
In many natural and real-world applications, the measured signals are controlled by underly-
ing processes or drivers. As a result, these signals exhibit highly redundant representations
and their temporal evolution can be compactly described by a dynamical process on a low-
dimensional manifold. In this paper, we propose a graph-based method for revealing the
low-dimensional manifold and inferring the underlying process. This method provides in-
trinsic modeling for signals using empirical information geometry. We construct an intrinsic
representation of the underlying parametric manifold from noisy measurements based on
local density estimates. This construction is shown to be equivalent to an inverse problem,
which is formulated as a nonlinear differential equation and is solved empirically through
eigenvectors of an appropriate Laplace operator. The learned intrinsic nonlinear model ex-
hibits two important properties. We show that it is invariant under different observation
and instrumental modalities and is noise resilient. In addition, the learned model can be
efficiently extended to newly acquired measurements in a sequential manner. We examine
our method on two nonlinear filtering applications: a nonlinear and non-Gaussian track-
ing problem and a non-stationary hidden Markov chain scheme. The experimental results
demonstrate the power of our theory by extracting the underlying processes, which were
measured through different nonlinear instrumental conditions.
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1 Introduction

In many natural and real-world applications, the measured signals are controlled by under-
lying processes or drivers. As a result, the signals are often highly structured and lie on a
manifold. These signals exhibit highly redundant representations and their temporal evolu-
tion can be compactly described by a dynamical process on a low-dimensional manifold, e.g.
[1, 2, 3, 4, 5]. In recent years, there has been a growing effort to develop analysis methods
based on the geometry of the acquired raw data [6, 7, 8, 9, 10]. These manifold learning
techniques imply a completely different perspective than the classical approach in signal
processing. Instead of relying on predefined models, this nonparametric approach aims to
capture adaptively the geometry of the signal at hand and view its parametrization as a
data-driven model. The nonlinear independent component analysis (NLICA), proposed in
[11], is especially useful in signal processing, since the data are assumed to be inaccessi-
ble and can be observed only via unknown nonlinear measurement functions. The NLICA
approach provides a parametrization of the manifold of the underlying processes, whereas
classical manifold learning methods provide a parametrization of the observations. The
main idea in [11] is to empirically invert the measurement function by solving local differ-
ential equations assuming that the function that maps the underlying process into a subset
of observations is deterministic. This poses a major limitation since the measurements in
many cases are noisy and related to the underlying process via a probabilistic model.

In this work, we utilize the widespread state-space approach to represent such cases,
which are naturally formulated on a manifold. The state-space formalism includes two
models: the dynamical model which consists of a stochastic differential equation describing
the evolution of the underlying process (state) with time, and the measurement model that
relates the noisy observations to the underlying process. The prior knowledge of the two
models is necessary in many dynamic estimation problems. Specifically, it is required in
Bayesian algorithms, e.g. the well-known Kalman filter and its extensions [12, 13, 14], and
various sequential Monte Carlo algorithms [15, 16, 17]. Unfortunately, these models might
be unknown and difficult to reveal. For example, Electroencephalography (EEG) recordings
translate brain activity into sequences of electrical pulses [18]. We assume that the statistics
of the pulses are controlled by an underlying process that characterizes the brain activity in
an unknown way. The significance of revealing the model of the underlying process in EEG
recordings is demonstrated in epilepsy research. In an ongoing work that will appear in a
future publication, we attempt to detect and predict epileptic seizures based on the model
of the recovered underlying process. Since samples of such an underlying process cannot
be obtained, traditional Bayesian algorithms cannot be employed and nonparametric data-
driven estimation methods are required.

In this paper, we propose a graph-based method using empirical information geometry
for revealing the low-dimensional manifold and inferring the underlying process. The obser-
vation that the temporal statistics of the measurements convey the geometric information
on the underlying process rather than the specific realization at-hand naturally leads to
information geometry [19]. Unlike traditional information geometry analysis, we empiri-
cally learn the underlying manifold of local probability densities and recover their model.
We propose to estimate the local probability densities of the measurements and view them
as descriptors or features of the measurements that convey the desired information on the
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underlying process. Then, we construct an intrinsic model of the underlying parametric
manifold based on these features. This construction is shown to be equivalent to an inverse
problem, which is formulated as a nonlinear differential equation and is solved empirically
through eigenvectors of an appropriate Laplace operator. The role of the Laplace operator is
to quantify the connections between the measurements and to integrate all the information.
Specifically, its eigenvectors provide an embedding (or a parametrization) of the measure-
ments, which is viewed as a representation of the underlying process on the parametric
manifold. We discuss the relationship between the proposed embedding and information
geometry. In particular, we show isometry between the proposed metric in the obtained
intrinsic model and the Kullback Liebler divergence, which is defined on the parametric
manifold using the Fisher Information matrix [20].

The proposed method exhibits two key properties that may be highly beneficial in a wide
variety of real-world applications. We show that the learned intrinsic model is invariant
under different observation modalities and is noise resilient. In addition, the construction
of the graph is described with respect to a reference set of measurements [21, 22]. This
property enables to obtain a graph-based model of a training signal in advance, and then,
to extend the model to newly acquired measurements in a sequential manner.

We apply the proposed modeling method on two nonlinear filtering applications. The
first is a nonlinear and non-Gaussian tracking problem that has been inspired by a variety of
nonlinear filtering studies in the areas of maneuvering targets and financial data processing,
e.g. [23, 24]. We show that the obtained model represents the underlying process and is
indeed noise resilient and invariant to the measurement function. The second application
consists of a measurement modality described by a non-stationary hidden Markov chain. In
this case, we demonstrate the ability of our approach to provide appropriate modeling for
Markovian measurements with memory.

