Connectionist Variable-Binding By Optimization
P. Anandan, Stanley Letovsky, and Eric Mjclsness

Research Report YALEU/DCS/RR-711
May 1989

To Be‘Presented At CogSci 89

Connectionist Variable-Binding By Optimization
P. Anandan

Computer Science Department, Yale University

Stanley Letovsky

Computer Science Department, Carnegie-Mellon University

Eric Mjolsness
Computer Science Department, Yale University

Abstract

Symbolic Al systems based on logical or
frame languages can easily perform infer-
ences that are still beyond the capabil-
ity of most connectionist networks. This
paper presents a strategy for implement-
ing in connectionist networks the basic
mechanisms of variable binding, dynamic
frame allocation and equality that under-
lie many of the types of inferences com-
monly handled by frame systems, includ-
ing inheritance, subsumption and abduc-
tive inference. The paper describes a
scheme for translating frame definitions
in a simple frame language into objec-
tive functions whose minima correspond
to partial deductive closures of the legal
inferences. The resulting constrained op-
timization problem can be viewed as a
specification for a connectionist network.

1 INTRODUCTION

Connectionist systems are attractive as an ap-
proach to computing because they promote such
desirable properties as fine-grained parallelism,
analog circuitry, fault tolerance, and automatic
learning. One of the more potent ideas to have
appeared in investigations of these systems, and
one which underlies a large fraction of the work in
the field, is the use of continuous “objective func-
tions” or “distance metrics”. Objective functions
can serve as a perspicuous programming language,
highly susceptible to analysis, and useful as a spec-
ification language for neural networks. This pa-
per uses the objective-function paradigm to address

a central limitation of most existing connection-
ist systems: their inability to perform the kind of
inferences that are easy for symbolic Al systems
based on logical or frame languages. We present
an objective-function-based implementation of the
basic mechanisms of variable-binding and dynamic
frame allocation that underlie frame based infer-
ence. The result is a connectionist frame system
with greater expressive and inferential power than
previous systems.

Our concern in this paper is with supporting the
types of inference that typically occur in frame
systems. These include inheritance of proper-
ties along type hierarchies; classification of objects
within type hierarchies (or subsumption[Brachman,
1983)); instantiating frame definitions for particu-
lar individuals; and recognizing instances of frames
within complex scenes or descriptions. An impor-
tant variant of this last process is abductive infer-
ence [Charniak and McDermott, 1987], which in-
volves partial or near-miss recognition of frames.
Abductive inference is used to generate possible
explanations for observed phenomena in medical
diagnosis, language understanding, visual scene in-
terpretation, and other analysis tasks.

In conventional frame systems, the inference pro-
cesses are built atop a layer of machinery that con-
tains a few simple ingredients. The most important
ingredient is variable binding — i.e., the ability to
dynamically establish connections between the ob-
jects being reasoned about and the frames in the
knowledge base. Another ingredient is frame allo-
cation: the ability to dynamically conjure up new
frame instances on demand. Much of the difficulty
of building symbolic reasoning into connectionist

Anandan, Letovsky, and Mjolsness

systems arises from the difficulty of implementing
these basic underlying mechanisms. The problem
is simple: connectionist systems tend to be hard-
wired, at least over short timescales. This makes
dynamic creation of nodes and links problematic.

The application of frame systems to model-
based vision brings forth another set of prob-
lems - namely the representation of real-valued
numerical parameters that are necessary to de-
scribe an instance of a model, and verification of
the consistency between the parameters of an ob-
ject and those of its parts. These checks typ-
ically involve coordinate-invariant computations.
Doing coordinate transformations and coordinate-
invariant recognition has been a difficult prob-
lem for connectionist systems (see [Hinton, 1981,
Ballard, 1986) for discussion and solutions). Nu-
merical parameters (which can be regarded as real-
valued “slots”) give rise to additional issues in the
design of variable-binding machinery, including the
need for ways to compute numeric slot values of
frames, and notions of near-miss matching based
on numeric differences.

