A CHARACTERIZATION OF
PROBABILISTIC INFERENCE

Leonard Pitt
YALEU/DCS/TR-319
June, 1984

This work was partially funded by the National Science Foundation under grant numbers MCS
8002447, MCS 8204246, and MCS 8116678.

Abstract

Inductive Inference Machines (IIMs) attempt to identify functions given only input-output pairs
of the functions. Probabilistic IIMs are defined, as is the corresponding probability that a
probabilistic IIM identifies a function with respect to two common identification criteria: ‘EX’
and ‘BC’. Let ID denote either of these criteria. Then ID rob(P) is the family of sets of functions
U for which there is a probabilistic IIM identifying every fp € U with probability > p. It is shown
that for all positive integers n, ID,.\(1 /n) is properly contained in Imeb(l /(n+1)), and that this
discrete hierarchy is the “finest” possible. This hierarchy is shown equivalent to a hierarchy of
teams of deterministic IIMs [20], and a hierarchy of frequency identification, introduced in (18],
and settling an open problem. A special case of these results is that every class of functions
which can be identified by some probabilistic IIM with probability > 1/2, can be identified
deterministically. Other properties of nondeterministic and probabilistic inductive inference
machines are briefly investigated.

Table of Contents

1Introduction v v 4t e
1.1 OVEIVIEW . . « v v v v e e e e e o o e e e e e e e e e e e e e e e e

12 Notation - « « « o v e e e e . e e e e e e e e e

1.3 Preliminary Definitions e e e e e e e e e e e e e e e e e

2 Probabilistic Inductive Inference Machines.
2.1 Infinite Computation Trees oo

2.2 Probability on Infinite Computation Trees

3 Relationship Between Probabilistic and Team Inference Strategies.
3.1 BC Probability and Teams.o
3.1.1 Probabilistic Simulation of Teamsof IIMs.

3.1.2 Team Simulation of ProbabilisticIIMs

3.2 EX Probability and Teams.
3.2.1 Definitions for Probabilistic EX-identification

3.2.2 Team and Probabilistic Simulations.

4 Relationship Between the Team and Probabilistic Inference Hierarchies
5 Frequency Idemtificationo
5.1 BC Frequency Identification

5.2 EX Frequency Identification

5.3 Relationship Between Frequency, Probability, and Team Hierarchies.

6 Identification with Anomalous Hypotheses. e e e e e
7 Nondeterministic Inference Strategies: An Observation
8 Other Properties of Probabilistic IIMs.
8.1 Identifying Functions DrawnfromaHat

8.2 Restricted Choice Probabilistic IIMs
Acknowledgementso e e e e

APPENDIX

..................................

© =1 =3 b 0O

12

12

13

19
19
21
26
28
28
31

35
40
42
42
44
45
46

1. Introduction

1.1. Overview

Inductive inference is the study of algorithms which attempt to synthesize programs computing
a function when given only examples of the function as input. Research focuses on both general
theoretical properties of inference techniques, and finding specific methods for inference within
particular domains. Inductive inference has applications in linguistics (the study of language
acquisition), artificial intelligence, pattern recognition, cryptography, and the philosophy of
science, among others. The reader interested in machine inference may find an excellent survey
of both the theoretical and more concrete results in [1].

An Inductive Inference Machsne (1IM) takes as input initial segments of the values of some
total recursive function, f(0), f(1), f(2), ..., and outputs guesses of programs based on the
examples it has seen. Note that since new input values may not be consistent with a current
guess, the [IM may not be able to determine at any point whether a particular guess is correct.
For this reason, identification of functions is seen as an infinite process which happens “in the

limit”.

There are two standard criteria of successful identification in the limit of an IIM on a given
function f: ‘EX’ and ‘BC’. EX-identification requires that the infinite sequence of guesses
converge to a single program computing f, while BC-identification only requires that after some
finite initial segment, all the guesses be correct programs for f. There are two associated

identifiability classes:

EX = {U| Uis a set of total recursive functions such that there exists an IIM M which EX-
identifies every f € U}. The class BC is defined analogously.

In this paper we investigate probabilistic Inductive Inference Machines. It is has been shown
[2, 5] that there is no single deterministic inductive inference machine which can synthesize a
correct program for every partial recursive function given only input/output pairs of the function.
It seems natural to allow randomization as part of the inference machine, and then ask: “are
larger classes of functions identifiable if we only require the inference machine to be correct with
some probability p £ 1?7 This is the main issue addressed in this paper.

Ultimately, we would like to understand the interactions between randomization and various
resource measures for inductive inference processes: time, space, number of examples, number of
mind changes, number of anomalies of the hypothesized program, quality of intermediate
hypotheses, etc. The present paper establishes the most basic framework for such investigations,
by characterizing the power of probabilistic inductive inference machines with unrestricted

resources.

-92-

We define probabilistic [IMs as follows: The machine M is allowed a (potentially infinite)
sequence of 0-1 coin tosses; if we fix the input, £(0), £(1), £(2), ..., each 0-1 infinite sequence then
determines a sequence of guesses of M, which may or may not converge (in the EX or BC sense)
to a program for f. If we consider the usual Borel measure on the infinite coin toss sequences,
then the set of guess sequences that converge to programs for f (in either sense) is measurable,
and is denoted Pr[M EX-identifies f] or Pr[M BC-identifies f), respectively. For p 2 0, define

EX, u(P) = {U| Uis a set of functions such that there exists an IIM M such that Pr{M EX-
identifies f] > p for every f € U}. The class BCPmb(p) is defined similarly.

Our results give a description of the structure of the classes EXpmb(p) and BCmb(p) as a
function of p. For both criteria there is a discrete hierarchy of classes, with “breakpoints” at the
values 1/2, 1/3, 1/4, That is, for all n = 1,23, ... EXpmb(lln) is a proper subclass of
EXpmb(n+1); and if p, and p, are in the same half-open interval (1/(n+1),1/n], then Expmb(pl)
== EXpmb(pz), and similarly for the BC criterion. Also, for both criteria, the sets of functions
that can be identified by some machine with probability p > 1 /2, can be identified by some

deterministic machine.

This paper is also one of unification, in that the precise statement of our main results gives an
equivalence between three different models of computation for inductive inference: probabilistic
identification as described above, frequency identification introduced by Podneiks [18], and
identification by teams of machines introduced by Smith [20]. (It also settles an open problem of
Podneiks for frequency identification.) This is somewhat unusual, for in many cases the
introduction of new computational models for inductive inference gives rise to new and
“orthogonal” hierarchies of identifiability.

Previous work relating probability and inductive inference include results for identification of
stochastic grammars [8, 10, 13, 15, 22, the use of randomization to reduce the number of
“mind-changes” required by an IIM to identify functions [3, 19], probabilistic “concept learning”
algorithms for boolean formulae {21}, and more related to this investigation, the work of Freivald
on the probabilistic finite identification hierarchy [9]:

In Freivald’s model, an IIM M finitely identifies a set of functions U with probability p, if the
probability is greater than p that M eventually halts and outputs a correct program for f € U,
given input/output examples of f.

Freivald shows that if there is a probabilistic IIM which finitely identifies some set of functions
U with probability > 2/3, then there is a deterministic strategy finitely identifying U. It is also
shown that if p, < p, and for some n > 0, p, and p, both fall into the same interval
[(n+2)/(2n+3) , (n+1)/(2n+1)), then there is no difference between the classes which are finitely
identifiable with probability p,, and those classes finitely identifiable with probability p,; whereas

-3-

if p, and p, fall into different intervals, then larger classes of functions can be finitely identified
by machines only required to be correct with probability p; < p,.

Freivald’s results motivated the work in this paper, and are superficially similar. Not many of
the proof techniques for finite inference are amenable to adaptation to the more prevalent notions
of “in the limit” inference.

' Finally, a recent paper by Wiehagen, Freivald, and Kinber [23] investigates the advantages of
probabilistic inductive inference strategies over deterministic ones when the strategies are required
to converge to a correct answer within some fixed number of changes in hypotheses. It is shown
that for all ¢, and all n 2 2, there are classes of functions identifiable with probability at least
1-¢ with at most n “mind changes”, but not by any deterministic strategy with at most n mind
changes. Other results are shown, mostly for probabilities greater than 1/2. It is also
independently proved that EXPmb(p) = EX when p > 1/2, which is a special case of our

Theorem 40.

1.2. Notation

The null or empty set is denoted by @. We use the symbols C, C, €, U, and N to denote the
set operations containment, proper containment, membership, union, and intersection,
respectively. The symbol & is the set operation union, together with the assertion that the

operands of the union are mutually disjoint; thus S = UNS.. states that not only is S the union
i€

of the sets {S,}, but also that for all i # 5, S; N S, = 0. If S and T are sets, and I is a multiset,
then S — T'is the set containing all elements of S which are not in T. |S| denotes the cardinality
of S; |I| is the number of (not necessarily distinct) elements of the multiset I, and |I N S| is the
number of (not necessarily distinct) elements of the multiset 7 which are also elements of S.

The symbols V and 3 are universal and existential quantifiers, and represent “for all”, and
“there exists”, respectively. N denotes the set of natural numbers = {0,1,2,3,...}. The set of real
numbers is denoted by R, and the set of rationals by Q. If I € N is finite, then maz I is the
largest element of I. If {z,}, . 5 is 3 sequence of non-negative real numbers, then lim, z, is
defined as lim,__ infimum {z; | { 2 k}. Ifz€R, then |z] denotes the floor of z, or the greatest
integer less than or equal to z, and [z] is the ceiling of z, or the least integer greater than or
equal to z. Intervals of real numbers are represented in the usual way, with round or square
brackets to indicate exclusion or . inclusion of the endpoint. For example,
(ab]={plpeR,a <p< b}

If E(k) is an equation containing the variable k, with k ranging over N, then we write “E (k)
a.c. (k) to indicate that the equation E(k) is true almost everywhere, or for all but finitely
many values of k. We write “E(k) {.0. (k)" to indicate that E(k) is true in finstely often, or for

-4-

infinitely many values of k. The word “iff” means “if and only if”.

Lower case letters (1,,k,...) will generally represent natural numbers. Upper case letters and
names will denote sets. The letter p will usually represent real numbers in the closed interval
[0,1], and occasionally will denote a path of a tree.

The function f will range over all total recursive functions, and the function ¢ over all partial
recursive functions. T denotes the set of all total recursive functions. f|, is the restriction of the
function f to the domain {z | z £ k}. The set U will range over all subsets of T. The graph of
a function ¢ is the set of all pairs <z, #(z)> for all z in the domain of . We write ¢ =* f to
indicate that |{z : ¢(z) # f(z)}| < k. Similarly, 4 =* f indicates that {z : ¢(z) % f(z)} is
finite. By convention, if k€ N, then k < *.

1.3. Preliminary Definitions

A Turing machine transducer is a machine which computes functions of one variable. We
assume that a particular encoding of TM transducers as nonnegative integers has been chosen
[12]. Hence the numbers {0,1,2,...} are TM transducers, or programs. (A number which is not
the legitimate encoding of any program is viewed as a program computing the everywhere
undefined function.) We denote the function computed by program s by ¢,. Thus <4,;>; eN I8
an acceptable numbering of all and only the partial recursive functions [14]. If ¢, = f, then we
say that ¢ is a program indez, or simply an indez of the function f.

If z is not in the domain of ¢, then we say that ¢, or any machine computing ¢, diverges on
input z. If ¢(z) is defined, and not equal to y, then we say that ¢(z) converges y.

If f is a total recursive function, then we define three sets, GOODI, SLOW!, and
WRONG ’ such that GOOD, C] .S'LOW/ W WRONG ;= N, as follows:

GOOD, = {i | ¢; = f}.
SLOW, = {i | ¢; # [, and for all z such that ¢(z) # f(z), ¢, diverges on z}.
WRONG, = {i | ; # [, there exists a number z such that ¢ {(z) converges % f(z)}.

GOOD, is the set of “good” programs for f, S’LOW! is the set of programs which are
restrictions of f to some domain properly contained in N, thus wherever they differ from f, they
diverge, or are “slow”, and WRONG 7 s the set of programs which converge to a value “wrong”
for f on at least one argument.

An snductive in ference machine (IIM) is a machine which attempts to synthesize programs
computing a function ¢, when presented only with the graph of ¢ [11]. We adopt the definition
of L. Blum and M. Blum [4]:

-5-

An inductive inference machine is an algorithmic device, or Turing machine that works as
follows. First the machine is put in some initial state with its tape memory completely blank.
From there it proceeds algorithmically except that, from time to time, the device requests an
input or produces an output. Each time it requests an input, an external agency feeds the
machine a pair of natural numbers <z, y>, or a “#”, and then returns control to the machine. ...
The outputs produced by the machine are all natural numbers [and represent Af's guess for a
program index of the function whose values it receives).

If ¢ is a partial recursive function, then we say that M is fed the graph of ¢ iff each element
input to M is either a pair <z,4(z)>, or a “*”, and for every z in the domain of ¢, <z,6(z)> is

input at least once to M.

Throughout this paper we will deal only with the inference of total recursive functions, but we
note that most of our arguments need only minor modification to cover the case of inference of
partial recursive functions. Note this assumption does not restrict IIMs to hypothesiiing only
indices of programs computing total functions.

Definition 1: M EX-identifies f iff when fed the graph of f in any order, M outputs
infinitely many numbers, g,,9,,9;;.-., and for some n, g, =g ., =g, ., , and g, is

(the encoding of) a program that computes the function f. (EX abbreviates “M
EXplains f".)