We note that this work was presented in part in [25], where in addition we proposed to
define a Bayesian framework based on the obtained model. The Bayesian framework enables
to filter, estimate and predict the underlying process, demonstrating the effectiveness of this
approach in providing an empirical model for filtering tasks.

This paper is organized as follows. Section 2 presents the problem formulation, in which
the parametric manifold and the measurement modality are described using the state-space
formalism. In Section 3, we present the local density estimates of the signal as features of
the measurements, and we describe their relationship to the underlying process. In Section
4, we derive an intrinsic metric and establish a relationship to the classical information
geometry. In Section 5, we propose a graph-based algorithm to recover the underlying
process. In addition, we address the probabilistic interpretation implied by the proposed
method. Finally, in Section 6, experimentation results are presented, demonstrating the
performance and the usefulness of the algorithm.

2 Problem Formulation

In this section, we adopt the state-space formalism to provide a generic problem formulation
that may be adapted to a wide variety of applications. Let θt be a d-dimensional underlying
process in time index t. The dynamics of the process are described by normalized stochastic
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differential equations as follows1

dθit = ai(θit)dt+ dwit, i = 1, . . . , d, (1)

where ai are unknown drift functions and ẇit are independent white noises. For simplicity,
we consider here normalized processes with unit variance noises. Since ai are any drift
functions, we may first apply normalization without effecting the following derivation. See
[11] for details. We note that the underlying process is equivalent to the system state in
the classical terminology of the state-space approach.

Let yt denote an n-dimensional observation process in time index t, drawn from a
probability density function (pdf) f(y;θ). The statistics of the observation process are
time-varying and depend on the underlying process θt. We consider a model in which the
clean observation process is accessible only via a noisy n-dimensional measurement process
zt, given by

zt = g(yt,vt) (2)

where g is an unknown (possibly nonlinear) measurement function and vt is a corrupt-
ing n-dimensional measurement noise, drawn from an unknown stationary pdf q(v) and
independent of yt.

The description of θt constitutes a parametric manifold that controls the accessible
measurements at-hand. Our goal in this work is to reveal the underlying process θt and its
dynamics based on a sequence of measurements {zt}.

3 Local Densities and Histograms

Let p(z;θ) denote the pdf of the measured process zt controlled by θt, which satisfies the
following property.

Lemma 1. The pdf of the measured process zt is a linear transformation of the pdf of the
clean observation component yt.

Proof. The proof is straightforward. By relying on the independence of yt and vt, the pdf
of the measured process is given by

p(z;θ) =

∫
g(y,v)=z

f(y;θ)q(v)dydv. (3)

We note that in the common case of additive measurement noise, i.e., g(y,v) = y + v,
only a single solution v(z) = z−y exists. Thus, p(z;θ) in (3) becomes a linear convolution

p(z;θ) =

∫
y

f(y;θ)q(z− y)dy = f(z;θ) ∗ q(z).

1xi denotes access to the ith coordinate of a vector x.
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The dynamics of the underlying process are conveyed by the time-varying pdf of the
measured process. Thus, this pdf may be very useful in revealing the desired underlying
process and its dynamics. Unfortunately, the pdf is unknown since the underlying process
and the dynamical and measurement models are unknown. Assume we have access to a class
of estimators of the pdf over discrete bins which can be viewed as linear transformations.
Let ht be such an estimator with m bins which is viewed as an m-dimensional process and
is given by

p(z;θt)
T7→ ht, (4)

where T is a linear transformation of the density p(z;θ) from the infinite sample space of z
into a finite interval space of dimension m. By Lemma 1 and by definition (4) we get the
following results.

Corollary 1. The process ht is a linear transformation of the pdf of the clean observation
component yt.

Corollary 2. The process ht can be described as a deterministic nonlinear map of the
underlying process θt.

In this work, we use histograms as estimates of the pdf, and we assume that a sequence
of measurements is available. Accordingly, let ht be the empirical local histogram of the
measured process zt in a short-time window of length L1 at time t. Let Z be the sample
space of zt and let Z =

⋃m
j=1Hj be a finite partition of Z into m disjoint histogram bins.

Thus, the value of each histogram bin is given by

hjt =
1

|Hj |
1

L1

t∑
s=t−L1+1

1Hj
(zs), (5)

where 1Hj
(zt) is the indicator function of the bin Hj and |Hj | is its cardinality. By assuming

(unrealistically) that infinite number of samples are available and that their density in each
histogram bin is uniform, (5) can be expressed as

hjt =
1

|Hj |

∫
z∈Hj

p(z;θ)dz. (6)

Thus, ideally the histograms are linear transformations of the pdf. In addition, if we shrink
the bins of the histograms as we get more and more data, the histograms converge to the
pdf

ht
L1→∞−−−−→
|Hj |→0

p(z;θ). (7)

In practice, since the computation of high-dimensional histograms is challenging, we propose
to preprocess high-dimensional data by applying random filters in order to reduce the
dimensionality without corrupting the information. However, this extends the scope of
this paper and will appear in a future publication.
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4 Intrinsic Metric Computation Using Empirical Informa-
tion Geometry

In classical information geometry, the parameters of the distribution of the observations
confine the data to an underlying manifold. Thus, the distribution is usually required in an
analytic form. In this section, we propose a data-driven approach to recover the manifold
without a prior knowledge of the distribution of the observations. Instead, we propose to
rely on the histograms or the local density estimates described in Section 3.

4.1 Mahalanobis Distance

We view ht (the linear transformation of the local densities, e.g. the local histograms) as
feature vectors for each measurement zt. By Corollary 2 and (1), the process ht satisfies
the dynamics given by Itô’s lemma

hjt =

d∑
i=1

(
1

2

∂2hj

∂θi∂θi
+ ai

∂hj

∂θi

)
dt (8)

+

d∑
i=1

∂hj

∂θi
dwit, j = 1, . . . ,m.

