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1. Introduction

One of the most widely studied problems in Concrete complexity
is the i-th Selection Problem [1,2,3,4,5,7,14,15]. In the problem,
we are given a set of N elements which has an implicit total ordering,
and we are to find the i-th largest element using only binary comparisons
on‘the input elements. The important special case is when i = N/2, i.e.,
we want to find the median. We study the complexity in terms of the
worst case number of comparisons. The Median Problem is the "hardest
Selection Problem" in the sense that if the Median Problem has complexity
f(N) 2 N, then finding the i-th largest element also has complexity O(f(N)).
Efficientvalgorithms for the Median Problem find applications in many
computational problems including sorting, minimum spanning tree [13] and
geometry problems [12].

Surprisingly, the complexity of the Median Problem was found to
be linear [1], closing off speculations that it may be O(Nlog N). Since
then a very sophisticated algorithm had been developed which gives a 3N
upper bound [6]. On lower bounds, no substantial progress bad been made
since Pratt and Yao [7] gave a lower bound of 7N/4-1logN-0(1). However,
Schonhage [10] and Kirkpatrick [4] both gave independent simplified
proofs of the slightly better bound of 7N/4. It turns out that their

independent formulations are essentially the same.

In this paper we present a general scheme for an Adversary Proof

for the Median Problem. The basic concepts of the Adversary are as in
[1] and [7]. We imagine a game played between the Adversary and the

Algorithm. We call an Adversary in our scheme a State-Transition




Adversary. We illustrate our approach with a simple State-Transition

version of the Kirkpatrick-Schonhage Adversary. A number of new tech-

niques are used. The idea of state-claims and safe-boxes enable us to

"remember" previous comparisons. Using color classes we are able to

avoid a combinatorial explosion. It is implicit in previous proofs that

the Adversaries have the property of Bounded Unbalance. We find suffi-

cient conditions that allow our Adversary to violate the bounded unbal-
ance constraint and still have a good - lower bound. It is a kind of

Church-Rosser Property of the Adversary that says that "if at any time

during the game, property P is true, then we are guaranteed that at the
end of the game, property P will be true." Note that during the inter-
mediate stages of a game, property P need not hold. Here P is the prop-
erty of having '"bounded unbalance." All these ideas combine to give us

the best known bound lower bound of 11N/6 for the Median Problem.

An Algorithm that finds the median may be viewed as a "factory"

that produces a certain kind of "spider" structure (fig. 1) denoted by

k

Sk' The median element is the "spider body." Imagine a "spider facto-

ry" that mass produces many copies of the same spider structure, assuming
that it has an arbitrarily large set of elements to start with. The

Algorithm makes comparisons as usual. Every now and then, it outputs a

. k
spider structure, S

K" The minimax complexity of producing m copies

k . . . . R '
of Sk spiders is the usual comparison cost that is minimised over all

spider-factories; call it C®(m8§). The '"mass-production cost' of a Si

spider is

lim inf
m>oo m

Cw(mst)




We would expect that the "mass-production cost" is cheaper than the cost
of producing one spider individually. Indeed our results settled this

question in the affirmative.

The Median Problem is closely related to the w-Fractile Problem,

i.e. the problem of determining the i-th largest element for i = f@N},
0 <w < 1/2. We improve the lower bound fof the w-Fractile Problem
obtained by Schonhage [10] and Kirkpatrick [4]. The Bipartition Problem
is the problem of partitioning a given set of N elements into two equal
subsets such that each of thé elements in one set is larger than all the
elements in the other. Kirkpatrick [4] was the first to note the impor-
tance of this problem for obtaining lower bounds to the Median Problem.
Our techniques for the Median Problem also work for the Bipartition
Problem. Lower bounds for the Bipartition Problem in turn translate
into lower bounds for a very general class of problems called General
Partition Problems, first posed in [15]. Let P(il, ey ik) be the

(il, cees ik)-Partition Problem where we are given a set of N elements,

N =

o=

_ij. We want to partition it into k subsets {Sj}jzl such that
j=1

J

ISjI = ij (3 =1, ..., k) and each element in Sj is larger than all the
elemgnts in Sj+l (3 =1, ..., k=-1). The complexity of P(il, cees ik) is
C(P(il, eees ik)) and is the usual minimax number of comparisons. Note
that this class includes many of the comparison-type problems in the
literature (e.g. Sorting, Selection Problem [2,4,15], Ordering Problem
[2,4,15] and Bipartition Problem). Thus, P(N/2,1,N/2) and P(N/2,N/2)
‘denote the Median Problem and the Bipartition Problem,‘respectively.

The organization of the rest of this paper is as follows: Sections 2

and 3 state the results and their significance. Section 4-8 describe the




ideas of a State-Transition Adversary. Section 6 gives a simple illustra-
tion of state—transition adversary to obtain the Kirkpatrick-Schonhage
result. Section 9 gives the proofs for all the results. The appendix

is a detailed description of the adversary which gives us the 11N/6-

lower bound. All figures are given at the end of the paper.




2. Economies of Mass Production

Our main result is the following:

Theorem 1: Finding the median of N elements requires at least 11N/6-K
(for some fixed K) comparisons in the worse case. (All proofs are in the

final section.)

The rest of this paper is mainly devoted to describing the techniques
used to prove Theorem 1. We remark that the result of Theorem 1 is not so
much 5urprising as that its proof is hard. 1In fact, it is generally con-—
jectured that the exact complexity for the Median Problem is 2N. We/believe
that our techniques are powerful enough to obtain a lower bound arbitrarily
close to 2N. It is interesting to note that although the 7N/4 bound for
median is relatively easy to obtain [4], any improvement of that bound
seems to demand a more than proportionate increase in effort. We want to

suggest a reason why 7N/4 may be a '"matural' barrier for the Median Problem:

Our definitions here are influenced by the work of A. Schonhage [6,11].
Define a structure to be a partial ordering relation on a set. The identity
of the elements in the structure is unimportant; in graph—theoretic terms,

a structure is "unlabelled.f For reference, the trivial structure of one
element is called the singleton. If Q and P are partially ordered sets and
there is an order preserving 1-1 map from P into Q, we say that Q contains

a copy of P. If there are m such maps from P into Q such that the ranges of

the maps are pairwise disjoint, we say that Q contains m disjoint copies of

P. If P is any structure, let mP be m disjoint copies of P and IPI = the

number of elements in the set P. Define Cn(mP) to be the usual minimax




comparison complexity of building mP from an initial set containing
m|P| + n singleton elements (n > 0). If n = «, then the initial set has

infinitely many elements. Let Si be a spider structure (fig. 1). Then

the usual Median Problem when N = 2k + 1 is simply the cost of producing

one Si spider by itself.