There is another definition of EX-identification that requires M to output only finitely many
numbers, the last of which is a program for f. It is easy to show that these definitions are
equivalent. Furthermore, we assume without loss of generality, that every inductive inference
machine outputs the guess g before receiving the input f(n+1).

Definition 2: M BC-identifies f, iff when fed the graph of f in any order, M outputs

infinitely many numbers g,,g,,9,,..., such that ¢“ = f a.c. (k). (M eventually outputs
only “Behaviorally Correct” programs.)

Thus the BC criterion requires that all guesses of M be correct past some finite initial number
of incorrect guesses, whereas the EX criterion requires in addition that eventually these correct

guesses be identical.

Definition 3: Let M be an IIM. Then
EX(M) = {f | M EX-identifies f}.
M EX-identifies U if U € EX(M).
EX = {U | 3 M such that U € EX(M)}.
Definition 4: Let M be an [IM. Then
BC(M) = {f | M BC-identifies f}.
M BC-identifies U if U € BC(M).
BC = {U| 3 M such that U € BC(M)}.

EX is clearly contained in BC, and the containment is proper [2, 5].

-6-

We say that M is order independent if the sequence of guesses that M makes is independent of
the particular order in which the graph of f is input to M. It is easily shown that if M is an
IIM, then M can be effectively transformed into an order independent IIM M’ such that EX(M)
€ EX(M’) and BC(M) € BC(M’) [5]. We assume without loss of generality, that all [IMs are
order independent. We also assume without loss of generality, that the graph of any function to
be identified by an IIM M will be presented to M in the canonical order
“<0,f(0)>, <1,f(1)>, <2,f(2)>,” An order independence result for partial recursive

functions is covered in [4].

C. Smith [20] introduces the notion of team inference. In this model, a team of IIM’s
(M,,M,,...,M,) identifies the function f if there is at least one i such that M; identifies f. Each
member of the team carries out a separate computation, and there is no communication between
team members. Identification by a team of n machines may be viewed as a kind of finite
nondeterminism; after an initial n-way nondeterministic choice among the machines, the
computation is deterministic. A fair portion of this paper will be devoted to relating the (yet
undefined) notion of probabilistic inference to team inference. We will argue in section 7 that
team inference seems to be the only natural definition of nondeterminism for inductive inference.

Definition 5: Let {Ml,Mz,...,M .} be a collection of [IMs. Then
EX(M,,M,,....M,) = {f | 3 i such that M; EX-identifies f}.
The team { M,,M,,...,M,} EX-identifies U if U € EX(M,,M,,....M,).
EX,,,n(7) = {U| 3 M, M,,...M, such that U S EX(M,,M,,....M,)}.
Definition 8: Let {M|,M,,....M,} be a collection of [IMs. Then
BC(M,,M,,...,M,) = {f | 3 i such that M, BC-identifies f}.
The team {M,,M,,...,M,} BC-identifies U if U € BC(M,,M,,.... M,).
BC,,,.(n) = {U| 3 M,M,,...M, such that U C BC(M,,M,,....M,)}.

Smith shows that for all n, there are classes of functions identifiable by a team of n+1
machines, but not by any collection of n machines. This gives an infinite hierarchy of

“inferrability”:
Theorem 7: (Smith) For all integers n 2 1, EX,,, (n) C EX,,, (n+1),
and BC,, (n) € BC,, (n+1).

In the next few sections we focus mainly on probabilistic BC-identification. Somewhat more
complicated arguments for probabilistic EX-identification will rely on some of the concepts
introduced for BC-identification, hence we delay their introduction until section 3.2.

-7-

2. Probabilistic Inductive Inference Machines
A probabilistic [IM M is a deterministic [IM with a random 0-1 oracle called a coin. The IIM
may “query” (or “flip”) the coin from time to time, and receive the result of the flip (which is 0

or 1 equiprobably) on a special read-only coin tape.

Without loss of generality, we may assume that every probabilistic IIM outputs a guess for a
program index of the function f infinitely often. Note that whether M identifies f (as defined
for deterministic IIMs), depends on the sequence of coin flips that M receives from the coin

oracle.

We may also modify M so that, in addition to guessing an index for f infinitely often, it’
follows each guess with a coin flip. Hence we require that a probabilistic 1IM execute the

following loop:

1. Receive a value of f

2. Guess a program index

3. Flip the coin

4. Execute a finite number of deterministic steps
5.goto 1.

Since we haven't defined what “the probability that M identifies f” means, it is not clear
whether this “probability” will remain unchanged for all f after altering M to satisfy the above
conventions. Moreover, for ease in presentation, we will only define this probability for machines
which follow the above conventions. We claim that a suitable (similar) definition for “the
probability that M identifies f” exists for all probabilistic [IMs such that for all M, there exists
an M’ which follows the above conventions, and if f is any function, then Pr(M’ identifies f)
= Pr(M identifies f).

2.1. Infinite Computation Trees

Given a probabilistic IIM M, we wish to talk of the probablhty of M exhibiting certain
behaviors when given the values of the function f as input. We assume that the IIM executes
the read-guess-flip-compute loop infinitely often. For a particular function f, M may follow
different computations depending on the sequence of coin flips. We can represent all of M's
- possible computations for the function f as an infinite (complete) binary tree which we denote by
Tyy The nodes of Ty, will correspond to con figurations of M, and the edges will correspond
to the results of coin flips. (A configuration is a structure which specifies the state of M, the
contents of all of its tapes, and the positions of all of its read and write heads [12].)

In particular, the root node will correspond to the configuration of M, immediately after M

-8-

makes its first guess. According to our convention, M's next step after this guess will be to flip
the coin. The left edge leaving the root node will correspond to a coin flip which comes up
“heads”, the right edge “tails”. After an initial guess, and a coin flip, M (according to our
conventions) executes a finite number of transitions, receives the next value of f, then guesses
again. The left child of the root node will correspond to the configuration that M reaches just
after it makes its second guess, given that the first flip was heads. In general, a node of depth d
in Ty, ’ will correspond to the configuration of M reached if M were to run through d iterations
of the read-guess-flip-compute loop, and the sequence of d coin flips that M received was exactly
the sequence of heads and tails which lead to node n in the tree.

The nodes of Ty, are numbered in breadth first search order (across levels left to right,
starting with the root node, which is numbered ‘1’). The depth of a node n in Ty, is denoted
d(n), where d(n) = |log,(n)]. (Hence node 1 has depth 0, nodes 2 and 3 have depth 1, etc.)
Parent(n) denotes the immediate ancestor of node n in Ty y- When we write “n”, we sometimes
are referring to the node numbered n, or to the value n itself, the meaning will be clear from
context. Finally, we define the labeling function ind:N — N on the nodes of Ty, by: ind(n)
= the guess that M has just output when it is in the configuration corresponding to node n. If
ind(n) = j, then we say that j is the indez of node n, to indicate that j is M's guess for a
program index for f. Note that for any probabilistic IIM M, any function f, and any number £,
there is a Turing machine which when fed the first k values of f, and the description of M,
constructs T, , through the k2 level.

A pathpof T, 7 is an infinite sequence of adjacent nodes <tyt,ityty,...>, starting at the root
node (¢, = 1), and going “down the tree, never changing directions”, so that for all ¢, the i*} node
t; on p, is a node occurring at depth ¢ of Ty, 7

Definition 8: Let p = <t,t,,t,t,,...> be a path in Tu,j’ and A € N. The path p

BC-converges to A iff ind(t,) € A a.c. (k).
If path p BC-converges to A, then p corresponds to a possible computation of M with input f,
for which M, after some initial sequence of guesses, outputs only indices from the set A.

Pathp = <tyt,,tyty,...> BC-converges to A at node n, iff
e p passes through node n. (td(‘) = n)
e p BC-converges to A.
o for all £ > d(n), ind(t,)<c A.

e there does not exist k¥ < d(n) such that for all m > k ind(t,) € A.

This simply requires that on path p, all nodes from n and beyond have index in the set A, and
node 7 is the least depth at which this BC-convergence occurs.

If a path p BC-converges to the set GOOD,, then p contains a sequence of coin flips which

-9-

causes M to output a sequence of guesses corresponding to a single deterministic BC-
identification of f. Our goal is to define Pr(M BC-identifies f) as the percentage of paths of
Ty, which BC-converge to GOOD,. In the next section we do this formally. Readers
unfamiliar with standard techniques for defining a probability measure (Borel sets) may wish to
consult the appendix before continuing.

2.2. Probability on Infinite Computation Trees _

We now precisely define probability with respect to an IIM's computation on a given input.
The “experiment” for which the probability is defined is the running of M with input f, and the
result is the particular infinite path that M follows which depends on the infinite sequence of
results of the coin flips. Thus the set of events in which we have interest, is 2 = {p| pis a path

in Ty, . }.
Following the standard methodology, we define a class of basic sets.

Definition 9: For each node n € Ty, P,={pathspeT,, 7 | p contains node n}.

We define the function Pr:{P} . T, = [0,1] as follows:

Definition 10: Pr[P,] = 2-4*)

It is easy to see that this is what we want from our probability measure: The probability of a
randomly chosen path passing through node n should be 2-4®) since every path must pass
through exactly 1 node at depth d(n) and we'd like these to be equiprobable.

Let B({P,}) be the smallest Borel field containing {P}

Lemma 11: Pris a probability measure when extended to B({P,}).

n € T“n!

A sketch of the proof of Lemma 11 may be found in the appendix.

For any probabilistic IIM M, and any function f, we have defined a probability measure on
the tree Ty ;- We must now define “the probability that M BC-identifies f” with respect to the
measure Pr. Clearly the “probability that M BC-identifies f” ought to be Pr{{paths p | p BC-
converges to GOOD, }].

It is not clear however, that the above set is measurable. We will show that it is by expressing
it as countable unions and intersections of our basic sets.

Definition 12: B(A) = {p | pis a path in T, 7> and p BC-converges to A}.
Bj(A) = {p | pis a path in T}, ,, and p BC-converges to A at node j}.

Note that for all j # m, and A, B,(A) N B, (A) = 0: If neither j nor m is an ancestor of the
other, then no paths pass through both. If one is the ancestor of the other, then any path which

-10-

BC-converges to A must, by definition, converge at ezactly one node.

We say that a path p = <tytslyty,...> is k-consistent with BJ.(A) iff the following two
conditions hold:
_ L. For all such that j < i < k, ind(t,) € A.
2.7 istheroot OR ind(tj_l) g A.
Definition 13: B, (A) = {p | p is k-consistent with B;(A)}.

Intuitively, B 5 J‘(A) is the set of paths p such that if we examine the nodes on p only through
depth k, p seems to be a path in BJ.(A). Another way of stating this is that it is not possible to
deduce that p is not in BJ.(A) from looking only at the first k levels of the tree.

o

Clearly, B(A) = jynB"(A)' It is also true that Bj(A) - k=er B:.'k(A). Thus to show B(A)
measurable for all A, we need only show that Bj J‘(A) is measurable for all 7, £ > d(7), and A. We
will express Bj 'k(A) using our basic sets {P, }, but we will first need the following definition.

Definition 14: N, +(4) = {nodes n | d(n) = k, and 3 path p € BJ. 4(A) passing through
node n}.

This set of nodes is intuitively, the set of nodes which terminate partial paths which converge
at node j, “through level . In other words, if ind(;) € A, and ind(parent(;)) € A (or jis the
root), and ind(i) € A for each node i on the path from j through level k, then the node at level &
isin N f J{A).

Lemma 15: For all 5, k > d(j), and A € N, B, J‘(A) is measurable, and Pr[BJ.',.(A)]
= IIVM(A)'/ 2k,
Proof: We claim that B, (A) = v}
2 € N;{4)
To see that the sets in the union are disjoint, note that if z % y and both are in N f (A4),

then d(z) = d(y) = k, and every path must pass through czactly one node at each level;
thus P, N P, = 0.

.
3

(S) If p € B,,(A), then p passes through some node y at level k, and y € N, (A).
Therefore pc P, € e
¥ 2 € N;A)

(2) Ifpe P,, and y is the node at depth k on p, then since the definition of

v
2eN, i, ".(A)
N, (A) doesn’t depend on nodes deeper than depth k, all paths passing through y must
be in BJ. 'k(A).

We now have

PriB;(A) =Pr] P] = ¥ Prp] = T 9 = ¥ o

2 € N;Ha) z€ N;ga) 2€ NjA) e Nyla)
=[N, (A)/2* O

-11 -

We are finally ready to define what is meant by Pr[M BC-identifies f)].

Definition 18: Let M be a probabilistic IIM, and TM' ’ be the infinite computation tree
of Mon input f. Then Pr{M BC-identifies f] = Pr[B(GOOD,)].

This defines the probability that M BC-identifies f as the fraction of paths of T}, y which BC-
converge to a correct program index for f; or the fraction of M's possible computations which
correspond to a single deterministic BC-identification of the function f.

Definition 17: Let M be an IIM. Then
BC,(M) = {f | Pr{M BC-identifies f] 2 p}.
M BC-identifies f with probability p if f € BC,(JM).
M BC-identifies U with probability p if U € BC p(M)’
BC,.b(P) = {U| 3 M such that U € BC (M)}.

It is clear that if p, < p, then BCpmb(pz) € BC pmb(pl). We will show under what
circumstances the containment is strict.

We end this section by proving several lemmas which will be useful in subsequent sections.