For simplicity of notation, we omit the time index t from the partial derivatives. According
to (8), the (j, k)th element of the m×m covariance matrix Ct of ht is given by

Cjkt = Cov(hjt , h
k
t ) =

d∑
i=1

∂hj

∂θi
∂hk

∂θi
, j, k = 1, . . . ,m. (9)

In matrix form, (9) can be rewritten as

Ct = JtJ
T
t (10)

where Jt is the m× d Jacobian matrix, whose (j, i)th element is defined by

J jit =
∂hj

∂θi
, j = 1, . . . ,m, i = 1, . . . , d.

Thus, the covariance matrix Ct is a semi-definite positive matrix of rank d.
We define a nonsymmetric C-dependent squared distance between pairs of measurements

as
a2C(zt, zs) = (ht − hs)

TC−1s (ht − hs) (11)

and a corresponding symmetric distance as

d2C(zt, zs) = 2(ht − hs)
T (Ct + Cs)

−1 (ht − hs). (12)

Since usually the dimension d of the underlying process is smaller than the number of
histogram bins m, the covariance matrix is singular and non-invertible. Thus, in practice
we use the pseudo-inverse to compute the inverse matrices in (11) and (12).
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The distance in (12) is known as the Mahalanobis distance with the property that
it is invariant under linear transformations. Thus, by Lemma 1 and Corollary 1, it is
invariant to the measurement noise and function (e.g., additive noise or multiplicative noise).
We note however that the linear transformation employed by the measurement noise on
the observable pdf (3) may degrade the available information. For example, an additive
Gaussian noise employs a low-pass blurring filter on the clean observation component. In
case the dependency on the underlying process is manifested in high-frequencies, the linear
transformation employed by the noise significantly attenuates the connection between the
measurements and the underlying process. Therefore, we expect to exhibit noise resilience
up to a certain noise level as long as the observable pdfs can be regarded as functions of
the underlying process. Above this level, we expect to experience a sudden drop in the
performance.

In addition, by Lemma 3.1 in [26] and by Corollary 2, the Mahalanobis distance in (12)
approximates the Euclidean distance between samples of the underlying process. Let θt
and θs be two samples of the underlying process. Then, the Euclidean distance between
the samples is approximated to a second order by a local linearization of the nonlinear map
of θt to ht, and is given by

‖θt − θs‖2 = d2C(zt, zs) +O(‖ht − hs‖4). (13)

For more details see [11] and [26]. Assuming there is an intrinsic map i(ht) = θt from
the feature vector to the underlying process, the approximation in (13) is equivalent to the
inverse problem defined by the following nonlinear differential equation

m∑
i=1

∂θj

∂hi
∂θk

∂hi
=
[
C−1t

]jk
, j, k = 1, . . . , d. (14)

In this work, this equation is empirically solved in Section 5 through the eigenvectors of an
appropriate discrete Laplace operator.

4.2 Local Covariance Matrix Estimation

Let t0 be the time index of a “pivot” sample ht0 of a “cloud” of samples {ht0,s}
L2
s=1 of size

L2 taken from a local neighborhood in time. In this work, since we assume that a sequence
of measurements is available, the temporal neighborhoods can be simply short windows in
time centered at time index t0.

The pdf estimates and the local clouds implicitly define two time scales on the sequence
of measurements. The fine time scale is defined by short-time windows of L1 measurements
to estimate the temporal pdf. The coarse time scale is defined by the local neighborhood
of L2 neighboring feature vectors in time. Accordingly, we note that the approximation in
(13) is valid as long as the statistics of the noise are locally fixed in the short-time windows
of length L1 (i.e., slowly changing compared to the fast variations of the underlying process)
and the fast variations of the underlying process can be detected in the difference between
the feature vectors in windows of length L2.

According to the dynamical model in (1) and (8), the samples in the local cloud can be
seen as small perturbations of the pivot sample created by the noise wt. Thus, we assume
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that the samples share similar local probability densities2and may be used to estimate the
local covariance matrix, which is required for the construction of the Mahalanobis metric
(12). The empirical covariance matrix of the cloud is estimated by

Ĉt0 =
1

L2

L2∑
s=1

(
ht0,s − µ̂t0

) (
ht0,s − µ̂t0

)T
(15)

' E
[
(ht0 − E[ht0 ]) (ht0 − E[ht0 ])T

]
= Ct0

where µ̂t0 is the empirical mean of the set.
As the rank of the matrix d is usually smaller than the covariance matrix dimension

m, in order to compute the inverse matrix we use only the d principal components of the
matrix. This operation “cleans” the matrix and filters out noise. In addition, when the
empirical rank of the local covariance matrices of the feature vectors is lower than d, it
indicates that the available feature vectors are insufficient and a larger cloud should be
used.

4.3 Relationship to Information Geometry

In this section we consider different features to convey the statistical information of the
data. Let lt0,t be a new feature vector defined by

ljt0,t =

√
hjt0 log

(
hjt0,t

)
(16)

where t0 is the index of the pivot sample of the cloud of t. We note that this choice of
features is no longer a linear transformation, and therefore, the metric in (12) is no longer
noise resilient. Thus, in practice we use ht as features. In the following analysis we assume
infinitesimal clouds with sufficient number vectors.

Theorem 1. The matrix It0 , JTt0Jt0 is an approximation of the Fisher Information matrix,
i.e.,

Iii
′

t0 ' E

[
∂

∂θit0
log (p(z;θt0))

∂

∂θi
′
t0

log (p(z;θt0))

]
. (17)

Proof. See Appendix 8.