Actually our result is stronger than that stated in Theorem 1. We

have actually established the following:
Corollary 1: CW(SE) > 11N/3 - K, for some constant K and N = 2k + 1.

This says that the lower bound of 11N/6 for computing the median of
N elements holds even if there are infinitely many other elements present
and the algorithm is not a priori constrained to pick any particular set
of N elements. This evidence continues to lend support to a conjecture of
Yao [14] that CO(Si) = Cw(Si) for all j, k 2 0. If the conjecture is true

then a 2.5N Algorithm for the Median Problem is known to exist [6].



A lim inf [Cw(mP)
Let C(P) = m » = m . In fact, Schonhage [11] has shown that this

definition may be simplified because of the following identity:

lim inf |Ce(wmP) lim inf CO(mP) lim Co (mP)
m > ® m = m - ® —m | =m->® m

We define e(P) to be the mass-production cost of P. Patterson, Pippinger

and Schonhage [6] had shown the following:
A k = o
(Sk) < 7k/2 & IN/4 (1)
Combined with Corollary 1, we have:

Corollary 2: C, (Si) > e(SE)

Thus Corollary 2 is the first general evidence showing that there is
economy in mass—production as opposed to individual production of
structures. (Paterson [ll] has a specific example to the same effect).
This is another example of what Schnorr [9] calls "hidden" dependencies.
That is, the cost of computing a number of somewhat similar problems simul-
taneously may turn out to. be cheaper than the sum of the costs of computing
them indépendently. We think that such a phenomena is a universal one and

may warrant an independent investigation in our efforts to understand the

nature of Intrinsic Complexity. 1In this case, one is tempted to conjecture

that the upper bound in equation (1) is tight. (This was our allusion to
the "natural barrier" in the beginning of this sectibn). However, the best

lower bound we have for é(si) is [16]:

ALk
C(Sk) > 3N/2, where N = 2k + 1
ALk
We thus know C(Sk) up to a gap of N/4, which is apparently better

than the 7N/6 gap still remaining for the original median problem.




3. Related Results

In the well known_i-th Selection Problem [e.g. 2,3,4], whose com—
parison complexity is denoted by Vi(N),.it is usually assumed that i is
fixed as N gets arbitrarily large. For example, finding the second largest
element. However, even though we may think of the Median Problem as Vi(N)
where i = N/2, this notation is awkward and confusing (isn't i supposed to
be fixed?). There is a large class of problems where the i-th element
being selected is such that i is a fixed fraction of N. Thus i gets arbi-

trarily large with N. We define the w-Fractile Problem (0 < w < 1/2) to be

the i-th Selection Problem where i = [wN1l. Let Fw(N) be the minimax com-—
plexity of the w-Fractile Problem. Clearly, this is the appropriate general
setting to view the Median Problem since it is just Fw(N)' Despite the
superficial similarities between the Selection Problem and the Fractile
Problem, the techniques for obtaining upper and lower bounds for the two
problems are quite different. In what follows, we warn the reader that

we have adapted the results in the literature to fit into our new notation.
As a pedagogical note, we think that the new notation helps overcome some

initial confusion many people have in viewing the results of the Selection

and Fractile Problems by making the dichotomy notationally transparent.

Upper bounds for fractiles is 3N and follows at once fromjthe linear
median algorithm of [6]. For lower bounds, Schonhage [10] improved the
original result of Pratt and Yao [7] by an additive factor of log N, using

a simplified proof. He obtained

FW(N) > N + min{2[wN1, [N(1 + w)]1/2} - 3, for 0 < w < 1/2 (2)
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Kirkpatrick [4] also obtained the same result using a different

proof. However, Kirkpatrick also showed that:

FW(N) 2N -1+ (JuNl - I)(s +'1) + k (3)

where [(1 - w)N| + 1 > 25 ([wN] + k), 0 sk <i-1,5>0

The lower bound of equation (3) is a strict improvement of equatiou
(2) for 0 < w < 1/3. The combined lower bound of (2) and (3) is illustrated

in fig. 2. Our improvement of (2) and (3) comes from the following theorem:

Theorem 2: If (1 + R)N - K is a lower bound for the Median where

R > 0, and K is a fixed constant, Then FW(N) > (1 + 2wR)N - K.
Corollary 3: FW(N) > (1 + 5w/3)N - K, for some fixed constant K.

Note that corollary 3 supplements the Schonhage result (2) since for
the range 3/7 < w < 1/2, ours is a strict improvement. The effect of

corollary 3 on the lower bounds for Fractiles is indicated in fig. 2.

Kirkpatrick was the first to note that the Bipartition Problem was the
key to all known proofs of lower bounds for the Median Problem. In fact |
the lower bound for Median follows from a lower bound for the Bipartition
Problem according to the following equation which is easily derivable
(e.g. see [4]):

C(P(N,1,N)) = C(P(N+1, N+1)) + 1 (4)
(Note that P(N,1,N) is the Median Problem for 2N + 1 elements and
C(P(N,1,N)) denote its minimax complexity). The import of Kirkpatrick's
observation is that all known proofs are unable to exploit any property

which is peculiar to the Median Problem but which is not already available
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in the Bipartition Problem. The observation would not be very signifi-
cant if a conjecture of Hadian and Sobei [2] is true. They conjectured
that equation (4) is a strict equality..  Our new proof is no different
from previous ones in the sense that it also works for the Bipartition

Problem:

Corollary 4:

c(P(N/2,N/2)) = 11IN/6 - K, for some fixed K.

In general, we obtain the following lower bound for the General

Partition Problem:
Theorem 3: Let C(P(N/2,N/2)) =2 (l+R)NfK, where R £ 1 and K is a

k
constant. Let Z ij =N, and h = max{(ij +4i, ): j=1, ..., k = 1}. Then
) 2y

+1
3 J

C(P(il, cees ik)) > 2N - h(1 - R) - K.

