VLIW MACHINES: MULTIPROCESSORS WE CAN ACTUALLY PROGRAM

Joseph A. Fisher

John J. O'Donnell
Computer Science Department
Yale University New Haven, CT

Research Report YALEU/DCS/RR-298
January 1984

This work was supported in part by the National Science Foundation grant number
#MCS 81-06181, the National Science Foundation grant number #MCS 83-08988, and the
Office of Naval Research contract # N000014-82-K-0184.

VLIW Machines: Multiprocessors We Can Actually Program

Joseph A. Fisher
John J. O'Donrell
Computer Science Department
Yale University
New Haven, CT

Abstract

VLIW machines are highly parallel architectures that
offer an alternative to multiprocessors and vector
machines. VLIWSs resemble ordinary multiprocessors,
but have a tightly coupled, single-flow control
mechanism much like clean, very parallel horizontal
microcode. Programs for VLIWs must specify fine-

grained hardware control.

Unlike multiprocessors and vector machines, it is
essentially ir.npossible to hand code VLIWs. But also
unlike multiprocessors and vector machines, a
compiler now exists that can produce highly parallel
code from a broad range of ordinary, sequential
programs. This compiler, using a technique called
trace scheduling, frees the programmer from the
difficult task of locating the parallelism and matching
it to the parallel structure of the hardware. This may
make VLIWs the most practical way to obtain
parallelism speedup for the typical compute intensive

scientific application.

In this paper VLIWSs are described and compared with
other parallel architectures. The BULLDOG compiler,
which generates highly parallel code from sequential
high level source programs, is described. Included is a
brief description of the target machine, the ELI
(Enormously Long Instructions), a machine with an
anticipated instruction word of over 1000 bits. Our
compiler now generates code for an ELI with a
parameterized description; we are currently picking
values of the parameters to tune the architecture to a

suite of scientific programs.

What Are VLIW Architectures?

VLIWs are architectures characterized by the large
degree of timing and resource control in their
programs. As a result, each instruction for a VLIW
contains many bits, perhaps in the thousands. To
picture & VLIW, imagine many (32, say) copies of
your favorite RISC machine! all somehow connected
to a memory system and all capable of communicating
over some sort of interconnect. We'll refer to the
RISC machines as the processors. There is no
requirement or expectation that the processors
resemble each other. Figure 1 contains a sketchy
picture of a VLIW.

So far, this new definition fits the usual definition of a
heterogeneous multiprocessor. What's the difference?
The answer is in the instructions necessary to control

the machine.

e Each long instruction contains operation
fields to control each of the individual
processors.

o The instructions are in a single flow of
control’>. Thus a single long instruction
word is fetched, and all the processors do
their individual operations. The
operations differ for the various processors;
there is no coherence as there would be in
a vector machine. After an instruction is

executed, the next instruction is chosen
and fetched.

IReduced Instruction Set Computer [Patterson 82], a load [store
architecture with very simple operations and few addressing
modes.

2As a result of this property, some have (disparagingly) referred
to machines like this as still being Von Neumann Architectures.
But unlike a3 Von Neumann machine, this is a highly parallel
architecture. It, like a vector machine, does not have its
parallelism in the control flow, but elsewhere.

o The instruction word completely controls
all communications among the processors.
That means that a piece of data is taken
from a known location and placed into
another known location, using known
resources for a known amount of time.
There is no sense of packets containing
destinations, nor of hardware scheduling of
a data transfer. Data transfers and their
timings are completely choreographed in
the code.
As a practical matter, there is no central program
store. Instead, each processor fetches that portion of
the instruction word relevant to it from its own
program store. But on any given cycle, all processors
fetch from the same address. There is a central
control unit collecting test result bits and generating
the next address information. This looks to the code
generator as if there were one very long instruction

word.

For those familiar with horizontal microcode, this
control model is precisely the same. But there the
similarity ends. VLIWs differ from horizontally
microcoded machines in two key respects: they are
far more parallel, and they are far cleaner. Although
there have been lots of horizontally microcoded
machines, no one has ever built a VLIW. Nor should
they have; until recently there was no chance of
producing reasonable code for them. A VLIW cannot
be coded by hand — there are too many unrelated

execution streams going on in parallel.

Figure 1 contains a table which points out some key
differences between VLIWs, multiprocessors, and

vector machines.

Why Get Excited About VLIWs?

VLIWs aren't just another parallel architecture.
Using a technique called trace scheduling [Fisher 83]
[Fisher 81) [FERN 84], we can actually develop large
amounts of highly parallel code for them without a
great deal of programmer effort. We believe this sets

VLIWs apart from multiprocessors and vector

machines3.