The following lemma asserts that the sets {BJ. 4(A)} are increasingly better estimates of the set
B j(A) as k gets larger.
Lemma 18: For all nodes 3 for all A € N, and for all T

M b
1. Forall k 2 d(j), B;(A) 2 B,,_(A).

2. Forall k 2 d(3), Pr(B;,(4)] 2 Pr(B,(A).

3. Pr[B,(A)] = lim,_, Pr[B;(A)].
Proof: Property 1 is inmediate from the definition of B,.,k(A). Property 2 and property
3 follow from property 1, the monotonicity property of probability measures, and the

@

fact that B(A) = kgm B, (4). O

The following lemma gives us insight into how and when paths BC-converge in any tree Ty I
In particular, suppose that the probability of paths converging to a set A is greater than p. (i.c.
Pr[B(A)] > p). The convergence of different paths to A may occur at many different nodes. We
show however that there are nodes where “significant chunks” of paths converge to A. This must
occur because there are an uncountable number of paths, but only countably many nodes.

Lemma 19: For all A € N, for all p € R such that 0 < p < 1, if Pr[B(A)] > p, then
there is a least numbered node v such that Pr| Hl B,(A) = Zl Pr[B;(A)] > p.
S =

Proof: B(A) = f_ﬁl B(4), so
Pr[B(A)] = Pr| El B,(A)] = g Pr[Bj(A)] > p.

By a simple property of limits there is a least v such that 2 Pr[Bj(A)] >p. O
=1

-12-

3. Relationship Between Probabilistic and Team Inference Strategies

In this section we examine the relationship between team and probabilistic inference strategies.
We will demonstrate that there is an infinite hierarchy of probabilistic inference classes, and that
this hierarchy is identical to the hierarchy of team inference shown in [20]. This is achieved by
showing that probabilistic [IMs can “simulate” a team of IIMs, and vice versa. Section 3.1 proves
the main results for the BC identification criterion. In section 3.2 we introduce the EX
identification criterion for probabilistic IIMs, and prove that the same relatiohships hold. Finally,
in section 4 we summarize the results and the main theorems of this section, and briefly discuss

their consequences.

3.1. BC Probability and Teams

3.1.1. Probabilistic Simulation of Teams of [TMs
We show that

Theorem 20: For all integers n > 1, BC,,,.(n) € BCpmb(l /n).

To show this, we must show that for any set of functions U, if there exists a team of n
deterministic machines M, M,,..,M, which BC-identifies U, then there is a single probabilistic
machine M which BC-identifies U with probability > 1/n.

If our definition of probabilistic machines allowed the machine to “flip” an n-sided coin for
arbitrary integers n, then the following “proof” would suffice:
Let U € BC,,,(n). Then there exists M,,M,,.., M, such that U ¢ BC(M,, M,,..,M.). Let Mbe a

probabilistic machine which flips an n-sided coin (with the possible results being {1,2,...n}
equiprobably). If the result of the flip is ¢, then M simulates M; on input f € U.

With. minor modification, essentially the same “proof” will work for probabilistic machines
with only a 2-sided coin. The probabilistic machine will simulate a single n-sided coin flip by
using the 2-sided coin to compute a binary fraction frac in the interval [0,1]. Depending on
which interval ((§~1)/n, i/n) frac is in, M will simulate the :*} team member.

Proof: On input f € U, M outputs the guess “0” while flipping coins and adding a bit
to the binary fraction frac being built up. (The j* flip will add 277 to the value of frac
if the result is “heads”, 0 is added if the result is tails). M also computes as many
places in the binary representation of each element of the set of fractions F = {0, 1 /n,
2/n, .., n/n}. M determines whether frac differs from all of the binary representations
of elements of F. If not, M continues flipping. If ever M is able to determine that frac
differs in at least one bit position from each element of F, then M determines which
interval frac falls into, say interval ((i~1)/n, i/n), and then M simulates the i*! team
member. ‘

There is a straightforward way to construct an [IM which does the above, and a simple

-13-

argument which shows that for all numbers s € [0,1], Pr[{paths for which frac < s}]
= g. This fact, together with the fact that Pr{{paths for which frac = s}] = 0, is used
to easily show that the probability that frac falls into any one of the intervals is exactly
1/n. A small technical point involves the possibility that the generation of frac is
halted because it differs from the representations of elements of F whereas due to
possible duplicate representations, some infinite bit extension of frac would represent
the same value as i/n for some i. The probability associated with this event is 0, as
there are only a finite number of paths for which this occurs.

Now for each ¢, the probability that M chooses to simulate M, is exactly 1/n. Hence
the probability that M BC-identifies f is at least 1/n for all f € U. Thus if
UeBC,,(n) then Ue BCmb(l /n). This completes the proof of Theorem 20. O

3.1.2. Team Simulation of Probabilistic IIMs
In this section we show under what circumstances a team of [IMs may be used to simulate a
probabilistic IIM.

Theorem 21: Forall integersn > 1,forallpe R, if 1/(n+1) < p <1 then
BC,4(p) € BC,pun(n).

Corollary: BC,(1 [n) = BC,,, (n).

The corollary follows from Theorems 21 and 20. Thus the probabilistic BC-identification
hierarchy contains the team BC-identification hierarchy. Theorem 21 also implies that the
probabilistic hierarchy is “no finer” than the team hierarchy. We shall discuss this more in
section 4.

We first note that a special case of Theorem 21 has a very simple proof. If n = 1, then the
theorem asserts that if there is a probabilistic [IM M which BC-identifies a set of functions U
with probability p > 1/2, then there is a deterministic IIM M, which BC-identifies U. To prove
this, we merely need to argue that since Pr(B(GOOD,)] > 1/2, the Kb level of Ty s consists of
> 1/2 correct programs for all but finitely many levels k. The machine M, which will identify U
deterministically will, given f € U, construct T, ,, and for its k't guess output a program which
does a dovetail and majority vote of the computations of the programs whose indices occur at the
k't level of Ty A simple argument shows that M, BC-identifies U.

In order to prove Theorem 21, we will first need some definitions, and an important lemma.

Definition 22: For all t € Q, a multiset I of program indices is a t-threshold list for
fiff |IN WRONG,I <t<|INn GOODJI.
Consider IIMs which, rather than outputting a sequence of program indices, instead output a
sequence of ordered pairs <t,, I,>, <t,, I,>, ..., where t; € Q, and I, are finite multisets of
program indices.

-14-

Definition 23: M BC,; _, -identifies f (f € BC,, ., 4(M)), iff when fed the graph
of f, M outputs infinitely many ordered pairs { <t;,, I,>}, and I, is a t,-threshold list
for f a.c. (k).

BC\jreshoid = {U'| 3 M such that U € BC,; . .4(M)}-
Lemma 24: BC&MM‘, = BC.

The intuition behind the proof of Lemma 24 is that a “threshold-plurality” vote of the
programs of the list I, can be used to identify f. This is because each element of the list is in
one of the sets GOOD!, WRONG g1 or SLOWI. If a program is in SLOW , it can never halt

with an incorrect answer.

Proof: Let U € BC, , .(M). We construct M" which BC-identifies U. M"’s kb
guess for a program for f is computed as follows: When fed the values of f, M’
simulates M on f, and obtains the k* ordered pair <t,;, I,> output by M. M’ then
outputs the program p,, which on input z, dovetails the computations of {¢(z)} for ¢
€ I, until & > t elements {i,,,...,i,} of I, have been found such that all s
computations {¢.(z) | 1 £ n < s} have been completed and the values of all s of these
computations yield the same result y. Then p, outputs the value p,(z) = y.

To see that M’ BC-identifies U, let f € U. Since M outputs ¢,-threshold lists a.c. (k),
there is a number k, such that for all k 2> k,, I, is a ¢ -threshold list for f. Let k > k.
We show that p, computes f. Note that p,(z) converges for all inputs z, since I, is a
tk-threshold list for f, we have |[I, N GOOD | > t,; i.c. the number of correct programs
for f in the list I, is greater than ¢, so after some finite number of simulation steps at
least t, values must have been computed.

Now let § = {1 i,,...4,} be the elements of I, which p, finds. If y % f(z), then all s
elements of S are in WRONG f, and |[, N WRONG !I 2 8 > t,, which contradicts the
fact that [, is a t,-threshold list for f. Hence p,(z) = f(z) for all z. O.

In order to prove Theorem 21, we need only show that if U S BC (M) with p > 1/(n+1), then
there is a team {MM,,.,M,} such that for every f € U, there is an i with M;
BC,; .hoiq-identifying f.

The intuition is as follows: Since the “weight” of paths which BC-converge to correct
programs for f is > 1/(n+1), we can show that the fraction of correct programs at each level of
the computation tree T), , is greater than 1 /(n+1) for all but finitely many levels of the tree. (In
the case that n = 1, we have the argument described earlier.) A deterministic strategy to
BC\reshoiq-identify f might simply output the multiset of program indices found at each level,
since as we will show below, this list will contain greater than the fraction 1/(n+1) of
GOOD, indices. The problem with this strategy is that each level might contain greater than
the fraction 1/(n+1) of WRONG s indices, thus not satisfy the threshold condition. Elements of
WRONG s have the pleasing property that they can be identified (in the limit, given values of f),

-15-

by simulation and comparison with f. If the deterministic strategy knew roughly how many
WRONG , programs there were at a given level of the tree, then it could eliminate most of them,
and output the remaining programs at that level. If enough WRONG 7 programs were eliminated
at each level, then the deterministic strategy could BC,; ., .-identify, and hence BC-identify f.
The team of n IIMs is used to guess roughly what the fraction of WRONG , indices is (in the
limit) at each level of the tree.

Definition 25: Let T, Y be a computation tree, and A € N be a set of program
indices. Then '

L, = {n | nis a node at level k of T, }.
L(A) = {ne L, |ind(n)€ A}.

Note that [L,] = 2*. The sets which will most concern us are Lh(GOODf) and L(WRONG f),
the sets of nodes at level kK which have GOOD and WRONG indices of f respectively.

We employ the following

Lemma 28: For all A C N, for all f, and all probabilistic [IMs M, If Pr[B(A)] > p in
the tree T, ., then |L(A)| > p2* a.c. (k).

That is, the fraction of nodes at level ¥ with indices in A is greater than p for all but finitely

many levels.

Proof: If Pr[B(A)] > p, then by Lemma 19 there exists a least numbered node v such
that

Pr| ng B,(A)] = gPr[Bj(A)] > p.

By Lemma 18, for all kK > maz {d(s) | 1 £ i < v}, we have that

2 Pr{B,(4)] 2 X Pr[B,(4)] > p.
F=1 4 =1
Then by Lemma 15,

L N2t = T PriBy (4] >

j=1
or

L IN,(4) > p2*.
l 3

= ‘
Now by definition, every element N #(A) is at depth k, and has index in A. Also note
that N, 'k(A) NN, (A) = @ if 7 # m. (Since if 7 and m are on the same path, then one
of the sets is empty, for convergence can happen at exactly one node on any path;
otherwise, their descendants at level k are disjoint.) Therefore

Iyl NJ.’,‘(A)‘ > P2k7

-16 -
and there are > p2* nodes at level k with index in the set A, i.c. IL(A)] > p2* a.c. (K),
proving the lemma. O

We are now ready to prove Theorem 21. Let U e BCmb(p), with p > 1/(n+1). Then there is
a probabilistic IM M which BC-identifies every f € U with probability > p > 1/(n+1). We
construct a team of n deterministic IIMs such that for all f € U, there is a team member which
BC,; e poiq-identifies f, hence BC-identifies f.

Consider any f € U, and the tree T,, e Then by the definition of probabilistic BC-
identification,

Pr[B(GOOD,)] 2 p > 1/(n+1).

Lemma 26 asserts that

IL(GOOD,)| > 2*/(n+1) a.c. (k).

Now since [L(GOOD,)| + |L(SLOW,)| + |L(WRONG)| = 2* for all k,
IL(WRONG)| < 2*n/(n+1) a.c. (k).

There are then n distinct and mutually exclusive possibilities about how |L(WRONG ;)l
behaves “in the limit”.

Possibility n: |L(WRONG f)l < 2%n/(n+1) a.c. (k), and

IL(WRONG ,)| 2 2X(n-1)/(n+1) i.o. ().

Possibility i: IL(WRONG)| < 2%/(n+1) a.c. (), and

IL(WRONG,)| 2 24i-1)/(n+1) i.o. (k).

Possibility 1: IL(WRONG)| < 2*/(n+1) a.c. (k), and
IL(WRONG)| 2 0 i.o. (k).

We use the team of n deterministic [IM’s to guess which case will hold for a particular f. The
machine whose guess is correct will BC,, ., ;-identify f.

The idea behind the construction is fairly simple. If a machine M, knows roughly what the
fraction of “WRONG™ guesses there are at each level of the tree, it can cancel most of them by

-17 -

witnessing that they differ from f. Machine M; will search for deeper and deeper levels of the
tree T, , such that the fraction of WRONG guesses among those output is at least (s-1)/(n+1),

and then cancel these wrong guesses.

If it is also true that past some point, the fraction of WRONG guesses is bounded above by
§/(n+1), then M, will be able to form (in the limit) sets of indices for which at least the fraction
1/(n+1) are correct, and strictly less than this are WRONG indices. Thus M; will be able to
BC,} reshoig-identify f.

We now exhibit the team of n machines.