Theorem 3 is a very general lower bound on the General Parﬁition
Problem, based on a lower bound on the Bipartition Problem. In fact, the
Bipartition Problem is a special case of the General Partition Problem and
the proof proceeds by induction from the Bipartition Case. However, we
remark that the constant R has to be £ 1 in order for the proof to go
through. An examble of applying theorem 3 is the problem of partitioning
a set of N elements into three equal parts which are linearly ordered in
the induced order [15], P(N/3,N/3,N/3). We get from theorem 3 that
c(P(N/3,N/3,N/3)) = 17N/9. Another example is C(P(N/4,N/2,N/4)) > 15N/8.
The main weakness of theorem 4 is that it cannot get a bound above 2N. On
the other hand, it was shown in [15] using information theoretic argu-

ments that C(P(N/4,N/4,N/4,N/4)) = 2N.
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4, The State Transition Adversary

The original Adversary proofs appeared in Knuth [5] under the guise -
of oracles. A familiarity with the basic ideas in [1], [4] and [7] will
be helpful in understanding this paper. For the sake of continuity, we

briefly review some concepts:

Throughout this paper, the input set is X with cardinality, |Xl = N.
2 , .
X2 is the cartesian product of X with itself. If ¢ <X, ¢ is a (strict)

partial order on X iff (i) Vx-e¢ X, (x,x) ¢ ¢ and (ii) (x,y) € ¢, (y,2) € ¢

=> (x,z) ¢ ¢. If ¢ is a partial order, we write x <y (or x <y if ¢ is

¢
understood) for (x,y) € ¢. We also say x % yif x =y or x ; y.  If x >y,
and there is no z such that x > z > y, then we say x is directly greater than y.

The transitive closure of ¢ < X2 is ¢ = ¢ U {(x,2): IX,¥,2 € X, (x,y) € ¢,

(y,2) € ¢}. 1In illustrations, a partial order ¢ will be represented by its

corresponding Hasse diagram H(¢). Although H(¢) are digraphs, we shall only

imply the direction of an arc by drawing the source of the arc on a higher
level than its sink.

We are interested in a kind of 2-player game played on X. The two play-
ers are called the Algorithm and the Adversary. The game is played in rounds.

Each round consists of a question move by the Algorithm, immediately followed

by a reply move by the Adversary. A question move (also called a comparison)

is of the form "x:y" where x,y € X, x # y. A reply move is of the form

1

" . ”" 1" " = . " 1 r
x > y"or "x <y." Let ¢O g, ¢r+ ¢i U {xiRiyi} where XiRiyi is the

i+l
reply of the Adversary in the ith round, Ri € {>,<}. The only constrain on the
Adversary's reply is that it must be consistent i.e. 5; is a partial order on
X for each i. If "x > y" is a reply, we say that x defeated y or x is defeated

by y. Note that it may be the case that x > y but x did not defeat y since the

"greater than'" relation is transitive but "is defeated by" relation is not.
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TIf ¢ is a partial order on X, we say that ¢ determines the median

N-
of X iff AxeX, X; € X - {x}, X, = X - (X, v {x}) such that |x,| = Lz J’

1 2

N-1
x| = { 2 ], for all y € X <y, and for all z ¢ X

1° %4

2| ZQZEX.

The game ends when ¢t determinés the median of X, and the cost of

the game is said to be t. The essence of an Adversary Proof for lower
bounds is to specify (describe).an adversary which forces every game it
plays (against an arbitrary adversary) to have a big cost. Since our in-
terest is lower boqnds, from now on our discussion will be from the per-

‘spective of the Adversary.

Let ¢ be the partial order at the end of a game and x is the median.
It is well-known [eg. 7] that if y $ %, then y has to defeat some z where
z 3 x. Similarly if y ; x, then y has to be defeated by some z where z 3 X.
Thus, with the N - 1 elements of X - {x}, we can a priori claim that N - 1
comparisons has to be made regardless of anything. We shall call these N - 1
comparisons essential. A comparison is called inessential if it is not
essential. Now suppoée that we know that‘y has defeated some d other elements.
elements. Moreover, y is also greater than the median. Then we can im-
mediately say that y has madev(d—l) inessential comparisons since at most
one of the d comparisons of y is essential. Thus to obtain a lowerbbound of
(14+R)N, where R is some rational number, we just have to ensure that each
element makes an average of R inessential comparisons. From now on, unless
otherwise stated, we shall simply say 'comparisons' to mean "inessential
comparisons.”

We (as the adversary) shall inductively maintain the elements to have

one of 3 possible statuses: Active, Promoted and Demoted (the last 2

statuses correspond to "heaven" and "hell" of [7]). Initially, all the
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elements are active and they become deactivated (i.e. promoted or demoted)
as the game progresses. We shall only count comparisons made among active
elements, the others being free. We further assume that promoted elements
are greater than active ones which are in turn greater then demoted ones.

Among the active elements, we define objects called a-structures

("active structures") which are just any set of elements which are maximally
connected in the known partial order when restricted to active elements.
Note that a-structures differs from the structures defined in section 2 in
two respects: First, a-structures are restricted to active elements.
Second, a-structures are maximally connected, while structures do not even
have to be connected. From now on, we shall have no occasion to refer to
structures, so we shall simply call a-structures "structures" without fear
of ambiguity. |

For example, let the known partial order be as in fig. 3(a). then the
following are not structures: {x7,x8} (since %, is not active), {xz,x3,x4,x5}
(not connected in the restricted partial order), {x3,x4} (not maximally
connected). The only structures are {x% s {x3,x4,x5} and {xg}. Thus
different structures are disjoint. The Adversary will only allow certain types
of structures to occur. Thus we shall list certain structures as allowable.
All other structures are unallowable. Since we concentrate only on active

elements, we will not draw deactivated elements in the future. Thus
fig. 3(a) would be just represented as in fig. 3(b).

When the Algorithm compares two elements "x:y", the Adversary reply
either "x>y" or "y>x" according to some "rule". By arule we mean the spe-
cification of how the Adversary should respond. Our rulés try to specify a
reply such that the resultant structure is an allowable one. If this is
possible, we say the rule is a C-rule ("closure'"). But it may be impossible

to obtain an allowable structure, in which case the rule not only specify

"x>y" or "y>x", but also the deactivation (i.e. promotion and/or demotion)
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of some elements so as to remove the unallowable structures. This latter
kind of rule is a R—fule ("resolution").