Our approach to modeling frame-style inference
involves a translation from a frame notation into
real-valued equations whose solutions correspond
to extensions of an initial set of axioms by sound or
plausible inferences. The intuition underlying this
translation scheme is that unification, the back-
bone of inference, can be viewed as a kind of graph
matching on graphs containing variables. Graph
matching can in turn be viewed as the minimization
of an objective function which reflects the degree
of mismatch between the two graphs. One advan-
tage of this translation is that the distance metric
representing the structural similarity between the
graphs can be easily combined with other distance
metrics which express the goodness-of-fit between
the data and parametric models associated with
specific classes of frames. In fact, there can be
an entire database of such model-specific distance
metrics.

Our objective functions can be viewed as spec-
ifications for connectionist networks. The process
of generating a network from such a specification is
analogous to compiling, and can be formalized as
the application of transformations to the specifica-
tion. There are usually a number of ways of trans-
forming an objective function into a network [Mjol-
sness and Garrett, 1989)], and the different possible

networks may have different efficiency properties,
as measured in their use of nodes, connections and
time. In this paper we focus on the translation
from frames to objective functions, leaving the de-
tails of the translation from objective functions to
networks for a later paper.

The system described in this paper is an exten-
sion of the Frameville system of Mjolsness, Gindi,
and Anandan [Mjolsness et al., 1988, Mjolsness et
al., 1989]. Our extension involves the representa-
tion of equality constraints between slots of a frame
or those of its parts, yielding a degree of expressiv-
ity comparable to simple symbolic frame systems.
This paper focuses solely on the theoretical part
of our work — how to represent dynamically vary-
ing graph structures (Section 2), the description
of the variable binding machinery (Section 3), our
method for expressing soundness of inference us-
ing numerical constraints (Section 4), and our ap-
proach to controlling inference (Section 5). We do
not describe any simulations or experimental re-
sults here. Preliminary experiments involving sim-
ple visual recognition and grouping problems are
reported in [Mjolsness et al., 1989]. New experi-
ments involving the current extensions are also un-
der way.

2 DYNAMIC GRAPH STRUCTURES

A key problem in doing symbolic inference in con-
nectionist networks is providing mechanisms to dy-
namically create concepts and relations between
them. In Frameville we divide the world into two
parts: a static base of quantified knowledge, called
the model side, and a dynamic set of ground for-
mulae describing the objects of reasoning, called
the data side. In an interpretation task, the data
side would hold the observations and interpreta-
tions, while the model side would hold background
knowledge. The model side does not change un-
der our inference processes: dynamic allocation of
frames and links occurs on the data side, and in the
bindings between the data side and the model side.
There are three types of dynamic objects: frame
instances, which represent objects in the world,
inst-links, which connect frame instances on the
data side to frame types (or models, to borrow a
term from model-based vision) on the model side,
and ina-links, which represent slot-filling relation-
ships between frame instances. In addition, there
are three kinds of static links on the model side,

Anandan, Letovsky, and Mjolsness

called INA, ISA, and EQU. These will be described
later.

Each link-type is represented in our system by an
array of numbers. For example inst links are rep-
resented by an M x D array, where M is the number
of models on the model side, and D is the maximum
number of frame instances that can be stored in the
system at one time. The element o, j of the inst
array represents an inst-link between the model a
and frame instance j (denoted inst, ;). If this ar-
ray element is 1, then there is an inst-link between
the two; if 0 there is no link. During the optimiza-
tion process elements can take on real values in the
range [0,1]. Numerical constraints in the objective
function force these variables to settle on boolean
values (section 3), so that when the energy reaches
a minimum the state of these arrays describes a
graph structure. Similar arrays exist for each of
the dynamic link types!.

If all the potential links leading to a frame in-
stance are zero, then that frame instance effec-
tively does not exist: it is not connected to the
graph structure described by the arrays. Con-
versely, dynamic allocation of frame instances can
be achieved by adding a link to a previously unal-
located frame instance j. Hence no additional ma-
chinery is needed to represent dynamic frame allo-
cation: the dynamic link arrays already imply the
power to create new frame instances. The struc-
ture of the knowledge base dictates what frames
we could create — specifically, slot fillers for known
frame instances, and new instances whose slots may
be filled by known instances. Whether such cre-
ation occurs is governed by the inferential control
rules described in section 5.