By (10) and Theorem 1, we get that the singular value decomposition of the Jacobian Jt0
describes the relationship between the local covariance matrix and the Fisher Information
matrix, when the features are defined to be the logarithm of the local density (16). Let
{ρj ,υj ,νj}j be the singular values, singular left vectors, and singular right vectors of the
Jacobian matrix Jt0 . Then, by (10) and Theorem 1, Ct0 and It0 share the same eigenvalues.
In addition, υj are the eigenvectors of the local covariance matrix Ct0 . According to (11)
and (12) it is used to define an intrinsic metric between feature vectors (pdf estimates of the

2We emphasize that we consider the statistics of the feature vectors and not the feature vectors themselves,
which are estimates of the varying statistics of the raw measurements.
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measurements) that reveals the underlying process (13). On the other hand, by Theorem 1,
νj are the eigenvectors of the Fisher Information matrix of the measurements. According
to [20], it approximates the Kullback Liebler divergence between densities of measurements
in the cloud, i.e.,

D(p(zt0,t; θt0,t)‖p(zt0 ; θt0)) = δθTt It0δθt (18)

where δθt = θt0,t − θt0 . Using Theorem 1, the divergence (18) can be computed based on
the cloud of samples according to

J jit0 δθ
i
t0 = lim

θit0,t
→θit0

ljt0,t − l
j
t0

which can be empirically estimated by samples in the cloud as follows

J jit0 δθ
i
t0 '

1

L

L∑
t=1

(
ljt0,t − l

j
t0

)
.

Thus, we obtain an isometry between the “external” intrinsic metric of the measurements
(11)-(12) and the “internal” metric of the pdfs (18).

In addition, according to information geometry approaches [27, 20], the inverse of the
Fisher Information matrix can be used to restrict the stochastic measurement process to
the parametric lower-dimensional manifold that is imposed by the underlying process3.

These results support the choice of local density estimates as appropriate features that
convey the measurements information. In Section 5, we describe a constructive method to
empirically reveal the parametric manifold by recovering the underlying process without
assuming any particular statistical model of the measurements.

5 Graph-based Algorithm for Intrinsic Modeling

5.1 Intrinsic Embedding

Let {z̄s}Ns=1 be a sequence of N reference measurements. The availability of a sequence of
measurements with corresponding time labels enables us to estimate the local densities and
their covariance matrices as described in Section 3 and Section 4. Let {zt}Mt=1 be another
sequence of M arbitrary measurements. As proposed in [26, 28, 29], we define a “one-sided”
kernel consisting of an affinity measure between the two sets of measurements. We construct
an M ×N nonsymmetric affinity matrix A, whose (t, s)th element is given by

Ats = exp

{
−
a2Σ(zt, z̄s)

ε

}
, (19)

where ε > 0 is a tunable scale. The construction of (19) requires the corresponding feature
vectors of the measurements and the local covariance matrix of merely the reference mea-
surement z̄s and does not use the covariance matrix of the measurement zt. The significance
of the distinction to two sets of measurements and the significance of the latter comment will

3Recall that the inverse of the local covariance matrix is used to locally invert the measurement function
and compute intrinsic metric on the manifold.
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become apparent in Section 5.2, where we describe the extension of the following derivation
to support sequential processing. The one-sided kernel defines a bipartite graph [30], where
{z̄s} and {zt} are two disjoint sets of nodes, and each pair of nodes z̄s and zt is connected
by an edge with weight Ats.

Let Wr be a “two-sided” symmetric kernel of size N ×N , defined as

Wr = ATA. (20)

By definition, the (s, s′)th element of the two-sided kernel is given by

W ss′
r =

∑
t

AtsAts
′
,

which implies that the two-sided kernel can be interpreted as an affinity metric between
any two reference measurements z̄s and z̄s′ via all the measurements in the set {zt}.

The kernel Wr is then normalized by

Wr,norm = D−1r WrD
−1
r , (21)

where Dr is a diagonal matrix, whose sth diagonal term is given by

Dss
r =

N∑
s′=1

W ss′
r .

Dr is often called a density matrix as Dss
r approximates the local density in the vicinity of z̄s,

and hence, the normalization handles nonuniform sampling of the measurements [21]. The
kernel Wr,norm is made row stochastic by Wr,rs = D−1rs Wr,norm, where Drs is a diagonal
matrix with diagonal elements

Dss
rs =

N∑
s′=1

W ss′
r,norm.

Next, we compute the eigenvalues {λi}Ni=1 and eigenvectors {ϕi}
N
i=1 of Wr,rs. The

eigenvalues, which are nonnegative and bounded by 1 due to the normalization, are sorted
such that λ1 = 1. The corresponding first eigenvector is trivial and equals to a column
vector of ones ϕ1 = 1. By [11] and [26], I −Wr,rs converges to a diffusion operator
(Laplace-Beltrami) that reveals the low-dimensional manifold, and the eigenvectors give
an approximate parametrization of the parametric manifold. Specifically, the leading d
eigenvectors (except the trivial), which are a local coordinate system for the manifold [31],
recover d proxies for the underlying process up to a monotonic scaling [26]. In other words,
they are empirical solutions to the inverse problem described by the differential equation in
(14). In addition, the eigenvectors are independent in case the manifold is flat [11]. Thus,
without loss of generality, we may write

ϕsi = ϕi(θ̄
i
s), i = 1, . . . , d; s = 1, . . . , N,

where ϕi(·) is a monotonic function and θ̄s is the sample of the underlying process corre-
sponding to z̄s. Based on the eigenvectors, we define a d-dimensional representation of any
sample in the reference set by the following embedding

Φ(z̄s) , [ϕs1, ϕ
s
2, . . . , ϕ

s
d] , s = 1, . . . , N. (22)
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By the monotonicity of the eigenvectors, the embedded domain organizes the reference
measurements according to the values of the underlying process. Accordingly, we view the
proposed embedding as empirical modeling of the measurements representing the underlying
process.

