniques to walks on highly symmetric graphs, filtered by a function
which is “smooth” and “log-concave” in some sense. Some negative results are also known
(Jerrum 1992).

Exact stopping rules. Let us start with the following funny fact.

6.4 Fact. Let G be a circuit of length n and u any starting node. Then the probability that
a random walk starting at u visits every node before hitting v is the same for each v # u.

Clearly, if we replace the circuit with the complete graph, we get a similar result.
Answering a question of Graham, it was proved by Lovasz and Winkler (1993) that no
other graph has such a property. This follows from the next result, which verifies in a
sense the intuition that the last node visited is more likely to be “far” than “near”. Let
p(u.v) denote the probability that a random walk starting at u visits every node before v.

6.5 Theorem. If u and v are two non-adjacent nodes of a connected graph G and {u, v}
1 not a cutset, then there is a neighbor w of u such that p(w,v) < p(u,v).
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Consequently, if G is e.g. 3-connected, then for each v, the nodes u for which p(u,v)
is minimal are neighbors of v.

As another result leading up the question of “exact stopping rules”, let us describe a
method due to Aldous (1990) and Broder (1989), generating a random spanning tree in a
graph, so that each spanning tree is returned with ezactly the same probability.

6.6 Theorem. Consider a random walk on a graph G starting at node u, and mark, for
each node different from u, the edge through which the node was first entered. Let T denote
the set of marked edges. With probability 1, T is a spanning tree, and every spanning tree
occurs with the same probability.

Of course, only the second assertion needs proof, but this is not quite trivial. Our
discussion below contains a proof based on a certain coupling idea; for a more direct proof,
see Lovasz (1993), problem 11.58 (or work it out yourself!)

Consider a spanning tree T with root u, and draw a (directed) edge to each spanning
tree T' with root v if uv € E(G) and T' arises from T by deleting the first edge on the
path from v to u and adding the edge uv. Let H denote the resulting digraph. Clearly
each tree with root v has indegree and outdegree d(v) in H, and hence in the stationary
distribution of a random walk on H, the probability of a spanning tree with a given root
is proportional to the degree of the root (in G). If we draw a spanning tree from this
distribution, and then forget about the root, we get every spanning tree with the same
probability.

Now observe that a random walk on G induces a random walk on H as follows. Assume
that we are at a node v of G, and at a node (T,v) in H, where T is a spanning tree. If we
move along an edge vw in G, then we can move to a node (T',w) in H by removing the
first edge of the path from w to v and adding the edge vw to the current spanning tree.

Also observe that by the time the random walk in G has visited all nodes (or at any
time thereafter), the current spanning tree in H will be the tree formed by the last exits
from each node, and the root is the last node visited. To relate this procedure to Theorem
6.6, let us consider the random walk on G for N steps (where N is much larger than the
cover time of G. Viewing this backward is also a legal random walk on G, since G is
undirected. If we follow that corresponding random walk on H, then it ends up with a
rooted tree (T,vn), which is the tree of first entries for this reverse walk, unless not all
nodes of G were visited during the N returns to vo. Letting N — oo, the probability of this
exception tends to 0, and the distribution of (T,vn) tends to the stationary distribution
on H which, for fixed vy, is uniform on spanning trees. This proves Theorem 6.6.

Looking at this proof, it is natural to ask: can we get rid of the small error arising
from the possibility that not all nodes are visited during N steps? After all, this is easily
recognized, so perhaps in these cases we should walk a bit longer. More generally, given
a random walk on a graph (or a Markov chain), can we define a “stopping rule”, i.e.,
a function that assigns to every walk on the graph (starting at a given node u) either
“STOP” or “GO”, so that (a) with probability 1, every random walk is stopped eventually
and (b) the distribution of the node where the random walk is stopped is the stationary
distribution. We also consider randomized stopping rules, where coins may be flipped to
determine whether we should stop.
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Our first example above shows that for circuits and complete graphs, the ”last node
visited” rule provides an answer to the problem (we have to modify it a bit if we want to
include the starting node too). In the case of the second example, we want to make the
stopping time N dependent on the history: we only want to stop after we have seen all
nodes of the graph G, but also want to maintain that the walk backward from the last
node could be considered a random walk. Such a rule can be devised with some work (we
omit its details). In what follows, we give some general considerations about this problem.

