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SYNOPSIS o

Numerous stu&ies have been made concerning the complexity of -
arithmetic operations. However, no general theory has emerged for
stgdying classes of Aperations and vgfy few general ﬁethods exist for
determining the complexity of a given operation. Such-a general théory
would be useful in unifying the theory of arithmetic cémplexity by
identifying the various structures determining the complexity of an
operation. If the many.ad hoc methods that have been previously used
could be fgrmalized within this theory, then general methods for obtaining e
bounds in’ the theory of arithmetic complexity would result. -

In this thesis, a general model is proposed for studying bilinear
multiplication operations in order to provide a common framework for dis- *
cussing problems regarding a wide class of arithmetic operations. Analysis
and synthesis methods are‘given within the'frameﬁork'to yield methods of
'obtaining upper and lower bounds on the complexity of operations.in this
class. Extenéions of the model and analysis methods to n—linear operationé
are also studied.

With this general model, a number of'complexity>problems are reduced |
to a problem in linear algeﬁra relating to the expansion of a given set
of matrices as linear combinaﬁions of rank one matrices; A systematiq
aftack on this problem is made here and some general results-are derived
which unify and extend numerous known results. Some important problems
in arfithmetic complexity are reduced tb some basic questions in tens;;

analysis through this model. On the basis of this reduction, synthesis
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methods.are related té tensor ranking methods iq an extensioﬁ of a few
of the fundamental concepts of matrix algebra.

A number of new results are given here to illustrate the strength
of this approach. :A@ong these is a new lower bound on the ngmﬁer of
multiplications required for n by n matrix multiplication of 3n2—3n+1
which is independent of the subset of the complex field wiéh régard
to which mﬁltiplication'is regarded as free. An even sharpef bouﬁd is
obtained 1f this set is restricted to the integers. The résults of

- studies of polynomial multiplication with multiplication by integers

regarded as free are also included. These studies, in which connections ,‘

are estabiished with research in_algebraic coding theory, représent an
improvement over previous results. In the study of n-linear operations,
connections between determinant aﬁd permanent computatisns on a matrix
are gtudied and aﬁ interesting open question is proposed. Suggestions
for further'reséaréh are inclu@ed and consider the possibility of
establishing_gonnéctions between the results presgnted and successful
theofies.in closely related fields of study.

Portions of the research reported here represent joint work with

R. Brockett and have previously appeared as [3].



CHAPTER I

INTRODUCTION -~

Arithmétic complexitj is concerned Qith the difficulty of eval-
vating a function at a set of points. The given data in an qfithmetic-
complexity problem is a description of the function to be evaluated and
of the set of peints at which the éunction is to be evaluated. The goal
is to find the algorithm, within a given class of'algorithmg,_that éan be
used to evaluate the function most efficiently, subject to a giveﬁ.cost
criterion, Typical of‘the‘functions to be evaluated in arithmetic com-
plexity are basic multiplication operations corresponding to computations 3
of produéts of maﬁrices, polynonials and integers, of determinants and
perﬁanents of matrices and of the values of a functién and its derivati§es
at.a point or set of points [1,15] and cost criteria génerally consiét of
weightedrsums of elementary operaion counts.._Tbe relative ease with which
arithmetic complexity problems can be statgd 1eaas to an anomalous situa-
tion, since some of the most éasily staﬁed problems remaiﬁ unsolved.. for
éxample, altﬁough it is possible to prove that every positive integer is
expressible as the sum of the squares of_fouf.integers, the best known results
about the minimum number of multiplications necessary to mulﬁiply two 3 x 3

matrices put this number between 19 and 24.

The operations studied in a theory of  arithmetic complexity ﬁay be
represehtedvas mappings Between sets. Then the structﬁres of theée mappings
identify classes of operations which can be studied together. In thils disserta-
tion, the class of n;linear multiplication operations ‘is studied. This class

includes the operations of multiplying sets of matrices, polynomials, quaternions



and complex numbers as well as determiﬁant and permanent calculations on
n by n matrices. If tne elements of tihe inputs and outputs for a given
n-linear operation belong to the ring g2, then the input set consists of
n-tuples, the itn of whose elements is a pi—triple over 9, and the out-~
put set of po—tupleslover 3?...in tnis case, the input-output map de—-
fining the operation is a linear function of each of the entries of the

input n-tuples. An important subclass of the class of n-linear operations

is the class of bilinear operations which are studied in great detail here.

The purposé of this dissertation is to investigate the.mathematiéél
structures associated with bilinear operatidns in order to determine the
basic mathematical questions involved.. The formalism developed is used to
arrive at new results on the number of operations required to do specific .
types of problems. These results follow from the Qnification of ad hoc
methods which have been used previously to obtain complexit& bounds-on these
opérations. This unification results in general methods of dete;mining the
compiéxity of evaluating any bilinear multiplication operation with ;espeét
to any cost criterioﬂ. Furthermore, we are able to reiate many of the ques-
tions askéd in this framework to problens in ;he structure of tensors of
arbitrary order, distance properties of vectors in‘arfinite dimensional vector
space aﬁd various other algebraic and combinatorial problems which rem?in un-

- solved.

The basic problem involved in studying bilinear operations is to
find methods of evaluating the set {<x,Gi y> | i=1,...,m} of bilinear forms
at arbitrary pairs of points (x,y) by a method requiring a minimal number

of operations. In this formulation x(resp. y) is a p~tuple (resp. q-tuple)
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over a given ring &% , {Gi}_ is a set of p by q matrices with entries
in the real fielq, and -<',?; represents the standard inner produét.’ Gen-
eral approaches to this problem [6,22,24,26] hﬁve been previously studied
as have appiications of these and other approaches to detefmining the com-—
plexity of bilinear operations‘such as matrix multiplication [5,6,9,11,12,
14,21,25,27), polynomial multiplication [2,5,6,15,20] and integer multi—'b

plication [7,15,20].

The class of methods considered here for evaluating sets of Bilingar
forms is similar to those c&nsidered in previous approaches. Straight-line
algorithms (i.e. algérithms with nb branching) consisting of three stages are
considéred for this evaluation. The first staée in the evaluation is to
compute the sets {<cj,x> , 3=1,...,d} and {<bj,y? . j=1,;..,d} of linear °
forms over the cpmplex figld: The products pj = <cj,x> (bj,y> are compﬁted
in the second stage and in the final stage, linear combinations of the form

d

L a,, p,
=1 1 P3

= <x,Gi y> ére computed. Algorithms of this form were studiéd
by Fiduccia [6), Gastinel [9] and Hopcroft and Musinski [12]. Strassen [22]

showed that i1f we denote the jk element of Gi by hijk , then

d
Z fad (da)j (ba)k
o=1

where (cajj (resp. (ba)k) represents the jfh (resp. kth) component of the

vector ~c_ (resp. b .
A o (resp. by )
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" An important contribution of this dissertation is the introduction

of a.total problem formulation extending previous approaches and an analysis

~ of the mathematical issues involved in solving this problem. As stated above,

a bilinear multiplication problem gives rise to a set of matrices {Gi} and
to a set of structural constants (hijk)' We find it convenient to represent
these quantities by introducing the set of indeterminates 31,...,sm and to

define for a bilinear multiplication problem, a characteristic function,

m
G(s) = L sS4 Gi and a defining function, H(s,x,y) = <x,G(s)y> . An
: i=1 ‘ '

algorithm of the form considered above for evaluating‘ {<x,Giy>} corresponds

to factorizations of the form H(s,x,y) = I '<ai,s> <ey,x> <b,,y> and

G(s) = CA(s)B where the ith column (resp. row) of the matrix C(resp. B)

"~ is ci(resp. bi'), a; represents a d-vector with jth element aij and

A(s) is a diagonal mafrig_with ii entry <ai,s> . A triple'of matrices

.(A,B,C) will be .called a realization of G(s) if their rows and columns

form a factorizations of G(s) and H(s,x,y)  as above. The.dimension of

a realization is defined ag the number of linear forﬁs in ;he inputs computed,
d in the expoéition above, .The study of realizations and the introduction of
indeterminate variables to yield a symmetric problem formulation are among the

important new contributions of this formulation.

Within this framework, it is possible to study arithmetic complexity

questions for bilinear multiplication problems in a uniform manner. The basic

S

- questions proposed and studied here involve the correspoadence between reali-

zations of characteristic functions and the complexity of algorithms for



evaluating bilinear multipliqation operations. We define the complexity

of an algorithm fo; evalﬁating a bilinear operation as the nﬁmber of multi-
plications ;equifed to evaluate the operation for worst-case inputs. fre—
vious models have used this criterion [5,6,9,12,17,24,26] or a criterion.
cdunting the number of additions required for evaluation [13,14]. >Since.
approaches to the multiplicative and additive camplexity of bilinear opera-
tions are siﬂilar, it is reasonable to assume that analysis results aobtained
using either of these.criteria are applicable to:the other and also to cri-

' teria‘involving weighted sums of multiplication and addition oﬁerations‘
Thus, although complexit& as déed here directly iméliés multipiicgtive-com—

plexity, extension to broader cost .criteria is possible.

- As presented here, algorithms for bilinear operations consists of
three stages. The first stage of a bilinear aigorithm represents the pre-
conditioning étage, the second'thé-coﬁputing stage and ﬁhe third thg post-
cénditioning stage. The measure of complexity introducedrallows for. varying
amounts of preconditiohing and postconditioning-to~be performéd_and not counted..
This 1is achieved by defining a K~-realization of G(s) as a triple (A,B,C)
which forms a realization of G(s) such that all elements of A,B and C
belong to K , a subset of . The degree of the éharacteristic funcfion
G(s) over K , represented-by 5K(G(s)) is the dimension of the K-realization
of G(s) of minimum dimension. This realization éives.rise to an algorithm
for computing the bilinear operation cofresponding to G(s)i~which is of oﬁtimai
efficiency over K . The function GK(G(S)) evaluated over subjects K of T
glves a total characterization of the complexity of thé bilinear operation

giving rise to G(s) . An important contribution of this dissertation is the
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allowance for variations in. X in conmputing GK(G(S)). Previous formula-

tions were restricted to the cases K =/7[11,12] or K ='}'R [6,23].

Pe%haps the most important tests of a problem formulation are its
effectiveness in modélling a real situation and the simplificatioh of solu- -
tion which it generates. The model we give is fully defined and_its effect-
iveness defended in Chapter II. Chapter III is devoted.to studying methods -

of achieving the second goal, by generating analysis and synthesis methods

for evaluating ’GK(G(s)) for arbitrary K and G(s). In Chapter II, we

discuss methods of generating classes of realizations from a given one and
methods of comparing the complexities of seemingly unrelating operations

are presented, the differences between cost functions (i.e. measures of

"complexity) are also discussed with regard to practical issues involved

with preconditiong. The analysis methods presented in Chapter III are used
to evaluate .GK(G(s)j for argitrary‘ K by examining the degrees of sub-
characteristic functions of G(s) and studying the form of G(s), "Methods
of finding lower bouh&s on GK(G(S)) by evaluating the degrees of operations
which are easier than G(s) are also studied as well as nmethods of reducing
the evaluétion of 6256(3)) tp a prdblem in coding theory. VA synthesis pro-

cedure for bilinéar oﬁerations is also studied.

Chapter IV is devoted to understanding extensions of the results ob-

‘tained for bilinear multiplication problems to an n-linear structure. The

A\ .

obvious extension of the bilinear model is presented, its strengths and
weaknesses are evaluated and alternatives are mentioned. Contact is established
with Strassen's [23] lower bound of O(n log n) operations for the evaluation

of the symmetric functions in n indeterminates. Of particular interest in



this setting are the problems of computing the determinant and permanent
of an n x n matrix as functions of its rows or columns. These brobléms

are studied in the context of each of the models proposed for evaluating

n-linear operations.

9

-

In the final chapter, the results presented within the disserta-
tion are summarized. Various suggestions for further research are given

in addition to the open problems and conjectures presented throughout the

body of the thesis..



_ CHAPTER II
THE OPTIMAL EVALUATION OF A SET OF BILINEAR FORMS
J,'_Bilinear_kh.ll.tip lication Prob;l.gms .

The major focus of this chapter 1s on the evaluation of a number
of bilineé:'forms, and in particular, on minimizing the number of
multiplications required for such an evaluation. If zﬁresp;_x) is a

- p-vector (reép. g-vector) over an arbitrary.fiéld and Gi is a matrix
over this field, i=1,...n, then we wish to evaluate the expressions

<x,G,y> = g § h # y. s 1=1,2,...m (1)
i k=1 =1 1jk i’k

whgre <.,+> represents the standard innef product. The approach taken

is to adopt a certain general model for the computatidn and to discuss,
within this context, upper and lower bounds on.the number of multiplications.
These sets of bilinear forms arise in ?onsidering bilinear multiplication

problems such as matrix multiplication, polynomial multiplication,. etc.

The multiplication problem is defined completely by the constants

(hijk) vhich we hereafter refer to as the structufal constants of the
multiplication problem. Since we deal with bilinear forms rather than

quadratic forms. there arébno natural symmetries satisficd by the numbers

h Therefore, any such array is potentially interesting set of structural

13k

constants. To avoid trivialities we assume that no nontrivial linear

éombination of the type 0.
Zogh gy
or s

2Byhy ok



or

zyihijk
vanishes,Such structural constants will be said to define nondegenecrate

multiplication problems.  As will becore clear, the general problem can be

reduced to a nondegenerate one in an obvious way.

It is also convenient to charactcrize the givon problem by the Gi
or more briefly by a degrce one matriy polvnomial ifom indcterminants.
™ : :
: . (2)

def
G(s) g X SiGi
i=1

- where the jkth element of Gi is just hijk; Ve refer to G(s) as the

characteristic function of the problem. Finally the scalar

= <x,G(s)y>- (55 )

Hs,x,y) = Z E

8,X.Y
11 1 L i?k 1%5%x

The integer m plays a role analogous

is called the defining function.

dim x and q = dim y. "We. call m the index of the problem.

top =
If the Gi-can Ee expressed as a linear combinatioﬁ of rank one
matri;es
, n
Gi - azl aiaDa

then the set of bilinear forms (1) can be evaluated with n multiplications.
~ That is, since cach of the Da can be expressed as Dd = ¢ b' where cabis a

column vector and b& (the transpose of ba) is a row vector

a .
. <x Ty>
Z aia x,cabay

<x,G,y> =
* a=1

X GRS ¢ >b o
a=1 1o

~ -
X Cx ég y
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. n _ . -
= Z a, <c_,x><b_,y> (4)
0ol i "o o - _ -
If the a4 and the elements of Cy and ba are sufficiently simple so as

to make multiplication by them negligible i.e. 1f these multiplications

can be regarded as free, then only the products <ca,x> times <ba,y>'

need by counted in assessing the comélexity of the computatién. fhis develop-
ment is;similar to the development of Strassen [22], pé. 9-10]; Fidueccia

[6, pp. 36-7], Gastinel [9, p. 222] and HOpcroft—Musinski {12, p. 74].

The major new contribution of this development is the introduction of the |

indeterminates 8y and the consideration of the index (= dim s) of the

proble@ in a manner analogous to p =‘dim x and q = dih,y.

" We let K be a sﬁbsct of the real nunbers such that multiplication B
of‘any number by aﬁ element of K is not to be éountcd in-tallying the |
number of effective multipiications required. Iﬁ order for this to be
a-self-consistent'mgasure of complexity in a setup vhere addition is
free and iteration is permitted K would have to be closed under addition
and multiplication. However for most of the mathematical questions
which arise here no ambiguity results 1f Qe do not require K to be a
subring of TR or & so we do not make this a general hypéﬁhesisr AIn any
case, for most of our results the exact choice of K is irrelcvant..