3 FRAME INSTANTIATION

Consider the following frame-style definition of the
concept revenge, which might occur in a story un-
derstander’s knowledge base: [Birnbaum, 1986)

! Arrays representing the static link types are com-
piled into the objective function; they are not variables
as far as the optimization process is concerned.

define revenge
slots
gte-1,gte-2: goal-thwarting-event
aggressor,avenger: actor

constraints
thwarter(gte-1) = aggressor
victim(gte-1) = avenger
thwarter(gte-2) = avenger
victim(gte-2) = aggressor

This definition states that an instance of re-
venge consists of two events of the type
goal-thwarting-event, and two actors. A
goal-thwarting-event is a kind of event (presum-
ably defined in another frame definition) where one
actor, called the thwarter, prevents the realization
of a goal held by another actor, called the victim.
In a revenge event, the thwarter of the first goal-
thwarting event is the victim of the second, and vice
versa. In the above notation, slotA,slotB:type
means that the fillers of the slots must be of the
type type.

The above definition does several things: it es-
tablishes the slots of a frame, it places restrictions
on the types of the fillers, and it requires that cer-
tain equality constraints hold among the slots, or
among the slots of slots. In this paper we will not
address slots with multiple fillers (but see [Mjol-
sness et al., 1989]) or set inclusion relationships
between slots, such as the recipient is a member
of the donor’s family. Thus the frame language
considered here is not as expressive as possible.

aggressor

revi2?7 » Johnié

Figure 1: The Usual Graphic View of Role Filling

Applying the definition of revenge to an in-
stance of it involves dynamically creating a cor-
respondence between the instance and the re-
venge model. This is the variable-binding prob-
lem. Focusing on a single slot of a frame - say,
the aggressor slot — we will show how to use
the machinery of the previous section to bind it
to a value. Suppose we want to represent the as-
sertion that Johni6 is the aggressor of a partic-
ular revenge instance, called rev127. The tra-
ditional approach would have us create a link of
type aggressor going from the rev127 node to the
John16 node (Figure 1). Such a scheme requires

Anandan, Letovsky, and Mjolsness

arbitrarily many link types, whereas our machin-
ery for dynamic graph structures requires a fixed,
and preferably small number of dynamic link types,
since each link-type gives rise to an array in the
objective function. One solution to this problem is
represent all slot-filling relationships using a single

REVENGE <"\ __ revi27

MODEL | INA ina
SIDE s=1

DATA
s = 1| SIDE

ACTOR "' _ jonnie

Figure 2: Rectangle Relationship Between ina and
inst.

3-dimensional array called ina. The first two di-
mensions range over the set of dynamically allocat-
able frame instances, while the third ranges from 1
to S, the maximum number of slots in any frame.
Typically S will be a fairly small number, proba-
bly between 5 and 10. The slots in each frame are
assigned integers in the range [1,5]. ina;;, = 1),
means that the s’th slot of the i’th frame instance
is filled by the j’th frame instance.

In addition to ina links on the data side, and
inst links between the data side and the model
side, we have static INA, ISA, and EQU links on the
model side. INA links express slot filler type re-
strictions, such as the fact that the initiator of
a revenge must be an actor. INA, g, = 1 means
that any object that fills the s’th slot in an object
of the model a must be an instance of the model 3.
ISA links on the model side encode class-subclass
specializations and allow property inheritance and
type subsumption. The EQU links will be discussed
in the next section. As noted earlier, we also allow
real-valued slots (or “analog neurons”) F; ,, € [1, S]
to be associated with each frame instance i. These
are described in sections 4 and 5.

We can divide the various constraints incorpo-
rated into our objective function into those neces-
sary to ensure the soundness of the inferences made
in the network, and those needed for forward chain-
ing and abductive reasoning. As explained in Sec-
tion 5 such a separation is useful to control the
proliferation of possibly correct but irrelevant in-

ferences.