The kernel Wr,rs is similar to the following symmetric kernel

W̃r = D−1/2rs Wr,normD−1/2rs

via W̃r = D
1/2
rs Wr,rsD

−1/2
rs . Thus, Wr,rs and W̃r share the same eigenvalues, and the

eigenvectors of W̃r are given by
ϕ̃j = D1/2

rs ϕj .

In addition, by Lemma 3.1 in [26], the kernel W̃r is approximated to a second order by

W̃ ts
r =

c

Dtt
r D

ss
r

exp

{
−
d2C(z̄t, z̄s)

ε

}
(23)

where c is a constant that can be estimated from the measurements (See details in [26]).
Combining the relationship between the kernels and the approximations in (13) and (23)
yields that Wr,rs measures the affinity between the measurements according to the distance
between the corresponding samples of the underlying process. It is invariant to the obser-
vation modality and it is resilient to measurement noise. This property has a key role since
it enables to reveal the underlying process that represents the parametric manifold rather
than the manifold of the measurements. In addition, it enables to compute the kernel Wr,rs

directly from the reference measurements.
Next, we define a row stochastic M ×N matrix Ars as

Ars = D−1AD−1rs (24)

where D is a diagonal matrix whose diagonal terms are given by

Dtt =
N∑
s=1

Ats

Dss
r

.

Let W be an M ×M symmetric kernel matrix of the set {zt}, defined as

W = ArsA
T
rs.

Similarly to the interpretation of Wr, the (t, τ)th element of W can be interpreted as
an affinity metric between any pair of measurements zt and zτ via all the reference mea-
surements in {z̄s}. It further implies that two measurements are similar if they “see” the
reference measurements in the same way.

By the construction of the kernel Wr,rs in (20) and (21), it can be shown that the
eigenvectors {ϕi} of Wr,rs are the singular right vectors of Ars [21]. Furthermore, the
eigenvectors {ψi} of W are the singular left vectors of Ars. As discussed in [21] and
[26], the right singular vectors of Ars represent the underlying process of the reference
measurements {z̄s}, and the left singular vectors of Ars naturally extend the representation

11



to the measurements {zt}. Then, the spectral representation of the kernel can be efficiently
extended from the reference measurements to arbitrary measurements by the following
relationship between the singular vectors

ψi =
1√
λi

Arsϕi, (25)

which involves only the information associated with the reference measurements. In par-
ticular, as mentioned before, the calculation does not involve the local covariance of the
arbitrary measurements.

We define a d-dimensional representation similarly to (22) by

Ψ(zt) ,
[
ψt1,ψ

t
2, . . . ,ψ

t
d

]
, (26)

for each zt. Then, the embedding (26) is seen as the obtained modeling of the measurements
revealing the corresponding underlying process.

We note that the embedding does not take explicitly into account the chronological
order of the measurements. However, the Mahalanobis distance encodes the time depen-
dency by using local covariance matrices, and the Laplace operator reveals the dynamics
by integrating those distances over the entire reference set.

5.2 Sequential Processing

The construction of the embedding described in Section 5.1 is especially suitable for se-
quential processing [22]. Here, we describe a supervised algorithm consisting of two stages:
a training stage in which a sequence of training measurements is assumed to be available in
advance, and a test stage in which new incoming measurements are sequentially processed.

In the training stage, reference measurements taken from the training sequence are pro-
cessed to form a learned model. The feature vectors and the corresponding local covariance
matrices associated with the reference samples are computed. The row-stochastic kernel
Wr,rs, defined on the reference measurements, is directly computed from the training mea-
surements, and its eigen-decomposition is calculated. The eigenvectors of the kernel form
a learned model for the reference set. Then, we are able to construct the map (22) which
provides an embedding for the reference set and reveals the underlying process. We store
the feature vectors of the reference set along with their local covariance matrices and the
corresponding embedding.

In the test stage, as new incoming measurements {zt} become available, we construct
A and Ars according (19) and (24), respectively. Finally, we compute the extended repre-
sentation by (25), and acquire the embedding of the new samples by (26). It is worthwhile
noting that the covariance matrices of new measurements are not required for the exten-
sion. Thus, this scheme is particularly adequate to real-time processing since it circumvents
the lag required to collect a local neighborhood for each new measurement. In addition,
the processing of new measurements involve low computational complexity. For detailed
analysis of the computational burden we refer the readers to [22].

5.3 Probabilistic Interpretation

We consider a probabilistic model consisting of a mixture of local statistical models implied
by the reference set. Assume that the sample domain Z of possible measurements is given
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by a union of N disjoint subsets, i.e., Z =
⋃N
s=1 Zs, where each subset is represented by a

corresponding reference sample z̄s. Since usually the number of reference samples is much
larger than the number of histogram bins, i.e., N � m, this is a different, finer, partition
than the partition described in Section 3. We further assume that the probability of any
measurement zt to be associated with a particular subset is uniform, i.e., Pr(zt ∈ Zs) = 1/N .

Let α(t, s) be the following conditional probability

α(t, s) = Pr(zt|zt ∈ Zs) (27)

which describes the probability of a measurement zt given it is associated with Zs. Define
α̃(t, s) as

α̃(t, s) = α(t, s)/ω(t),

where ω(t) =
∑N

s=1 α(t, s).
Let Aα be an M ×N matrix whose elements are given by Atsα = α̃(t, s), and let Wα =

AαAT
α .

Theorem 2. Assuming statistically independent measurements, the elements of the M×M
kernel matrix Wα are the conditional probability of a pair of given measurements to be
associated with the same reference measurement, i.e.,

W tτ
α = Pr(zt ∈ Zs, zτ ∈ Zs|zt, zτ ).

for any s.