In decomposing the Gi as a sum of rank oné matrice; as.indicéted
above, it is necessary that the vectors bi and g have their elements in X,
This leads to the definition of the K—degree'of (hijk)’ or G(s), as tge
minimum number n such that there exist wvectors ba and bu with elements

in K,.and a natrix (aia) with elements in K satisfying
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(».
E i=1,2 m -
= LI yblyo e )
Gi al ‘C b > ’ | . (5)

The K-degree is simply the minimum number n such that (hijk)'is

expressible (see Strassen [21],page 10) as

n

) = 1

L (a,) i(.ca):j (b )y

| wﬁere.(aa)i represents the ith component of the véctor aa; étc.
We denote the deegrée of a characteristic function by 5K[G(S)]. In
terms of the defining fﬁnction, the K-degree is the smallest number n
suéh that |
| n

<x,G(s)y> = azl <aa,a><ca,x><ba,y2

N

»where the entries in as ba and ca. are all in K. This fo:m.
reveals thie complete symmétfy of fhe roles plaved by x, y and s,
ﬁhcreas most of tﬁe other fqrmdlations tend to mask this véry
important fact. Thus the introduction of s iﬁto thé problem -
which we regard as one of the important new aspects of this thesis --
pays off by revealing iﬁmediately 6 equivalenf proﬁlems obtained bf
permuting Xy, Vs 5.

We conclude this section with some examples which serve to

{llustrate these ideas in several specific cases and to fix some

~
~F

in greater detail and further examples are given in the appendix. N

notation required later on in the dissertation. These examples are described



- 12 - ’ . -

Example 1: (Complex number ﬁultiplication) Consider the problem
of multiplying the complex numbers (xl+/:i.x2) and (yl+/:T y2).
If x = [zﬂ and y = Bﬂ , then we wish to compute <x,Gly> and

<x,G,y>, the real and imagiharyrparts of the product, where the '

2

_ e o |10 _ o1
matrices.cl and G2 are glven by Gl [5._;] and G2 [l ;] .
This problem gives rise to the characteristic function

* 9

I(s) = Glsl -+ Gzéz =

i %2
SZ' “Sl

and defining function.

H(s,;x,y) = <g,1(s)y> = xl?'lsl+xlyzs2+x2y132—x2y29l .

Example 2: (Two by two matrix multiplication) Consider the problem

N

of 2 by 2 matrix multiplication. Let

The problem of computing X Y = Z gives rise to the defining function

H(s,x,y) = x1Y151+”2y3 PRRSRPAP PR M Y R M S M 54+“4y454

This gives a characteristic function

—

sl S, 0 0
' 0" 0 s s
1 2
G(s) =
Sq 54 0 ‘0
.s.f 0 0 53 SIL

: v
The fact that H(s,x,y) can also be exoressed as {v,G(x)s> with-



X 0 X4 0 . )
0 b4 0 X
Vv
Xy 0 x4 0
.P X, 0 x4J .

and also <s,6(y)x> where
. -}1' y, 0 0

G(y) = :
- 10 0 y1 y3

0] .0 v yz. Y4

give;'rise to 3 alternative ﬁroﬁlcms. In this case it happens that
these forms are also obtained frém cach other by permutation of fows>
‘and columns. | _

Example 3: (Polynomial mhltiplicatién) Consider multiplying a poly-
'nomial of dcgree.ufl by a polynomial of degree v-l;‘ If thé polynémials

" are written as

. ‘J -
x(t) = } xjtj o
jnl . -
vV
k-1
y(£) = ] wt
k=1
then the defining function is

H(s,x%,y) = Z Z S,y 1%,Y
Ads 351 k=1 j+k-1 é k 2

and the characteristic function is



~
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-
Bl. 52 83 ) SV
82 83 94 see S\H"l
Pu’v(s) =18, €, S5 ere Buig
8y S Tzttt Sphv-l

In this case by forming é(x) and e(y); we notice that the same defining |
function arises in the préblem of multiplying a u by v Toeplitz'matrix
by a v-vector or a V X i Toeplitz matrix by a u-vector. Thus these
seemingly different problems are all the.same, in a sense to be made
precise below. |

Example 4: (Matrix Multiplication) Let X and ¥ be.ﬁxm and WXV
natrices respectively corresponding to vectors x and y of length

Hw and wv respectively such that the ij element of X is the i+(j -Duw
element of x and the ij element of Y is the (i-1)wt]j element of y.

1f Z is the ww matrix corresponding to the product of X and ¥ and z is
a UV vector such that the 1j element of Z is the (i—l)u+j.elemént of

%, then the defining function for uXw by va matrix nultiplication

is given by
Ty v oV w -
n(s,xfy) f jzl.sjzj . azl azl S(a—l)u+BY§l ok (y-1)w (Y-1)wHB

In order to represent the characteristic function for this problem,

we introduce the characteristic function



81 82 T LI ] Sv
Sv+l w2 B
ew(s) = . : H

*0 e s
Su(u-1)41  Svu(u-1)+2 Y

and represent the characteristic function for uxv by vxw matrix multi-

plication by

OUV(S)

8,(s) | |
thw(s)= . 5w b;ocks

'Guv(S)

by

As noted by Hopcroft—Musinski‘tlZ],permuting the order of the éubscripts'

on M yields problems of equivalent difficulty. 1In the special case

where v=u=w, ve write Mn(é) instead of Mn

’n’

n(s).‘
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2. Fqu1v11ent Characteristic Functions

In order to classify the difficulty of nultiplicatlon problems it
is desirable to understand the different ways in which problems of the
same difficulty can present themselves. With this goal in mind, we intro-

duce a partial order on the set of characteristic functions and explore

+

its usefulness.

Let us indicate by ™™ the set n by m matrices vhose ‘elements take
oﬁ values in K. We say that a characteristic function Gl(s) K~dominates
a characteristic fundt%oﬁ G2(t) if there cxist‘ matrices P, O and R
having elements in K such that

. &y G, ()
PG (QEIR = Gy (t) &y (5D =~ 2 |

—

This amounts to being able to encode-computationé of 62 into computations

of Glnand in this case we write Gl(s) :? G (t). We say that Gl(s)'and'

G (t) are K—equivalent if él(s) Ga(t), G (t) 1(s) Ve write this as

that two sets of structural constants (hijk) and .

Gy (s) - G 5 (E). Ve say

(h%, ) are K-euuivalent if their associated characteristic functlions are
ijk ——

The following theorem justifies our choice of words.

Theorem 1: If G)(s) K-dominates Gp(t) then 6,[6,(=)] » 8,16,(0)].

and if Gl(s) is K-equivalent to Gz(t) then GK[Cl(s)] = GK[Gz(t)].

Proof: 1If Gl(s) 121G11 i is of degree GK, then there exist ragk one
matrices D, and a matrix A with 1jth ent
{ ' 3 Iy gy such that.Gli 321 a ij
and
Sy

(s) = X a,,D
e 1=1 jzl 174373
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r m

By hypothesis Gz(t) = PG, (Qt)R 'so that Gz(t) = Z Gzz 2 zzl(izlqiz R)t

. Thus, a realization of Gz(t) of degree 5K_is given.by
P11
G, (t) - o, PD,Rt
21 §=1 1=1 R R A

which shows that GK(GZ(t) < GK = GK(Gl(t)). The theorem follows obviously
from this realization.

'There is a second kind of équivalence which relates to the

structural constants (hijk)' Notice that <x,G(s)y> = <y,GT(s)x>. We

A v
define G and G by the equations

H(s,x,y) = <x,G(s)y>
= <s,G(y)x>

v
= <y,G(x)s>

Two characteristic functions will be said to be pcrmutation-énuivnlent

if they become identical after an interchange of the indices of their .
stluctural constants. If we denote by T the map that takes C(s) into
G (s) and by V the map that takes G(s) into G(x) then T and V generate
" a group which is isomorphic to the permutation group on 3 letters. We de-
note this groixp byr‘, and its clements by e (the identity), T, \/, \-’2=/\,
TN =\/2T=AT, and\/T=TV2 = TA. Notice that nondenencracy is invariant
~ under the action of T.
_ Tgeoggg_gi I1f G (s) and G (t) are pernutdtion equivalent they have the
same degree. That is G(s), G(x), G(y), and their respective transpooes
ail have the same degree.
Proof: This is aﬁ immediate consequence of the fact that cqual defining

functions have the same degree.
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Special ‘cases of permuﬁation cquivalence have been studied by Winograd [26]
and Fiduccia [6] (matrix;vector products) and Hopcroft-Musinski [12] (matrix
multiplication). We find it desirable to formalize this idea here because to
leave it implicit would cbscure some of the important features of our development.

We close this section with some basic elemeﬁtaf& degree eétiﬁates.

Theérem 3: Let G(s) be of index m and suppose G(s) is nondegencrate and

p by q. Then

1) max(tﬁ,p.q) < GK[G(S)] < min(mp,mq,pq)
11) max(rank(Gi,Ei;ai) £ GK[G(S)] |

: m D v -
< min( X rank Gi’ Z rank Gi’ g rank Gi)
i=] j=1 ‘ i=1

Proof: ' To establish the first part we observe that we need at least m

terms on the right of equation (5) if there are m linearly independeﬁt .

1 have p rows and q columns

then they can be expressed as the sum of min(pm,qm,pq) rank one matrices,

ones on the left. On the other hand, 1f the G

The other inequalities follow from permutation equivalence as in Theorem 2.
The second statement follows from a slight modification of this

same argument.
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3. Symmetries of Characteristic Functions

In the previous section, we defined equivalence for characteristic
functions. ;n this section we discuss characteristic functions which
are equivalent to themselves. We will make application of these ideas .
in section 4 which is devoted to the.realizgtioﬁ of characteristic functions..
In a case such as Mn (Exampie 4) Qhere a characteristic function is .
équivalent to characteristiq functions to which it is permutation equivalent,
the situation is especi#lly interesting as is outlined below.
To begin with we define the gtabilizer, ZK, of a characterﬁstic

function as follows

Z (G(s)) de£{(Pl, 2 3)|P11,P;1,P;l exist over X

-

Py, 2,P are matrices éve: K and RlG(st)P3 = G(s)}

When K is a subfield of C it is easy to verify that the stabilizer
admits a group structure with the multlplication operation (Pl’PZ’P ).
l -1

(Q,Q,5,Q4) = (QlPl’PZOZ’P3Q ) and inverse (P,P,, 3) (P Py"sPaT)

The followin? theoren describes the invariance of this group under the

action of r.

Theorem 4: Let K be a subfield of §. Then EY(G(S)) is invariant under
— - _ Y : .

the action of the permutation equivalence group T; i.é. the six groups.
L (G(s)), ZK(G(Y)), L. (6(x)), Z,(67(s)), I (G (y)) and X (G (x)) are

all isomorphic.

Proof: Let T @ (Pl , P ) > (P3, 2,P )

T T

Vv

ifyeTl and P ¢ XK(G(S)), then y(P) € ZK(Y(C(S))). Ii.is_easily verificd
that vy dcfincs-anlisomorphism Betweqn XY(C(S)) and XFCfC(S))° The latterx

is XK(&(Y)) if Yﬁ\/g.Similnr argunents cover the other cases.
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To make this idea more concrete we now compute the stabilizer

in two important cases.

Lemma: Aen n(s) = On n(Bs)C where A, B and C are invertible if and'

only 1if BT = T@ C‘l.“l-

Proof: Let BL be partitioned as

bp byp e By

Bpy By e By
BT = | . |

N N

then ABn’n(s) = Gn’n(Bs)C if and only if

X-a Sy = Z Z Z b, ~ - a for all i,k.
3=1 137( l?n+k y=1 o=1 B=1 (i 1)n+Y,(d.1)n4P Yk (& l)n+ﬁ

Equating coefficients fof sp, p=1,...n2 yields

A, C=oa, ¢t and thus BT ==_AT®C—1.

13 3

Corollary: .If Aen’n(s) = Qn

iIn or Aij = aji

n(Bs)C where B 1s a given invertible
4
nzxnz maﬁrix, then if‘BT = AT(:)C—l is a factorizafion of BT, all others
are of the form Bt = (}:A)T®(kc)-1 (for k#0).
Proof: Obvious. .
Lemma: 'AMn(s) = Mn(Bs)C 1f and only if there exists an invertible
‘ ‘ T T -1 -1 -1 T ~1 .

= P = ¢ . = R
métrix P such that A @All, c P ®C11 and A11® Cll- bi]
Proof: Let A and C be partifioned into nxn blocks, then AMn(s) = Mn(Bs)C
if and only if

S -] BS L
_Aijen,n( ) en,n( )rij

Therefore,

1 @ represents the Kronecker product of matrices



and

T T . ~1__1 -1 -
A, =P A, cij-l,ij.cll, Cy = PyyCu

This yields the conclusions

T T T =] '
| LA -P@All, c=P®gll and.B=A11®Cll for an
invertible matrix P. |
These résults can now be summarized in a statement of the stabilizer
ZK(Hn(S)) ~ .
Theorem 5: (A,B,C);SZ?K(Mh(s)) if and only if there exists an

inver;ible matrix P such that A = (P—l)T(J Ali,

T -1
B = All® clq

'Theore@_gz If (Pl,Pz,P3) € ZK(Pujs)) and P, = DP where D is.g diagonal

c=P®cl1 and

matrix over K and P is a permutation matrix then P 1s of one- of the

] . -

Proof: Either P, : s * s maps sy * kisi or s, * kiSZn—i if Pis Pg

forms

. -1 - -
exist such that PIPUV(PZS) Puv(s)P3 .and furthermore 1f one.of

these forms occurs for one i, it occurs for all i.

The utility of this analysis will emerée in the next section.
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4. Realization of Characteristic Tunctlous

We have ﬁefined the degree of H(s,%,y) over K as the smallest

{ntegcrn such thot there exist veetors a ., bu’ ¢, 0 =l,...0 over K
n
such that H(s,x,y)= Zl<aa,s><cﬂ,x><bn,y>. If K = 7R this corresponds to
. o= ) . .
Strassen's definition of the rank of the tensor <h1jk)([22]’p'lo)'

We want .o look at this from a different point of view. Defihe the

matrices C, A(s) and B as

P~ ‘ ‘ -y adi -1
. <a.,s>
....l’ b 1)
=1
( <.a.2’3> )
A(s) = .
' ‘. B= |.
<a 8> b
- -ne A

e

C= [21 .o En]_

It 4s clear that G(s) = CA(s)B.if and 6nly if H(s,x,y) = (},G(s)y>’=
<%,CA(S)By>n. Any such triple of matrices (A,B,C) will be called a

K-realization of G(s). The infeger n isccalled the dimension of the

'realization. in view of the above construction we see that the following

theorem holds.

Theorem 7: The K-degree of G(s) 1is equal to the smallest dimension
of a K-realization of G(s).' -

Example 5: Consider a h,o,—ﬂ —realization of 2nd degree polynomiali
ﬁgltiplication. Ve multiply (xl+x22+x322) and (yi+y22+y3zz). The

appropriate G(s) and a realization is

Sp - %2 %3
CA(s)B = 8, 84 8,
85 8 By

vhere
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7 l1 0 0 0 1 1
C=3"={0 1 0 1 0 1 and
0 0 1 1 1 o

- “+

5,785,784 0 0 0 0 0
0 8478,~S, 0 0 0 0
0 0 8.-S,~S 0 0 0]

: 57374
A(s) =

0 0 0 5, 0 0
0 0 0 ,0- S4 0
0 0 | 0 0 0 Sq

Example 6: One form of the Strassen algorithm [21] for 2 by 2 matrix

muléiplication is revealed by

1 8y 0
10 s 0 s
CA(s)B = 1 _ 2
S5 0 s, 0'
P 54 0 54‘
where
L. - -
Sl+84
18,78
.sima
A(s)= : 475,
Sj+sl
.Sl
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: 1 -11 00 0 -1
L c. |0 10 00 1 0
| 06 00 10 0 1 -
-1 00 -1 1 -1 o0
and
1 0 0 -1 .
0o 0 0 1
o 0 1 1
B= f1 0 0 o0
1 1 0 o
0 1 0 1
: 1 0 1 0
i .