Machine M;

* kold -0
. LOOP :
Simulate M on input values received from f, and build T}, ,.
DOVETAIL the computations of ¢ind(a)(-7)
for all nodes s and numbers j comparing the outputs
of completed computations with actual values of f,
UNTIL for some level k > k ,,, there are > 2Ki-1)/(n+1)
nodes in the set CANCEL,, the set of nodes at level &
whose indices have been observed to be in WRONG .
5 I, +— The multiset of indices of nodes in L, ~ CANCEL,
6 OUTPUT the ordered pair <2*/(n+1), I,>
7. kg k
8. GO TO LOOP

B9t

We clarify the dovetail of line 4: CANCEL, starts out empty. A node n at level k is placed in
CANCEL, when for some z, ¢‘.“(n)(z) converges ¥ f(z). Thus CANCEL, contains only
elements of L(WRONG f). Note that we have not specified exactly when M reads values from
f, and what it outputs for each new element of the graph of f. M receives a new element of the
graph of f between each of its steps (including each simulation step in the dovetail), and outputs
<t Ikoli> (the last ordered pair computed) after each such input, until it has had enough time
to find a new value of k satisfying the conditions specified.

Now let U € BCP(M), with p > 1/(n+1), and let M|, M,,...,M, be defined as above. Then to
prove Theorem 21 we only need to prove the following lemma:
Lemma 27: Let f € U, and let M; be the machine defined above which “guesses
correctly”, i.c. |L(WRONG !)I satisfies the #*® possibility stated previously. Then M;
BC,; spoig-identifies f. ,

-18-

Proof:
To prove the lemma, we must show

1. M; outputs infinitely many ordered pairs <2*/(n+1), L>.

2. |, N WRONG,| < 2*/(n+1) a.c. ().

3.1, N GOOD,| > 2*/(n+1) a.c. (k).
To show 1, we note that the only possible way for M; to output only finitely many pairs
<2*/(n+1), I,>, is that for some value &, the dovetail of step 4 of M; fails to satisfy
its halting condition. By assumption on i, |L(WRONG N2 2% /(n+1) i.0. (K),
therefore there is some k > k_, with |L (WRONG 2 2%/(n+1). Now IL(WRONG I)l

is at most 2% hence finite, and after some finite number of steps of simulation, M;

would be able to witness that all of these nodes have indices in WRONG 7» hence they
would be placed into CANCEL,. Thus CANCEL, at some point, must contain
> 2%/(n+1) nodes, and therefore the halting condition is satisfied.

We prove 2: The number of elements of WRONG 1 which are in J, can be at most the
total number of nodes at level k with indices in the set WRONG 7 (= [L(WRONG)}
minus the number of nodes which have been cancelled. Thus

|, N WRONG 7l = |[L(WRONG 1)l = |CANCEL,|.

By assumption on ¢, |L(WRONG < i2%/(n+1) a.c. (K),
and by the dovetail halting condition, for all k found by M,
|CANCEL,| 2 (i-1)2%/(n+1).

Thus |, N WRONG | < i2%/(n+1) - (i-1)2%/(n+1) a.c. (K),
and |, N WRONG,| < 2¥/(n+1) a.c. (k).

Finally, to see that |I, N GOooD,| > 2%/(n+1) a.c. (k), note that no node in
IL,‘(GOODf)l is ever cancelled, so the multiset I, contains the index of every node in
|L(GOOD,)|. Thus

|1, N GoOD,| = |L(GOOD,)|.

That is, the number of GOOD indices in I, equals the number of nodes with GOOD
indices at level k. Now since Pr[B(GOOD,)] 2 p > 1/(n+1), as noted earlier, Lemma
26 implies

|1, N GOOD,| = |L(GOOD,)| > 2*/(n+1) a.c. (k).

This completes the proof of Lemma 27, and Theorem 21. [J

-19 -

3.2. EX Probability and Teams

In this section we define probabilistic EX-identification, and prove theorems analogous to the
theorems relating probabilistic BC-identification and team BC-identification. As we shall see, the
restrictions of EX-identification disallow some of the proof techniques of the previous sections, so
we will need somewhat more complicated machinery.

3.2.1. Definitions for Probabilistic EX-identification
We begin by defining a more natural notion of convergence of a path in a tree T,, 7 than that
of BC-convergence.

Definition 28: Let p = <t,tt,.t,,...> be a path in T,, 4, and j be a program index.
The path p converges to j iff ind(t)) = j a.c. ().

If path p converges to j, then p corresponds to a possible computation of M with input f, for
which M (in the limit) converges to outputting “;” as its guess for a program index for f.
Definition 29: Path p = <tgt,stystys---> converges at node n, iff
e p passes through node n. (t‘(“) -n)
e p converges to ind(n).
o for all k£ > d(n) ind(t,) = ind(n).
o there does not exist k < d(n) such that for all m 2 k ind(t) = ind(n).

This definition simply requires that all nodes past n on path p have the same index as node n,
and node n is the least depth at which this convergence occurs.

It is important to note that a path which converges at a node n, converges to ind(n). Thus if
we know where a path converges, we know what index it converges to. Note that if p converges
to 5, then p € B({;s}). We develop a new notation to represent paths which converge, rather than
abuse the old notation for paths which BC-converge.

Definition 30: C(A) = {p | path p in Ty) and 3 a € A such that p converges to a}.
Let M be a probabilistic IM. Then Pr[M EX-identifies f] = Pr{C(GOOD,)].

This defines the probability that M EX-identifies f as the fraction of paths of TM' s which
converge to a correct program index for f; or the fraction of M's possible computations which
correspond to a single deterministic EX-identification of the function f.

Definition 31: Let M be an IIM. Then
EX,(M) = {f | Pr[M EX-identifies f] > p},
M EX-identifies f with probability p if f € EX p(M),
M EX-identifies U with probability p if U € EX (M),
EX,rop(p) = {U| 3 Msuch that U € EX(M)}.

Clearly, if p, < p, then EXpmb(pz) c EXpmb(pl). We will see in the next section when the

-90-

containment is proper, and discuss the consequences in section 4.

As in the BC case, we must show that Pr is defined on C’(GOOD,), i.e. that C(GOOD!) is a
measurable set. We show that for all A C N, C(A) is measurable. We define!

C, = {p | pis a path in T, ., and p converges at node n}.

A path p = <tt t,.¢,,...> is k-consistent with C_ iff the following two conditions hold:
1. For all i such that d(n) < 1 < k, ind(t) = ind(n).
2. n is the root OR ind(t‘(n)_l) % ind(n).

Cpx = {p | p is k-consistent with C,}.

Thus C, & consists of paths p satisfying:
¢ p passes through node n.
® M outputs a different index at parent(n) than at n (or n is the root).
e All nodes after n on p down to depth k have the same index as n.

Intuitively, C, . is the set of paths which appear to be converging to ind(n), and appear to
converge at n, when we examine T, 7 for k levels only.

@

Clearly C(A4) = i”dH“ C,. AlsoC, = k:rl.) Cos

But C,, is the set of paths which converge at node n “through level k", thus Cei
= B, ({ind(n)}). We have already shown that for all A, B A *(A) is measurable, therefore, C,
C,, and C(A) are all measurable.

2

We end this section with some important lemmas. The following two lemmas are analogues of
Lemmas 18 and 19. The proofs are omitted.

Lemma 32: For all nodes n, and for all TM,/’
1. Forall k2 d(n), C,,2C

nk+1
2. Forall k 2 d(n), Pr[C,,] > Pr[C].
3. Pr[C,] = lim,_, Pr[C, ,].
Thus the sets {C, 4} are increasingly better estimates of the set C, as k increases.
Lemma 33: Forall A C N, for all p € R such that 0 < p < 1, if Pr{C(A)] > p, then
E
there exists nodes {n,n,,...,n,} such that for all i, ind(n,) € A, and Pr| V] c,1>p.
J=1 7

So most of the paths which converge to any index in the set A converge at one of a finite
collection of nodes. The justification for the partition in the expression above is that a path can

These definitions are independent of the set A.

-21-

converge at at most one node.

We introduce one more lemma for which there is no analogue in the BC case.

Lemma 34: Pr[C’ k] is computable from the first k levels of T}, ,.

Proof: Pr[C;,] = Pr(B,,({ind(5)})] = |N, J‘({md(g)})l/2" by Lemma 15. Thus we
need only show that for all k, N, ({¢nd(3)}) is computable from the first k levels of
TM - But N k({md(j)}) is simply the set of nodes at level k through which a path in

k({md(7)}) passes. These are nodes m at level k such that m is a descendant of 5,
and all nodes z on the path between j and m (inclusive), have ind(z) = snd(;), and
either j is the root node, or ind(parent(;)) % ¢nd(;). Thus membership in NV, N, ({ind(3)})
depends only on the indices of nodes of T, 7 in the first k levels. O

Note that in general, Pr(B *(A)] is not necessarily computable, since membership in A might
not be decidable.

3.2.2. Team and Probabilistic Simulations
The following theorem is analogous to Theorem 20. The proof is identical.

Theorem 35: For all integers n > 1, EX, _(n) C EXpM(l/n).

We are surprised to find that analogues of Theorem 21 and its corollary exist for EX-
identification, since the majority voting techniques do not seem to work in this case:

Theorem 38: For all integersn > 1, forall pe R, if 1/(n+1) < p < 1 then
EX,y(P) € EX,pyn(n)-

Corollary: EXpmb(l/ n) = EX,,, (n).
To prove Theorem 36, we will need the following definition. and lemma.

We say that a finite list I of program indices is a correct list for fif I contains at least one
element of GOOD Iz

The class OEX was introduced in [5]%

Definition 37: M OEX-identifies f (written f € OEX(M)), iff M, when fed the graph
of f in any order, outputs an infinite sequence {I,} of finite lists, and there is a correct
list L for f such that I, = L a.c. (k).

OEX = {U| 3 M such that U € OEX(M)}.

Case and Smith [5] prove a generalization of the following lemma.

Lemma 38: OEX = EX.

2Qur definition is somewhat different, but it is easy to show that the two definitions are equivalent.

-22 .

Proof: Clearly EX € OEX. We show that OEX € EX. Let U ¢ OEX(M). We
construct an [IM M which EX-identifies U. The idea behind the proof is that M’ can
simulate M, and once M converges to outputting a correct list L, M’ can cancel (in the
limit) every element of L which differs from f by converging » S for some argument.
Then M’ can construct a program for f which depends only on the remaining elements
of L, none of which can converge with an incorrect answer.

M’, on input f|,, simulates M and obtains the list I,. M’ tries to compute, allowing &
steps for each computation, the values {¢(j) | i € I, 1 S 57<k}. M sets I’ to
I- {ie[|3j<kandin < k steps, ¢ () converges % f(;)}. M’ then outputs the
index of the program RACE,.,, which on input z, dovetails the computations of
{¢{z) | 1 € I,’}, and outputs the first value computed.

To see that M’ EX-identifies U, let f € U € OEX(M). Then let k, be large enough so
that for all £ > ky, I, = L, a correct list for f; and for all { € ILn VVRONG,, M’
cancels ¢ within k steps. '

No further cancellations occur once k > k,, and M’ “settles” on the list L'. Then M’
converges to outputting the index of RACE, ., and we show that RACE;. computes f.
Since L contains a correct program index for f (none ever get cancelled), RACE;. halts
on all inputs. Furthermore, L’ consists only of correct indices for f, and indices in
SLOW, (indices of programs computing restrictions of f), hence the value output by
RACE, .(z) = f(z). D

It is now clear that Theorem 36 follows from:

Lemma 39: IfUe EXpmb(p), P > 1/(n+1), then there exists a team {M,M,,..M }
of deterministic IIMs such that for all f € U, there is some i such that M; OEX-
identifies (and hence EX-identifies) f.

At first glance, it would appear that a technique similar to that used in the BC-proof could be
employed here. But even in the more obvious case where n = 1 this approach doesn’t seem to
work. For example, if M is a probabilistic IIM which EX-identifies U with probability p > 1/2,
then certainly a program which did a “majority vote” of the programs at each level of
Ty 7 would (in the limit) be correct. However, in order to EX-identify a function, the program
output must be the same in the limit, and the majority vote program would change from level to
level. We might think that since M EX-identifies f with probability > 1/2, that there is some
correct index of f, say ¢, such that in the limit > 1 /2 of the nodes at each level of T Mf had
index ¢. This is unfortunately not true, since probabilistic EX-identification was defined to
capture the intuitive notion that “when you run M with input f, the probability that you get a
correct EX-identification is at least p.” This doesn't imply that there is some single index for
f which M will converge to with probability p. We note that this less natural definition would
allow a more straightforward proof, similar to the proof in the BC case.

The idea behind the proof of Lemma 39 is that rather than look only at levels of the tree, each

-923-

deterministic IIM of the team will bave to scan the tree, and identify converging paths, and nodes

at which this convergence occurs.
Proof of Lemma 39:

Let M be the probabilistic machine which identifies U with probability p > 1/(n+1). For a
particular f € U, we'll informzlly use the term “weight” of a set of paths P in Ty, to mean
Pr[P], as this term more accurately suggests the appropriate intuition. (The entire tree T,, ; has
weight 1.) We will show that if a deterministic machine has a reasonable estimate of the weight
of the set of all converging paihs (paths which converge to any index), then it can converge to a
correct list for f, hence OEX-identify f.

The finite non-determinism of the team of n machines is used in the following way: each team
member guesses a different range which the weight of the converging paths may fall into. In
particular, for 1 < ¢ < n, M; assumes that the total weight of all converging paths is in the half-
open interval (i/(n+1), (i+1)/(n+1)]. Depending on the function f chosen from U, the weight of
converging paths will fall into one of these intervals, and the associated machine will converge to
a correct list for f.