For example, let the set of allowable structures be as indicated
in fig. 4(a). Suppose that a comparison is made between x and y,
as in fig. 4(b). It shoule be clear that the Adversary should reply
"x>y" since the result would be an allowable structure. Thus a C-rule
applies here. In general, C-rules are obvious from looking at the set of al-
lowable structures and we omit Specific mention of C-rules from now on. On the
other hand, if the comparison is between x and y as in fig. 4(c), then g
clearly no C-rules are possible. In such a case, the Adversary must have an
an R-rule which tells it may "resolve'" the situation by deactivatiﬁg
some elements. For example, the R-rule may be as in fig. 4(d), which
specifies that x should be promoted and z demoted (notations should be

clear).

In fig. 4(d), note that x had made at least two inessential
comparisons (including the latest one) and z made at least one
inessential comparison, giving a total of 3 inessential
compariséns. Furthermore, the application of this R-rule causes
the promotion and demotion of one element respectively. In
general, a R-rule may cause p elements to be promoted, d elements
to be demoted and the number of (inessential) comparisons made by
the deactivated elements is ¢. In that case we define c(p:d) to

be the claim associated with that R-rule. The R-rule of

fig. 4(d) has a claim of 3(1:1) . Thus "claims" are just
3-tuples of non-negative numbers with obvious meanings for each

component. Claims may be added or subtracted in a component-wise

manner. E.g. 1(0:1)+3(2:1)=4(2:2), 5(2:2)—3(1:2)=2(1:0).
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Suppose at some moment, p elements had been promoted and d

elements had been demoted so far; we say that the Adversary (at

that moment) is in the state—of-unbalance_§ where s=p-d may be

"state-of-unbalance".

negative. For short, we just say state for
The apblication of a R-rule will cause the values of p and/or d
to change and in general, this will also result in a change in
the state-of-unbalance (state—transition). As discussed in [1],
a good Adversary must delay the deactivation of the median for as
long as poséible by having about equal number of promotions and
demotions. This implies that we want Ip-dlbto be small. Call
the number |p-d| the Hggalancél For now, assume that our

o ot e s

Adversary has the property of Bounded Unbalance, i.e. the

unbalance is always bounded by some fixed constant U depending on_

the Adversary. Because of the desire to keep the unbalance small, the
Adversary tries to bias the deactivations according to which state-
of-unbalance it is is. E.G. if p>d, the Adversary is more willing to
demote than to promote. This is reflected by specifying, for each
state-of-unbalance, tﬁe corresponding set of defined structures and
rules. The allowable structures and rules for sfate s and state -s

are "duals." By symmetry, from now on we only consider non-negative

states (i.e. p = d).

Because a structure may be allowable in one state but not in

another, we have a third kind of rule called a T-rule
("transition"). Suppose the structure of fig. 5(a) (for

reference, call it the elbow structure) is allowable in state 2 but

not in state 0. But as a result of a state transition from state

2 to state 0 we now find that we have an elbow structure in state
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0. This is when we call on a T-rule to remove unallowable
structures produced as a result of a state transition. For

example, the T-rule as shown in fig. 5(b) will remove the elbow
structure,‘leaving two singleton elements as in fig. 5(¢). Note
that this T-rule not only remove the "elbow" but also causes a
transition from state 2 to state 1., There is a claim associated
with each T-rule just as in the case of a R-rule. (E.g. the
T-rule of 4(b) has a claim of 1(1:0). The only difference

between a T-rule and a R-rule is that a T-rule is applied even
before the Algorithm makes the next comparison, while a R-rule is
applied in response to a comparison. We shall simply say ﬁrul‘e" if

it is unimportant whether it is a C-rule, R-rule or a T-rule.
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5. Balancing Accounts

The previous section has outlined a general scheme for coﬁstruc—
ting a state-transition adversary. This section indicates how a lower
bound may be derived from such an adversary. Our strategy for a
lower bound is as follows. Imagine the Adversary as a collector of
claims. Each time a R- or a T-rule is applied, he adds to his collec-
tion the claims associated with that rule. Being a cautious man, he
likes to deposit his claims in a bank. The bank, however, insists
that each deposit of claims must be "balanced" (define a claim c(p:d)
to be.balanced iff p=d). Let us call the ratio c¢/(p+td) the rate, and

¢ the value of the claim c(p:d). Assume the rate of a deposit is

always ét least R. Since the Adversary's account (i.e. sum of deposits)
with the bank can only be balanced (since each deposit is balanced), there
may be some 'unbalanced" claims left over (wheneyer state sz0). We assume
inductively that in each state, s, the Adversary has a fixed amouﬁt of such
unbalanced claims which are not deposited in the bank. We refer to such

claims as the state-claim of state s. To make our proof go through in-

ductively, the state-claim when s=0 is always the null claim (i.e. 0(0:0).

Suppose. that the game is played according to the above stra—
tegy: Then, when the game ends, the number of (inessential)
comparisons is at least the value of the Adversary's bank account
(plus a little state-claim). Now the game ended only because the
median is (uniquely) determined. There are two possibilities:

(W.1.0.g. assume that more elements were promoted than demoted

in both cases). First, the median may still be active. If that is
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so, we claim that only one structure was left. This is clear
because if some other structure besides that which contains the

median remained, this means that the median is unrelated to all

the elements in the other structure. But by a well-known result
[1,5) the median is not yet uniquely determined, a contradiction.

Let us say that the size of the largest structure allowable for the
Adversary‘is S. Thus at least N-S elements were deactiﬁated. In

the second case, where the median is already‘deactivated; then

N/2 elements are promoted. Since the unbalance is bounded by some
constant U, we know that at least N/2-U eiements are also demoted. 1In
either case, at least N/2-max{U,S} elements are demoted. Since the
bank account is balanced, let it be b(q:q). Let Q = max{p+d: c(p:d)
is a state-claim}. Then, q>N/2-max{U,S}-Q. But since the rate of
each deposit is at least R, we have (b/2q) = R. This gives the value
of the account, b to be at least 2qR > RN - K (where K is a fixed
constant depending on U, S and Q). The lower bound of (1 + R)N - K

follows.
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6. The Kirkpatrick-Schonhage Adversary

7N
The 4 1lower bound proofs of Kirkpatrick [4] and Schonhage [10]

are inherently the same even though they were worded very differently.
It is interesting to note that Kirkpatrick gave his Adversary in

the scheme of the so-called Dynamic Adversary which obtained

the best lower bounds for the ith Selection Problem, while

Schonhage called his approach a Reduction Technique which worked

for more general kinds of comparison problems. We shall give yet another
another version of their proofs using the framework of the state-
transition Adversary. This may serve to clarify and illustrate our

technique.