4 SOUNDNESS CONSTRAINTS

Soundness constraints are constraints that force the
network to settle on states that describe meaningful
frame structures. They are represented in the ob-
jective function by numerical equality constraints
involving the dynamic variables. Although these
constraints may be violated during the optimiza-
tion process, they must be satisfied when the net-
work reaches a fixedpoint. There is a variety of op-
timization techniques that can handle such “hard” "
constraints, some of which have been used in the
context of neural networks [Mjolsness et al., 1988).

An important “syntactic” constraint is that there
be at most one object (i.e., frame instance) which
fills a given slot of any other frame instance. That
is, for any given i and s, at most one ina;;, = 1.
This can be expressed as: 2

Vis (1- Z ina;;,) 2 ina; j, =0 (1)
i i

The meaning of INA described in the previous sec-
tion can be expressed as

Va,B8,1,j,8 st. IRAs g,
inst,; ina;;, (1 —insts;) = 0 (2)

This says that if there is an INA-link between o and
B for slot s, then whenever any i is an instance of ¢,
and the s’th slot of i is j, then j must be an instance
of 8. The combination of the (1 — instg ;) term on
the left hand side, equated to O on the right, is an
idiom that means the term instg ; must be 1.

Usually, definitions of frames will also contain
equality constraints. For instance, we may require
that the same object should fill two different slots
of the same frame. Since slot-fillers themselves
are frame instances, such equality relations may
be nested. For example, the definition of revenge
given in Section 3 requires that thwarter(gte-1)

?Each constraint consists of a generative portion
and the actual constraint. The generative portion
is universally quantified over a set of variables and
may contain restrictions on them expressed in terms of
model-side links (where for conciseness, we have used
x and —x to represent x = 1 and x = 0 respectively).
The constraint may be a hard-constraint of the form
h(dynamic-links) = 0, or a term (soft-constraint) of the
form f(dynamic-links) that is included in the objective
function to be minimized.

Anandan, Letovsky, and Mjolsness

= aggressor. Equality constraints can be ex-
pressed as predicate calculus assertion by treating
slots as functions of their frames[Charniak, 1988].
They have the following general form:

t(s()) = u(d)

This represents the assertion that the same object
(or frame instance) that fills slot t of slot s of any
instance i of model a must fill slot u of i as well.
We can denote this in terms of an EQU matrix as
EQU,, ¢y = 1. Equalities are then expressed by
constraints of the form:

Vi €

VijkapBystu st
INAG5,s AINAG 4 ¢ AINAG 4 u A EQUG,,J,“
inste, ina;;, (ina; ke — inaieu) = 0 (3)

Equality constraints between two sibling slots of
a frame instance can also be expressed. Equality
constraints between slots that are deeply nested
in compositional hierarchies can be transformed
into a set of equality constraints none of which in-
volve nesting of depth greater than 2, as in Equa-
tion 3 This transformation involves introducing ad-
ditional “dummy” slots for each of the intervening
frames and “copying” the slot of a child frame in-
stance into its parent frame instance. The copy
mechanism is itself expressible as an equality con-
straint.

As noted in Section 2, ISA links allow frames to
be organized into a specialization hierarchy. Thus
ISA,,s = 1 means that model g is a specialization
of a. A model is allowed to be a specialization
of multiple “higher-level” models, so the special-
ization hierarchy forms a directed acyclic graph.
If frame instance i is an instantiation of model ¢,
then it must be an instantiation of exactly one of
the specializations of ¢, unless « is a leaf node in
the specialization hierarchy. This is expressed as:

Vi,a s.t. o« is not a leaf

inst,; — Z instg; = 0 (4)
p8.t.ISA, s

This rule implements both inheritance up the type
hierarchy, because in inst link to model g tends
to turn on inst links to the ISA-parents of 8; and
subsumption, or discrimination down the type hi-
erarchy, because an inst link to a tends to turn
on an inst link to one of a’s ISA-children. The
constraints associated with the children will rule
out inconsistent specializations. More specialized

frames must use the same slot-numbering conven-
tions as their parents. In this paper, we do not
address the issue of exceptions [Derthick, 1988).