Let M be a probabilistic [IM with U C© EX,(M), and p > 1/(n+1). Then let the team
{Ml,Mz,...,M .} be the following machines:

Machine M;
1. Oninput f |,» simulate M with input f|,,

and construct T, = the finite tree consisting of
the first k levels of T, e

2. FOR each node jin T}, compute Pr[Cj 4]

3. Let ¢, be the least cumbered node in T, such that
j‘él PrC,,] 2 i/(n+1)

(If no such ¢, exists, then output 8)

4. Output {ind(s) | 1 <7< ¢}
Note that each step of M; is a simple, computable operation: Step 2 can be done by Lemma
34. We comment that ¢, exists for all k, but this is not necessary for the proof.
We show that for all f € U, there is an ¢ such that M; converges to a correct list for f.

As mentioned above, the team member which is correct will be the one with the best estimate

-924-

for the weight of the converging paths. More precisely:
Pr[C(GOOD y)] 2 p > 1/(n+1) by the definition of “M EX-identifies f with probability p.’

C(N) = is the set of paths which converge to any index (good or bad), so clearly

C(G'OOD,) C C(N)
and therefore

Pr{C(N)] 2 Pr{C(GOOD,)] > 1/(n+1).

Let m = maz {i | i/(n+1) < Pr[C(N)]}. The value m is well defined, since
1/(n+1) < Pr[C(N)] £ (n+1)/(n+1). In particular, 1 £ m < n. We will show that M,
converges to a correct list for f.

M, “knows” that the weight of the converging paths is greater than m/(n+1). By
Lemma 33, there exists a finite set of nodes V, with the weight of the paths converging at a node
in V greater than m/(n+1). M, will look for these nodes, find them (in the limit), and output
their indices. (Actually, M, will output the indices of nodes 1,2,..n mag Where N, ., IS the
greatest numbered node in the set V)

M, attempts to compute, for every node j, the weight of paths which converge at node j
(Pr[Cj]). It cannot do this, since it is not a finite computation. M_ can, however, compute
Pr[C,,], which we know is an upper bound for Pr[Cj] (see Lemma 32), and will converge to
Pr[C,] from above as k increases (step 2).

M_ outputs the indices of the first ¢, nodes, where ¢, is the smallest numbered node such that
the (estimated) weight of paths converging to any of the nodes {1,2,...c,} is greater than
m/(n+1). (steps 3, 4)

M_ will eventually converge to outputting some fixed list, because there is some smallest
numbered node s such that the weight of the paths converging to a node in {1,2,3,...s} is
2 m/(n+1), and the estimate of these weights are becoming better in the limit. More formally:

By the definition of m, m/(n+1) < Pr[C(N)] < (m+1)/(n+1). Since Pr[C(N)] > m/(n+1)
Lemma 33 gives nodes n,n,,...,n, with ind(n;) € Nand 2. Pr[C,] > m/(n+1). Since all nodes
i=1 J
7 have ind(j) € N, this implies that there exists a smallest numbered node s, such that
2 Pr[C.] > m/(n+1)
=1 I

(choosing s > maz {n} will certainly satisfy the inequality).

- 95 -

Now for all k£ > d(s), nodes 1,2,...s will be in T}, and furthermore, by Lemma 32

,g Pr(C,,] 2 E:l Pr(C;] 2 m/(n+1), hencec, < s a.c.(k)in step 3 of M.

Now Lemma 39 follows from:

Claim:
1. M, converges to the list I = {ind(1), ind(2),... ind(s)}.
2. I contains a correct program index for f.

Proof: (Part 1) We have already shown that ¢, < s a.c. (k). Now, by Lemma 32, for
all 5, and for all k 2 d(3), Pr{C;;] 2 Pr(C;,,]. It follows that the sequence {c} is
nondecreasing (a.c. (k)), since ¢, was chosen as the smallest value satisfying the

inequality 2: Pr(C,] 2 m/(n+1), and since the summands are non-increasing, {c,}
=1 -

must be non-decreasing. Since {¢,} is a nondecreasing sequence of integers bounded
above by s, it converges Suppose that {c,} converged to a nnmber t < s. Then for all

sufficiently large k, E Pr(C;,] 2 m/(n+1). This implies that Z Pr[C;] 2 m/(n+1),

since the latter is the limit of the former. This is a contradxctlon, since & is the least
integer satisfying that inequality. Therefore, {c,} converges to s, and the list of
program indices output by M converges to I = {ind(1), ind(2), ...ind(s)}.

(Part 2) We now argue that the list of indices which M, outputs contains a correct
index for f. This is straightforward: The weight of paths converging to correct indices
for f is greater than 1/(n+1), and the weight of paths converging to any index is less
than or equal to (m+1)/(n+1). It follows that the weight of paths converging to an
index which is not an index for f is strictly less than m/(n+1). But M has found a list
of indices with weight greater than or equal to m/(n+1), hence not all of the indices on
the list can be incorrect. More formally,

Define BAD, =N - GOOD,, the set of “bad” guesses for f.

Then

C(N) = C(GOODI)] C(BAD!)
so that :
Pr{C(N)] = Pr[C'(GOODI)] + Pr[C(BAD,)].

We also know that
Pr[C(N)] £ (m+1)/(n+1)

and
Pr[C(GOOD,)] > 1/(n+1).

-26-

We conclude that Pr[C(BAD,)] < m/(n+1).

Now observe that the set of indices I = {ind(1), ind(2), ...ind(s)} has the property that
E Pr[C .| 2 m/(n+1), that is, Pr[C(I)] 2> m/(n+1), therefore at least one element of I

must be a correct program index for f, otherwise I C BAD Cc(I) € C‘(BAD,), and
Pr[C(BAD)] 2 m/(n+1). This completes the proof of the claim, Lemma 39, and
Theorem 36 a

4. Relationship Between the Team and Probabilistic Inference Hierarchies
Let the symbol “ID” stand for each of the symbols “EX” and “BC”. Theorems 20, 21, 35, 38,
and their corollaries can then be generalized as

Theorem 40:
1. For all integes n 2 1, ID,,, (n) Imeb(I/n).

2. For all integers n21forallpeR,if 1/(n+1) < p <1 then
3. For all 1ntegers n > 1, ID, (1 /n) = ID,_,.(n).

Part 3, together with the team hierarchy theorem (Theorem 7), implies that
Theorem 41: For all integers n > 1, ID,(1/n) € IDo(1/(n+1)).

Thus the team hierarchy is contained in the probabilistic hierarchy. We now note that this
probabilistic hierarchy is no finer, and that it is identical to the team hierarchy:

Suppose that 1/(n+1) < p < 1/n;

Clearly D, (1 /n) € Imeb(p).

Parts 2 and 1 of Theorem 40 give the two containments
ID, ,4(p) € ID,,,(n) € ID__y(1/n),

and therefore Imeb(p) = Imeb(l /n).

Thus for all of the “intermediate” probabilities p € (1/(n+1), 1/n], D, b(p) “collapses” to
ID,1(1/n). The following corollary contains restatements of the same result

-97-
Corollary: For all p € R, and for all positive integers n,

o If 1/(n+1) < p < 1/n, then ID_,(p) = ID \(1/n).

e For all p, p,, if p, < p,, and both p, and p, are in the same interval (1/(n+1), 1/n],
then ID b(zpl) - IDmb(pz). If p, and p, are in different intervals, then
IDpnb(p 1 >ID pmb(pz)'

We conclude that the probabilistic hierarchy is ezactly the team hierarchy.

Of particular interest is the following special case (n = 1) of our results:
If p > 1/2 then IDp”b(p) = ID (= ID,,,.(1)).

That is, if we have a probabilistic IIM which EX- (BC-) identifies the set of functions U with
probability p > 1/2, then there is a deterministic [IM which EX- (BC-) identifies U. This result
is shown independently by Wiehagen, Freivald, and Kinber [23] for the EX case.

The following picture illustrates the relationship between the probabilistic and team
hierarchies.

/ : etc. \
174 <p<1/3 \\
ID pron(p) = IDteam(S’.'

173 <p s 142
IDprob (P) = IDyp, (2)

1/2<p
ID prob (p} = IDteam {(1)=1D /

.98 -

We give an example which demonstrates possible “practical” applications of our results. The
following is a modification of a scenario suggested by J. Case, which appeared in [20]:

We wish to send a collection of robots to investigate some alien planet. Since there may be
possibly unforeseen natural disasters on this planet, we equip each robot with an inference
algorithm, which it uses to predict possible occurrences such as floods, etc. based on the soil
samples or other data that it collects. We would like to send the fewest number of robots
possible, but would like to ensure that at least 3 will learn enough about the planet to survive,
and thus carry out some particular distributed experiments and transmit the results back to
Earth.

Suppose now that we are able to construct a team of 11 such robots (with possibly different
inference algorithms) with the property that at least 3 of the 11 will survive. Clearly then there
exists a single probabilistic [IM robot which survives with probability > 3/11. Since 3/11 > 1/4,
we know that there exists a team of 3 [IM robots with at least 1 member having survival ability.
By simply replicating this trio, we end up with a set of 9 robots containing at least 3 with
survival ability. Thus we have a savings of 2 robots. Furthermore, since the proofs of our
theorems are constructive, we can actually build the robots.

5. Frequency Identification

5.1. BC Frequency Identification

Suppose M is a deterministic I[IM, and on input f, M keeps changing its guess, but “in the
limit”, the fraction p of M's guesses are correct. The following definitions are due to Podnieks
(18], and capture this intuitive notion.

Let M be a deterministic [IM, and for each # € N, let g, be the it guess of M with input f.
For each k, define

F’ksl{i:q&g’_-fandlSiSk}I/k

That is, F, is the fraction of correct guesses of M among the first k guesses (on input f|,). We
say that M is correct with “frequency” p if F, 2 p “in the limit”. More formally,

Definition 42: M BC-identifies f with frequency p iff when fed the graph of f in any
order® lim , F, 2 p.

*Podnieks’ definition was that M need only have correct frequency behavior when fed the graph of f in the
canonical order < f(0), f(1),...>. It seems desirable to have this aspect of our definitions uniform across all inference
types, thus we adopt the definition here. Researchers partial to the less restrictive definition of “identify when input
in canonical order only” will realize that if the definitions of all other classes in this paper were modified similarly,
then all of the theorems would still hold.

-929-

M BC-identifies U with frequency p iff for all f € U, M BC-identifies f with
frequency p.

BCmq(p) = {U | there exists an IIM M which BC-identifies U with frequency p}.

In [18], Podnieks shows! that for all integers n > 1, BC, (1/n) C BCp (1/(n+1)). He
conjectures that for all p,, p,, such that 0 < p, < p, < 1, BCruq(Px) ol BCfm(pz). We show that
this conjecture is false, and that the “break points” for this hierarchy are at exactly the numbers
of the form 1/n. More specifically, we show that this “frequency” hierarchy is identical to the
BC team hierarchy.

We begin by showing
Theorem 43: For all integersn > 1, BC,, (n) € BCmq(l/n).

Proof: Let U € BC,, (n). Then there is a team {M,M,,...,M,} of deterministic [IMs
which identify U. Let M be a deterministic IIM which on input f, does the following:
M simulates M|, M,,...,M, on input f, and outputs as its guesses the guesses output by
M, M,,...M, in a rotating order. M's first n guesses will be the first guesses of
M, M,,...M,. M's next n guesses will be the second guesses of M, M,,....M,, etc. We
must show that M BC-identifies U with frequency 1/n. To do this, it is sufficient to
show that for every f € U, and forall e > 0, F, > 1/n - ¢ a.c. (k). Now if f €U,
then there is some j such that M; identifies f. Therefore there is some ¢ such that M ;
outputs only correct guesses for f after ¢ initial guesses. Hence after the first cn guesses
of M, there is at least one correct guess in each subsequent group of n guesses of M.
Let ROUND, denote the guesses of M numbered (k-1)n+1 through kn, s.e. ROUND,
co.ntains the k't guesses of each of M, M,,...M,. Then for all § > ¢, ROUND; contains
at least one correct guess.

Let ¢ > 0. Let z, be large enough so that for all z 2 z,,
ez >
e 1/(cn+zn) < €/2
o z/(cn+zn) > 1/n - €/2

Now consider any guess g, which falls in ROUND,__, with z > z,. Then
F, = (# correct guesses among the first k)/k.

The numerator is at least z—1, since there is at least one correct guess in each of the
rounds numbered c+1, ¢+2,...c+z-1.

The denominator is at most n(z+c), since guess k falls in the z+c round. Hence:

F, 2 (z-1)/n(z+c) = z/(en+zn) — 1/(cn+zn) > 1/n - €/2-€/2=1[n - ¢.

*Actually, his results include the stronger statement that for all ¢ > 0, BCy(1/n+ ¢ C BC, (1/n).

-30-

We've shown that for all € > 0, and for every f € U, M outputs a sequence such that
F,>1/n =€ aec (k). It follows that M BC-identifies U with frequency 1/n, which
completes the proof of Theorem 43. O

Now we show that

Theorem 44: For all integersn 2 1, forallpe R, if 1/(n+1) < p < 1 then
BCmq(p) € BC,,,.(n).

Theorem 44 states that the relationship between frequency BC-identification and team BC-
identification is the same as that between probabilistic BC-identification and team BC-
identification. The proof is very similar:

Proof: Let Ue BCqu(p), with p > 1/(n+1), and let M BC-identify U with frequency p.