In this Adversary, we allow 5 states-of-unbalance: s = -2,

-1, 0, 1, 2 . By symmetry, we only consider non-negative states.

The allowable structures for each state and the state-claims for

the respective state are shown in fig. 6. Finally the T- and

R-rules are shown in fig. 7.

In fig. 7, Current Claims (column 5) refer to the claims associated

witﬁ the rule currently being applied. The rules given are complete
i.e., they cover all poséible situations (we ignore the dual cases).
We want to make a remark about a rule in line 4 of fig. 7 that

may be confusing. The element labelled x is compared and the rule
says "x whould be promoted and y demoted." We claim‘that at least 2
(inessential) comparisons were made by x and in fact the comparison
between x and y must be inessential. This means that y has not yet

made an essential comparison but will do so some time in the future!
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This was called a "stretch" in [7]. Note that the rate of deposit in
fig. 7 is at least 3/4. By the remarks in section 5, the lower bound
of 7N/4 follows immediately. Note that for each rule, the following

"accounting principle" holds: Assume that we are in state slvand the

application of rule r takes us into state sz. Then

Clagl(sl) + Claim(r) = Claﬁq(sz) + Deposit

]

where giggg(sl) the state-claim of state $q
Claim(r ) = the current claims (of rule r) i

Elggg(sz) = the state-claim of state So

[]

Deposit the claims deposited at the bank.

The transitions between the states of the above Adversary

may be summarised in the state-transition diagram of fig. 8.

Each node represents a state and an arc from state s; to state s,
means that there are rules that could cause a ‘transition from

state sl to SZ' The labels of the arc tell how much the "current : %

claim" is.

To improve the 7N/4 bound the natural thing to try would be
to
(i) 1increase the number of States-of-Unbalance, and

(ii) allow more complicated structures.

However, attempfs in just those directions has been
frustrated by combinatorial explosions. New ideas have to be
introduced to facilitate (i) and (ii). 1In the following

sections,
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(i)° The number of States—of-Unbalance is allowed to increase

significantly by introducing the concept of color classes

and
(i1)° More complicated structures which are "unfavorable" to the

Adversary become aliowable by introducing safe-boxes.




23

7. Color Classes

As a further aid to our analysis, we shall "paint" the
structures into different colors. A{gglgg_glggg is just a set of
structures of the same color. We remark that "color" is a property
of the structure, not the elements. By this we mean that if an
element has one color while it is part of a structure x, then later
it may assume another color if it became part of a different structure
y. Suppose we have m such color classes <Cl""’Cm>' For each class,
imagine we have a different Adversary and the state-of-imbalance of
each class only depend on how elements have been deactivated from that

class. Thus we now use a m—tuple <s 82,...,Sm> to indicate the

1°
overall state-of-unbalance. Now all our previous analysis may be
viewed as an analysis for one particular color class. It is also
true that if each Adversary of a color class continues to make
balanced deposits with rate at least R, (think of the adversaries
of each coior class sharing a joint—account) then the final
account will still have a value at least NR-K for some constant
K. This device of painting structureé into different colors
greatly simplifies our analysis by allowing us to consider the
Adversary in manageable portions. Moreover a combinatorial
explosion is avoided becaﬁse there is essentially no interaction
between fhe different color classes when the technique is used

correctly.
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8. Safe-boxes and Unbounded Unbalance

In developing an Adversary, it becomes apparent that certain
structures are unfavourable. However, if we can ensure that a "Ead"
structure is only created in situations where we have excess claims,
we can use this '"bad" structure as a temporary safe-box for depositing
the excess claims. (Remark: We do not formally define the intuitive
notion of '"bad." Suffice to say that a structure is "bad" if it is
"almost" a total ordering). Call the excess claims éssociated with a

safe-box its fixed-deposit. If the safe-box is destroyed (by some deacti-

vation), the Adversary will recover the fixed-deposit. This device
helps us "remember'" extra claims that we had before. For example, the
structure in fig. 9(a) which we call a 3-link is such a "bad" case.

But it turns out that we can develop an Adversary which always

associates a fixed-deposit of 2(l:1) with this 3-link safe-box.
Using just all the ideas discussed so far, and assuming that the
safe~box deposits are balanced (as in the case of the bank
deposits, a safe-box depoéit of c(p:d) is balanced iff p=d), we
were able to get a 23N/13 Adversary, a very small improvement

-over the 7N/4 result,

Our final and major improvement  came from the following observa-
tion. All previous Adversaries satisfy the condition Cl(K) for some

constant K depending on the Adversafy:

C;(K): "the unbalance throughout the game is at most K"

We note that this constraint is stronger than we need because the

analysis in section 5 shows that we only need condition CZ(K):
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Cy(K): "the unbalance is at most K at the end of the game"

Clearly Cl(K) implies C2(K). We want to find sufficient
conditions on the Adversary so that we can abandon Bounded
Unbalance during the game and still have condition CZ(K). Our
idea is to use the safe-~boxes. Suppose that the Adversary now
allows arbitrary amounts of unbalance. But our stuffy old bank
still insists on balanced deposits. But now we can use
safe-boxes to store the unbalanced claims. Each safe-box has a
fixed capacity, so that the amount of unbalance associated with
each safe-box is bounded. However, because we can have
arbitrarily many safe-boxes (depending on N), the total amount of
unbalance is now arbitrarily large. The following lemma gives us

‘sufficient conditions that ensures that CZ(K) is still satisfied

for some fixed K:

Lemma 1: Let P be a safe-box which has a fixed-deposit of
c(p:d). Assume the size of P (=l?|) is at least equal to the
unbalance in thé fixed-deposit (=|p-d|). If this is true for
every safe-box P in the Adversary, then for some fixed K the

condition CZ(K) holds.

Sketch Proof: We show it for the case where there is only

one type of safe-box, P with size t and fixed-deposit of c(p:d).