Thus, the kernel matrix Wα measures the probability of any two measurements to be
associated with the same reference measurement. This result extends the result presented
in [22] obtained for Gaussian kernels.

Proof. See Appendix 9

The definition of Ars in (11) and (19) implies that this kernel is a special case of Aα,
when the conditional probability of a measurement zt given it is associated with Zs (27)
is defined as a normal distribution with z̄s mean and Cs covariance matrix. Thus, the
construction of the metric and the kernel in Section 4 and Section 5.1 naturally implies
an implicit multi-Gaussian mixture model in the measurements domain. Each reference
measurement at time s represents a local (infinitesimal) Gaussian model, and the metric
defined by (11) and (19) computes the probability of any measurement at time t to be
associated with the local model represented by the reference measurement at s.

6 Experimental Results

6.1 Parametric Model

We simulate an underlying process whose temporal propagation mimics a motion of a par-
ticle in a potential field. Each coordinate of the process is independent and evolves in time
according to the following Langevin equation

dθit = −∇U i(θit)dt+ dwit (28)
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Figure 1: (a) A segment of the 2-dimensional trajectory of the 2 coordinates of the un-
derlying process: the horizontal and vertical angles. (b) A corresponding segment of the
3-dimensional movement of the object on the sphere. The locations of the 3 sensors are
marked with ∗.

where ẇit are independent white Gaussian noises, and U i(θit) are the potential fields, fixed
in time and varying according to the current position θit. The potential fields determine the
drift of the underlying process and establish the low-dimensional manifold. We note that
this propagation model is chosen for demonstration since it is general and may be used to
describe many natural signals and phenomena.

6.2 Nonlinear Tracking

In this experiment, we aim to model the movement of a radioactive source on a 3-dimensional
sphere. Since the radius of the sphere is fixed, we assume that the movement of the object is
controlled by two independent processes θt = [θ1t ; θ

2
t ]: the horizontal azimuth angle θ1t and

the vertical elevation angle θ2t . Suppose the temporal propagation of the spherical angles
evolve in time according to the Langevin equation (28). The potential field of each angle is
a mixture of two Gaussians with 0 and π/4 means and 5 and 10 variances, respectively.

Let x(θt) denote the 3-dimensional coordinates of the object position on the sphere. By
assuming that the center of the sphere is located at the origin of the coordinate system, the
position of the object is given by

x1(θt) = r cos(θ1t ) sin(θ2t )

x2(θt) = r sin(θ1t ) sin(θ2t )

x3(θt) = r cos(θ2t ),

where r is the radius of the sphere. Figure 1 illustrates a segment of the 2-dimensional
underlying process and a corresponding segment of the 3-dimensional trajectory of the
radiating object on the sphere.
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To examine the robustness of the proposed method to different measurements, we con-
sider three measurement schemes. In Scheme 1, the radiation of the object is measured
by 3 “Geiger counter” sensors positioned at xj , j = 1, 2, 3 outside the sphere (see Fig. 1).
The sensors detect the radiation and fire spikes through a spatial point process in a varying
rate which depends on the proximity of the object to the sensors (the closer the object is,
the higher the amount of radiation reaching the sensor). Each sensor fires spikes according
to a Poisson distribution with rate λj(θt) = exp{−‖xj − x(θt)‖}. We obtain three spike

sequences yjt in which the firing rate is higher when the object is closer to the sensor. The
output of each sensor is corrupted by additive noise and is given by

zjt = gj(yt, vt) = yjt + vjt , j = 1, 2, 3,

where vjt is a spike sequence drawn from a Poisson distribution with a fixed rate λjv. Scheme
2 is similar to Scheme 1. Each sensor fires spikes randomly according to the proximity of the
object. The difference is that in this scheme we simulate sensors with unreliable clocks. We
measure the time interval between two consecutive spikes given by zjt = yjt + vjt . Suppose
yjt is drawn from an exponential distribution with a rate parameter λj(θt), and suppose vjt
is drawn from a fixed normal distribution representing the clock inaccuracy. We note that
in Scheme 1 the noisy sequence of spikes has a Poisson distribution with rate λj(θt) + vjt ,
whereas the distribution of the measured value in Scheme 2 is of unknown type. In Scheme
3, we consider a measurement of a different nature. We use three sensors that measure the
location of the source directly, i.e.

zjt = xjt + vjt , j = 1, 2, 3,

where vjt is an additive Gaussian white noise. This case exhibits nonlinearity in the mea-
surement caused by the nonlinear mapping of the two spherical coordinates to the measured
cartesian coordinates.

Under all the measurement schemes, the goal is to reveal the 2-dimensional trajectory
{θt} of the horizontal and vertical angles based on a sequence of noisy measurements {zt}.
The dynamical model and the measurement model are unknown and the sequence of mea-
surements is all the available information.

We simulate 2-dimensional trajectories of the two independent underlying processes
according to (28) and the corresponding noisy measurements under the three measurement
schemes. The first N = 2000 samples of measurements are used as the reference set, which
empirically was shown to be a sufficient amount of data to represent the model of the
underlying angles. For each reference measurement we compute a histogram in a short
window L1 = 10 (with full overlap) and obtain the feature vectors. Then, we estimate
the local covariance matrix according to (16) with L2 = 10. Next, the kernels and the
embedding of the reference measurements (22) is constructed as described in Section 5.

Figure 2 presents the spectrum of the local covariance matrices of a sequence of 200
feature vectors. Each curve describes one eigenvalue out of the seven largest eigenvalues as
a function of time. We observe that the two largest eigenvalues are dominant compared to
the others which implies that the covariance matrices have rank d = 2. This reveals the
two degrees of freedom stored in the data, which are the two spherical angles.
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Figure 2: The spectrum of the local covariance matrices of a sequence of 200 feature vectors.
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Figure 3: Scatter plots of the leading eigenvector and the horizontal angle. (a) The leading
eigenvector obtained by the NLICA. (b) The leading eigenvector obtained by the proposed
method.