To prove Theorem 44, we construct a team {M,,M,,....M,} such that for all f € U,
there is some ¢ such that M; BC,} reshoia-identifies f.

If Ais a set of program indices, let I,(A) denote the multiset of guesses of M on input
f, among the first k, which are in the set A. In particular, we are interested in the sets
Ik(GOOD!), Ik(SLOWI), and Ik(WRONG,).

Clearly |Ik(GOODf)| + |[(SLOW,)| + (WRONG)| = k. Note also that since M
BC-identifies U with frequency p > 1/(n+1), II,,(GOOD/)I > k/(n+1) a.e. (k); and
therefore II,.(WRONGf)l < kn/(n+1) a.c. (k).

As in the proof of Theorem 21, there are n distinct and mutually exclusive possibilities
for how the sequence I(WRONG f) behaves in the limit; let 1 < § < n:

Possibility ¢: |[I(WRONG f)l < tkf{(n+1) a.c. (k), and

I(WRONG)| 2 (i-1)k/(n+1) i.o. (k).

The construction and proof now follow that on page 17. We display M;, and briefly
sketch the proof.

-31-
Machine Al'

kold —0

LOOP :

3. Simulate M on input values received from f, and let
9,:9:95,--- be the sequence of guesses output by M.

4. DOVETAIL the computations of ¢, (7)
for all pairs of numbers ¢ and j, companng the outputs
of completed computations with actual values of f,

UNTIL for some number k > k_,, there are 2 (i-1)k/(n+1)
elements in the multiset CANCEL,, the multiset of guesses
among the first k guesses of M which have been observed
to be in WRONG,.

5 S, —{9;11 <3<k} -CANCEL,

6 OUTPUT the ordered pair <k/(n+1), S,>
7. kg —k

8. GO TO LOOP

[

Let M, satisfy the i*" possibility. We've already observed that [I(GOooD,)N > k/(n+1)

a.c. (k). Now since no GOOD program is ever placed into CANCEL, for any k, then
I(GOOD,) < Sk, and therefore IS, N GOOD,| > k/(n+1) a.c.(k). Also, by
assumption on {, [[(WRONG,)| 2> (i l)k/(n+1 i.0. (k), and hence M; can find
successively larger values of k for which it outputs <k/(n+1), S.,>, such that by
assumption on ¢,

|S, N WRONG | = IL(WRONG)| - |CANCEL,|
< ik/(n+1) - a—l)k/(n+1)
= kf(n+1).

Thus M, BC,, .., ,,4-identifies f, completing the proof of Theorem 44. O

5.2. EX Frequency Identification
In this section we introduce what is essentially the EX version of Podnieks’ BC-frequency

identification, and prove that the analogous theorems are true.
Let M be a deterministic IIM, which on input f, outputs the sequence of guesses g,,9,,9,,..--
Let Fg(ﬂ.‘) - l{J 1<j5<kand 9.-'9,'}' / k

Definition 45: M EX-identifies f with frequency p iff there exists a guess g, such that
lim, F(s;) 2 p, and g, = f.

M E\C- dentifies U thh frequency p iff for all f € U, M EX-identifies f with
frequency p.

EXp (p) = {U | there exists an IIM M which identifies U with frequency p}.

-32-

If M EX-identifies f with frequency p, there is some particular correct guess of f, that occurs
in M's output sequence with frequency p.

It is clear that if p, < p,, then Equ(pl) 2 EXfm(pg). We now show that
Theorem 48:

1. For all integers n 2 1, EX,, (n) € EXfm(l/n).
2. For all integers n 2 1, forallp € R, if 1/(n+1) < p < 1 then

Theorem 46 asserts that the relationship between frequency EX-identification and team EX-
identification is the same as the relationship between probabilistic EX-identification and team
EX-identification.

Proof: The proof of the first part of the theorem is nearly identical to the proof of
Theorem 43. If U € EX,,, (n), and is EX-identified by the team {M,,M,,...,M_}, then
we construct M which EX,M(I [n)-identifies U. On input f € U, M simulates each M,
and outputs their guesses in a round-robin fashion; its first n guesses being the first
guesses of each team member, its second n guesses being the second guesses of each
team member, etc. Since some M; EX-identifies f, it follows by an argument nearly
identical to that proving Theorem 43, that M EX-identifies f with frequency 1/n.

We prove the second part of the theorem. Let U € Equ(p), with p > 1/(n+1). Let M
be an IIM which EX-identifies U with frequency p. To show U ¢ EX,..m(n), we
construct a team M, M,,..M_ of [IMs which EX-identify U. The idea behind the
construction is the following: If f € U, then we know that there is some correct guess g
of M, and in the limit, the fraction of guesses of M which are “g” is greater than
1/(n+1). How many other distinct guesses of M can have this property? At most n-1,
since the total number of distinct guesses of M which occur with limit frequency greater
than 1/(n+1) can be at most n. Each member in the team of n IIMs will choose one of
these, and output it. We must show that there is a single team member which “settles”
on guessing the correct index, instead of having team members alternate guessing the
correct index.

Let FREQ, = {g, | F,(g;) > 1/(n+1)}. FREQ, is the set of guesses of M, which, if we
look at the sequence of guesses through the k** guess, occur frequently (i.e. > k/(n+1)
times). Clearly |FREQ,| < n, and we note that since f is EX-identified by M with
frequency p > 1/(n+1), there must exist a guess g € GOOD, such that
g€ FREQ, a.c. (k).

For each k, we define the function W, which tells us for each i € FREQ, where in the
sequence ¢ first occurred as a guess with F () > 1/(n+1), and F (i) has been greater
than that value through z = k.

More precisely,

-33-

W)= k+1ifsi¢ FREQ,
kif i € FREQ, - FREQ, ,
W,_,(s) otherwise.

Clearly, for each 1, {W,(s)},_,, is monotone nondecreasing.

Now we describe the machines {M;}.

Machine M;

1. On input f|,, simulate M on input f|, and obtain
the guesses g,,9,,...,9;-

2. Compute FREQ, and W,(s) for each s € FREQ,.

If there are < ¢ elements in FREQ,, then output “0”.

4. Otherwise, sort® the elements of FREQ 5 in order of
increasing values of W,(s), and output the i*t element
of the sorted set FREQ,.

d

We must show that for each f € U, there exists an i such that M, EX-identifies f. If
f € U, then there exists a g € GOOD, such that g € FREQ, a.c. (k). We argue that g
“eventually occupies the same position in the ordered sets FREQ,.

Since g € FREQ, a.c. (k), there must be a numbeg k, such that W,(g) < k; for all k
2 k,, by the definition of W,. Let the function pos(k) denote the position that g
occupies in the ordering of elements in FREQ,. So 1 < pos(k) < n for all k£ > k,. We
claim that as k increases, pos(k) is monotone nonincreasing. To see this, let us suppose
that pos(k) increases somewhere. This means that for some k > k,, pos(k) = j, and
pos(k+1) = f+z. The only way that this can happen is that there is some guess
h € FREQ,,, with W (k) < W, (g), and one of the following true:

1. h ¢ FREQ,.
2. h € FREQ,, and W (h) > W ,(9g).

If the first case holds, then by the definition of W, , we must have that W (h) = k+1
> ky 2 W(9) = W (9), which contradicts the fact that W, ,(h) < W,_ (9). The
second case cannot hold either, since by the definition of W, W, (k) = W(h), and
W,,,(9) = W (g). Hence pos is a monotone nonincreasing function of integers, bounded
below by 1. It therefore has a limit 5, 1 £ 7 < n, and for all sufficiently large &, g will
occupy the 3*» position in the ordered set FREQ « It follows that M; will converge to

‘A simple argument shows that there can be no ties in this ordering, but this is unnecessary for the proof to follow,
since ties can be broken by ordering on the actual value of the guess.

-34-

outputting “g” as a guess. Hence AJJ EX-identifies f, which completes the proof of
Theorem 46. O

5.3. Relationship Between Frequency, Probability, and Team Hierarchies
Theorems 43, 44, and 46, relating frequency identification to team identification for both the

EX and BC criteria are easily assembled to show that the frequency hierarchies are identical to

the team hierarchies (which are identical to the probabilistic hierarchies). In particular,

Theorems 40, 41, and the corollary in section 4 are all true if “frequency” is substituted for
“probability”.

We conclude that if ID represents both of the symbols EX and BC, then
Theorem 47: For all integers n 2 1, if p € R and 1/(n+1) < p < 1/n, then
IDy,, () = ID,4(p) = ID, . (n).

We illustrate this with the following diagram:

TTm——
/ etc. \\\
P ID freq (P) = ID prob (p)= D am (3) N
! ’ 1/3:pe1/2 — \1
‘ IDfr'sq (p) = [IDpob (p) = IDteam(Z\)&\‘

< Y)

\‘\ @i/ ’ /
\ ‘\v/ 7
*\\ /

-35-

6. Identification with Anomalous Hypotheses
Allowing randomization and some probability of error for identification is only one possible
way to expand the classes of functions which are identifiable. Another manner in which the
definition for correct identification may be relaxed is that of allowing the hypothesized programs
to disagree with the function being identified on some number of arguments:
Definition 48: Let M be a deterministic IIM, and k an integer > 1. Then M

EX*-identifies f iff when fed the graph of f in any order, M converges to outputting
the program index ¢, and ¢; =F f. (“=k" i3 defined at the end of section 1.2.)

EX* = {U| 3 M such that for every f € U, M EX*identifies f}.

Note that if M EX*-identifies f, the program ¢ which M converges to need not be total, i.c. ¢
could differ from f because ¢(z) is undefined, whereas f(z) is defined.

We might further allow any finite number of anomalies:

Definition 49: M EX'-identifies f iff when fed the graph of f in any order, M
converges to outputting the program index 1, and ¢, =* f.

EX' = {U| 3 M such that for every f € U, M EX -identifies f}.

The definition of EX" is the same as that of a.e. identification introduced in [4], and

sub-identi fication in [16].
Case and Smith [5] prove that

Theorem 50: Forall ke N, EXf! ~EX* % 0, and EX'- U EX* %d.

EEN
Smith [20] defines team inference with anomalies in the natural way; for a € N U {*}

EXP,n(n) = {U | 3 M,M,,...,M, such that for every f € U, there is an M, which

team

EX®-identifies f}.
Smith shows that for all a € N U {*}, and for all integers n > 1,

EX?

team

(n) € EX8, (n+1).

team

Interesting tradeoffs are also given between the number of team members, the number of
anomalies, and a complexity measure - the number of “mind changes” made by an IIM before
converging to a correct program. Discussion of these tradeoffs are beyond the scope of this
paper; the reader is encouraged to consult [20] for further details.

Let M be a probabilistic IIM, and let a € N U {*}. Then

M EX°*-identifies f with probability p iff Pr{{paths in T, y which correspond to a single
deterministic EX*-identification of f}] 2 p.

-36-

EXCob(p) = {U | 3 M such that for all f € U, M EX*identifies f with probability p}.
Similarly, we define EX-frequency identification with anomalies:

If M is a deterministic IIM, and on input f, M outputs the sequence of guesses g,,g,,9,,-.., then
for all a € N U {*},

M EX®-identifies f with frequency p iff there exists a guess g, such that lim , Fi(g;) 2 p, and
¢ . =* f. (Recall F(g,) is the fraction of M’s guesses among the first k which are “g,”.)

EX;m(p) = {U| 3 Msuchthat forall fe U M EX¢-identifies f with frequency p}.

We now state
Theorem 51:” For all a € N U {*}, for all integers n > 1, and for all p € R,
if 1/(n+1) < p £ 1/n, then EX;mb(p) = EX},,Q(P) = EX? .(n).
Before we prove Theorem 51, we give the generalizations of the definition of the class OEX,
and Lemma 38 which appear in [5].

Forae NU {*},

M OEX®-identifies f (written f € OEX%M)), iff M, when fed the graph of f in any order,
outputs an infinite sequence {I.} of finite lists, and there is a list L such that [, = L a.c. (k),
and for some ¢ € L, ¢, =* f.

OEX® = {U | 3 M such that U € OEX*(M)}

Case and Smith [5] prove the following

Lemma 52:
1. Forall ke N, OEX* = EX*.
2. OEX" - EX" # 0.

The proof of part 1 of Lemma 52 is similar in spirit to the proof of Lemma 38.

To prove Theorem 51, we first note that the proof of Theorem 46 does not involve any
simulation of the hypothesized programs, hence by simply inserting “EX*” for “EX”, “EX?M” for
“Eer”, and “EX® " for “EX,___", we have proved that if the hypothesis of Theorem 51 holds,

team team ’

then EX;m(p) = EX},.(n).
Now we show that EX? ,(p) = EX¢, (n)for 1/(n+1) < p < 1/nand a e NU {*}.

Consider the case that a € N. Then by Lemma 52, the analogues of Theorems 35, 36, and
Lemma 39 with a anomalies all hold, and we have that EX;mb(p) = EX{,.(n) for
1/(n+1) <p < 1/n.

-37-

These proofs do not work however, to show the corresponding result for any finite number of
anomalies, since by part 2 of Lemma 52, simply converging to a list of programs containing at
least one finite variant of f is not sufficient. We must employ other techniques.

We show that
Lemma 53:
1. For all integers n > 1, E)(;m(n) c EX;mb(I/n).
2. For all integers n 2 1, forallp € R, if 1/(n+1) < p < 1 then
EX_.(p) € EX;,,.(n).