The proof for more than one type of safe-box is similar. Suppose

the median is determined. If the median is still active, the
discussion in section 4 shows that only one structure can remain,

and clearly the unbalance is bounded by the size of the remaining
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structure. So assume that the median was promoted (w.l.o.g.).
Suppose that number of safe-boxes, P remaining active was k, then
the number of active elements that are in P structures is kt.
Let a be the number of active elements that are not in P
structures. Now the total claims deposited with k safe-boxes is
kc(kp:kd). Let the claims deposited in the bank be b(q:q) and
let e(u:v) be the sum of state-claims in each of the color
classes. Since the median was promoted, the total number of
promoted elements, kp+qtu is at least N/2. But the total number
of elements is N = kp+kd+kt+a+2q+utv. Combining them, we get
that | |
(u-v)>k(t+d-p)+a » (5)
Both a>0 and |u-v| are bounded, depending on the Adversary. By
the assumption of the lemma, (t+d-p)>0. Thus, (5) shows that k
must be bounded. But the total unbalance is given by
| (kp+q+u)-(kd+q+v) | (i.e. the number of promoted elements minus
the number of demoted elements) = |k(p~d)+u-v| < k|p-d|+|u-v],
which is bounded.

Q.E.D.

Lemma 1 forms the basis for obtaining our best results. 1In
the Appendix, we show a 16N/9 Adversary, and then indicate how we
can finally tune it into'a 11N/6 Adversary.- We remark that Lemma 1
is not vacuous because it is easy to demonstrate an Adversary not
fulfilling the éonditions of the Lemma aﬁd Co(K) is false for any

K.




27

9. Proofs

Proof of Theorem 1:

We have already given the basic ideas of the proof in the preceding
sections, especially section 5. It remains to specify a particular ad-
versary which achieves a rate of deposit at least 5/6. This is done in

the appendix.
Q.E.D.

Proof of Corollary 1: 1In our proof of the Theorenm 1, the
number of "inessential" comparisons claimed is independent of the
number of excess elements. This observation is originally due to
Kirkpatrick [4].

Q.E.D.

Proof of Corollary 2:

From Corollary (1), Cm(St) > 1.833N but equation (1) shows that

é(st) & 1.75N.
Q.E.D.

Proof of Theorem 2: The Adversary initially demotes (1-2w)N

elements before any comparison is made. Then the w~Fractile
problem is reduced td the median problem for 2wN elements. But
we know the number of non-essential comparisoné for 2wN elements
is at least 2wRN. Then the total number of comparison is N+2wRN.

Q.E.D.

Proof of Corollary 3: Substitute R>5/6 (from Theorem 1) in

Theorem 3. Q.E.D.
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Proof of Corollary 4: We would like to apply the Adversary
in the Appendix to the Bipartition Problem. But first we have to
show that a result corresponding to Lemma 1 is true for the
Bipartition Problem. We see that the proof of Lemma 1 refers to
the "median element", but it turns out that using the "median
element" is only for convenience and is not crucial to the proof.
For the Bipartition Problem, the only thing to note is the fact
that at the end of the game, all the structures that are still
active must belong to the upper partition, or else they all
belong to the lower partition. So now, even though more than one
structure may remain active, the total number of active elements
is still bounded. Thus we may use the Adversary of Appendix 1 to

obtain a lower bound of 1IN/6 for the Bipartition Problem.
Q.E.D.

Proof 2£ Theorem 3:

———n

We will prove this by induction on k. For this proof,

"comparisons" refer to essential as well as non-essential oneé.

If k=2, this is true from Corollary 4.

For k>2, our Adversary only allows the "2-1ink" structure
(fig. 9(b)) and the singleton element. The only R-rule is this:
Whenever a top of a "2-1link" is compared, we promote it.
Whenever the bottom of a "2-1ink" is compared, we demote it. By
symmetry, assume that an element is promoted and we claim two

comparisons. This gives us:

C(P(ii,.-o,ik)) 2 2+C(P(ii“1,;oo,ik))
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and the following three cases can be verified:

(a) 11 1. This follows by induction on k.

(b) i,

\4

j=1l,...,k=1 }.

1, and {1, +i, 74 max{(ij+%4)
() 4 > 1, and f;+1, = max{(4j+{) : j=1,...,k-1 }. Note that
this is the case where the assumption that R<l is required.

Q.E.D.
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Appendix: A New Adversary

We first show a 16N/9-Adversary (i,e. one which obtains a
lower bound of 16N/9) in order to illustrate all the concepts
introduced. Then we indicate how we might extend it to a
11N/6-Adversary. The 16N/9-Adversary has 4 color élasses, say

c.,C,, C C4 and thus the state-tuple is of the form

39

<Sl’52’33’34>' The table of fig. 10 summarises the range of

values that each s, (i=1,2,3,4) may assume., For each value of
i

l, 2’

s;» the associated state-claim (column 3) and allowable structires
(column 4) are also shown. By symmetry, we omit the negative
states (s;<0). The last column refers to the 11IN/6-Adversary and

should be overlooked for now.
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In the notation of fig. 10, <-,-,2,-> for example refers to any
state-tuple where s3=2, and S1» S, S, are arbitrary ("don't gares").
In particular, this implies that any structure that is allowable for
<§,—,-,—> or <-,3,-,-> or <—,—,l,->‘or <=,~,~,0> is also allowable
in state <2,3,1,0>. Thus the set of structures allowable in state
<2,3,1;0> is shown in fig. 11 and should be deducible from

fig. 10.

Thé safe-box structures and their associated fixed-deposits
are shown in fig. 12. With each safe-box, we indicate that there is
more than one possible deposit e.g. with the 3-link structuré,
we have either 5(3:3) or 2(1:1) as fixed deposits. It turns out
that 5(3:3) is a worse case (i.e. gives a smaller lower bound)
so that we ignore the 2(l:1) case from now on. Similarly,
10(6:6) and 12(8:6) are worse cases and we concentrate on them
rather than 4(2:2) and 6(4:2). Intuitively, 5(3:3) is less
favourable than 2(1:1) because 5(3:3) represents a rate of 5/6
while 2(1:1) represents a rate of 1 (=2/2). We will return to
the 2(l:1) case later on when we show how to avoid 5(3:3)

deposits, and thus achieve the best bounds yet.

Notice in fig. 10 that the only structure in color class C4

"elbow" structures (see fig. 5(a)). It turns out

is a pair of
that these elbow structures are always created in pairs and we
conveniently lump them together as one structure and call the

aggregate a "double~elbow" structure. The device of "lumping"

them together just simplifies our description but is not
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essential. The double-elbow structure is a safe-box and it has
an unbalanced fixed deposit (see fig. 12). But it clearly
satisfies the conditions of Lemma 1. The state-transition
diagrams of the adversary is given for each color classes in

fig. 13.