This form has been studied by Fiduccia [6] and Castinel [9] who extended
the algorithm to obtain upper bounds on the difficulty of multiplying
nxn matrices. We prove below that this factorization is ninimal and

study lower bounds on nxn matrix multiplication.

One advantage of working with realizations is that the application

N

of standard algebraic machinery will allew one to describe in a convenient
way some of the processes by which algorithms can be combined to form
more complex ones. The three most basic processes‘ of this type are sum,

direct suq,and,Kronécker product which are defined as follows:

def r +m
1) G(s)Hi(t) = J(u) EF T J.u
ii
1=1
. : G,s, . 1€igm
vhere Jiui " 174 .
34 t ‘m<igntr . .
i—m i

-where m = dimension of s and r = dimension of t.

‘ Bu,) ©
i1) G(s) (j) H(t) = J(u) 9&F L
. 0 ll(uz,

ulus, u2=t, u=u1 J u2
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131) 6(s) © n(e) = I(w Y @ i

wvhere Cg -indicates Kronecker product of ﬁatrlces.and_ull = Sltl’
u,, = s,t....u =g t where m is the dimension of s and r 1s the

21 2°1"" " “mr mr _
dimension of t.

We have as an immediate consequence of these definitions the

following theoren.

Theorem 8: If G(s) = ClAl(s)I:l and H(s) = CzAZ(s)B2 then

. B
1) G(a)+H(t) '='_ -[Cl,CZ] [Al (s) @ AZ,(t)] I;il
11) 6(s) O = (€; B C,) (A () BAL () (B, BBy

111) 6(s) @H(r) = (C; @ C) (A (8) @A (D) (B, (B B,)

vwhere sitj are to be interpreted as distinct indeterminants for
distinct index pairs (1,3).

Corollary:
1) 8 (G(s)HI(E)) < GK(G(Q))+6k(}!(t))
11) aK(c(s)@xxét>'>s 5, (C(s)) + 8, (I(t))

181) 6,(6(s) RH(D)) € 8, (6())8 (L))

Remarks:

" 4) 1If K =Z (the integers) orﬂ? » then it is easily verified that

. ' n n

Pn(s) C}Pm(t)-:% an(Q) and therefore -ﬁéPzn(s)) < [GK(PZ(S))] =3,
We will discuss this inequélity further in é later section.

1i) If K =,ZZ or n2 , then it may be verified

() @M () oM (W

)
HosVgsty o 7 R U, sV V)s 150y

i
HyoV10¥y

and thus é;(M?n(s)) < 7?.
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For example i1) givcs'thc uppcf bound 168 on & by 6 matrix multiplication

& , . 1. 3 1>
by vicw1ng‘this as the Kronecler product of J222<)}2{I3but gixas a bound
. 7 ‘ < Iy v\ M .
of 165 by vicuving it as 12’3’2(2) 3,2,3
As is apparent from the work of HMopecroft, Kerr, and Musinski [11], ([12]

it is useful to know not just one realization of a given G(s) but rather all

realizations of it. For example, their algorithm for multiplying 2 by 3
* matrices by 3 b& 3 matrices uses 3 dikferent forms of 2 by 2 matrix
multipl%cétion in a subtlé way. The concept of a recalization ié ideal for
describing how one pgets large classes of algorithms from a givén one, as
we will now describe. | |

If G(s).= CA(s)B and if Plc(Pz's)P3 = G(s) then it may be verified - - :
 'that G(g)'= ClAl(S)Bl where ' -

Ci= % ) | , - )

B, = E,BP, '
3

Ay = By APy

and Ei are any diagonal matrices.. This comes about by inserting

ElEil and EZEzl'in the expression for G(s) according to

. N
A(S)E2 EZB

qA(s)B = CE;E;

the matrix A and‘A(s) being related as indicated at.the start of this
gsection. If we have in mind realization over a subring K‘:d: then of course
the elements of Ei and Pi must come from this ring. It would be especially

pleasant if it turned out that all minimum dimensional realizations

-

were so related. We therefore pose an open problem.

Open Problem: Are all K-realizations of G(s) of minimal degree generated

from a given one by considering permutation eaquivalences and the action

of ZK(G(S)) according to the above equations?
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£ 'the answer to this question is true, as we conjecture it is,

then it .will be iaossible to apply the results of the prévioué seéf:ion |

and the group structure of EK(G(s)) to greatly reduce the effort needed

to determine, for a given n, if there exists a dimension n realization -.

of G(s) over. K.. Furthermore, if all realizations of smaller problems :

are known,. this result can be used to combine them, as done by Hop?:roft

and Musinski '[12], to form realizations of large problems. If K = Z, '
then all K-realizations of minimal degree are related in th:ls-manner for
complex multiplication (shown in Appendix Al) and 2x2 matrix multiplication

(implicit in Hopcroft-Musinski [12]).
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5. Effects of Preconditioning and Field Extensions

Most of the results ﬁresented here regarding lower and upper
bounds on the evaluation of bilinear and n-linear operations are
independent pf the choice of the set K. This is clearlyvdesirable
in the development of a general tﬁeory and to the derivation of upper
~ and lower bounds on the operations which we study. However,'in
practice, thé nature of the set K is very often of central importance.
For example, Winograd [28] shows that thle the mihimal_algorithm
‘fOr P3’3 over the real or complex field is of degreevS, it always
requires that many divisions. The minimal algorithm oVer the set
{1,0,-1} is of degree 6 but of a very simple f;rm and desifaglé in
actual prattice. However, it appears that for largé enough values of
vn, minimal degree algoriﬁhms for Pn’n'over ﬂQ o}q: require less
work than'realization.of minimal degreg éver the integers. Before
defining a cosé criteiio; which will enable us to measure the relaéive
efficiencles of algorithms in a more complete way;.we will study the
effect of field extensions on a bilinear operations degree in order
to understand what we want to include in a cost.criterion. Our notation
is standard and can be‘found in Lang [16].

Theorem 9: 1) .If G(s) 1is any characteristié function over ZZ; then
BAC()) 3 8{G(s)) 3 8p (6(s)) > &y (é(s)) |

1) ‘If K. and Ko are subfields of C such that Kl is a

1

normal extension of Ko of even degree, then there

exists a characteristic function G(s) over Ko such that

GK (G(s)) > GK (G(s))
o 1l
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Furthermore, for any integer p there is a characteristic
function G (s) such that
O (5f2)) > & (@4

i11) If K2 is a normal extension field of Kl which is non-

trivial then there exists a characteristic function

G(s) over Kl such that

N 8, (6(s)) < 8, (G(s))
K, K

DK, then any K,-realization is also

Proof: 1) It is clear that if K2 1 1

- a Kz—realication.

ii) 1f Kl is a normal extension of Ko of even degree, then there
‘exists k € K, such that vk ¢ X, ano the extension can oe factored |
.through the field.K (/kK). It suffices to prove that there is a
characteristic function, G(s), ‘such that GK (/—)(G(s)) < 6 (G(s)).

Ko
Such a characteristic function is given by G(s) = S1 kgj] and a p-fold
2 1

direct sum of this characteristic function ylelds one of degree p
less over KO(/E) than over Ko.i

i11) TFor a polynomial ¢(x), let G¢(s) be the characteristic

function corresponding to multiplying,polynomials of degree less than
the degree of ¢(x) modulo the constraint ¢(x) a 0, Corresponding to

any non-trivial normal extension K of K, is a polynomial r (x)
2 1 K2,K1
"irréducible over Kl which has kz as its splitting field, and it is

easily verified that §;

X (4 T, - (8)) < GK (¢ . (s)). Fiduccia's

2 Ky 1 KyKy -
discussion of companion matrices [6] also considers this operation.

Remark: It is worthwhile to note that all degree 2 factorizations

of Go(s) are of the form G(s) = (CDi)(DIlA(s)Dzl)(DzB) where
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s, +s

[l- 1] 12 T . !
c= e VE , A(s) = 2 8,75, , B = C" and Dl and D2 are
‘ 2/k
nonsingular diagonal matrices.The degree 3 factprizatiOn G(s)=KH(s)F
L . 1782 ‘
Fe= |01l =K, H(s) = ksl-s2 18 mare desirable for
1l s

2

computation than any'degree 2 factorization and we wish to design a
cost criterion which reflects this difference. |
It is also helpful to understand how much a field extension can
help in,order to find a cost criterion which is as realistic as possible.
Theorem 10: 1) If G(s) is a characteristic function dverzzz, then there
exists an integer N such that GQZFNG(S)) = §L§G(s)) . ' | |
ii) For any G(s) over[g ) (G(s)); -l (Q(G(S))

Proof: 1) 1I1f G(s) = CA(s)B over Q, then we can find integers Nl’ 99

and N3 such that NlC N A(s), N B are matrices over ZZT If we take :
N = NlN2 3 then NG{s) = (NIC)(NZA(S))N3B and the?efore §-(NG(s)) =
§~ (G(s)).

d§( (s))

i1) If G(s) = CA(s)B overd: , then we can write C = CR+iCI,
1 Are Apr Bp 1
real matrices, G(s) = CR(AR(S)BR—AI(s)BI)-CI(AI(S)BRfAR(S)BI), and

A(s) = AR(S)+1AI(S), B = BRfiBI where CR’ C., A B. and B. are

FR<AI(S)BRfAR(S)BI)+CI(AR(S)BR—AI(S)BI) = 0., In this case,

A (s) A (s)

L B ~-B]
G(s) = [CptC; Cp=C; -2C;] 5 | | R °I
Ap (s)-A; (s) '

2 1R

i ' AI(SZ{_BR ]

is a realization of thrice the size oyergg .
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"Remark: In light of i) in Theorem 10, it seems most realistic to
have in our cost criterion allowance for scaling, since it is entirely
poésiﬁle that there exist characteristic functions of much larger |
degree ove:}Z?than(Z? which can be scaled to yield characteristic
functions of the same degree. |
For a reglization CA(s)B of G(s8), we will define the work of the
algorithm by wk(C,A,B) = k[d(C)+d(A)+d (B) ]+ (dimension (A)) Qhere.d(x) '
is the diffiﬁulty of.multiplying the matrix X by an arbitrary vector
and k is a given weighf. Furthermore, we shall define the cost N of
a given cbaracteristic function with respect to the weight k through

the-following

e

Definition: o (G(s)) & minfw, (C,A,B)[CAs)B=6(s)}

ue>

min{ 2w (C,A,B)]CA(S)B = NG(s) for N any nonzero

scalar}

2
e, (6(s)) k/2

il

&, (6(s)) & min(el(6(s)),e2(G(s))).

‘ This definitiph was chosen because it provides a realistic complexity
measﬁre and is general enough to handle the situations described in.Theorem 9 énd
10. In much of what follows, we shall leF k = 0 and seek only minimum |
degree algori;hms, Regardless of our choice of k, the following will
characte;ize bounds on the complexity of evaluating a set of ﬁilinear forms.
Theorem 11: 1) If Gdj(c(s))'= nm, then no algorithm for evaluating the set

of Bilinear forqs in G(sj requires less work fhan the computation of m.

ptéducts ofhlinear forms in the inputs,

11) If.F3‘= {1, o0, -1} and GF (G(s)) = n, then the minimal

. 3 .
algorithm for evaluating the set of bilinear forms in G(s) requires less
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work - than the computation of n products of linear forms in the inputs.
When considering a family of characteristic functions we will
write c(;ﬁh(s))= 0(f(n)) if for all nonzero k, ck(éﬁh(s)) grows as

0(f(n)).



" CHAPTER III
UPPER AND LOWER BOUNDS
0. Introduction

In the pfeceediné chapter, the generai bilinear mnultiplication
pgoblem‘was described. It is clear from that déscription, that the
major problem to be studied is the dete?mination.of methods for

- evaluating GK(G(S)) and ck(G(s)) for arbitrary charactér;stic functions.
Two classes 6f methods exist for evaluating these functions, analysis
methods and synthesis methods. Anaiysis methods aré used for deter-
nining léwer bound; on GK(G(S)) and ck(G(s)) b& analyzing the structure
of G(s) and determining the difficulty of realizing characteristic
functions ﬁaving tﬂis structure. Syqthesis mefhods consist of finding

- algorithms for generating realizations of arbitrary cﬁaractetistic
functions. TAree types of anaiysis pfoqedures and a single synthesis
procedure are discussed here.

The first énalysis procedure consists of extending the results of
Winograd.[26]fand Fiduécia [6] on the application of linear dependence
to the detérmination of upper and lower bounds on matrix-vector products
to the present framework. These methods are used to detérmine lover
bounds on the partial evaluation of third order tensors at a pair of
vectors. This procedure is most valuable in finding lower bounds on
GK(G(s)). Next, ﬁethods of relating ck(Pn,m(S)) to ck(Mb’q’f(s)) are
discussed for various values of n,ﬁ,p,q, and r. These results are use-
ful in determining lower bounds_on the work necessary to compute with a-

family of characteristic functions. Our final analysié procedure consists
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of relating the determination of lower bounds on GZZ(G(S>) to some
problems in algebraic coding theory. The synthesis procedure we
discuss is one that finds realizations of G(s) by finding factorizations

-

of the structural tensor (h

:ij)'

-t
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1. Lowor Louwu% Obtained by Partitioning

Winograd [26] and Fiduccia [6] have shown how linear dependence,can

be exploited in the analysis of the arithmctic complexity of multiplying

a matrix times a vector. To fully utilize linecar devcndence arnuments, it

is necessary to deal with linear dependence as gpplied to rank one matrices.
The problems are highly non-trivial because rank one matrices do pot.form a
vector space.' One aspect of the Winograd argumeﬁt is the fact that rank

is invariant under interchange of indices, i e., transposition, for a second-
order tensor (i.e. a matrlx)._ This yields bounds for multiplying particular

matrices by vectors. By comparison, what we do here is to find lower bounds

 for the partial cvaluation of certain third—order tensors at pajrs of vectors.

Here it is again true that the rank of the tensor is invariant under periu-.
'tation of inoices and the six permufationq vhich exist can be used to providc

in31ght into the difficulty of this evaluation. By focusing attention on

the structural constanto (h jl) rather than the {C } we are able to take

maximum advantage of the flexibility provided by the invariance of’ degree
under interchanges of the roles of the row, célumn and iIindeterminant
variables. | |

We begin with two lemmas which form the basis for a number of new
results. In this section si refers to an ordered subsct of the set of
indeterminants s wﬁcreas H is, as always, a particul;r element of s.
Lemma: If G(s) = [Gl(sl)‘cz(sz)] vhere sl and s2 are nonovcrlaﬁping sets

of indcterminatés, then

5[6(s)] > §1C;(s1)] + index of (G,(s™))

" Proof: ‘Let G, be exnressed as

i
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and let Dj denote the restriction of Dj to the left part sctting the right

part to zero. Then clearly at most Vv = n-&[Gl(sl)] linearly independent

relations of the form
n -
z g,.p, =0 i=1,...V

can exist. For cach such relation, we can dcfiné a matrix
n
Ay = } B 15y D)
such. that the set qf matrices Al""Av . form a basis for the subspace .
of the linear span of the Dj consisting of matrices vanishing on the left.
These matrices are of arbitrary rank, but at least index [G (s ))] are

required to realize GZ(S ) and therefore v 2 index [G (s )] Similarly

n 3 6[02(92)1+index (Gl(sl)).