Trace scheduling was originally developed to generate
less parallel code (horizontal microcode), and we had
po idea of how it would scale up. Indeed, we were
skeptical at first about the possibility of generating
highly parallel code. But in fact, given code with
appropriate properties (and we believe that most
scientific code fits the model) trace scheduling does

quite well.

Trace scheduling in all its glory is a complex
procedure to explain, and a bear to implement.
Nonetheless, the basic idea is quite simple. When the
control flow of a segment of code is known at compile
time, e.g. in code without conditional jumps, it's clear
what to do — just schedule the operations. But there
is very little parallelism in short segments of straight-
line code. To handle conditional jumps, a trace
scheduling compiler wuses information about the
dynamic behavior of the program to do greedy
scheduling of operations. When the compiler can
make good guesses — when many of the jumps are
weighted he: vily towards one leg — it’s productive to
be greedy. Otherwise, VLIWs are probably the wrong

architecture to use.

Figure 2 goes into the mechanics of trace scheduling
in slightly more detail. The only very detailed
explanations of trace scheduling are found in [Fisher
79) and [Fisher 81], both of which are about code
generation for horizontal microcode. More details of

trace scheduling for VLIWs will be available soon.

3And especially from dataflow machines. Dataflow machines
resemble VLIWS in their fine-grained parallelism, but they require
untried hardware and architectural properties that may npot
eliminate all of the bottlenecks they're purported to.
Furthermore, there is no evidence that buman beings are capable
of writing large amounts of side-effect free code. Worse still, code
must be vectorized to handle large arrays, and it's not at all clear
that other aggregates can be handled in any reasonable way
without excessive copying.

Local/Global Memory

CPU
n-2

CPU
1

CPU

Processor Interconnect

Multiprocessors, vector machines, and VLIWs all share the above structure. Despite their overall
similarity, the architectures differ radically in their control flow, in the connecting of processors, in the
accessing of memory, and (most importantly) in the programming requirements of each architecture. The

below table compares these points.

Multiprocessors

Flow of Control

Each processor has

its own control fow.
Processors must wait
to synchronize on data

availability.

Interprocessor
Communications
Bandwidth

Hardware scheduling
of datapath resources,
data packets with des-

tination addresses, and
buffering of unusable

data

Memory
Bandwidth

When possible, refer-
ences are localized to a

given processor. Oth-
erwise expensive and
slow global memory
switch to allow proces-
sor/memory xbar.

Programming
Requirements

Code must be broken
into relatively indepen-

dent tasks which min-
imize communications
and synchronization.

Vector Machines

Ogne instruction at a
time Von Neumann
style, all processors do-
ing the same operation.
Mask bits may disable
a subset of processors.

Subvectors must be
moved in patterns
fitting the regularity of
the interconnect and
algorithm. Otherwise it
is like a uniprocessor.

Vectorized references
allow full access to
all banks. Unvector-
ized references like a
uniprocessor.

Code must be ex-
pressed as regular
operations on aggre-
gates. Matchup must
be made between inher-
ent regularity of code
and bardware.

VLIWs

All processors fetch instructions
from the same next address, but
instructions differ from processor
to processor. Von Neumann-style
control flow with extremely long
instructions.

Individual movements of data
completely specified at compile
time. No need for addresses,
runtime resource scheduling, or
implicit buffering.

Banks must be predicted at com-
pile time to get maximal band-
width for scalars and aggregates,
which may be mixed in a single
instruction. When the aggregate
bank is unpredictable, it is like a
uniprocessor.

Not likely to be hand-coded.
Compiler must do greedy schedul-
ing (e.g. trace scheduling) and
elaborate run-time analysis to
choreograph individual data
movements and other resource
selections.

Figure 1: A Comparison of Multiprocessors, Vector Machines, and VLIWs

LOOP-FREE CODE

w] 1

. not correctly preserve jumps from the stream to the outside world (or rejoins back).

We start with loop-free code that bas no back edges. Given a reducable flow graph,
we can find loop-free innermost code. Figure (a) to the left shows a small flow graph
without back edges.

Dynamic information — jump predictions — is used at compile time to select streams
with the highest probability of execution. Those streams we call “traces.” We pick |
our first trace from the most frequently executed code. In figure (b), a trace has been
selected from the flow graph.

Preprocessing prevents the scheduler from making illegal code motions between blocks.
This is done by adding new, special edges to the data precedence graph built for the |
trace. The new edges are drawn between the test operations that conditionally jump ;
to where the variable is live and the operations that might clobber the variable. The !
scheduler is then permitted to behave just as if it were scheduling a single basic block,
paying no attention whatsoever to block boundaries. In figure (c), the trace bas been !
scheduled but not rejoined to the rest of the code.