Finally, the requirement that inst and ina links
are boolean-valued can be expressed as:

Vi,a inst, (1 —inste;) = O
v i$ jn s inai,j,l (1 - inal',j,a) = 0 (5)

5 INFERENTIAL CONTROL

We suppose that a reasoning problem is posed to a
Frameville network by establishing an initial data-
side graph structure; array elements describing this
graph are “clamped” to a value of 1, so the network
must settle into a state which is minimal subject to
the restriction that the input is a subgraph of the
final graph. The constraints described in the pre-
vious section rule out certain types of meaningless
network states, but they by no means completely
determine the behavior of a network. For instance,
if the data only constrain inst and F variables, a
consistent solution is to set all ina variables to zero;
many variations of this trivial solution are possible.
Furthermore, our frame language is rich enough to
allow a variety of inferences, which, if applied willy-
nilly, will rapidly use up the supply of dynamically
allocatable frame instances and links, without nec-
essarily drawing any interesting conclusions. Two
particularly “dangerous” types of inference may be
termed recognition and slot-filling.

By slot-filling we mean the allocation of new
frame instances to fill unfilled slots of existing
frames, or using existing instances if they are con-
sistent with the constraints on the slot. For ex-
ample, if the data says there is a revenge, we can
create instances for the initiator, the avenger,
the gte-1 and the gte-2, and establish the appro-
priate relationships between them. This is a legit-
imate inferential step, since if the revenge exists,
the slot fillers must exist. Alternatively, we could
put an existing instance of the appropriate type —
John17, say ~ into the aggressor slot. This would
be a plausible but not necessary inference. When
new instances are created to fill slots, the slot fillers
may require their own slots to be filled, leading to
an explosion of allocation until the capacity of the
network is exhausted.

In Frameville, slot-filling is achieved by minimiz-
ing “penalty terms” in the objective function (as
opposed to the use of “hard” conmstraints, which

Anandan, Letovsky, and Mjolsness

must be satisfied). Corresponding to every slot of
every frame-definition, we have an additive term in
the objective function of the form:

Va,pB,i,s st. INAs 5,

(instq i ~ E ina; ;, inst,g,,-)z (6)
j
The lowest energy state of the network, which is
zero, will be achieved if and only if all the slots
of each instance of a frame are properly filled. By
themselves, these terms will tend to produce the
explosion mentioned above. To counteract this ten-
dency, we add an additional term, called a parsi-
mony term, which penalizes the network for the
creation of new frames:

Z E insty i (7)

One consequence of this parsimony term is that the
network will prefer using existing frame instances
to fill unfilled slots over creating new ones.

Recognition means creating an instance of a
frame when we observe a set of frame instances that
satisfy the constraints on the frames definition. For
example, if we see two goal thwarting events where
the thwarters and victims are reversed, we can cre-
ate arevenge. Pure recognition is not dangerous: it
inevitably terminates and is not typically explosive.
However, partial recognition, in which the frame
definition is partially but not completely satsfied,
is a useful variant of pure recognition in a world
where the input data is incomplete, and partial
recognition tends to be explosive and potentially
nonterminating.

Recognition is also achieved by minimization.
The terms corresponding to recognition are of the
form

Va,j, B s.t. INAx 5.,
(instp; — D imai;, inste,)’ (8)
)

This rule has the following interpretation. If an in-
stance j of model B is appropriate to fill slot s of
frames of type a , then an instance i of @ may be
created and the appropriate slot-filler binding es-
tablished. This kind of mechanism is often used to
propose hypotheses in abductive inference [Char-
niak, 1988]. This rule also tends to penalize the
occurence of multiple instances of the same frame
type having identical fillers for a given slot. In

frame systems it is usually desirable to prevent the
occurrence of distinct frames having identical fillers
in all slots. A direct expression of this constraint
gives rise to a very high order (O(S)) energy func-
tion, which is expensive to implement in a network.
The recognition term above is a limited attempt to
achieve a similar effect.