- le,(s) 0
ees) = | * o,
0 0

" then all minimal realizations of G(s) are of the form

G(s) n.[g] [A(s)][B 0]  where CA(s)B = G,(s)
Proof: It is enough to establish the lemma in the special case 1if

G(s) = [6,(s),0]

where O indicates a single column since the more general case follows by '

adding more columns of zeros one at a time and by transposition.
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1f (G(s),0) has ann dimensional rcalization with any nonzero
* entries In the last column then we will show thdt the deprec of G(s)

{s n-1 or less. Suppose

n n .

(G(s),0) = (G ,O)S = Z s.0..D . ..
. izl 1 _ 121 3=l 17433 o
m . n .
g Z Oy yepby)t Lo gy ®yep )

- where we have used the fact that we can normalize the last column of the

dyed, 1f it is nonzero, by appropriate choice of the row vectors cj. ‘

Now since .

v
jzl uijbj = 0

We can subtract this sum,,poét multiplied by (Cl’l)’ obtaiﬁing

_ I,
(G(s),0) = s (b, (c,~c,),0)
. 121 ij§1 146479
o5 et LS
(G(s),0) = s, ( (b ,0) + a c,,0)
. =1 * g=2 3  nsvHl 13 5% )

which shows that G(s) is of degree n-1 ox less.
We define the row'(reSp, column) rank'of G(s) as the number of K-

linearly independent rows (resp. columns) of G(s) and note that row rank (G(s))

¥ column rank (G(s)) in general. For example, if G(sj = [sl,sz],_

then the row rank is 1 and the column rank 2. Note further that if the Gy

are linearly independent then the index of G(s) is equal to the columa rank
v . '

of G(x), the row rank of G(s) is equal to the index of Ekx), and the column

. . v
rank of G(s) is equal to the row rank of G(x).
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Theorem 1: Suppose that {Gi} are linearly independent and G(s) is of
full row and column rank, then
1 2 1 2
1) 1f G(s) = [Gl(s 102(3 )] where s* and s° are noneverlapping
. ’ ’ D)
gets of indeterminates then §[G(s)] > G[Gl(sl)]+max(column rank (Gz(s“)),

index (G,(s*))).
Gl(sl)

11) 41f G(s) = 9 vhere sl and s2 are nonoverlapﬁing sets of

Gz(s

indeterhinates, then

S[G(s)] > 6[Gl(sl)j+max(row‘rénkibz(sz)), index (02(32)))

, clcs) 0
$11) 41f G(s) =
S 0 G, (s)
then

8[G(s)] » 8(G, (s) JHmax(column rank(C,(s)), row rank (G,(s)))

iv) .The degree of
: _ Gl(sl) 0

G(s) = . 2

0 _ Gz(s )
: . 1 Ly 2 1 2

equals the sum of the degrees of Gl(s.) and Gz(s ) if s= and s are non-
overlapping sets. -
Proof: 1) is true by the previous two lemmas and ii) and i1i) are equivalent
to 1) under the action of the perrhtation equivalence group I'. To prove iv),
ve observe that the number of rank one matrices which intersect the upper
left corner defined by‘Cl(sl) equals or cxceeds 6[Gl(sl)], and the number
vhich intersect the lower left corner equals or'excccds-é[Gl(sz)].' There

cannot be lincar relations bLetween these because there are none between the

) ) 7 _
elements of s1 and sz. Thus there are G[Cl(sl)]+§[C?(s“)] rank one matrices
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which intersect the upper left.or lower right corner. This shows that

the degrcé is at least G[Gl(sl)]+5[02(52)1 but clearlv 1t is not higher.

Co:ollagz: If

Gl(s) 0
1
G(S) = 0 ) Gz(s )
G, (sH)|

where sl and 52 are nonoverlapping setsof indeterminates in s, then

.

Gl(s) 0 9
§[G(s)] > 6 , + row rank [G.(s7)]
1 3
0 SZ(S )
Proof: Trivial by extension of the preceeding theoreﬁ.'

We now use these results to obtein a new lower bound on matrix

multiplication.
Lemma: G(Mu’v,m(s))> 6(Au’v,w_l(s))+u+v—l

Proof: Observe that in the notatlion of Chapter 2

by (s) 0
o (s) = &,v,ubl
PV 0 6 (s

and apply the corollary.

Hy

Theorem 2 : 8C1, | (s)) (UVHIE V) — (UhrHe)+L

oV

Proof: G(Mu’v,w(s))fa (u+v—l)(wfl)+6(Mu;v’l(s)) by applyling fhe recuvsion

in the preceeding lemma. By using the identity GCMU o

() = 8(0, () = w

we obtain the bound given,

Obgerve that these results establish, for example,.that 2" by 2 matrix

multiplication requires 7 scalar multipliéntion reoardless of the set Koo
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Previous proofs of this result by Noperoft-lerr [ll](for K = 2zv)

-

_and Winonlad [27] (for K = {%) idnvolve more detailed computation than

the proof given here. On the other hand, H0pcroft and Kerr [ll]have
shown that multiplication of a 2x2 matrix by a 2xn matrix can be done
in_fﬁ%?] multiplications and no scheme requiring fewer multiplications

is possible if one considers integer realizations only. The above in-

- equalities do not yield this bound, but instead show that at least 3n+l

multiplications are neccessary for any set K. Using the )leperoft-Kerr

 result in our recursion gives the following lower bound on integer

realizations.

s ) — (1
Corollery. Gzz[“uvw(b)] 3 (UvHIpw) - (Vo LZJ )

In particular this shows that over ZZ y 3 by 3 matrix multiplication

requires 20 scalar multiplications - inproving by 2 the best previously

known bound. A summary of best known upper and lower bounds on 6ZfM q r(s))
’ ]

-

and 60: r(s)) for various p, q and r is given in Appendix A.4,

s a

It is interesting to note that the recursion yielding Theorem 2 also

gives rise to the inequalities

G(Mn_l(s)f+3n2-3n+l Y G(Mn(s))> 5(Mn~l(s))+6<n_})

and therefore, if for some i, .G(Mi) > 312~3i+1, then for all n > i1,
it is also true that G(Mn) > 3n2—3n+1. In particular, if it 1is shown
that G(MB) is greatcr than 19, 19 being the bound implicit in the above,

-

‘then the bound on G(Mn) will be sharpened, for all n > 3,
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We . can further extend the result of Theorem 2 to the following

recursion.
Theorem 3: If there exists an integer p and a number £(p) such
.~ that for all n > £(p), 6(Mn n p(s)) 3 an2+6n+y;'then for all n > £(p)
: oMy .
SOM_ _ (s)) > (a+2)n>+(B-2p-L)mt(y+p) -

n,n,n : )
Proof: By applying the recursion in the Lemma preceeding Theorem 2,
the result is obvious.

The two recursions given here are valuable in the interpretation
and extension of any new lower bounds on matrix multiplication. The
bound of 3n2-3n+l given above merely results from applying Theorem 3 -
to the lower bound of n2 on G(Mn nkl),‘matrix—vector'product,given by

» ey 2 . .
Winograd {26]. If the upper bound of 23—-+ 0(n) on &(M_ (s))
. . 2 ‘Mmyn,2
" given by Hopcroft and Kerr [11) is shown to be a lower bound alsc, then

() to 3 3 nPHom).

the result of Theorem 3 would be to extend G(Mn 5
. : 28ty

A detailed analysils of this and other cases leads to strong support for
the following conjecture which occupies a central role in the minds of
most complexity theory researchers.

Conjecture:. G(Mn n n(s)) grows asymptotically faster than O(nz).
» iy ) .
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~2._ Laver Baunds Ohtained by Reduction.
In the last section, a new lower bound on the complexity of
matrix multiplication vas obtained by studying the structure of M v w(s).
Vv
The result was a lower bound on this operation which could be stated in

closed form. Our goal in the present section will be to obtain lower

- bounds on }h v w(s) in terms of lower bounds on other operations.
L A ]

' What we seek to do is to provide a framework in which polynomial multi-
plication and matrix multiplication problems can be studied togethwe so

that advances in lower bounds.on P u v(s) can be used to yield new
. , :

10We? bqunds on ldu,v’m(sj and new upper bounds for b[u’v,w(s) can be

used to generate new upper bounds for 'Pu v(s). In particular, if the
' , ' v

conjectured lower bound of O(n log n) on c(Pn ﬁ(s))‘is proven true,
, _

then the lower bound on Mh ; o San be extended. We begin by.studying

L R 4

the operation M (23 P and observe that
P»Q,T¥ i u,v

Lemma: If Y is a member of the permutation equivalence group T', then

YAG) G B(E)) = (A (&) ® (yBY(E)).

Proof: 1If (h ) and (lpqr) are third order teﬁsors and T £ S3, the per-

ijk
mutation group on three letters, we wish to show that if (mstv) is the
stv element of h %) 2, then My (s, (L) ,T(v) = (hﬂ(i),ﬂ(j),ﬂ(k)) )

In this formulation the result is. obvious.

TSR w('r)"

Corollary: b,q,T (s) (:) P (t) ié'permutation equivalent to
Py 7
T t).
,P q(S) ® u;( )

By examining the form of this latter operation, the following

result is obvious.
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Mpaq’r @ Pu,v)(B)_C_:_ MW’Pu’q(t) |

In its present form, Theorem 4 is very applicable to the study of

Theorem 4: (

computing product§ of matrices of polynomials or equivalently, polynomials

whose coefficients are matrices. By making the substitution p=r=l, we

can deriye an interesting lower bound (Ml,q,l.'@b Pu,v(s))S;Mv,u,q(t))
onM_ q(s). This implies that the mialtiplication of a vxu matrix
| Bt ] .

by a ukq matrix is a harder operation than computing the inner product

" of a g-tuple of u-l degree>polynomials with a q~tuple of v-1 degree

polynomials. Further examination of lower bounds on the operation

Qa’q.].()‘ u,QKS) may yield improved lower bounds on G(Mh,n,ncs))

in ‘various contexts. For example, if u = 1 (or equiVaIently, if v=1),

" then it is well known (sée e.g. Winograd [26] that S(M & r ) =
i . ) l,q,1 1,v

6(Ml,q,]) (:)6(P1,v) = qv = G(Mv 1 q). If we could extend this result

to the case where u = 2, then it would be possible to show that

’ Y N . _ [avq}max(v,qﬂ
azz(uv,Z,q) 3 q {; which almost reaches therupper bound of l 3

given by Hopcroft and Kerr [11].
Ariother relationship between polynomial multiplication and matrix
multiplication can be established by examining the internal structure of

matrix multiplication. If A = (a,,) and B = (b,,) are pxq and qxr matricés

i3 i3
respectively, then Mp r(s) is the operation.of computing the product

1Q)

AB, This operation is dominated by the operation of computing AC where

C is a Toeplitz matrix of the fomm
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P11 P12 Pyr-qrr © e 0
0 by D), z-q+1
C = 0
. 0
o 0 byy by reghl

Now, computing the product AC is identical to computing the set of poly—

nomial products, a, (x)b (x), az(x)b(x),...a (x)b(x), for a, (x)= z ay
r~q+l

and b(x) = blixi-l, as' can be verified by direct expansion. We
i=1 :
will let Pz — q+1(s) represent the characteristic function for this
P 1
operation. While the relationship between Pq . +l(s) nnd iiipq,r-q+l(t )
is not known, it is possible to establish the dominance relation.
. p . D . : -
Lemmas Pq,r~q+1(s)‘“ qu,r—q+l(t)‘
Proof: In terms of the exposition above, any computation of
{ai(x)b(x)|i=l,...p}' can be easily transformed to a computation of
- (i-1)q o pP )
o(x)b(x) where a(n) 121 ai(x)x and thus Pq - q+1(s)._ qu,r—qfl(t)'

The converse may not be true but is unnecessary to what follows,

We can combine these facts to prove the next result

Th 5: M DOr t
eoren P :_q?r(S)* pq’r'q+l( ) .
s D
Proof: As shown above “p,q,r(31§9 qu,r—q+1(u)-‘qu,;—q+l<t) and

transitivity is a property of 2.

As an application of this theorem, we obtain the following results

. re D_ N
Corollary: n n, n(s) P 2 (t)

- H
> : oD ;
Proof: It is easy tn see that ZMn,n,n(sl‘”'MZn—l,n,n(F) and
. - ’
M2n—1,n,n(u>:1‘Pn2 n(t) by Theorem 5.
, :
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: (' , This result and the widely held conjecture -that c(Pn

as 0(n log n) lend strong support to

,n) grows

Conjecture: c(P 2 ) grows as fast as O(n2 log n) and therefore

n,n

c(Hh,n,n) growa at least that fast.

As we have mentiofied before, verification of c(Mh
. ?

.-

n,n

pivotal step in arithmetic complexity as it is now conceived, .

) 0(1_12 log n) is a

The results of this section can be sunmarized by tﬁe figures below

: M

PsQsX : n,n,n
| 2N\ -

p .

Ml,r,l <:) Pq,p , Pq,r—-q+1 . Ml,n,l (2) Pn,n

- W\ 7

P : P P
q u,v pq,r-q+l Q’ ; n,n
_( O(n2 log n)

O(n

log n)
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_3,' Lower_younés for Pealizations over the Intqﬂprs

Thus far the methods dis scussed here have been. covnletely ficld independent.
‘Moreover, a particular cholce of the set K has not becn necessary. In this
section, we specialize to realizagions over the 1ptegers. The approach usgd
here exploits the fact that every realization over the integers ficlds a

.realization over 77 = {0,1} simply by replac]qg all entries in A, B, and C
by their residues mod 2. This device has been uscd effectively by loncroft ~

et al. [11]-[12]. This approach is useful if all elements in (hijk) are 1 or O,

in which case we say that the degree of G(s) over 222 ({.e.

622 [C(s)]) is the dimension of the smallest realization (A,B ,C) such

.that G(s) = CA(s)B(mod 2). In this section we onlv cons sider (0 1)

valued structural constants. It is clear that for these charqcteriqtics
functions, 2?[0( s)] 3 64? {G(s)]. Using this aﬁproach it is possible
to make contact with results on the structure of 0-1 matriceo discovewed
by algebraic coding theorists. |

We adopt the following notation for charac;erizing the set of all

possible characteristic functions and all matrices contained in G(s).
i

Let G(s) = X siGi and 0 < k < 2" be an integer with binéry
. i=1 '
expansion k = klkz.s.k then writc
def

0 o] € (] 650

k mn
def
11) o) % ] ks,
. 1=1

. "

We also define the special notation (// v, vhere vy arc .{0,1} vectors
i=1

to be a vector which has a one in the kth entry if any of the vy do

and is otherwise zero in the kth entxy.
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Theorem 6 : If é (G(s)) = n then there exist u\vectors-vl,...vmcfﬂ,l]n

" such that’
| m
1) rank . Z(C(S)Ik) < [(izlviki)mod 2|
ok no |
SILEFCOIRER VAR

. m
for all k such that 0 < k < 2" vhere [ | represents the lamming nomm.

Proof: If &;? UE(Q), = n, and C(s). = CA(s)R where the 1ith entry of A(s)

" 1s (hi,h>, then form the matrix AI such that the ith column of A is a, .