Finally, the T- and R-rules for the adversary is given in
fig. 14 in a tabular form. The notations should be almost
self-explanatory (compare with the Kirkpatrick—Schonhage
Adversary in secﬁion 6). A row of the table may contain a number
of rules for compactness. The R-rules are distinguished in that
there are dotted lines indicating the element being compared
(e.g. row 20), while a T-rule has no dotted lines (e.g. row
44). Moreover some R-rules may have more than one dotted line
(e.g. row 22). 1In such casés, it means that any one of the
comparisons indicated by a dotted line will cause the same
deactivations. This is just a short hand for combining a number
of R~rules that are alike, Also note that, invariably the result
of applying a rule will leave behind some simpler structures as
"debris". Usually these "debris" will be allowable in almost every
‘state~tup1e (e.g. the singleton, 2-link and 3-link structures),
or else there are T-rules to remove them. It is this feature of
oﬁr rules that mitigates combinatorial explosion which will
result if the different color classes interact arbitrarily.
Essentially then>we are justified in treating each color classes

as independent of the others.
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In fig. l4, the column under "current claims" refer to the
inessential comparisons made by elements that are currently
deactivated. A simple rule for computing the number of such
comparisons is this: If an element is promoted and it had
defeated k elements, then (k-1) of the comparisons made by x
are inessential. Similarly, if an element is demoted and had been
defeated by k other elements, then (k-1) of the comparisons are
inessential (refer [4] for discussion). Finally, it is important to

note that the following "accounting principle" holds for every rule:

Claim(i) + Current + Claim(P) = Elﬁiﬂ(j) + Claimip) + Deposit

where

Claim(i), Claim(j) = the state~claims of states i and j, respec-

tively.

Current = those made by the application of the current
rule,

Elﬁiﬂ(P) = the fixed deposit of safe-box P which is
destroyed by the rule just applied.

Claim(Q) = the fixed deposit of safe-box Q which is created
by the rule just applied.

Deposit = the bank deposit
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Now we indicate how the 16N/9-Adversary may be modified into
a lIN/6-Adversary. We had already seen that each of the
safe-boxes in the 16N/9-Adversary has two possible values for its
fixed-deposit. We shall modify the Adversary so that the more
favorable situation is ensured i.e. the respective safe~boxes
always have a fixed deposit of 2(1:1) instead of 5(3:3), 4(2:2)
instead of 10(6:6), and 6(4:2) instead of 12(8:6) (compare
fig. 12). The state-claims are also changed, and are given by
the last column of fig. 10. It turns out that we only have to
change the rule in row 8 (fig. 14) because this is the only rule
that creates a 3-link structure with a 5(3:3) fixed deposit - all
the other "unfavorable" claims are propagated from this rule
alone. For exposition, in fig. 15(a) we show the comparison and
in fig. 15(b) we show the old»R—rule that handled that
comparison. Our proposed new R-rule is shown in fig. 15(c).
Whereas the old rule causes a state transition from <3,-,-,~> to
<0,-,=,=>, the new rule causes a transition from <3,-,-,-> to
<l,~,-,~>. Note that the new rule also created a new structure
(fig. 15(d)) not allowable before -- for reference, call it an
X-structure, Here is where the usefulness of the "color classes"
idea is reiterated: we just have to paint the X-structure with a
ne#r color, C_ (and in fact, the only allowable structure in color

5
class C5 is the X-structure). By our "accounting principle" we
can make the X-structure a safe-box with fixed deposit of 3(2:1).
This is also an unbalanced deposit but the conditions of Lemma 1

is clearly satisfied.
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The rules to handle comparisons involving the X-structure are

given informally in figure 16.

(M1) The rules indicated in fig. 16(a) and 16(b) are easily

handled; and in each case we get a bank deposit of 5/6.

(M2) The rule of fig. 16(c) results in a structure which is a

safe-box structure from color class C3 with a fixed deposit of

4(2:2). We are able to associate a claim of 4(2:2) with the

resultant safe-box according to our "accounting principle".

(M3) The rule of fig. 16(d) also results in a safe-box structure
which has a fixed deposit of 2(1:1). The current claims amount
to 2(1l:1) and may be contributed to the safe~box. The fixed
deposit of the original X-structure of 3(2:1) may be "floated".
When this happens, other X-structures become "unstable" because
we will then apply the T-rule of fig. 16(e) to remove
X-structures. That T-rule uses up the "floating claims" of

3(2:1) and in the process causes a bank deposit of 5(3:3).

(M4) The comparison indicated by fig. 16(f) is handled by either
of the rules of fig. 16(g) or 16(h). Applying fig. 16(g) gives
us a claim of 5(2:4) and applying fig. 16(h) gives us 5(5:1).
Thus if we apply fig. 16(g) twice fqr every time we apply

fig. 16(h), we will achieve a rate of 5/6. This idea of applying

two or more alternative rules to the same comparison in some



36

fixed frequency ratio is important and is used extensively below.

(M5) The comparison indicated by fig. 16(i) is handled by either»
of the rules of fig. 16(j) or 16(k), which gives us claims of
5(2:5) and 5(4:1) respectively. By applying the two rules
alternatedly (every other occasion), we again achieve a rate of

5/6.

(M1)~(M5) takes care of all possible comparisons involving
X-structures. It turns out that almost all the rules of fig. lé4
for the 16N/9-Adversary is still applicable and we are able to
achieve a rate of at least 5/6. The only exceptions are the
rules of rows (31), (39) and (46) in fig. l4. We shall modify

them as follows:

(M6) The comparison of fig. 17(a) is handled as follows: Assume
we in state <i,4,-,->, If i<2, we apply the rule of fig. 17(b)
and we go into the next state of <i+l,4,-,->. Otherwise, we

apply the rule of fig. 17(c) and go into state <i-l,4,-,->.
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(M7) The comparison of fig. 17(d) may be ﬁandled by the rules of
fig. 17(e) or 17(f) claiming 3(l:4) or 6(4:2) respectively. if
the rule of fig. 17(f) is applied three times for every two times
that fig. 17(e) is applied, we achieve a rate of 6/7, which
better than 5/6. Likewise, the comparison of fig. 17(g) is
handled by that of fig. 17(h) and 17(i), and the comparison of

fig. 17(j) is handled by fig. 17(k) and 17(1).

(M8) The comparison of fig. 17(m) is handled by the rules of
fig. 17(n) and 17(0), applied in the frequency ratio of three
times to one. Fig. 17(n) claims 5(3:1) and fig. 17(0o) claims

5(2:8). Thus the average rate is 10/11, which is better than 5/6.