P!

The proof of part 1 is identical to that of the proof of Theorem 35. We prove part 2.

Let U e EX;mb(p), and let M EX'-identify U with probability p > 1/(n+1). We construct a
team M, M,,...,.M, which EX"-identifies U.

Each member M; of the team will proceed in phases. On input f|,, M; simulates M and
constructs T,, the finite subtree of T,, 7 through level k. M; will keep a priority queue, @ from
phase to phase. At phase k, @ will contain the nodes of 7, in some order. M; will simulate the
guesses made by M, and order @ roughly by how many anomalies each has been observed to
have. Since every program which converges »% f for infinitely many arguments will be pushed to
the end of the queue infinitely often, M; will be able to “eliminate” these guesses.

We denote the #* element of the queue by Q(;5). Q(1) is the beginning, or top of the queve. Q ‘
starts out empty.

Description of phase k of M,

1. Receive the k't input value f(k), and build the next (k'2) level of T, My by simulating
M. '

2. Add j to the end of Q for each node jin the k! level of Tpgy-

3. Allowing k steps for each computation, try to compute each of {¢‘“‘J (z) | 7€ Q,
and z < k)}. For each jsuch that a value z < k is found (in & steps 02 simulation)
with ¢, 4 J)(z) % f(z), and this inequality was not witnessed in any previous phase,
then move j to the end of Q.

4. Compute Pr[C;,] for each j € Q, and let [, = {ind(Q(5)) | 1 < j < c,}, where ¢, is
the smallest number such that

,.‘; PriCqal 2 i/(n+1).

I, is simply the indices of the smallest initial set of nodes, ordered by @, which have
total estimated probability 2 i/(n+1).

5. Output the index of the program p,, which on input z, dovetails the computations
{¢ {z) | 7€ 1.}, and outputs the first value computed.

We must show that for all f € U, there is some s such that M; EX -identifies f. We define

-38-

GOOD; = {i | ¢, =" f},
WRONG; = {i | {z : §(z) converges % f(z)} is infinite},
SLOW, = N - (GOOD; U WRONG P}

Clearly GOOD}, WRONG;, 7» and SLOW, partition N. Note that SLOW,‘ consists of those
indices such that the corresponding program is not a finite variant of f, but there are at most
finitely many arguments for which it converges # f.

Let GS = GOOD; U] SLOW;. Then Pr[{C(GS)] is in some half open interval
(s/(n+1), (5+1)/(n+1)] for some 5, 1 £ 5 < n. Suppose that it falls in the interval
(¢/(n+1), (i+1)/(n+1)]. We show that M, identifies f, proving Lemma 53.

We will show that the sequence of lists {1} in program M; converges to a list I, such that I
€GS,andING OOD; % 0. If this is the case, then M; converges to outputting the index of a
fixed program p which on input z, dovetails the indices of I on input z. Furthermore, p =* f,
since I contains at least one element of GOOD‘ a finite number of programs in SLOVV‘ each of
which converges # f in only finitely many places, and no programs which converge » f for
infinitely many inputs.

Now, since Pr[C(GS)] > i/(n+1) by assumption on s, by Lemma 33, there must be a finste
collection of nodes V such that

2 Pr[C;] > i/(n+1), and for all j €V, ind(j) € GS.

Note that if y € GS, then there are only finitely many arguments for which ¢ converges 7% f.
Thus M; will move each node in V to the end of Q at most finitely many times. Also, if m € Q,
and ind(m) € WRONG, I then m will be moved to the end of Q infinitely many times. It follows
that for all sufficiently large k, the order of elements from the beginning of @, to the highest
numbered position v of Q which contains an element of V, will remain constant.

Further, for all sufficiently large &, by Lemma 32,
] 2> >4
f;y Pr(C;,] 2 ,-;v Pr(C;] > i/(n+1),
and we have that ¢, < v a.c. (k).

Finally, by an argument similar to that in the proof of Lemma 39, the sequence {c,} converges
to s, where s is the smallest value 1 < s < v such that

2 PriCq ;] 2 i/(n+1).

Then the sequence of lists {1} converges to I = {ind(Q(5)) | 1 £ 5 < 8}. Clearly I € GS.
Now suppose that I N GOOD; = (. Then

-39 -

i/(n+1) < El Pr(Cq ;) < PriC(I)] < Pr[C(SLOW))].

Also, since Pr[C(GOOD;)] > 1/(n+1), it follows that Pr[C(GS)] > (i+1)/(n+1), which
contradicts our assumption on i. Thus M, converges to outputting the index of p =* f, and
Lemma 53 and Theorem 51 follow. 0O

Identification with anomalous hypotheses has also been studied for BC-identification.
Definition 54: Let M be a deterministic IIM, and a € N U {*}.

M BC®identifies f iff when fed the graph of f in any order, M outputs the infiite
sequence g,,d,,0y,---, and g, =* f a.c. (k).

BC® = {U| 3 M such that for every f € U, M BC*-identifies f}.

Case and Smith [5] show that BC**! - BC*% 0, and BC'- kUN BC* % 0.
€

L. Harrington has shown that BC’ contains the class of partial recursive functions; this result
also appears in [5]. In [20], Smith also gives definitions for BC-identification with anomalies by
teams. It is shown that there is a proper hierarchy for all integers k 2 1:

BCt_ _(n) c BC}

team’

(n+1).

Daley [7] proves interesting tradeoffs, analogous to those shown for EX in [20], relating number
of team members, number of anomalies, and number of mind changes required for BC-
identification.

Now let M be a probabilistic IIM, and let k£ € N.

Definition 55: M BC*-identifies f with probability p iff Pr{{paths in T,, . which
correspond to a single deterministic BC*-identification of f}] > p.

BC:mb(p) = {U|3 Msuch that forall f € U, M BC*.identifies f with probability p}.

We similarly define BC-frequency identification with anomalies: M BC*-identifies f with
frequency p iff the limit infimum of the fraction of guesses output by M which =* f is at least p.

Definition 58: BCfm(p) = {U| 3 M such that for all f € U, M BC*-identifies f with
frequency p}.

It seems appropriate to form the following
Conjecture: For all k € N, for all integers n > 1, and for all p € R:
If 1/(n+1) < p £ 1/n, then BC:mb(p) - BCt'fm(p) = BCfnm(n).

- 40 -

7. Nondeterministic Inference Strategies: An Observation

The notion of “team inference” which we have been using, at first seems to be an unnatural
model of computation. After a moment of reflection however, we realize that a “team of n
machines’ may be thought of as a single nondeterministic machine, which is restricted to
choosing from among n deterministic strategies. In this section we consider unrestricted
nondeterministic [IMs, and give a simple argument showing why this model is too powerful to be
interesting. We then consider a different type of restriction, that of “reliability” [4] , and show
that reliable nondeterministic [IMs are no more powerful than deterministic [IMs.

A nondeterministic [IM (NIIM) is simply a deterministic [IM with a 0-1 oracle. The NIIM may
query the oracle for a “nondeterministic bit” which it then receives on a special tape. Thus there
is essentially no difference between a probabilistic IIM and an NIIM, except that in the latter
case, the oracle isn't a coin, and there is no associated notion of probability. For a particular
NIIM N, and a function f as input, there is a corresponding computation tree TN, Iz defined as for
probabilistic IIMs.

The NIIM N EX- (BC-) identifies the function f iff there exists a path in Ty, which
corresponds to a single deterministic EX- (BC-) identification of f. It is immediately clear that
there is a single NIIM N which EX- (and hence BC-) identifies T, the class of all total recursive
functions (in fact IV identifies every partial recursive function):

N nondeterministically receives a sequence of bits from its oracle. N prints every odd
numbered bit it receives on a work tape, until an even numbered bit is received which is a “1”.
The binary number written on the work tape is used as the guess for an index of f, and NN simply
guesses that index at every step from then on. Clearly every possible number can be generated
by N nondeterministically in this manner, so there is a computation of N which EX- (BC-)
identifies any f € T (without even seeing a value)! Thus unrestricted nondeterminism is too
powerful a model to be of interest.

For EX-identification, a natural restriction for IIMs is that of reliability.® An IIM M is reliable
iff for all f, if M converges to some guess on input f, then the guess is a program index for f.
Then M reliably EX-identifies U if M EX-identifies U, and M is reliable. Thus we may assume
that whenever M converges, its answer is correct. Reliable inference strategies have been studied
in [4], [16].

We consider the following question about Reliable Nondeterministic IIMs (RNIIMs): Are
RNIIMs too powerful, as are NIIMs, or does the reliability restriction prohibit the type of
unlimited guessing that allowed a single NIIM to identify all f € T? We are surprised to find

Reliability is not a meaningful notion for BC-identification.

-41 -

that

Theorem 57: If U is EX-identifiable by a RNIIM, then U is EX-identifiable by a
deterministic 1IM.

Hence the class of RNIIM identifiable subsets of T is exactly the class EX, showing that
reliability is too strong a restriction for NIIMs to yield interesting identifiability classes.

Proof: Let N be a RNIIM which EX-identifies the set U of functions. We construct a
deterministic IIM M which EX-identifies U: M, given values from the graph of f,
constructs Ty, 1 level by level, making a list of nodes. On input f|,, M constructs T,
the finite tree consisting of the first k levels of TN. P and then determines for each node
n of T, whether C, , is empty. (Note that this computation depends only on the nodes
through level k in T, ;- see Lemma 34.) M then outputs the index of the least
numbered node n such that C_ , # 0.

M attempts to find the “first” converging path. We argue that since Ty ; must contain
at least one converging path, and no converging path can converge to a wrong index (IV
is reliable), M must be correct:

Since N nondeterministically EX-identifies U, for every function f € U, there is at least
one path in T}, , which converges to a correct index for f. Let s be the least numbered
node such that there exists a path converging at s. Then for all k > d(s), s will be in
T, and C,, % 0, hence M on input f|, outputs either ind(s), or the index of some node
t less than s.

If for every node n < s, there was some level k, such that C, , = 9, then M will
eventually witness this, and M will then converge to ind(s), hence identify f.

Alternatively, suppose there was a node n < s, with C,_ , # 0 for all k£ > d(n). We must
show this is not possible. Since s is the least node at which convergence occurs, we
know that every path passing through n cannot converge at n. In other words, C_ = 0.

We have that C_, # @ for all k > d(n). Consider all nodes at depth > d(n). We will
color some of these nodes red. In particular, color node m red if and only if d(m)
2 d(n), and C,) N P, % 0. Thus node m is colored red iff there is a path going

through n, and then m, and the nodes on the partial path from n through m all have
the same index as n.

We note two facts about our coloring:

1. There are infinitely many red nodes. This is the case because for all k > d(n),
C,i # 0. So there is some path in C, ,; in other words there is a path passing
through n which “converges through level k”. Then the node on that path at
level k is red. Thus for each level, there is at least one red node, so there are
infinitely many red nodes.

2. The subgraph of TM' induced by the red nodes is a tree. Since T, , is a tree,
clearly the subgraph induced by the red nodes is a forest. To see that it is
connected, observe that if m is red, then parent(m) is red also.

-42-

We now have a rooted red tree (the root is n) with infinitely many nodes, and finite
branching at each node. Konig's Lemma asserts that there must be an infinite path in
this red tree. But an infinite red path in T/, corresponds to a path which is in C,,
hence C, is not empty. Therefore, it cannot be the case that C, | # 0 for all k& > d(n)
This completes the proof of Theorem 57. O

Thus “unrestricted” nondeterministic [IMs are too powerful, and reliable nondeterministic [IMs
are no more powerful than deterministic ones. This supports our view that team in ference is the

most natural notion of nondeterminism for inductive inference.

8. Other Properties of Probabilistic [IMs.
Throughout this section, “identify” refers to both EX and BC identification, and ‘ID’ denotes
both ‘EX’ and ‘BC’.

8.1. Identifying Functions Drawn from a Hat

In the models of identification presented so far, we have assumed that functions were taken
from some set U, and we have been interested in when there are [IMs (deterministic, probabilistic,
nondeterministic,...) which can identify the function. Suppose that we know a priors that the
function being presented to M is chosen randomly from T according to some known probability
distribution. This might be the case for scientists having certain empirical evidence suggesting
that the rules governing observed behavior occur randomly with certain probabilities.

We now ask the following question: Are probabilistic [IMs better ‘on the average” than
deterministic [IMs at identifying functions?

Let D: T — [0,1] be a probability distribution which assigns to every total recursive function
f, a real number in [0,1] such that E D(f) = 1.

Let M, be a probabilistic IIM, and M a deterministic IIM. Define M{f) to be 1 if M identifies
f,0 othermse, and M (f) to be the probability that M identifies f.

Then the average per formance, A(M,D) of M with respect to D is defined by
AMD)= 2 DIf)- M)

and the average performance of Mr is

A(M,,D)= T D(f) M,(f)

Theorem 58: For all distributions D on T, for all ¢ > 0, and for all probabilistic [IMs

- 43 -

M,,, there exists a deterministic [IM M such that A(M,D) > A(A{’,,D) - €.

In other words, there are deterministic machines which have average performance arbitrarily

close to that of any particular probabilistic IIM.