. »1) then G, = jzl a; 4D, (od 2) and
m
O B 12;1 Gyl 1§1 jzl kyfyPy - Z Py 4y Mg
and therefore rank Zz(c(s))l_ < | Z k*ai[
i:t),(lz(s)[kn-tfck.c;=§:1 %k,a e, = ] ')E‘ -
. R e 1745 ji 1 k171351

‘and by definition of 6;22(G(s)|k), at least one qf {kiaij}?=l must'be
nonzero for at leaét-ézz (G(s)\k) values of 3.

‘There are res sults in algebraic coding theory \hich are particularly
useful in cqmputing lower bounds for 62?(Pn’m(s)) and of particular interest
" 4s the following function whichhis been defined.by Hamming and tabulated
(for small d,k) by Célabi and Myrvaagnes [&4].

Let N(k,d) be the least n such that there exiét k vectors in {0,1}"
such that all words in thelr iinear span have Hamming weight §f at least d.

Grelsmer has shown that N(k,d) satisfies the recursion N(k,d) >

N(k-1, \f*l y+d.
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( Theoren 7 6z (g (@) * o i)

Proof: Define the n by nim-1 characteristic function :
-~ "
Sl 82 53 a® * & S]n 0 as e 0
0 81 82 . e 0 LI Sm LI ) 0
0 0 S L N 4 L L .

Tn,m(s)= , 1 !

0 0 0: seo e Sl 82 ‘e s 0 e e & @ Sm

. o ) . . T -J.
" corresponding to multiplication of an mxn Toeplitz matrix by an n-vector,

then Pn m(s) is permutation-equivalent to both Tn,m(t)'and Tm,n(u)' It

’

jg clear from the first part of Theorcnm 11 that 527 (Tn;m(t)) 2 N(n,m). :
. - ’ o -

Thus §272(Pn’m(5)) ='627E(Tn,m(t» = 6225(Tm,n(u» 3 mag(N,(m,n),N(n,m».

Remark: This theorem and other observations yield exact bounds if n=2

‘or m=2 or n=m<6. These results along with realization are presented

in Appehdix A:Z.
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4. Upper Bounds by Tensor Ranks

As we noted previously, a bilinear multiplication operation gives
riéehﬁo a set of structural constants (hijk) and any algorithm‘for
realizing the operatioh consists of a factorization of the form (6).
As Strassen.[22] observed, the degree of the minimal algorithm for
computing a giveﬁ operation is eﬁual to the minimum value of n for
which the sum (6) holds which is equal to the rank of the tensor with

ijk component given by h Finding the rank of a third order tensor

i3k’

is a non-trivial problém and at present no extension of the standard
tools (e.g. Gaussian elimination) or canoqical forms (e.g. Jordan
canonical form) for ranking second order tensors (i.e. matrices) exists{
This problem.feceived nuch aﬁtention during the 1920's énd 1930's (see
e.g. Hitchcock [10] and Oldenbgrger [18]) and as ;afly as the 1890's,
Kronecker et a} (see Gantmacher [8]) were studying methods of ranking
tensors of dimension 2xnxn. |

What we seek‘to do here is to derive two different types of upper:
bounds. We will seek algorithms for fanking any tensor of a given |
dimension aﬂd will also attempt to find the maximum rank of aﬁy tensor

of a glven size and to demonstrate a tensor of that rank. We define the

function r{(m,p,q) as the maximum rank of any tensor of dimension

' mxpxq and establish the following properties of the function r(m;p,q).

Theorem 8: i) r(m,p,q) = r(p,q.m) = r(p,m,q)
i) m € r(m,p,q) € mp
111) r(m,p,q +a,) € T@m,p,a;)+r(mp,q,)

iv) r(m,p,q;9,) € 4,7(n,p,q,)
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Theorem 9: If G(s) = G,s.4G,s, where G

_Rf such that RH.R
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Proof: 'i) follows. from permutation equivalence and ii) follows from
Theorem 3 of Chapter 2. 1ii) and iv) are obvious by_;onsidering the
factorization (6). It is worthwhile to note that 1) can be applied to
ii), 111) and iv) to extend these results in a symmetric way . |
Our plén of attack is to obtain methods of defining the function
r(m,p,q) which are also useful for ranking arbitrary tensofs of dimension
mxpxq.; Ve bégin by studying the case m = 2 and seek methods of ranking

the tensor (h,, ) or of finding the degree of the characteristic

ijk

function G(s) = G,s.+G,s, where the jk element of G, is (h )_for i=1,2.

618170585 13k

The following results are useful for ranking most Zxnxn tensors.

i

| 1511658, l,G2 are nxn matrices and if
there exist gcalars a,b,c,d such that aGl+bG2 and Eﬁﬂ are nonsingular,
then, if the Jordan canﬁnical form for (aGl+bG2)Tl(cGl+dG2) has p
different l-chains ' )

§(G(s)) = ntp

Proof: From the results of Theorem 1 of Chapter 2, we know that if

P and Q are invertible matrices, then §(G(s8)) = S(PG( Qs)). The choice

of P = (aGlbeZ)"l, Q= Eﬁﬂ and the change of variables to t = Qs yields

the result that §(G(s)) = 6(U(t)) where H(t) = Hltl+H2t2, Hl is the

nxn identity matrix and H2 = (aG1+bG2)-l(cGl+dG2). If we choose R and

1 2 1 - AJ is in Jordan canonical form;-then G(RH(t)R-l) =

6 (H(t)) and RH(t)R—l = Intl+AJt2. We let F(t) = RH((:)R"1 in what follows.

Therefore, we can assume as a canonical form for this class of 2xnxn

characteristic functions, the form
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n i
Al(t)
By(t)
" R(t)= ..
A (t
p( )
- Ao (©
t1+,\1t2 t2 -
tI+Ait2 t2
where Ai(t)= :
' - .. B
| EyFAty
= Pt 7
t1+l +2t2 i
and Ap+l(g)= .
L c tf)\{a

Because*éf the form of F(t) and Ai(t)’ we can extend the argu-

_ ptl o
ments of Section 1 of this chapter to prove that SF(t)) = z GCAi(t))
' i=nl -

and it is easily verified that if each Ai ~1s- an n.xn, block then ‘

no+l 1 1€16p

G(Ai(t)) = . Therefore §(F(t)) = ntp.
n, if i=p+1 .

"It ig clear from this thebrem that a wide class of tensors of
dimension 2xnxn are of rank at most 't%% . We can extend this
result to all tensors of this ‘dimension. ' ‘

Theorem 10: r(2,n,n) = l;n
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Proof: It is clear from Theorem 9 that r(2,n,n)-2 l;n . We show

that 4if G(s)nslcl+s262 is an nxn characteristic function then there

i{s an n-kxn-k characteristic function H(s) of index 2 such that

§(G(s))¢ S(H(s))+ [%%l . If neither G1 nor G, is of full rank, then

| Ipsl+As2 Blsz B252 .
we can assume G(s) = 0152 0 0 where A is in Jordan
0232 0 ItSZ

. canonical form since this form can be reached from any G1 and G2 by
factoring Gl through the identity, transforming the upper corner of -
G2 into Jordan canonical form and- factoring the lower corner through.
the identity. It is clear that in this formulation p > {él or naive

'evaluation of Gl and GZ separately would yield the desired result,

Far the cenonical form given above, 2 cases arise depending on

vhether t=0 or t > 0. If t > 0, then we can write G(s) = Kl(s)+K2(s)

BZGZ 0 B2 '
where Kl(s) =| 0 . 0 O 92 and Ké(s) n G(s)—Kl(s) is of
c, 0 I,

dimension n-txn-t. By Theorem 8 of Chapter II, we know that _

8(6(s)) ¢ G(Kl(s))+6(K2(s)) £ G(Kzls))+t and thus the theorem holds

in this case. -If t = 0, then either there is a value of i between 1

aed ﬁ-p such tﬁat the ith row of B1 and the ith column of C1 contain

nonzero elements or rank(Bl)+rank(Cl) < n4p and 1f we denote the upper

left corner of G(s) by H(s), then §(G(s)) < 6(H(s))+n—p. We therefore

- assume that such an 1 exists and assume further that the ip elements ™~

of Bl and C1 are nonzero. Letting Ei(respf Ei) denote the ith row(resp. column)
.of Bl(resp. Cl), we derive the decomposition Q(s) = Ml(s)+M2(s)+M3(s)+M4(s) -

wvhere
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M,(s) =

.Ms(s) = -5
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’ . ' ' '
a4 [Ail ai,i—-l’ 1 ai,i+1‘ cee ai,p b!1
i-1,1
1 .
1+1,1
a1
=
0] [0...010 ...0] -
: (s +(a 1)32)
. ith position
0 /
14
0
| 0
1
2’c‘g where By
- 'y . '
b
1,n 11(— n-p ®n-p,1" 2310800
. L .
2,n-p a21(-—':L)n-p .
: & < 1) Ch-p,i-1"21,1-1
b (b)) <1/ n-p
i-1,n~ p 3y~ 1,i~'n-p ' 0
0 c +a
b +a_ (b n-p,p 1P
p,n-p pili—i‘n-p :
; ),
c
-._i .
(-t-)-.i)n—p-l
1

(c

)
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then M4(s) is an n-2xn-2 characteristic function and

4
8(G(s)) € ] 8(M,(s)) < 3+8(1,(s))
. i=1 |

By proceeding through the constructions given in this proof it
is possible to find a realizatlion of any nxn chéracteristic function
of index 2 which is of degree not greater than t%ﬂ and often of

smaller degree. Unfortunately, this construction does not always

yleld a realization of minimal degree and it 1s not possible to
determine an analog of Theorem 9 which always ylelds a minimal degree
realization. By exteﬁding these arguments to characteristic functions

of index three it is possible to obtain the following results,

Theorem 11: 1) 1r(3,2,2) = 3 and if G(s) is any nondegenefate 2x2

dharacteristih function of index 3, then §(G(s)) =3

i1) 1r(3,3,3) =5

i11) r(3,n,n) € 2n for all n

. Proof: i) A special case of this result was known in 1932 to

Oldenburger [ 18. If G(s) = Glsl+stz+G3s3, then the result is trivial
unless at least one of the Gi is nonsingular. Assume therefore that

is nonsingular, then realizing G(s) is equivalent to realizing H(s)

€1
where H(s) = I,s,+As, +Cs, where A is in Jordan canonical form._ Two
271772 773 Y. 0

separate cases occur depending on the form of A, if A = 0l A

C,;

. e, ¢ , .
and C = [1 'i], then the factorization of degree 3 is

3
H(s) = [1 0 é%] sl+Alsz+(c1—c2c3)s3 1 0

0 1 1 SI+A232+(C4—IB3 0 1
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1

CIf A =[3 A] , then the degree 3 factorization is

1 O sl+l52+c133 3
As,t+c,.s

2 7273 -¢

0 1 8,Ms.te,s

if cl#c4

3
1 2 74 clfc4

or . .

1 [i Y é] sythsy t(epteydsy | B 1

. 7 BI+A82+(C 1 -1}if ¢
252+2(c2—c3)s 0 1

) 17%

17°3%%3
The‘proofs of 11i) and iii) involve defailed calculations and are
incluaed.in the appendix.

. Qlthﬁugh the results presented in this sectionvare.inteieéting
and insightful, it is clear that extension of these results would be a-
nontrivial exercise if the present methods were to be used. The complexiﬁy ,'
of these results suggests that new tools are heqessary before an
algorithm for'fankiné all tensors, or even‘a large subset of the sét

of all tensors, can be found.,  The results given here are useful for

obtaining realizations of characteristic functions by decomposing intricate

characteristic functions. Realizations generated in this manner are
generally better than those which could be generated naively but are

often non-minimal. This nonminimality arises because of intertwining

of elementary characteristic functions when combined into intricate

characteristic functions in such a manner as to yield a reduction in
the degrce of the latter. An understanding of this intertwining combined

with our undefstanding of the elementary cases considered in this section .



may lead to better.algorithm§ for determining characteristic‘function
degrees and would in ény case certainly brovide-improyed heuristics,
In the Appeﬁdix some elementary characteristic function; are

studied in oréer to understand.some of the heuristics which have been

used in obtaining realizations.
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CHAPTER IV
N-LINEAR EXTENSIONS

1. N-Linear Multiplication Problems

In this chapter, we consider the evaluation of a set of n-linear
forms or the realization of an n-linear multiplication operation in
terms of k-linear operations (k < n). We begin by'géneralizing the
results of Chapter II in order to set the notation necessary to explore
this problem. Although all the results given there can be generalized,
we will 6nly study those of independent interest.in an n-linear setting.

The operations which we consider are specified by a set of n-linear

maps . _ o :

Py P2 Py o
@ X }Q X ees x@ "' HQ 'i=l,olapo ’ (7)
0f the formulations given for bilinear oﬁefations in Chapter II, the

most useful in this case’ are the defining function and tensor approaches.

Ve let
. P, _
f(x S TIRTTE 0 I N ¢SO TR W c 35 SPPPRE N x (8)
i=1

represent the defining function for the operation specified by (7) where

each Ei

n-linear operation hi applied to the vector (zﬁ""§n>' The defining

is a ﬁi'véctor and hi(ﬁl’ﬁﬂ""fn) represents the value of the

function gives rise to a tensor E of order nt+l where wve define the

' lﬁn this chapter, each vector is underlined and (50) represents the
i .

ith component of the vector X,
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ko’kl""kn component'of E bj the relation

an+l

(E)kokl...kn RN 3(x

: (9)
LSRRI 3P
1l n

It is worthwhile to note that the correspondence of the tensor E

to the operation (7) could also have been established by using the

relation
h, (%1% 5e.0x) ="} T .. ] H (%)) . . (10)
i¥=1=-2 -n k1=1 k2=1 kn=1 ik ...L n =1 =j'k j

Throughout this'chgptér we sball use all three of these formulations
interchangably as it is clear that equations (7 - (105 can be'used
to relate the various formulations.

We shall begin our study of n-linear operatioﬁs by considering
realizations which are extenéiohs of Fhe realizations which ﬁé sought

for bilinear operations. Thus, we shall geek factorizations of the

form
. ? n : .
F(X 400.% ) = T <a, ,x,> (11)
or '
. ? .
. ; = T (a ) (12)
] Ex kl,... a1l geo 120k | _
vhere the a,, are véctors belonging to a subset of K ofd: We shall

213
define the degree of a set of n-linear forms (7) over KC:Q: as the

least m such that a factorization of the form (ll) (or equivalently (12))

exists with all elements of a,, belonging to K. .We will denote the

213

degree by GK,n(hl""hpo) or GK,n(f)’Pr GK’n(E);- It is clear that

GK n(E) is equal to the rank of the tensor E over K. In the case.
? ! .



N

- 59 -

where n=2 we shall write GK for 6K,2' The nt+l-tuple (po,pl,...pn) -

will represent the dimension of the operation described by (7) = (10).
This quantity is often referred to as the valence set of the tensor E.
With this formulation, it is possible to present the notion of per—

mutation equivalence in its most general form. We will refer to the

tensor defined by (9) as the standard tensor corresponding to the

operation of defining function (8). If 7 is any elemént of Sn+1’ the

permutation group on n+l elements, and E is a tensor of dimension

(p ,pl,...p ), we will 1et m(E) represent the tensor of dimension

(pﬂ(O), ﬂ(l)""pn( )) such that the i il,...i element of E is

the 1.0y, w1y,

mutation equivalence result for this class of realizations.