(M9) In casé of the double-elbow structure, we specify the rules
for the two elbows independently. Thus fig. 17(p) and (q) are
applied as appropriate. The first rule claims 2(1:2) and the
second claims 1(0:1). Thus for the elbow-pair, we may claim any
combination of the sum of the two claims: 2(0:2) or 3(l:4) or
4(2:4), But the fixed deposit of the elbow pair is 6(4:2), so
that in the worse case we obtain a claim of 10(6:6) which is a

rate of 5/6.

The new Adversary is now completely specified and achieves

the announced rate of 5/6 in all cases.
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’
Fig. 1. A Sz—spider structure
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PROMOTED
(o] o
ACTIVE _—
X+ Xﬁ
DEMOTED
(a) Actual Partial Order (b) Representation as a-structures
Fig. 3
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Fig. 4 Examples of C- and R-rules

AW — e
(a) (b) (c)

Fig. 5 Example of a T-rule

(o, 1) (o. 1} (o, AN

state = 0 state = 1 state = 2
state-claim = 0(0:0) state-claim = 1(1:0) state-claim = 2(2:0)

Fig. 6 Allowable structures and state-claims for the
Kirkpatrick-Schonhage Adversary
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NEXT | CURRENT
STATE | CLAIMS | DEPOSIT

f&{, 1 | 1{(1:0) | 0(0:0)
g

2 | 1(1:0) [0(0:0)

CURRENT [ STATE
STATE | CLAIMS RULES

O | 0(0:0) \i/ | ?‘5{
1 | 1(1:0) \’1/ }ﬁ(
=N

1 | 1(1:0) 0 | 1(0:1) | 2(1:1)

2 | 220 | ‘7% /?f‘{ 2 | 20 | 2000
A IEON S N AL ><i<\ BRI 2(1:1)

2 | 2(2:0 /ff<\ rf\ /ﬁsx 0 | 1(0:2) | 3(2:2)
J ) | L

Fig. 7. Transition Rules for the Kifkpatrick—Schonhage Adversary.

2:1) 1(1:0) 1(1:0) 1(0:1)

State-Transition Diagrams for the Kirkpatrick-Schonhage Adversary.

Fig. 8.
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(a)

(a) a 3-1link structure

Fig. 9.
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I

(b)
(b) a 2-link structure

for the 1ll/6N-Adversary.

coLoR|  STATE nggﬁqnfi" ALLOWABLE  STRUCTURES gz_?%;m
C1 | €0r,-7) | 0(0:0) o, 1 0(0:0)
| <1,—,—i—> 1(1:0) o, 1(1:0)
7oy | 2A2:0) o, 1 2(2:0)
©o | 3(3:0) o , 31, 4, f\, g{\’, ‘Y\ ,"‘}’(\’ ‘ 3(3:0)
G55 | 6(5:0) o 1A TY K 6(5:0)

C2 | 05| o000 1 ALY 0(0:0)
EA~Y L 6(4:3) i, A, Y 3(2:1)
G2m> | 7(553) P A 4(3:1)
3= | 13(a:6) | ! & 7(5:2)

& 4700 | M0:6) AL A A4, {ﬁ,)@%kﬁ’ 8(6:2)
cuo 50| § A% 15 AT 4

C3 [¢-,0,>| 0(0:0) }*% 0(0:0)
| 1o | 1802200 }} 9(6:5)
Em 2,7y | 36020019) §/§ 16(11:9)
- 3,-> | 12(9:6) %{ 6(5:2)
-4~ | 30(21:17) ;{ 13(10:6)
Cq [4~-,-,00 | 0(0:0) AR 0(0:0)

Fig. 10. Table of Defined Structures and State-claims
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(. 1} A H AL |

Fig; 11 Allowable structures in state (2,3,1,0)

Y AN (1A G R

5(3:3) or 2(1:1) Fixed Deposits : 10(6:6) or 4(2:2)

Fixed Deposits: T8

{ anl
Fired Deposits:  12(8:€) or €(4:2)
or 9(6:4)

Fig. 12. Safe-boxes for the Adversary
The worst case fixed-deposits are underlined

Fig. 13 State Transition Diagram for

the 16N/9-Adversary
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(a) the comparison (b) old rule (c) new rule (d) X-structure

Fig. 15.

7/ B
’
P / L A
.
.
-
/”

2(1:2) 2(0:2) 1(0:1) 2(1:1)
(a) (b) (c) (d)
1(0:1) 2(0:3) 2(3:0)
(e) ! (£) (9) (h)
2(0:4) 2(2:0)
(1) (3) (k)
Fig. 1l6.

Rules for X-structures
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Gy — (it 4=, Cihy=> = Ci-1,4,-,-)
(c)

(a) (b)
1(0‘. 3) 22 0)
(4) - (e) (£)
QA T 7
1(0:3) 2(2:0)
(g) (h) (i)
ﬁ £(0:3) 2(2:0)
(3) x) (1)
O O L N+
3(2:0) - 1(0:6) 2(1:2) 1(0:4)
(ng) (n) (o) (p) (g)
Fig. 17.

Rules for the 11N/6-Adversary which differ from the 16N/9-Adversary
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New Lower Bounds for Median and Related Problems

by
Chee-Keng Yap
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Abstract

The previous best lower bound for the Median Problem is 7N/4 - logN
due to Pratt and Yao. Since then, no substantial progress had been made,
although both Kirkpatrick and Schonhage independently made the slightly
improved bound of 7N/4 in simplified proofs. In this paper, we obtain a
new lower bound of 1IN/6. The proof employs a rather sophisticated
Adversary. A number of new techniques are introduced. The most signifi-
cant gain came from a kind of "Church-Rosser Property" of our
Adversaries.

Combined with a result of Paterson, Pippenger and Schonhage, our
result is the first general example showing that the average cost of
"mass production'" of a particular structure ('spiders') is cheaper than
individual production. Such a phenomena (what Schnorr call "hidden
dependencies') has appeared in many different contexts, and seems to be
fundamental in understanding the meaning of intrinsic complexity.

Based on the new result for Median, the lower bound for the
w-Fractile Problem due to Schonhage and Kirkpatrick are improved. Like
all previous proofs, our proof for the Median carries over to the Bi-
partition Problem. This in turn can be used to obtain lower bounds for
a very general class of problems called the General Partition Problem,
P(i,, ..., i,). This class includes many of the important comparison-
based problems studied in the literature as special cases (e.g. Sorting,
Selection, Ordering Problems).