6 REAL-VALUED PARAMETERS

In addition to the machinery for requiring struc-
tural correspondences between data and models,
Frameville allows numeric slots constrained by
model-specific objective function terms whose al-
gebraic form will depend on the models involved.
These terms may be idiosyncratic functions of both
numerical and frame-valued slots, but for ease of
exposition, we restrict our attention to numerical
slots here:

Va,pBijs st. INAg5,
inst,; ina;;, insts; H**(Fi,F;) (9)

where F; = (Fi1,Fiz,...) represents the vector of
numerical parameters of i. This constraint relates
the numerical parameters of two frame instances,
one a slot-filler of the other. Similar model-specific
terms can be used to express relationships between
numerical parameters of the fillers of sibling slots of
a frame instance. The H®* functions given above
are specific to a model a and may express coordi-
nate system invariant relationships between the pa-
rameters of a frame instance and those of its fillers.
By doing so, we eliminate the need for explicitly
storing the transformation matrices between the
coordinate system of an object and those of its
parts. If, however, it is useful to explicitly have
such a transformation matrix, it can also be repre-
sented using numerical slots.

The propagation of constraints among numeric
slot values can be expressed either by hard con-
straints (i.e., by requiring that the expression in
Equation 9 be zero) or as penalty terms in the
objective function. In the latter case, they affect
inferential control in a model-specific way. Our ap-
proach also has the advantage that it is not neces-
sary to separate the computation of the numerical
parameters of a high-level object from the recog-
nition of the object itself. The optimization pro-
cess simultaneously determines the object identity
and best choice of object parameters to fit the
data. When higher-level information is available,

Anandan, Letovsky, and Mjolsness

top-down propagation of that information is also
achieved by the same optimization process. Model-
specific constants may also be incorporated into
frame-valued slots, thereby biasing the likelihood
that particular slots will be filled or that particu-
lar types will trigger recognition. Such constants
may provide a basis for implementing certainty or
probability-like mechanisms.

Each type of penalty term described in this sec-
tion gets added into the overall objective func-
tion, but with possibly different multiplicative co-
efficients. It is the relative values of these coef-
ficients that determines the competition between
parsimony on the one hand and forward-inferencing
and abductive “guessing” on the other. Appropri-
ate values of these coefficients may be determined
experimentally, or they may be set dynamically by
external mechanisms that control the Frameville
network.

7 RELATIONSHIP TO OTHER
CONNECTIONIST FRAME
SYSTEMS

Our approach resembles Derthick’s uKLONE sys-
tem [Derthick, 1988] in several ways, notably in our
general method for translating logical assertions
into objective functions and numerical constraints,
and in our use of a static model-base that is used by
a compiler whose output is a network designed for
optimization. (Note that this separation of knowl-
edge into “data” and “models” is also present in
Shastri’s approach [Shastri, 1987].) However, we
have introduced a mechanism for variable-binding
which greatly increases the expressive and inferen-
tial power of the system, and that deals with real-
valued parameters and with constraints involving
such parameters. In particular, our variable bind-
ing mechanism, in combination with the separation
of frame types from frame-instances, allows us to
have multiple instances of a frame, and to dynami-
cally create new instances and relationships among
~ them. We share with Dolan and Dyer [Dolan and
Dyer, 1988] the advantage of being able to perform
chains of inferences in parallel, although in both
our cases, considerable experimental work needs to
be done before a complete evaluation can be made.
Our approach differs from that of Dolan and Dyer
(as well from that of Touretzky, et al. [Touretzky
and Geva, 1987]) in some fundamental ways: first

our use of objective functions as a specification lan-

guage allows us to specify the desired properties
of the network — namely its fixedpoints - and al-
lows us to perform algebraic fixedpoint-preserving
transformations that can lead to efficient networks.
Second, the same methodology also allows the mod-
ular and incremental design of the system (prior to
any algebraic transformations). One more distinc-
tion: while in many of these existing systems (in-
cluding p)KLONE) microfeature-based coarse cod-
ing mechanisms are used to represent the similarity
of concepts, our use of a data-base of model-specific
distance metrics H®*, indexed by the ISA links,
points to a fundamentally new approach to the de-
sign of connectionist frame systems.