Measurements following the reference sequence at times t > 2000 are sequentially pro-
cessed, i.e., for each measurement the kernel matrix (19) and the extended embedding (26)
are computed, as described in Section 5.2.

Figure 3 shows a scatter plot of the leading eigenvector and the horizontal angle under
Scheme 1. In Fig. 3(a) the embedding is obtained using the NLICA [11] and in Fig. 3(b) the
embedding is obtained using the proposed method. We observe that the leading eigenvector
obtained via the proposed method is linearly correlated with the horizontal angle, whereas
the leading eigenvector obtained using the NLICA is uncorrelated with the angle. We note
that no correlation is found between any other pair of an angle and an eigenvectors. Thus, it
shows that the obtained embedding is a good representation of the angle. Furthermore, the
comparison to the embedding obtained by the NLICA suggests that the use of histograms
as feature vectors is an essential component to convey the local statistical information.

In Fig. 4 we compare the modeling of the vertical angle obtained under different mea-
surement schemes and noise. We note that the presented 500 coordinates of the eigenvectors
are computed by extension. Figure 4(a) depicts three eigenvectors that correspond to the
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Figure 4: A comparison of the obtained modeling of the vertical angle. (a) A comparison
between the obtained eigenvectors (corresponding to the vertical angle) under the three
different measurement schemes (measuring the same movement). (b) A comparison between
the obtained eigenvectors (corresponding to the vertical angle) under the first measurement
scheme with different noise levels (λv = 2, 5, 8).

(a) (b)

Figure 5: An illustration of the movement of the two objects confined to rings on a sphere.
(a) The solid curve represents the simulated movements of the two objects on the same
ring. (b) The solid curves represent the simulated movements of the two objects on two
different rings.

same movement of the object. Each eigenvector is obtained under a different measure-
ment scheme. We observe that the three eigenvectors follow the same trend, which implies
intrinsic modeling of the movement and demonstrates the invariability of the proposed ap-
proach to the measurement scheme. We emphasize that the measurements under the three
schemes are very different in their nature: spike sequences in Schemes 1 and 2 and noisy
3-dimensional coordinates in Scheme 3. In order to further demonstrate the resilience of the
modeling to measurement noise, we present in Fig. 4(b) three eigenvectors obtained under
Scheme 1 with noise sequence of spikes vt in three different rates. We observe that the
three eigenvectors follow the same trend and hence conclude that they intrinsically model
the movement of the object. We note that the connection between the pdf estimates and
the underlying process in higher noise levels becomes very weak, and thus, as discussed in
Section 4, we experience a sudden drop in the correlation between the obtained eigenvectors
and the underlying angles.

In a second experiment, we alter the experimental setup as follows. We now consider two
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(a) (b)

Figure 6: Two Markov chains configurations. (a) A Bernoulli scheme. (b) A Markov scheme
of order 1.

radiating objects moving on the sphere. The movement of each object i = 1, 2 is confined
to a horizontal ring and controlled by the azimuth angle θit, which is the single underlying
parameter of the movement. We simulate two movement scenarios. In the first, the two
objects move on the same ring (Fig. 5(a)), and in the second, the two objects move on two
different rings ((Fig. 5(b)). The total amount of radiation from the two objects is measured
in the 3 sensors similarly to the previous experiment and the locations of the sensors remain
the same.

The obtained experimental results are similar to the results obtained in the previous
experiment, i.e., the two underlying angles θ1t and θ2t are recovered by the eigenvectors. In
this experiment, each object has a different structure, which is separated and recovered by
the proposed algorithm. In terms of the problem formulation, the difference between the two
experiments is conveyed by different measurement schemes. Hence, this experiment further
demonstrates the robustness of the proposed nonparametric blind algorithm. Furthermore,
it illustrates the potential of the proposed approach to yield good performance in blind
source separation applications.

6.3 Non-stationary Hidden Markov Chain

In this experiment, the observation process yt is a 2-states Markov chain with time-varying
transition probabilities which are determined by a 1-dimensional underlying process θt. We
simulate a potential field corresponding to a single Gaussian with 0.5 mean and 5 variance
and clip values outside [0, 1]. The clean observation process is measured with additive
zero-mean Gaussian noise vt, i.e.,

zt = yt + vt.

The objective is to reveal the underlying process θt (determining the time-varying transition
probabilities) given a sequence of measurements. We process the entire interval of N = 4000
measurement samples and compute their embedding directly without extension.

We examine two Markov chain configurations: a Bernoulli scheme and a scheme of
order 1 in which the transition depends merely on the current state. In the latter case,
the current measurement depends on the underlying process in the current time step and
on the measurement in the previous time step. This context-dependency makes it different
from the former scheme and from the experiments described in Section 6.2.
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Figure 7: Scatter plots of the leading eigenvector and the underlying process under the
Bernoulli scheme. (a) The leading eigenvector obtained by the NLICA. (b) The leading
eigenvector obtained by the proposed method.

The Bernoulli scheme is illustrated in Fig. 6(a), and the observation process is given by

yt =

{
0, w.p. 1− θt
1, w.p. θt.

We note that in this specific scenario, revealing the underlying process can be easily done
by short-time averaging, since

E[zt|θt] = θt.