"'iﬂ(n) element of w(E). We can now state our per—

" Theorem 1: 1f E is thg standard tensor of order ntl corresponding-to

an n-linear operation of defining function £, and 7 € Sn+1’ then for

"alt ke C ,

GK’n(E) = ‘Sx,n(“(E))

Proof: Observe that E is generated from the defining function f

via (9) and 7(E) is generated by letting the i il,...i element
ntl
9 £

(ox (1))1

of W(E) be given by (%

) . A factorization
=41 (0) i :

oo (0% (n))i

of the form (11) for f yields a factorization of the form (12) for E and
m n

a. factorization of the form (w(E)), = Z X a,,. for
k kl,...k 11, §=0 ikﬂ(j)
m(E). A total of (n+l)! n-linear operations are related in this way.

Following the notation for bilinear operations, we shall denote

' by M » the tensor associated with the n-linear operation

Vl,\)z, L -\)n,\’n+1

of computing the product of,levz, vzva,...vn_lxv and VoV matrices
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and bthv (50,51,...§n) the corigspondiég defining function,

1,..0\)“-'_1

where‘gi is‘a vivi+l vector for i=1,...n and Eo,is a Vlvn+1 vector.

Pul’uz""un will represent the. tensor associated with the n-;inear
operation of computing the product of polynomials of degrees ul—l,
uz-l,...un~l and pul’..'un(ﬁo;gl,...gn) the corresponding defining
function where'g:L is a By Vector for i=l,...n and X is a u1+u2+...+un-(n-l)
vector. These operations have similar structure and properties in an
n-linear setting as bilinear versions-had as wili be discussed below.

of particulap intefest in an.n-linear secting-are the determinant
~ and permaﬁent operations as n-linear functions of the row or column
vectors of an nxn matfix. We w;ll denote the tensors corresponding to
these opefations by Dn énd Qn respectively and the defining functions
by dn(gi,...gn) and qn(zl,..;gn) wherg Xy is an n—vector‘fof 1=1,...n.
Since, the determinant (or permanent) of a matrix 1s an n-linear opefation
yielding only one.outpgt; it is (permutation) equivalent to an n-1-1inear
operation yilelding n butputs. Before proceeding, it is of value to
identify thé structgre of'Dn and Qn and we observe that the"._ll,iz,...in
element of Dn is zero unless i-...in are all different in which case

1

(Dn)i is +1 4if 1 .,.in is obtained from l...n By an even permutatfon

1....in 1

and -1 otherwise. The il...in element of Qn is equal to the absolute
value of the correspbnding elemgnt of Dn.. We .can now characterize inter-
esting opefatiéns which are permhtétion equivalent.to Dn and.Qn.

Theorem 2: 1) Computing the determinant of an nxn matrix by an algorithm
of thé form studied here is equivalent to computing the'deterﬁ;nants ,

of all n-lxn-1 submatrices of an n-lxn matrix by an algorithm of the
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form studied here.

i1) Computing the permanent of an nxn matrix by.an algorithm
of the form studied here 1s equivalent to computing the.permanents of
all n-lxn-1 submatrices of an n-lxn matrix by an algorithm of the formu

studied here.

Proof: Let dn(gl,gz,...zn).(resg. qn(§1t52,...55))_be the defining

function corfesponding to D (resp Q ). Then

.
A () sXpse o 0x,) = ngs sgn(m) n ey T jZ Gy L sgn(w)kn ()
| m(1)=3

corresponding to éomputiﬁg.the determinants of_all n-lxn-1 submatrices'

of. the matrix Vith TOoWSs 52’53""5n' The.same argument holas for

Qn aqd qn(Ei’EQ"°'5n) ﬁith the sgn () tgrm eliﬁinated from all sums.'
This theorem is inferesting iﬁ two. respects, it provides a first

insight into a method of determinant and permanent calculations

(L.e. expansidn by minors) and it presents a view of similarities between

the 6perations. Both of these points will be discussed at length-belbw.

N(P)
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. 2. Equivalence, Dominance and Reduction

As was shown in Chapters II and 111, it is of value to havermethods
for defining a partial ordering on the set of tensors of a given order
‘with respect to 5K,n' In the last section, we extended the notion of
pernutation equivalence and we begin'here by extending the dominance,
results éiven for bilinear operations. ‘If there exist matrices Po’Pl"'an
over K.such that f(Pozo,Plxl,...Pnzn) = g(zo, l""zn) then we say that
defining function f sﬁructurally dominates defining function g over K
(1.é. f'::% g). This amounts to being able to code computations of>g
into computations Qf f; if the coding is bijéqtive (1.e. f‘:i g, B %? f)_
éorfesponding to the inverse matrices le,Pll,...P;l eﬁisting over K,
then we say that f and g are struc?urally equivalent and write £-~K g.

It 18 easy to translate these results into tensor notation and we shall

use the notation F :g'é (resp. F r~ Gs if F and G are tensors corresponding

K
to defining functions f and g such thatvaE’g (resp. frf g). It is easy
to establish the following extension of the first theorem of Chapter II.
Theorem 3: Let K be a subring of {C , then
<D 4, -
i) 1f £ z 8 then GK,n(f) Y 6K,n(g)

ii1) If £ % 8 then GK,n(f) = 6K,n(g)

Proof: 1If 6 (f) = m, then the minimal factorization of £(x ,...xl)
of the form (11) ovéer K is of degree m. Then, if f(Pozo, 121""’ann) =

g(zo,zi,...xn), there is a factorization of g of degree m, given by

m n ' m n
g(zo’zi’...z“> i izl jgo{éij’szj> ) i§1j£o<Pj“ij Xj>

The theorem follows from this factorization.
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Whon considering tensors of different orders a new tyoe of dominance
arises. We will say that a defining function f(}o,_}il,..._g{ﬂ) tensorialiy
dominates a defining function g(lo,xl,...zé) (£ :‘gg) 1f p=n-1 and ‘
f(_o,xl,...,x _1°%, ) = g(x ,xl,...x 2’—n lo_gn) or if there exists ab
defining function h such that £ _'$h and h _:T)g. Intuitive_ly,' 1f
£ '5g, then an algorithm for evaluating g is a method for evaluating
f by forming'sums of linear and multilinear forms in 50,..._7_{_}). In assessing
the value of algorithms of this sort, two oonsiderétions are necessary.

" The first'régarding the relative degrees of f'.and g‘ if £ :'Ip‘g is

studied here, and the second regarding the complexity of algorithms

for computing f and g if f .‘_5g 1s discussed in a later sect':ion. As mig_htv

be ekpected,' tensorial dominance implies degree dominance but ‘an uppen

~ bound on ‘this dominance'exists. |

Theorem 4: Let f(x ,xl,...x ) be a defining function corrcsponding to

a tensor of dimension (p o*P1r P 1°P ) and gy S IO JETERE A 1) be a

dofining function corresponding to ‘a tensor of dimension (po’pl""pnf-Z’bn—lbn>

such that f _:'g_g. Then, for all ch: ,

6K,n-—_l(,g? < 6K,n(f) < min(pn’pn—-l)GK,n—l(g)

Proof: If f(x',xl,...x ) is of degree m and the factorization of

: (11) holds, then by using the identity <a,X _><a X > = <3 ]Q\-—in’x @x >

;-1 —din —i,n- -n
a degreem factorization of g(x ,xl,..,r f){ ) is found.
: -2

each term of the form <a 1°%,-1 (X X > can be written as

i,n=~

1§1<bi 1><£i’5n> where q € min(pn,pn_l) yielding a factorization of

f(-)—{o’—}il""fn) of degreo at most min(pn’pn—l)GK,n—l(g)'
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This theorem and Theorem 3 of Chapter I yleld
Corollary: If E is a tensor of dimension»(po,pl,...pn) over K gnd

p = max (po,pl,...pn), then

p € GK,n(E) < P

We can use these results to.prsve the following results about
n-linegr operations.
Theorem 5: The following are true for all K
| B ECHRCR RS b/
A1) 8 Q) 3 (D) /2

'm)a (e ) 56 _(p ) > ...
K’n dl’-..d K n l dl+d2 l d3’....dn,

s, (P '
K’z .d1+Q L .+dn-

iv) For all m € S

6

n+1?
8 (M

(M ' ) =
K,n .do)dl’ L) odn Kf,n, dﬂ(o),dﬂ(l),...d“(n)

2>

[ (-2),8) |

)

"Proof: 1) and 11i) result from reducing Dn and Qn from nthrorder tensors

of dimension {(n,n,n,...,n) to second order tensors (i.e. matrices)

kﬂ%l, n&/ﬂ-

of dimension (n ) and observing‘that these matrices

rank (n—l)ip/a .

o\

) 111) is true because chere is a third order tensor H
dl’dZ’d

are of

such

that P L D P " and iv) is true sincevany

~>H
1rdgedy dl,dz,d3 K “d+d,-1,d,

ntl
of length 3 and by the result of Hopcroft and Musinski‘[l2] which

d

elemgnt of S

generallzes, 6 ( d d ;d ) 1s invariant under transpositions
l’.l

.cycles of 1ength 3.

can be written as the product.of transpositions and cyclés

this

and
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Corollary: If K is any subfield of'qz, then

GK,n(Pd dz,...d ) = di+dj+"'+d (n-l)

1’

Proof: By iii) of the theorem, GK n(Pd ) > 3§ (P

e )
l’d2,-0~d d1+d2+.c.+d l ('ﬂ 2),dn
K,n (P dl’dZ""dn) d1+d2+...+d (n—i) Equality comes by

letting a;,...04 be distinct elements of K for d = ) (d, ~1)+1. Then, if

1=l
~1
( kj) i for 1€i<d, 1<s<¢d;, 1<j<n, a choice of. a ~ik

l<i<d such that a factorization of the form (12) holds for P .
dl,dz,oondn
i3 the ith row of the inverse of the dxd matrix with ijth'

and therefore, §
exists for

The vector A
i-1

elemeht ai T

The first result of Theorem 5 points out a limitation of the model

o

we have chosen to reaiize n-linear multiplication operations. The well
known Gaussian eliminationralgorithm computes the detefminant of an
arbitrary nxn matrix in 0(n3) arithmetic operations which is much less
than the numbeér gi§eﬁ hére of at least 0(v/n’). lThereforc, it 1is necessary
to examine what pdrt of the structure of the model proposed here prevents
this bound from being reached. The remainder of this chapter is devoted
to outlining methods of studying possible alternatives to this model which
are more flexible than the one given here. We study two models.that do not
have the restriction that all intermediate products must involvé»n texrms.
It is worthwhile to note that in other cases the present model seems
£o yield reasonable algorithms and to consider thé structures of the
determinant and permanent operations. Knuth [15, p.426] note§ that while
Gaussian elimination compute; determinants in_Q(n3) operations, no algorithm is

known for computing the permanent of a matrix which grows at slower than an
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" exponential rate, and thus the result we obtained of O(n

- 6h -

n/2

permanent calculations via n-linear systems may also be valid for all
ather models of computation. We extend a problem given by Knuth [15]
to the following problem |

Open Problem: Given TnC:_Sn, a family of subsets of order growing

asymptotically with k(n), and g an integer valued function defined on

. n .
S, Let c(g,Tn) represent. the complexity of computing ﬂgT_g(ﬂ)iEiaiﬂ(i)

for arbitrary nxn matrices A = (a For what sets 'I‘n and functions g,

ij)'
is the growth rate of c(g,Tﬁ) slower than 0(k(n))?
At present, the only known set and function for which such an

algorithm is known is the deteminant calculation for which Tn = Sn

and g(m) = sgn(m) which is +1 if 7 is an even permutation and -1 if 7

1s odd. It is clear that & "Faster" algorithm exists for T, the set of

even (or odd)'permu;ations in Sn and g(m) = 1 for all 7, if and only 1f

one exists also for permanent calculations.

) as a lower bound on
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. 3. Alternate Forﬁulation‘I —. Interconnections of k-linear Svstems

In the last section we considered'sgheﬁes qf the form in Figure la)
for realizipg n-linear multiplication operations with i“P“ts.Eltiz"'-En
and showed that while such systems had nice properties, they were not
optimal for all applications. We consider here'systems of the form
given in Figure 1b) as an extension of these systems. In cbnsidering
such systems, it is necessary to slightly expand the notation introduced
above, If Ar is an mXp,, matrix ith row given by 2, for r=0,1,...n
and a factorization of the form (11) (or (12)) holds, then we will say
that (Ao,Al,...An),forms an n~linear multiplication system (nms) for
£( or E or {hi})' it is easily verified that the factorization in (12)

can be rewritten as

. 0 .
E : o=, Z H (A) : : 2z
k ,.-.’kn i lj 0 ' j J ) .
'What.we seek to do below is to outline methods of characterizing
the analog of (12') for.realizations of the form of Figure Ib).
We will say that the scheme of Figure Ib) represents the inter-

connection of (k,,s..,k i «s B ..
of ( 1 , ) linear systems (I, Bll’ lk ), (1, B21,...B21 ),..

» )
,o"Cr). If the .

(1, Brl""Brkr) through the r-linear system (C Cl’ 2
systems of Figures Ia) and b) realize the same n-linear operétion then
P 15 LA
Il (A ) “oa T n n (s
A ). (13)
10 -0 R T B T R W S L
, _ J k +8
=0 Y '
where Y
6

r
Bosdyseend Z (c )21 " (Cj)iij
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: ]
( X3 Al % Bll _
X A : 3%k 9
L ' l
2 . N o
R L B A ey T |
¢ : % . o -
¢ l _ -’5k1+Tle
X _lA
=n-1""] n-1 . o -lo r C <o 1c
t : k2 2 o
s An ' ] ——| [~
3'=k1+k2——-32k2
~~1B
| L..i]j_[
. N ok C
< Yr r
X = | -

4 .

Figure I: The 2 linear models for realizing n-linear multiplication operétions.

LN

Blocks of the fomm X D m-'co':.*pute D_:_c_i, a vector of linear forms in Xy

and blocks of the form fijEE}:-cOmputé pointwise (HMaddamard) products of

a set of pinput vectors.
a) _(Ao’Al"°'Ah} is an nms operating on inputs 51”52’°"§h

b) (I,B,.,...B,. ) is a k,~ms operating on inputs

| il iki i

Eki+"‘+ki-l+l’..'§k1+"‘+ki and (C_ ,C;,...C.) is an rms

working on the outputs of the r interconnected systems.



‘ N

~F

Lemma: Let (6 .8

- 69 -

The systems (I, B ) are of dimension 8, and the system

| 3177 Py 3
(Co’cl""cr) is of dimension 60. In this case we say that the
defining function f realized by (12') 1is also realized by a
Gédimensional connection of ki—linear systems of dimensions Si.

We 'will let the vector (51,...6r,60) represent the dimension vector.

of this realization and will define the K~cost of the realization by

' the 2-tuple (Yi,yé) where Yi = 60+61+62+...+6£ and Yé = 61(k1~1)+

62(k2—1)+...+5r(kr-l)+6°(r—l). The first of these numbers gives a
measure of the size of the realization and the second a measure of
its.complexity. If r=1 these numters reveal the same quantity, however
for larger values of f, a tradeoff eimilar to timefstorage tradeoffs

introduced elsevhere (e g. [19)) is possible. We shall define by

1 o2
By, (kl,...k y,e(E) (resp. By (kl,...k ),r

Yi (resp. YY) for all realizations of £ formed by the inLerconnections

(£)) the minimum value of

.of (kl’ 2,...,k Y-linear systems and by B (f) (resp. B (f)) the minimum.
2
value of th(kl""k ),r (£f) (resp. B K, (k .. k- ) r(f)) over all partitions
of n into z k vhere ki 2 2 for all 1, The interesting tradeof f
i”l

. between values of Bl(f) and B (f) corresponding to a tradeoff between

' slze and complexity is considered below.

l,...G ) be the dimension of a realization of f formed

by the interconnections of (kl;...kr)—linear systems through an r-linear
system which is minimal in that no realization of dimension (Gé,di,...ﬁé)
exists for which at least one of §-8',8.-8!,...6 ~8' is positive and the
e o o’'1 "1 r r

rest are nonnegative. Then,

r
max(do,él,...d ) € B (f) 6K,n(f) g I .61

K, (n),1 =0
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Proof: By examining (13) and (12" it is obvious that a factorizatiom
x

of the form in (13) gilves rise to one of dimension qiﬂ §, in (12") and
"l

a factorization of the form in (12') gives rise to a factorization of

the tensor of each system interconnected in (13) (or Figure Ib)).
Theorem 6: B (f) € B (n) 1(f) = (n—l)GK’n(f) ﬁor all K, and f(n > 2).