After scheduling is complete, the scheduler has made many code motions that will |

So a postprocessor inserts new code at the stream exits and entrances to recover the
correct machine state outside the stream. Without this ability, available parallelism
would be unduly constrained by the need to preserve jump boundaries. In figure (d),
the new, uncompacted code appears at the code splits and rejoins. Then we look for
our second trace, again looking at the most frequently executed code, which by now
includes not only the source code beyond the first trace but also any new code that we
generated to recover splits and rejoins. We follow this proceedure until all the code is
compacted.

Trace scheduling can be trivially extended to do soft-
ware pipelining on any innermost loop. We simply un-
roll the loop for k iterations; the loop body can contain
arbitrary flow of control. The unrolled loop gets com-
pacted just as loop-free code to the left. At right is
a flow graph of a fully scheduled loop that has been
rejoined to the rest of the code.

Figure 2: A Brief Description of Trace Scheduling

The ELI Project

The ELI (Enormously Long Instructions) Project has
been underway at Yale since 1880. It centers about
the ccostruction of the BULLDOG compiler! (now
written in compiled LISP on a DEC 2060), and,
eventually, the construction of the ELI, a VLIW
machine. Notice that we have the horse before the
cart. The compiler has been running for over a year.
We still haven't fully designed the machine it
generates code for, instead we generate code using a
tabular description of the ELI. By designing a small,
pre-prototype machine and building code generators
at the same time, both efforts polish each other. This
allows us, within the bounds of our general model, to
change aspects like:

o The repertoires, number, and placement of
functional units,

e The size, placement, timings, and number
of ports in register banks,
o The sizes and speeds of memory banks,

e The topology of the processor
interconnect,

and so on. Our machine model prohibits features
which might not scale across implementation
technologies or to large, highly parallel machines.
Thus we include no N-port memories, massive
alignment networks for connecting memories to
processors, or “hotspots” which need faster logic than

the rest of the machine.

We're tuning ELI characteristics by running the
compiler on a wide range of scientific code. Therefore
it's. impossible to give a fixed description of the
machine. On any given day, we have our current best
guess at the setting of the parameters. That
notwithstanding, here's a current view intended only
to give a sense of the scale of the machine:

Processors: Each of the 8 processors
contains several functional wunits, all
capable of initiating an operation each
cycle. Our current best guess is two
integer ALUs, one pipelined floating ALU,

‘The BULLDOG compiler is partially described in [FERN 84
and [Fisher 83|, and will be more fully described elsewhere soon.

one memory port, several register banks,
and a limited crossbar for all of these to
talk to each other. Thus if we build this
to a 200ms. cycle time, we will have 4
(operations per processor) x 8 (processors)
x 5 (million ecycles per second), or a
potential of 160 RISC MIPS using
technology that is far from the fastest
available.

Memory System: Our memory system is
a general alignment network, allowing the
delivery of any memory word to any
processor, which is very narrow: one word
per cycle. This alignment network is
locally bypassed at each processor,
allowing 8 references per cycle when banks
can be statically determined. When the
compiler can decide what bank a
particular reference is to, we get high
memory bandwidth; when it can’t, we
default to the global network. Bank
disambiguation almost always succeeds in
the programs we look at, as long as we use
a few tricks to help it out. This allows us
to have have enormous bandwidth without
vectorizing our code, and without building
an expensive or unrealistic alignment
network. This is more fully described
in [Fisher &3].

Processor Interconnect: This is the
most unsettled design parameter. As VLSI
changes the «cost balance between
interconnect and function, one is led to
evaluate system cost/performance in terms
of the effective use of the provided
interconnect. From simulations we have
found that various topologies do not seem
to differ greatly in their performance; what
matters is the overall functional unit to
interconnect ratio. Currently we have 4
half-duplex bidirectional lines to/from each
processor. With the processors arranged in
a circle, 2 lines connect to the nearest
neighbors, and the other lines each go
about 1/3 of the way around, one
clockwise, one counter-clockwise.

Besides the actual machine, we also generate code for
an idealized version of the ELL It considers all of the
above parameters at their most optimistic, and gives
us a measure of the parallelism we're actually finding.

as well as a notion of how well our choices are doing.

How Much Parallelism Do We Find?
We informally divide our suite of source programs
into three broad classes:

Type P1 Those which (we believe) stand
a chance of obtairing significant parallel
speedups using an ordinary multiprocessor
or a vector machine without significantly
changing the algorithm. Doing so still
might require significant programmer
effort. Examples (among many) of these
include an FFT, convolution, and matrix
multiply.

Type P2 Those which appear on the
surface to have potential parallelism but
are too irregular or interwoven to fit into
type P1. These include, among others, a
prime number sieve and
LU-decompositions.