Figure 7 presents scatter plots of the obtained embedding and the underlying process
θt. In Fig. 7(a) we show the embedding based on the means of the measurements in short-
time windows obtained via the NLICA. In other words, the means of short-time windows
are viewed and feature vectors and processed using the NLICA. In Fig. 7(b) we show the
embedding based on the histograms of the measurements in short-time windows obtained
via the proposed method. As expected, exploiting the prior knowledge that the underlying
process can be revealed by short-time averaging yields good performance. The embedding
based on the means in short windows is highly correlated to the underlying process. More-
over, the correlation is stronger than the correlation obtained using the proposed method,
which does not use any a-priori knowledge.

The second scheme is illustrated in Fig. 6(b). In this case, the underlying process is more
difficult to recover without any prior knowledge on the measurement model. We process
the difference signal (discrete first order derivative) z̃t = zt − zt−1 to convey the first-order
dependency. Alternatively, we could process pairs of consecutive measurements. We note
that higher order dependency would require the processing of higher order derivatives or
several consecutive measurements together.

Figure 8 presents scatter plots of the obtained embedding and the underlying process θt.
In Fig. 8(a) we show the embedding based on the means of the difference signal in short-
time windows obtained via the NLICA. In Fig. 8(b) we show the embedding based on the
histograms of the measurements in short-time windows obtained via the proposed method.
We observe that the embedding based on the means in short windows is degenerate and
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Figure 8: Scatter plots of the leading eigenvector and the underlying process under the
Markov scheme of order 1 . (a) The leading eigenvector obtained by the NLICA. (b) The
leading eigenvector obtained by the proposed method.
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Figure 9: The leading eigenvector obtained using the proposed method and the underlying
process as a function of time.

does not convey any information on the underlying process. On the other, the embedding
obtained using the proposed method exhibits high correlation with the underlying process.
To further illustrate the obtained modeling of the time series, we present in Fig. 9 the
leading eigenvector obtained using the proposed method and the underlying process as a
function of time. It can be seen that the eigenvector tracks accurately the drift of the
underlying process, whereas the small (noisy) perturbations are disregarded as expected.

7 Conclusions

In this paper, we propose a probabilistic kernel method for intrinsic modeling of signals
using differential geometry. It enables to empirically learn the underlying manifold of local
probability densities of noisy measurements and provides a compact and efficient represen-
tation of the signals. We show that the obtained data-driven representation is intrinsic,
i.e., invariant under different measurement modalities and noise resilient. In addition, our
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modeling method is designed in a sequential manner, which is common in many signal
processing tasks. The experimental results for two nonlinear and non-Gaussian filtering ap-
plications show that the obtained data-driven models are indeed independent of the observa-
tion modalities and instruments. Thereby suggesting that intrinsic filters that eliminate the
need to adapt the configuration and to calibrate the measurement instruments may be built.
This result will be harnessed in a future work to propose a data-driven Bayesian filtering
framework for estimation and prediction of signals without providing a-priori probabilistic
models. In addition, future work will also address real-world applications: modeling of EEG
recordings for epileptic seizure identification and molecular dynamics simulations.

8 Appendix 1: Proof of Theorem 1

Proof. The Jacobian elements using the new features (16) are given by

J jit0 =
∂ljt0
∂θit0

= lim
θit0,t
→θit0

ljt0,t − l
j
t0

θit0,t − θ
i
t0

. (29)

By definition, (29) is explicitly expressed as

J jit0 =

√
hjt0 lim

θit0,t
→θit0

log
(
hjt0,t

)
− log

(
hjt0

)
θit0,t − θ

i
t0

=

√
hjt0

∂

∂θit0
log
(
hjt0

)
.

Thus, the elements of the matrix It0 = JTt0Jt0 are given by

Iii
′

t0 =

m∑
j=1

√
hjt0

∂

∂θit0
log
(
hjt0

)√
hjt0

∂

∂θi
′
t0

log
(
hjt0

)
(30)

=

m∑
j=1

∂

∂θit0
log
(
hjt0

) ∂

∂θi
′
t0

log
(
hjt0

)
hjt0 .

If we additionally assume that the histograms converge to the actual pdf of the measure-
ments under the conditions that led to (7), we have

Iii
′

t0 '
∫
z

∂

∂θit0
log (p(z;θt0))

∂

∂θi
′
t0

log (p(z;θt0)) p(z;θt0)dz (31)

= E

[
∂

∂θit0
log (p(z;θt0))

∂

∂θi
′
t0

log (p(z;θt0))

]

Thus, by definition It0 is an approximation of the Fisher Information matrix.
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9 Appendix 2: Proof of Theorem 2

Proof. Let s be an arbitrary index of a sample from the reference set. By definition and
since the measurements are independent, we have

W tτ
α =

N∑
s′=1

Pr(zt, zτ |zt ∈ Zs′ , zτ ∈ Zs′)

N∑
s′′=1

Pr(zt|zt ∈ Zs′′)
N∑

s′′=1

Pr(zτ |zτ ∈ Zs′′)

. (32)

Using the uniform distribution, we can rewrite (32) as (33).

W tτ
α =

Pr(zt ∈ Zs, zτ ∈ Zs)
N∑
s′=1

Pr(zt ∈ Zs′) Pr(zt, zτ |zt ∈ Zs′ , zτ ∈ Zs′)

N∑
s′′=1

Pr(zt ∈ Zs′′) Pr(zt|zt ∈ Zs′′)
N∑

s′′=1

Pr(zτ ∈ Zs′′) Pr(zτ |zτ ∈ Zs′′)

. (33)

By the law of total probability and since the measurements are independent, we obtain

W tτ
α =

Pr(zt ∈ Zs, zτ ∈ Zs) Pr(zt, zτ |zt ∈ Zs, zτ ∈ Zs)

Pr(zt, zτ )
.

Finally, Bayes’ theorem yields

W tτ
α = Pr(zt ∈ Zs, zτ ∈ Zs|zt, zτ ).
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