Proof: Define Akl,...k (f) = (f)—Bﬁ (n ) 1(f) and.wé show

2
K (kl,...k ),r

that A (f) € 0 for all k k . Recall that B

l,o.ok 1,". I\(Rl,...k)r_

can be expressed as 6(r—1)+ Z 8, (k -1) where Z k 2 (k l)+r—n and
i=l i=l ‘ i=1

X80+ 008,) € & (f) andfﬁh)( 106 = (n—l)GKtn(f). Therefore

A (f) can be rewritten as (q;GK n(f))(r-1)+ z 3 . k (f))(k -1)

Kpoeooky , &

a sum of non-positive terms.

The resﬁlt of this theorem shows that the least complex realization
is always a r¢alization consisting of iﬁterconnec;ions of bilinear systems.
Further study is necessary to develop methods of finding such realizations,
but it seems that an algorithm for computing determinants faster than
O(VET ) exists within this framework. This further study should be

parallel to the extensions suggested at the end of the-last_chapter.

For both of these projécts it is necessary to gain a thorough understanding

of basic bilinear characteristic functions (3rd order tensors), there
it was necessary to study methods of interconnecting such functions to
generate larger bilinear characteristic functions, and here we seek to find

methods of interconnection to generate n-linear operations. However, it

~ is further necessary to interconnect bilinear systems to realiza n-lineaxr-

system in such a way as to not cause drastic increases.in the size of B;(f).
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We cloée with an example of the two types of n-linear systems

we have discussed. ;

X
v -1 :
Example: Let X = 5% = (xij) be a 3x3 matrix and suppose we wish.
to compute det(X), then by the methods of the previous section, we can
% A
define’ the system X, A 1o A to form det(X)
=2 2 | 3 of—
~
X3 Ay

and show that the minimal system has degree 5 and is given'by

11 0 1 0 L

0 -1 -1 | 010 100 .
aj=|-1 0 of , - Ay =101 ,Ap= 01 1, A =[11111]

1 0 1 - 1 0 0 o1 o}

1 -1 0 1°1 1 L o

this system required 10 multiplications. An alternative system of

the type discussed in the present éection is given by.

% A
-
[o] .
% i oy | '
% KA
where
1 0 O fo 1 9] :
0
A= é 2 0 A= g g é A, = |0 g 8 é —g ~0 A;=I., A= [111)
1 o100 2. 100 1) T3l Gy 00 of Y |
00 1 1 0 0 ‘
0 0 1 010

]
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and this system as the interconnection of a degree 6 system with a

degree 3 system requires 9 mﬁltiplications.
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4. Alternate Formulation II-Inhomogeneous Systems

" Another approach to the realization of n-linear operations
by k-iinear operations 1s to consider inhomogeneous systems. These
systems are also of interest in thé study of linear. operations of
different degrees. The value of an.inhomogeneoﬁs system 1s that it~
allows the computation of k-linear forms through a modeilwhigh appeafs
to be n~-linear and the computation of different set of k—liﬁear fo%ms
in overlapping but non-ideéntical inputs. This has the benefit of
yielding a tractable computing model capable of doing more éomputations
fhan the cne discussed in the prévious segtion, |

‘Let f(x_,X;,...X ) be the defining function for an n-linear

operation and let x, be a p_-vector for i=1,2,...n. " We define the

a i .
) : ~ - X 10
pi+l vectorsgi [;{] and say that (Ao,Al,...An) defings a?.n linear

inhomogeneous multiplication system (nims) of dimension ny 1f Ao is

.an mxpo'matfix and each A, is an mx(pi+l) matrix such that

1
) . . m_ '- n.
EQrgaztys v 2 )=E (0 %), By, o) igl 2107507, TR

vhere éij represents the ithsrow of the matrix Aj'
A cascade of n-ims's has the advantage of allowing the computation

of interconncctions of ki—linear systems such that different ki~linear

systems operate on the same input vectors. This was not.possible in

the model proposed in the last section. If we extend this modél further

to consider systems which accept n input vectors and output n vectorsy

it is possible to simulate a form of Gaussian elimination. We can construct
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- a system which accepts the row vectors of an nxn matrix and outputs -

after 0(n3) multiplication, the numbers Al and Az_such that the

determinant of the matrix is A1/A2. However, no such cascade ‘is
known at present for pemmanent calculations. .
This model is also of value for studying operations which have.

outputs which are n,-linear functions of the inputs, but for which n,

i
varies'over the outputs. An example of such an operation is the .
computation of the symmetric functions for a set of n numbers {xl,...xn}

which was studied by Strassen [23). The goal here is to find a method

of computing the n-vector of outﬁuts given by
. -

n
{.) X ) Xg Xy srens ) X; X eenXy gee, I gi}
1=1 e e T i e

- The first element of this vector is a linear function of the input, the

second bilinear,... the ith i-linear, and the nth n-linear. With "mixed

.linearity" of this type, if we consider the input vectors as the n

A Xl ’ A X; o X
2—yectors X = [l?] seee Xy o= [11] y oo X [1;:‘ » the output vector is
an n-vector which is an n-linear function Of.gi""ﬁn and we can find

a tensor of order n+l and dimension (n,2,2,...2) which defines this operation.

n
The 4 ,1i.,...,1_ element of this tensor is one i#f i = Z (2-1;) and’
0’71 n : ° 4o b
zero otherwlse. By a cascade of nims's it is possible to simulate the

O(n log2 n) algorithm given by Borodin [1] to perfomm this operation.

The method presented here is inherently the same in this case as cohputing-

the product of the polynomials (x—xl),(x—xz),...)x—xid,.. and (x—xn),\

but in cases where embedding into a polynomial product (or other totally

n-linear operation) is not obvious, the inhomogeneous model is of value.



CHAPTER 'V
CONCLUSIONS AND SUGGESTIONS fOR FURfﬁERlRESEARCH
The research presented in this dissertation was motivated by the

need for a setting in which previous results on the optimal evaluation
of bilinear operations could be studied, Such a setting has been
provided and used to interpret previous results in a new light. It
has been possible to generalize many previous results in order to
obtain new results as well as to introduce new methods for studying
bilinear operations. ~ Although many of the new results presented here
are.of independent importance, we feel that the major value of this
dissertation is the model proposed. At the heart of‘tﬁis nodel is

the introduction of the indeterminates 84 yieiding a three-dimensional
‘model into which both inputs.and the'eutput enter to rep;ace previous
two-dimensional models which only considered the inputs. The properties
of such a model are studied and many important concepts are intreduced
for use in the study ef the arithmetic complexity of bilinear operations.
These ideas are helpful in understanding the complexity of a_bilineai
operation by determining in a more efficient manner than previously possible
upper and lower complexity bounds. Methods of generating classes of
realizations of an operation over various subeets of the complex field»
‘are discussed and a:partial ordering on operations is defined. Tables of
best known.upper and lower bounds on some important bilinear'operations
are given in the appendix, although the main thrust of this dissertation

has been to determine methods of improving all of these nunbers rather
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than any individual result. .

As is the nature of scientific research, this;dissertation raises

: more‘questions than it settles. Along these lines, many open questions

have been proposed within the body of the dissertation. Among the further
avenues along which these results may be extended are:

1. An algebraic approach consisting of determining the degreg of

each of é set of elementary characteristic functions and then methods

of determining degrees of characteristic functions consisting of inter-
connections of elements of this set as a function Qf the elementary
funétion degrees and the typés of.interconnections.

2. A.combinatorial approach which might consist of understanding how
similarities and differences in the'structures of the Gi affect the .
value of the degree of G(s) = ZGisi.

3. A framework in which upper and lower bounds can be obtained on

operations abplied to inputs such that linear forms in the inputs commute.

4. A study of methods of changing the basic operations from + and x to
+ and max in ordér to find a simllar framewérk for so}ting algorithms
and a variety of combinatianél prdblems. Applications of.this approach
could be used to relate sorting a set of n numbers to determining the
eiementary synmetric functions for a set of n indeterminates. It may
also be possible to relate matrix permanent calcula#ions to the marriage

problem.
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Appendix A.l: Some Elementary and Important Characteristic

Functions and Realizations

In this appendix we consider some elementary characteristic

functions corresponding to various operations and study realizations

- of these characteristic functions. The best understood class of .

such functiqnsvare those which arise in polynomial multiplication
probléms. We denqté the next appendix to a discussion of realizations
of Pn’m(s) over:ZZ for various n and m.  As mentioned at various
ﬁlaces throughoqt the thesls, in order for any general solution to
the characﬁeristic function realizatlion problem to be found'it is
nécessary to understand the basic building bloéks and fheif inter-
connections: We deél with only the former objectivé here and describe
some heﬁristicé which have 5een devéloﬁed to handle these préblems.

Ve Begin.ﬁy studyipg'complex number multiplicatiqn for which_

B CE | _
I(s) = Lz ~s¥] and seek minimal realizations of the form I(s)=CA(s)B.,.
The following proof of a result due to Munro [17] aﬁd Winograd [27]

is included because of its directness.

Theorem 1: Sﬁigl(s)) > 2.

Proof: If Gﬁz(l(s)) = 2, then there exist 2x2 matrices A(s), B and C

Ql(s) 0
0] 22(5
22(3) linear forms in s. This implies that the determinant of I(s)

for ll(s) and

"can be factored as 'kll(s)ﬁz(s) over the real field. But

2
2

Therefore, GﬁR(I(S)) > 2.,

det (I(s)) = si+s which is irreducible over'ﬂz, a contradiction.
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We can now generate all degree 3 realizations of I(s) over

Py = {-1,0,1}. B

Theorem 2: If I(s) = CA(s)B is a degree 3 realization over F3,
then either the realization is one of 14 standard realizations or
there exist invertible dlagonal matrices H; and M, over F3 and pef-

mutations P and R such that (CMlP—l)(PMI;A(S)MZR-I)(RMEIB) is a standard

realization.
Proof: Let I(s) = (allsl+a1232)Ml+(a21si+azzsz)M2+(a31s1+a32§2)ﬂ3 where Ml’
MZ and M3 are rank one matrices. It is clear that any two rows of the matrix
11 %12 . .
A= a1 259 must be linearly independent or a specification of
431 %32 - : | S

8y and Sy would resuit in a contradiction. Tﬁerefore modulo sign

changes-and pernutations, there are four choices of A(s) as given

Remark: The 14 reglizétions of I(s) over F3 are given by

S O | ] 5. - 10 o
£=[111] . [11(') 1759 o1
1 0 1-1 -T2 . 1 0 Rg = .1 o 1] 5, 11

L '%L l_} i Sl-l-l
. - L J
;1—32 T 1 W 81759 W 0 --1-T
c.%- [-0 1 1] ’ s l 7 = 101 S 1l -1
2 1-1 1 2 Ty 11 0 2
i SL L _0 ] L SL & l—
- '-_s l
L o sl Sy 1 0 11 0 1l 2’5 )
i [ 1 1] 52 S AT St 2
- . K 0
L si+§2 0 -1 | L sl!-s2
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1
HJ

-

1 0]
1-1
0 1

LOH

=TS = =T
[
R I

= o= o

0
1

[

93 [1
10

Ry, [o -1

1-1

and are related as shown below where T denotes similarity under transpose,

O =

PE denotes similarity under permutation equivalence and S denotes similarity

under ZF (I(s)) the stabilizer set.

3

T
10¢ 3
. !
Bt 31
Is
T
14 77
]
12¢ 3 5
PE .
1 .
l S
T
2¢ y 9
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Next we study quaternion multiplication for which the chéracteristic

function is

- _ T
Sl 82 83 34
s -8 S -8
sy = |2 4 "3
53 "84 -Sl 82
34 S3 "Sz "Sl
- -

By expanding the results used to show §(I(s)) = 3, we can prove

Theorem 3: 1) 8 (3(s)) > 7

- 41) GIZ(J(S)) 2 8
.'iii) GK(J(s)) € 8 1f K is any subset of R containiné

{1:"1:0n %” %s 2}

Proof: 1) follows from the argument given in the proof of Theorem 2 and

an extension of this argument to study the nature of the linear forms

yields ii). i1i) follows from the factorization J(s) = CA(s)B where

-1 1 1 1 -100 O] 1 1 1100
c= |Ft 1 -1 -1 0.0 10 % S b -1 -1 0 0 0
-1 -1 1 -1 0 0 0 1 1 -1 1 -1 01 0
-1 -1 -1 1 01 0 0] 1'-1 -1 1.0 0 1 0
and ' - ' -
81"'82"83"84
5 e
275175378,
4 8,~8,~8,.,~S
_ 37172 74 -
As)= R o ) [ ucae)
A
~251
: ~232
-233
- '~2S€J
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. An upper bound of 10 én 6F3(J(S)) was obtained by Fiduccia [6] using g_
construction which can be extended to show that GFs(Kn(s)) =
GIZ(Kn(s)) = Eﬁ%ill where Kn(s) is an nxn symmetric characteristic
function of index .Biﬁgll . An nxn symmétric (or asymmetric) ‘character-
istic function containing p different entries above the diﬁgpnal and q
different entries on the diagonal is of degree between p+q and pin.
However, wh;n‘repeated entriés occur the gap between these Bounds grows.