Of course, one has to be careful and avoid trivial rules like generating a node v from
the stationary distribution, and then stopping when we first visit v. I don’t know of any
clean-cut condition to rule out such trivial solutions, but one should aim at rules that
don’t use global computations, in particular, don’t make use of an a prior: knowledge of
the stationary distribution.

Stopping rules exist for quite general Markov chains. Asmussen, Glynn and Thorisson
(1992) describe a randomized algorithm that generates an element from the stationary
distribution of a finite irreducible Markov chain, which needs only the number of states
and a “black box” that accepts a state as an input and then simulates a step from this
state. Lovasz and Winkler (1994) have found a randomized stopping rule that generates an
element from the stationary distribution of any irreducible Markov chain, and only needs
to know the number of states. This rule can be made deterministic under the assumption
that the chain is aperiodic.

To indicate the flavor of the result, let us describe the case when the Markov chain
has two states. The general case follows by a (not quite trivial) recursive construction
(similarly as in the work of Asmussen, Glynn and Thorisson).

So let

Vo, V1,V2,... (61)

be an irreducible aperiodic Markov chain on states {u,v}. Irreducible means that the
transition probabilities py,. pyu are positive; aperiodocity means that at least one of py,
and p,, is also positive. It is easy to check that the stationary distribution is given by

(u) = Dovu Duv

=P )= —Per
Puv + Pou DPuv + Dvu

The following randomized stopping rule generates a random element from w, without
knowing any value p;; or (), only looking at the sequence (6.1):

Rule 1. Flip a coin. If the result s head. let 1 = 0; else, let 1 be the first indez for which
v; # vo. If vig1 # vi then output viyy; else, discard the first i + 1 elements and repeat.

If you don’t like that we use coin flipping, you can use the Markov chain itself to
simulate it, making the rule entirely deterministic.

Rule 2. Wait for the first pair @« < j with the following properties: (i) v; = wv;, (ii)
Vj+1 #F vig1, (i) vjpo # vjy1, and moreover, (iv) the state v; occurs an even number of
times before v; and (v) not at all between v; and vj. Output vj4s.

If this sounds mysterious, note that for each of the first, second, etc. occurence of a
pair of indices with (i), (ii), (iv) and (v), vj41 can be either of the states with probability
1/2.
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The stopping rule sketched above takes a lot of time; we don’t even know how to make
the expected number of steps of the random walk polynomial in the maximum access time,
let alone comparable with the mixing time (that we know may be logarithmic in n). On
the other hand, if we allow global computation, we can get a stopping rule which needs,
on the average, at most twice as many steps as the mixing time 7. We follow the random
walk for 7 steps, then “flip a biased coin”; with probability m(v,)/2P,(v,), we stop; with
probability 1 — m(v,)/2P:(v,), we forget about the past and start from v, a random walk
of length 7 etc. It is easy to see that the probability that we stop at v after k rounds is
2% (v), which adds up to 7(v). Also, the expected number of steps is 27.

A threshold rule is a (relatively) simple kind of stopping rule. It is specified by a
function ¢ : V — IR, depending on the staring point vg, and works as follows:

if t(vg) < k, then stop;

if t(vr) > k + 1, go on;

if B < t(vg) < k41 then “flip a biased coin” and move with probability ¢(vi) — k but
stop with probability & + 1 — t(vy).

Lovasz and Winkler (1994) have shown that there is a function ¢ that gives a threshold
rule that is optimal among all stopping rules in a very strong sense: it minimizes the
expected number of steps among all randomized stopping rules (for a fixed starting node).
It also minimizes the expected number of times any given node is visited. Every threshold
rule is of course finite, in the sense that there is a finite time T such that it is guaranteed
to stop within T steps (in fact, T < max; ¢(:)). The optimal threshold rule minimizes this
bound among all finite rules.

The expected number of steps for the optimal threshold rule, starting at node v, is

7_* — mua‘x H(u,v) _ Z W(u)H(U,U).

It follows from the description of the stopping rule using the mixing time that
™ < 2r.

Since the definition of the mixing time 7 has an arbitrarily chosen constant 1/2 in it, while
the definition of 7* is “canonical”, it should be more natural to call the quantity 7* the
mixing time.

Since this optimal stopping rule has many nice properties, it would be good to have
an efficient implementation. The threshold function is polynomially computable; but this
is not good enough since we want to apply these rules to exponentially large graphs. We
don’t know if the optimal stopping rule, or any other rule with comparable expected time,
can be implemented on the exponentially large graphs of interest discussed above.
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