8 CONCLUSIONS

We have presented a connectionist frame system
called Frameville, which can represent dynami-
cally varying graph structures and thereby can in-
herit some of the representational and reasoning
power of symbolic frame systems. In particular,
we have described machinery to dynamically in-
stantiate frames and perform variable-binding. All
of this has been done within the paradigm of ob-
jective function minimization, which is used both
as a programming language and a neural-network
specification language. Our approach also extends
the traditional use of distance metrics by allowing
us to systematically integrate constraints involv-
ing pointers and real-valued variables into a single
objective function, and by allowing us to utilize a
data-base of model-specific distance metrics. This
work is an extension of previous work described in
[Mjolsness et al., 1989), where preliminary exper-
iments are also reported. The present paper has
laid out the theoretical ground work necessary to
perform new experiments, and we expect that fur-
ther refinements of our theory will be shaped by
these experiments.

ACKNOWLEDGEMENTS

We would like to thank Gene Gindi for his contin-
ued collaboration in Frameville research. We would
also like to thank Chris Riesbeck for discussions
about our work and Denys Duchier for comment-
ing on an earlier draft of this paper. This work was
supported in part by AFOSR grant AFOSR-88-
0240 and by DARPA grant DAAA15-87-K-00001.

Anandan, Letovsky, and Mjolsness

References

[Ballard, 1986} Dana Ballard. Cortical connections
and parallel processing: Structure and function.
Behavioral and Brain Sciences, vol 9:67-120,
1986.

[Birnbaum, 1986] Lawrence Birnbaum. Integrated
processing in planning and understanding. Tech-
nical Report YALEU/CSD/RR-489, Yale Uni-
versity, 1986. PhD Dissertation.

[Brachman, 1983] Ronald J. Brachman. What is-
a is and isn’t: An analysis of taxonomic links
in semantic networks. IEEE Computer, Special

Issue on Knowledge Representation, pages 30-
36, October 1983.

[Charniak and McDermott, 1987] Eugene
Charniak and Drew McDermott. Introduction
to Artificial Intelligence. Addison Wesley, 1987.

[Charniak, 1988] Eugene Charniak. Motivation
analysis, abductive unification, and nonmono-
tonic equality. Artificial Intelligence, 34(3):275-
296, 1988.

[Derthick, 1988] Mark Derthick. Mundane reason-
ing and parallel constraint satisfaction. Tech-
nical Report CMU-CS-88-182, Carnegie-Mellon
University, September 1988. PhD Dissertation.

[Dolan and Dyer, 1988] Charles P. Dolan and
Michael G. Dyer. Parallel retrieval and applica-
tion of conceptual knowledge. In D. Touretzky,
G. Hinton, and T. J. Sejnowski, editors, Proceed-
ings of the 1988 Connectionist Models Summer
School. Morgan Kaufmann, 1988.

[Hinton, 1981} Geoffrey E. Hinton. Shape repre-
sentation in parallel systems. In Proceedings of
7th IJCAI 1JCAI, 1981.

[Mjolsness and Garrett, 1989] Eric Mjolsness and
Charles Garrett. Algebraic transformations
of objective functions. Technical Report
YALEU/DCS/RR-686, Yale University, March
1989.

[Mjolsness et al., 1988] Eric Mjolsness, Gene
Gindi, and P. Anandan. Optimization in model
matching and perceptual organization: A first
look. Technical Report YALEU/DCS/RR-634,
Yale University, June 1988.

[Mjolsness et al., 1989] Eric Mjolsness, Gene
Gindi, and P. Anandan. Optimization in model
matching and perceptual organization. Neural
Computation, 1989. to appear.

[Shastri, 1987] Lokendra Shastri. Semantic Net-
works: An Evidential Formulation and its Con-
nectionist Realization. Morgan Kaufmann, 1987.

[Touretzky and Geva, 1987] David S. Touretzky
and Shai Geva. A distributed connectionist rep-
resentation for concept structures. In Proceed-
ings of the Ninth Annual Conference of the Cog-
nitive Science Society, pages 155-164. Lawrence
Earlbaum Associates, 1987.