Ve can study an interesting class of asymmetric charactétistié :
functions by studying the set {Ln(s)} of characteristic functi&ns érising
from Lie Bracket computations on ﬁxn matrices, OBserviﬁg that the
Lié bracket of nxn matrices is of zero trace reduces‘Ln(s) to an
nz—l x nzel characteristic function of index nz-l.' We can express
Ln(s) as the last n2-1 TOWS an@ columns of Mn(s)—Mg(s) reduced to a_
nondegenerate form by eiiminating one indeterminate. It is clgar that
-G(Ln(s)) < 26(Mn(s)) and the following results hold.
Theorem 4: i) 6K(L2(s)) =5 if F3(: K <fR

) GFB(La_(s)) < 70

111) 8, (L,n(s)) ¢ 2.70-7.2"

nY
3
0 ) | |
Proof: 1) LZ(S) = -8, 0 S4 which is also the characteristic
=S, =84 0

function for vector cross product calculations. To show that G(Lz(s)) > 4,
we observe that 6(L2(s)) > 3 and that if G(Lz(s)) = 4, then there is a

characteristic function M(s) of degree 1l such that Lz(s)—M(s) is of

degree 3, 1If Lz(s)—M(s) is of degree 3, then there exist 3 specifications
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of the triple (s; s, s,) which are linearly independent and such that Ez(s)—M(s)

evaluated at these points is of rank one. A detailed calculation
yields a contradiction and hence G(Lz(s)) > 5. A factorization of

dimension 5 over F, is given by

- 1 . ;
8y 1 10

1 -1 0 0 1 sl+s2 1 0}

Lz(s)=' 0 -1 10 1 | 83-8, ' 0, 1
0 0-1 1 -1 Y 0 -1 1

] 5, >} 0 l;

We describe the algorithm for L4(s) computationally. Let

A .. 8.1  fc., ¢

U (et Nt B b B | I P
A1 B2 Bar Baz Cy1 Ca
where Aij’ Bij’ Cij are 2x2 matrices, theé.let
Zy = [ +A 0y ByyFByy] Zg = [App=Ayys BygByy
Zy = [Aythyys Byy]l | Y) = (Byp¥ByyBipAy,
Z3 = [Ayys Byy=Byol Y, = By, (A)ymAy 5 Ry))

g = (By17B1yBy1=Byn) (A5=4y))

Zg = lAys Byy=Byyl ¥, =
25 = LAy ¥aps Byol ¥y = By Ay Ao Ay
Zg = [Ay)=A1y» Byy?By,) Yo = (By=ByyBoplhy

5) 021 = ZZ+Z4—(Y4+Y

c

Cyq = 22, =LobZ 4 (Y +Y Y

11 17475 5)

2,42 42 FT Y Y Y

12 = Z3tZg 2) ng = Lp*PotRgHI Y g

and thus 6(L4(s)).<.56(M2(s))+76(L2(s)5 = 70.

i11) - By a similar recursion, G(LG(s))_< 10 G(Mzﬁ—l(s))+26(L2n—1(s))
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and since G(Mzn(s)) s 7“, this recursion yields that

JORC) <_105(Mzn_l(s))+z-1oa(uzn_z(s))+...+z“‘3-105(M4(s))+2“f25(n4(s))

¢ 100" 2. M2 423 4 2™ 2

o 7(2) n-2. S |
10( 1577 ) 70 7.2 7-72",

Other elementary characteristic functions of Importance arise in

polynomial multiplication and matrix multiplication. While we have

studied these elsewhere, we present extensions here to complete the section.

Strassen's algorithm [21] for 2x2 matrix multiplication and a minimal
realization of P (s) over Z. have been presented within the body of

the thesis. It is easily verified that the degree 3 realization

1 1 o] |517%2 10 .
P2 2(s) = CA(s)B = 0 11 5, 1 1} and Strassen's
. ,
' . 0 1

53789

algorithm can be extended to yield realizations of degrees 3" and 7"

respectively for P # (s) and M n(s). Among realizations over
2 2 2" 2 +2
ZZ these may be minimal, however it 1s clear that over any subfield K
of @)6,(1’ (s)) = 202"1 > 3". The mininal degree of M (s)
AN 2", 2", 2"

is an open question of central importance to arithmetic complexity theory.
The results of this section represent an explanation of heuristics
necessary to realize some elementary characteristic functions and to
combine-these to generate more intricate characteristic functions. These °
results are presented as the building blocks for a general scheme for

realizing characteristic functlons,
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 Appendix A.2: Lower and Upper Bounds on Polynomial Multiplication

Faétorizations of Pn’m(s) over any subfield of dj are well under—
stéod and through the use of the fast Fourier transform (see Schonhage
and Strassen [20]) and Modulay Transformations (see P:orodin and Moenck [2])
algorithms of oxder d(n log n) over C and 0(n log2 n) over any .subf.ield; |
of L exist. We devote this sect;ior; to studying the behaVio.r of
: GZ(Pn,m(S)) extending the results of the third section of Ciiapter 3.
We will. bé pa_rticul»arly interested in studying the behavior of 8z ( fn’m(s))
for small values of n and m. The algorithms which are asﬁubtotically

“optimal, do not dominate until n is of the order of 210

and thus the
results presented here are of practical interest.
It is easily verified by permutation equivalence that GZZ(Pn In(s)) =
B 3 :
'62 ('Pm,'n(s)) = GZ_(Tn,m(S)) = GZ (Tm"n(s)). »Furthermore', as mentioned
previously all of these equivalent quantities are bounded below by

N(m,n) and N(n,m). It is thus easily verified that %Z(Pﬂ 2(5)) =
‘ ]

S (P (s)) 2 N(2,n) = 3n by the reéursion given in Chapter 3.
| C == ) ’ >
Furthermore, since Pn,Z(S) = Rn(t) i(-:l; P2,2(ti) for n even and

Rn(t) = Rn_l‘(t) @ [31] for n odd, it is cleaf thai: GZ(_Pn’Z(s)) < S(Rn(t)) =

2
Filzl] » A minimal realization of Pn 2(s) is thus given as the direct sum
‘ s

of .‘21 minimal realizations of PZ,Z(S) (with additional terﬁs if n is ‘o'dd).
A more interesting problem is the study of 6§ (Pn’3(s)). . The recursioﬁ of
Chapter 3 yields a lower bound of P%-I if n I# 1 (moq '45 and [ll'&] +11f
.n E 1 (mod 4), 'From this we can establish that 62(.P3’3(s)) = 6 and a .

minimal realization is given in Chapter 2. | Further study yields the following
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Theorem 5: GZ (P4,3(s)) = 8
Proof: It is clear that GZZ(P4 3(s)) 3 7 from the above. We show
?
that §_ (T (t)) > 7 and give a degree 8 realization for P (s)
Z 4,3 . 4,3
ov-rZ . 1In order for a factorization of T, 3(t) of dimeénsion 7 to
?
exist overuzz it is necessary that there exist 3 7-vectors {vl’VZ’VS}
such that lvil 24V 14, Iv +vj| >4, ¥ 1#3 Iv +v +v3l 2 4 and |

lvi\) le 36 ¥ 1,}j. The only such Vi2VgrVs are given by

vl 1111000
Ve Vyi= 0 0' 1 1 1 1 0} or any matrix of this form wi;h
Vg 1010 1 01

row and column orders changed.' Therefore, a degree 7 realization of

(t) would be of the form CA(t)B where. A(t) is the diagonal matrix
t1
trith 1ith entry the same as the ith entry of V [ 2} . By studying the form of
. t .
such realizations, it can be seen that none exists. This is true,

gince 1f T )y = t,T,+t,T +t.T

4,3 111 F2%2 373
matrices Rl,Rz,...R7 such that

, then there must exist rank one

R1+R +R3+R 4

R5+R4+R5 T2

R1+R +R5+R7 T3
By applying results on partitions it follows that R3 must be nonzero
only in the third and fourth columns and possible forms -of R3 ard such
that T (t)+R (t +t, bt ) is of degree 7. A degree 8 realization follows from
the degree 9 realization of P4,4 givep below. ‘ Ny | |
Further study of P3'n(s) 1§ads to strong support for the conjecture

that GZZKP3 n(s)) grows as fast as 2n.. However, it has not yet been
y . .

possible to establish these results for n » 6. It is clear that the
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methods presented here do yield a methodlof determining.GZ,(Pn m(s)) :

for any proscribed small values of n énd m through a finite search.

Since there are cases where such results are desirable (e.g. Winograd [28]

on triple precision arithmetic), these results are of'avtruly pféctical
importance.

It is easy to extend Theorem 5 to obtain the following.
Corollary: 622(P4’4(s)) =9,

This corollary fol;ows 51nce.GZI(Pn,m(S)) < 622(Pn',m’(s)) if
n'>nandn' >morn' 2nand m' > m. Thus, despite the fact that

Pia® S By () @ By o(e)), 6,7 () = (8, (7, 012

_This result is of importance as it leads to the following conjecture.

log,3 1.58
n .

No bilinear operation has yet been proven to grow at exponent

‘greater than 1 in the number of input parameters. This conjecture‘

identifies what is herhapé the easiest case to work on. The conjecture
is true for n < 6 by the results presented here. A summary of existing

upper and lower bounds on'G‘_Z(Pn m) for small n,m is given by the table

in Rppendix A.4.
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Appendix A.3: A Theorem Proof

We prove the last two parts of Theofem 11 of Chapter'3 here,

Statement ii) r(3,3,3)'= 5

Proof: Let G(s) = Glsl+G232+G3 3 and consider 2 cases, first that G1

i8 of rank 3 and second that all Gi are of rank 2 and no linear combination

of the three 1s of rank 3. The first case gives .rise to 3 subcases depend-

ing on-the Jordan canonical form A of G1 9 We consider here realizations

of G(s) = I3sl+As +As3 since without loss of generality this form

can be assumed.

-
M

Case Ia) A= , in this case, there exists | such that A-uI is

o>o
~o o

0
N 3 o
of rank <2, thus §(G(s)) <€ 6(I3sl+As )+6((A—u1)s3) € 3+2 = 5,

431 _
of degree < x(2,2,3) = 3 and thus-G(G(s)) $ 1+143 = 5.

"A10] a,, a,, 4 W
] and A = 11 12 T13

Al0 a a
Case Ib) A =0 A 0] and A = a%i ;g aéz . In this case, we let
00w 231 32 %33 S
G(s) = H(s)+(usz+(a 1)s H +33H2 where
0 0 0] _
: 8132 31 13 32 13
Hl g. 8 2 s H2 = ?3a31 23 32 %3 are of rank 1 and H(s) is

Case Ic) A=}j0A1 ay] 855 23| - It must be further true

002X 2,3 335 a3%~
5 ‘ » Hxo :
that the Jordan Canonical Form for A is |0 11 1] or Case Ia or Ib  holds.
00u

A+aA+BI has this Jordan Canonical Form for all a, B only 1if a 31=0, 321n3a32

and either a or a,, =0, If a,, = a,, = a = 0, then

11 7 333 21 21 © 231 7 83p
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| - 100}
" G(s) = Gl(s)+G2(s), wvhere Gl(s) = (51+_82+ails3)'[8 g_g] and Gz(s) .
has as its first column, a colunn of zeroes. In this case,

5(G(s)) € 8By (6))+6(C,y(s)) ¢ 1+r(3,2,3) = 5. If ag = 0, ay= ~ag,

) o : . ‘180
and 8,1 = 33 then there is a choice of B such that if P = [0 1 B]

, 001
b.. b.. 0 | .
papl e |o1 112 | anaprpl =1, PAPY = A, This cholce is
21 Pp2 Do3 .
07" by, byy ‘

s 3 2
given by any of the roots of B (a32)—8 (a33-a22)—8(a23—a12)-—al3 = 0,

Therefore, it is sufficient to show that H(s) = ISf¥Asz+H382 is of

. . 1 | _
- degree 5 where H3 = PAP -bllI-b23(A-AI). The decomposition

H(s) = [s,+b, 5, sl+)\s2 0 +|-s, 0 s, - 0 P22—b11 0 Sq
0 . o 0 0 0 sibksz 0‘ fb21

proves that 8(G(s)) € 5. = o o ommom s ensems e

.Case II: There is no linear combination of Gl’Gé and G3 of rank 3.

It is clear that there exist invertible matrices Pl’?Z’Ql’QZ’ R1 and RZ
guch that the last row and cqlumn of R1Q1P1G1»2Q2R2 are zero and that

a row and the corresponding column of R1Q1P1G2P2Q2R2 and R1Q1P1G3P2Q2R2

are zero. If the same row and column are zero in any two of these final

'métrices, it is clear that §(G(s)) € 5. Therefore, we need only show that

) ab 0] Te O f [ooo | 3
forG= fcd0f, G, = |000}| and Gy = JOk2Z| , G(s)= )) G 8,
_ 000 g Oh Omnj =1

18 of degree at most 5. If a or e # 0. (or similarly d or k # 0 or h-or n#0),
then we can decompose C(s) as G(s) = R131+R252+R3(s) if a and e are both

'nonzgro and as G(s) = Rl(sl+32)+R4§2+R5(s) i? e = 0 where 6(33(9)) £ 3,
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" a realizatlon of degree € 2+r(3,n-1,n-1) where _
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_ a b 0
G(Rs(s)) < 3 by the first part of this theorem and R1 = [c be/a 0]’,
0 0 0

e 0 £ ~a  =b £ ,
R,=|0 0 0 fand Ry=}-c -be/a cf/a|. If a=d=esh=k=n=0, then
g 0gfle g bg/la -fg/a

: 0 0 O o b 0] 00 f° |
G(s) = [c -b/f O st [0 bL/f O (sl-s3)+ 0 0 0 (32-33) +

0 0 0 0 60 o

0 0 0 0 b £
0 0 0 |s;+[0 be/E 2 S,
g 0 -fn/b 0 . m fm/b

and therefore 6(G(s)) < 5. Iff orb = 0, it is trivial to find a

0 0 fm/b

realization of G(s) of degree € 5.

Statement 1ii) r(3,n,n) € 2n

Proof: Let G(s) = Glslj0232+G333 vhere Gi is an nxn matrix. If no

linear combination of the G, is of rank n, -then it is possiblé, as

i

.above,.to decompése G(s) as thé sum of an n-2xn-2 characteristic
functidnrand a characteristic function of degree 6. Thergfore, we can
assume without loss of generality thaf Gl is invertible and furthe;
that G.(¢) = In§1+Asz+As3 vhere A is in Jordan canonical form. If

iA = (A,,) and there exists i such that Aik and Aki are zero for k # i,

i3
then (assuming i = n), the decomposition G(s) = Hl(s)+H2(s)+H3(s) yields

a
C 0...0] ' ' a;: W -
Hl(s) a (sl+knnsz+(annfl)s3) 6 i and HZ(S) =85 | [anl°"an,
LR N ] (-.1
n-1,n
S

n—lll',
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If no such i exists and all eigenvalues of A are-linked, then there is -
a choice of o and 8 such that not all eigenvalues of aIn+BA+A are linked
unless A has the same structure as A. In the first case, we can reduce

the problem to the above construction.and in the second, a tribial

realization is of degree £ 2n-1.



~
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Appendix A.4: Some Upper and Lower Bounds

This appendix is devoted to presenting tables of upperrand lower
bounds on some important characteristic functions. We begin with a
general table of bounds and present bounds on special cases of poly-

nomial and matrix multiplication.
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K = Z 0:‘ )
~ Lower Bound Upper Bound Lower Bound Upper Bound
p q : r on on ’ = on on -
GK(Mp,q,r(s)) GK(MpJq,r(S))' ‘SK(Mp,q,r(s)) GK(MR,q,r'(S))
2| 212 7L 74 72 74
7] 1 7r] 1 7e] 1
212} r [2 [2 1. ‘ 3+l [é,]
2{3]3| 152 15 & 14 151
' 1 ' 1
r 3r [Bqrtmax(q,n)] = [3qrtmax(q,r) |-
2 1 gq >3 qrqt rz—l -2 > | qr+riq-1 > 2
333 20 24 3 19 24 3
sfalal 38 49 4 37 49 &
6|61 6 93 165 91 165
-Table II: i.oxéer'and Upper Bounds on (‘SK(M (s)) for K = /A aﬁd

Pyrq,Y

K = Z- and small values of p € q € Y.

|& Jw N [

Due to Hopero

Due to Winogr

ft and Xerr [11]
ad [27]

Due to Fiduccia [6] and Hopcroft-Musinski [12]

Due to Strass

en [21)
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Lower Bound Upp;ar Bound on
n m on . on

6Z(Pn,m) 6Z(Pn,m)
2w [ 159
3 3 6 6
3 4 8 : 8
3 5 10 11
3. 6 11 12
37 13 15
3 8 14 16
39 17 18
3 4k (k>1) % | 8k
4 4 9 | 9
4 5 1n 13
4 -6 12 16 .
4 8 15 18
4 12- 23 27 .
5 5 S LI IV
6 6 - - 15 18
7 7 18 | 23
8 8 |

20 27

Table III: Lower; and Uppgr Bounds on Gz (Bn,m(g)) = 62 (Pm,_n(s))'