Type S Those which seem too sequential
to allow any significant speedup due to
parallelism. Examples of these include
various series summations, dot product”,
iterative solvers, etc.

We believe that types P2 and S are much more
common in real life, while type Pl is found more
commonly in Museums of Parallel Processing. Type
P1 is also found in the inner loops of programs which
are otherwise types P2 and S. It might seem sufficient
to build parallel hardware to handle type P1, and not
deal with types P2 and S, and sometimes it is. But
we believe that even among most applications with
type P1 code in the inner loops, not enough of the
running time is in the inner loops to justify special

hardware.’ A few applications do have that

SA small algorithmic transformation makes LU-decomposition
suitable for a vector processor. We use the straightforward
statement of the algorithm. It evidently took years before people
in the scientific programming community moticed this
transformation, even though this code was the subject of much
attention.

$This is a place where both vector machines and the
BULLDOG compiler may be helped by the work of David Kuck's
group at The University of Illinois [Padua 80]. Their source
trapsformer can probably solve the recurrence and improve
performance on this program.

TFor example, if 80%% of the code fits very well, and parallelism
reduces that npearly to zero, the maximum possible speed up is
under a factor of 5.

property, signal processing probably being the most
notorious. We believe that because of this property,
these applications have had an influence on parallel
processing almost to the exclusion of all the other

things we want to do fast.

Using the code generator for our idealized ELI, we get
the following general results on the test bed of

programs we currently run:

Type P1 We find all the parallelism the
hardware will allow. Although these
programs might also run in parallel on
other architectures, our parallelism is
found without the programmer having to
alter the natural expression of the
algorithm58 .

Type P2 We again find all the parallelism
the hardware will allow. We find it even if
the inner loops contain conditional flow of
control and data-precedence between loop
iterations. We find it even with widely
scattered references to array elements.
Our individual control over memory
accesses, and our ability to differentiate
the banks being referenced, allow us to
maintain a high memory bandwidth in
situations that would reduce other
processors to uniprocessor speed. This is
perhaps the most encouraging fact about
VLIWs and the BULLDOG Compiler.

Type S We generally get a factor of five
or more speed up. These are programs
that we believe would be impossible to
speed up at all with other processors.

For more details about the workings of the
BULLDOG Compiler, see [FERN 84].

Summary

The BULLDOG compiler, which extracts a large
amount of parallelism from sequential code, has
demonstrated that VLIW's may be the most attractive
alternative for scientific, highly parallel computation.
This has encouraged us to actually build a VLIW, and
we are currently designing onme. The BULLDOG

compiler generates code for the machine we are

$0ccasionally the compiler asks the programmer simple
questions which have always (so far) had obvious answers. For
details of the BULLDOG interactive assertion facility, see fern8..

designing, and we are now altering the machine
characteristics to perform well in our simulations on a

wide selection of code.

Acknowledgements

Main participants in the ELI project have included John
Ellis, John Ruttenberg, Alexandru Nicolau, Mark Sidell,
Doug Baldwin, Abbiram Ranade, Richard Kelsey and
Charles Marshall. Dennis Philbin edited this paper. Judy

Sexton helped in the paper’s preparation.

This work was supported in part by the National Science
Foundation grant #MCS 81-08181, the National Science
Foundation grant number #MCS 83-08988, and the Office
of Naval Research contract # N000014-82-K-0184.

[FERN 84]

[Fisher 79)

[Fisher 1]

[Fisher &3]

[Padua 80]

[Patterson 82]

References

Joseph A. Fisher, John R. Ellis, John

C. Ruttenberg, and Alexandru Nicolau.

Parallel Processing: A Smart Compiler and
a Dumb Machine.

In Submitted to SIGPLAN ’84:
Symposium on Compiler Construction
. ACM, June , 1984 .

J. A. Fisher.

The optimszation o f horizontal microcode
within and beyond basic blocks: An
application of processor scheduling
with resources.

- U.S. Department of Energy

Report COO-3077-1681, Courant
Mathematics and Computing
Laboratory, New York University,
October, 1979.

J. A. Fisher.

Trace scheduling: A technique for global
microcode compaction.

IEEE Transactions on Computers
C-30(7):478-490, July, 1981.

Joseph A. Fisher.

Very Long Instruction Werd
Architectures.

253, Yale University, Apr, 1923,

D. A. Padua, D. J. Kuck, and

D. H. Lawrie.

High speed multiprocessors and
compilation techniques.

IEEE Transactions on Computers
29(9):763-776, September, 1980.

D. A. Patterson and C. H. Sequin.
A VLSI RISC.
Computer 15(9):8-21, SEPT, 1982.