Proof: Since 2. D(f) = 1, there exists a finite number of distinct functions
JeT

k
{f,:fp-- f;;} such that > D(f) > 1 - ¢. Then there is a deterministic [IM M, which
i=1

has “built in” a list of the indices of these functions. When given examples of a
function f to be identified, M asks for enough values until it witnesses that all but one
of the functions {f,,f,...f,} differ from f, and then M outputs the index of the
remaining function. (M outputs the index “0” while it eliminates the above functions.)
Clearly M identifies each of the functions {f,f,....fy}, and it follows that
A(M,D) > 1 - ¢. Since A(M",D) is at most 1, the theorem follows. O

If the reader feels cheated by the above theorem, it is for a good reason: The proof relies solely
on the countability of the function space over which the distribution D is defined, rather than
reflecting any deep property of probabilistic computation. Since the class of all partial recursive
functions is countable, it might be the case that the concept of average performance will not yield

much insight into probabilistic inference.

While Theorem 58 states that for any probabilistic IIM M,, there are deterministic IIMs with
average performance “within ¢”, it doesn't address the question of whether there are deterministic
[IMs with A(M,D) > A(M”,D). We do not know the answer to this question, but the following
theorem demonstrates that for certain types of probabilistic IIMs, the answer is “yes”.

Theorem 59: Let D be a probability distribution on T. Let M’, be a probabilistic [IM
which behaves as follows: M’, randomly chooses to simulate one of the deterministic

3

strategies M, M,,...,M, with probabilities p,,p,,...,p}, respectively. (> p; = 1). Then
=1

there is a deterministic [IM M such that A(M,D) > A(M’,,D).

Proof: Let M(f) = 1 if M, identifies f, O otherwise.

We let w, denote the “weight” (with respect to D) of the set of functions that M;
identifies:

w,= T D(f) M{J).
JET

Then we have
k

A(MW,D) = '_E p; - w,

k
Now since 2 p;,=1,then maz {w;|1 <i<k}2 > p.-w.
i=1

i=1

Let w; be maz {w;}. Then M; has average performance

- 44 -

.
A(M,D) = ’ZEZT D(f)-M(f)=w;2 X T w; = AM,,D). O

=1
Hence if we are to exhibit a probabilistic IIM which has average performance strictly better
than any deterministic IIM, it must not be one which chooses probabilistically from among a
finite number of deterministic strategies.

8.2. Restricted Choice Probabilistic ITMs

The discussion in the previous section motivates the following question: Is there a difference
between probabilistic [IMs which choose randomly to simulate one of a finite collection of
deterministic strategies, and probabilistic IIMs which are not of this special form? We call the
former type of IIM restricted choice probabilistic IIMs, and the latter unrestricted chosce
probabslistic IIMs.

The criterion for successful probabilistic identification which we have used thus far has only
been concerned with whether the probability of identification is above some threshold (p).
Within this framework, our resulés imply that restricted choice probabilistic IIMs are as powerful
as unrestricted choice probabilistié IIMs; for if M is any probabilistic IIM which identifies the set
U of functions with probability p, then consider the least positive integer n such that
1/(n+1) < p < 1/n. Then by part 2 of Theorem 40 there is a team of n deterministic [IMs
identifying U, and by part 1 of Theorem 40 there is a restricted choice probabilistic [IM which
identifies the set U with probability 1/n > p.

Suppose now that we are concerned with “how well” a probabilistic IIM identifies every
function. For every unrestricted choice probabilistic IIM M, does there exist a restricted choice
probabilistic [IM which identifies every total recursive function with probability at least as great

as M'? The answer is “no”:

Theorem 80: There exists an unrestricted choice probabilistic 1IM M, such that for
any restricted choice probabilistic [IM M_, there exists a total recursive function f such
that Pr{M, identifies f] < Pr[M, identifies f].

Proof: M, uses coin flips in such a way that M guesses the index “0” with probability
1/2, “1” with probability 1/4, ... , “n” with probability 1/2**!, Thus the probability
that M, identifies any given total recursive function is greater than 0. Suppose there
was a restricted choice probabilistic IIM M, which chooses from deterministic strategies
{Msz’"-»Mk} with probabilities PysPys--P), Tespectively. Then if for all f, Pr[M,

identifies f] > Pr[M, identifies f], it must be the case that for all f,
k

Pr[M, identifies f] > 0. It follows that T € U ID(M;) violating the team hierarchy
=1

theorem (Theorem 7). 0.

- 45 -

Acknowledgements

I am extremely grateful to Dana Angluin for suggesting the problem area, for supplying much
encouragement, and for a countless number of very fruitful discussions, without which this paper
would not have been possible. I also thank Bob Daley for pointing out Podnieks’ frequency
results; and Carl Smith, for reading an early abstract, and for bringing the excellent paper {5] to

my attention.

- 46 -

APPENDIX
Elementary Probability Theory

We outline some of the key steps involved in defining a probability measure on an infinite set
of possible outcomes, 2. For a more detailed discussion of some of these issues, we refer the
reader to [17], from which much of this section was taken.

Intuitively, a probability measure is a function Pr which assigns “probabilities” (real numbers
between 0 and 1) to outcomes of some experiment which is to be performed. The outcomes are
elements of some universal set {2. In practice, it is useful to have the probability defined not only
on elements of {2, but on subsets of {2 as well. A probability measure should satisfy axioms which
we believe intuitive, for example, Pr{(2] should equal 1; For all A € £2, Pr[A] should be between 0

‘and 1, and Pr should be additive in the following sense: If A is the disjoint union of the finite or
countable collection {4}, then Pr{A4] should equal ; Pr{A].

As it turns out, it may not always be possible, given a set {2, to define a probability function
on all subsets of £2, in a way which is consistent with the situation we want to model. For
example, it can be shown that there is no function defined on all subsets of the interval [0,1],
which satisfies the above three properties, and is such that for any interval (a,8) € [0,1], Pr{a,b)]
= b-a (length is the natural definition of probability for an interval in [0,1]). The reason for
this is that there are many different, and often bizarre ways to express sets as partitions of other
sets, and then deduce by the properties of a probability measure above, that Pr must be defined
to be two different values for a set so constructed.

The approach generally taken then, is to carefully delineate the class of subsets for which the
function Pr is to be defined, and then show that Pr is in fact well-defined on this family of sets.
We need the notion of a Borel field:

Definition 81: A set of events {2, together with a family of subsets B8 of £2, is a Borel
field iff the following three conditions hold:

1.2¢ 8.

2.IfAcB,then2- A€ 8.

3. 1f {A;}; . ; is a finite or countable collection of elements of 3, then ‘UIA.. €8.
1€

It follows that any Borel field is closed under complementation, and countable unions and
intersections. The elements of 3 are commonly called the Borel sets of 2.

Before continuing our discussion of Borel fields, we review some set theory.

If {A;} is a countable collection of sets, then we define

im, 4, = N U4

k=0 =k

- 47 -

o0 o0

The two sets are, respectively, the limit supremum, and limit infimum of the sequence {A;},
and correspond to, respectively, the set of elements which are in infinitely many of the sets {4},
and the set of elements which are in all but finitely many of the sets {A;}. If for the sequence of
sets {A.} we have that the limit supremum and limit infimum are equal, then we call this the

limit of the sequence, 1.c.
lim,_ A, =lim, A =lm,6 A

A sequence of sets is monotone, if for all k, A, € A, , or for all ¥, A, € A,. Every
monotone sequence of sets has a limit, and every Borel field is closed under lim , and lim ¥

Now if C is a collection of subsets of 2, then there is a unique “smallest” Borel field, denoted
B(C), which contains every element of C, and is closed under finite and countable unions and
intersections of elements of C and their complements. (“Smallest” is with respect to

containment.)

For example, consider the the real line R, and let I be the family of all of the open intervals of
the form (~oo,w), for w € R. Then B(J) contains just about any set of real numbers imaginable;
in fact, one has to be somewhat clever to come up with a subset of R which isn’t in B(J).

Now given £2 and 8, we can define a probability measure on elements of 3, rather than cn all

subsets of 2.
Definition 82: If {2 and 8 together are a Borel field, then the function Pr:3 — R is a
probability measure iff
1.Prj] =1
2.Forall Ac B, Pr{4] 2 0
3.1f {A,} is a finite or countable collection of mutually disjoint elements of 3,
then Pr{ EEJ Al = 2,: Pr[A,].

This last property is called countable additivity, and we will use it liberally. Many other
properties of probability measures follow from the definition above. For example, monotonicity:
If A C B and both are in B, then Pr{[A] < Pr{B]. Also, if {A;} is a sequence of Borel sets for
which the limit is defined, then

Prllim,__A,] = lim,_,_ Pr[4,]

Now if we wish to define a probability measure Pr for some application, then we do the
following: We begin with some collection of basic sets C, for which we want Pr to be defined.
(For the real numbers, the basic sets were the half infinite intervals; for 2 = [0,1], we might want
C to be all intervals of the form (a,5), 0 < a £ b < 1). Next we construct A(C) = the smallest

- 48 -

field of subsets of £2 which contains C, (s.c. the smallest family of subsets of 2 which are closed
under finitely many applications of intersection, union, and complementation), and we extend Pr
to A(C). If this can be done so that Pr satisfies the three axioms for a probability measure (given
above) on A(C), then Caratheodory’s Extension Theorem [17] guarantees that Pr extends
uniquely to B(C) = the smallest Borel field containing C, and the extension is a probability

measure.

Once we have B(C) to which Pr extends uniquely, then given A C 2, to find Pr{A], we need
only show that A is “measurable” by showing it is in B(C), and then we can find Pr{4] by
expressing A as a countable union and intersection of basic sets and their complements, and
applying properties of the probability measure. We can then be sure that regardless of how A
was expressed in terms of the basic sets, the value Pr{A] computed is correct.

Proof of Lemma 11

Let P denote the class of sets {P_} . Ty’ where P_ is the set of paths passing through node n.
We first show that Pr satisfies the probability axioms on P.

Clearly, 2 = P, = all paths in T}, ,, and Prif2] = Pr[P,| = 2741) = 2% = 1. Also by definition
of Pr, Pr[P,] 2 0 for all n 2 1. We show that for all / C N,

if P,= Y P, then Pr[P] = ZI Pr|P).
t€ 1€

First we note that if P = Hr P, then I'is finite: Suppose not, then we construct a path in
i€

P, but not in P, for any ¢ € I. Clearly every § € I is a descendant of n. Color red every node z
such that z is a descendant of n, and the partial path from n to z does not contain any s € I.
There is a red node at every level of T, 1 otherwise we would have a finste subcollection S C I

such that P, = V) P, Therefore there are infinitely many red nodes, and the subgraph

i€esS
induced by red nodes is a connected tree with root n. By Konig's Lemma, it contains an infinite
pathpe P, - v} P,

iel

Hence we only need show that for all finste sets I € N,
if P, = ‘HI P, then Pr[P| = Zl Pr|P).
€ 1€

To see this, let | be the deepest level which contains some s € I. Note that if a node z has

depth < [, then it has 2--%3) descendants at level I. Since P o= Ur P, then the number of
i€

descendants of n at level { is exactly the sum of the descendants at level { of each s € I. We have

24 = 30 9-d6) which implies that

iel

2~ d(n) == E 2"‘(")’ or

i€1

- 49 -

PrlP] = E:, Pr[P].

We've thus shown that Pr satisfies the axioms of a probability measure on the class of basic
sets P. Now let 4(P) be the smallest family of subsets of {2 containing P which is closed under
finitely many applications of intersection, union, and complement. As outlined in the first part
of this appendix, if we show that Pr satisfies the probability axioms on A (P), then the Extension
Theorem of Caratheodory asserts that Pr is well defined on B(P), and Lemma 11 is proved.

It is clear that Pr satisfies the axioms on A (P) from the following
Claim: A(P)= {A | Ais the finite disjoint union of elements of P}.

We sketch an inductive proof of the claim. Certainly each element of P is a finite disjoint
union of elements of P. Any element A € A(P) is obtained by finitely many applications of the
operations intersection, union, and complement. If the last operation is union, then A = B U C,
where by induction, B and C are finite disjoint unions of elements of P. Let P, € P denote the
finite collection of sets {P,} whose union is B U C.

If the elements of B are not mutually disjoint from the elements of C, then we can rewrite B
and C as disjoint unions of sets {P;} of P, each { with depth d(i) = m, where m = maz {d(n) |
P € Py }. Thus A is a finite disjoint union of elements of P.

If the last operation in the construction of A is a complement, then A = B, where B is a finite
disjoint union of elements of P by induction. Then for some I/, we can rewrite B as a finite
disjoint union of elements of P which are all at the same level ! of T}, I and A is simply the
finite disjoint union of all other elements at level /.

Finally, if A = B N C, then by DeMorgan's Law, A = (B° U C°)%, and by induction on the
previous arguments for union and complement, A is the finite disjoint union of elements of P. O

1]

(2]

(3]

[4]

[s]

(6]

7l

8]

[0l

(10]

11]

- 50 -

References

D. Angluin and C. Smith.
Inductive inference: theory and methods.
Computing Surveys 15(3):237-269, September, 1983.

J. M. Barzdin.

Two theorems on the limiting synthesis of functions.
Latvis gosudarst. Unsv. Ucenye Zapssks 210:82-88, 1974.
(in Russian).

J. M. Barzdin and R. V. Freivald.
On the prediction of general recursive functions.
Soviet Math. Dokl. 13:1224-1228, 1972.

L. Blum and M. Blum.
Toward a mathematical theory of inductive inference.
In form. Contr. 28:125-155, 1975.

J. Case and C. Smith.
Comparison of identification criteria for machine inductive inference.
Theoretical Computer Science 25:193-220, 1983.

C. M. Cook, A. Rosenfeld, and A. R. Aronson.
Grammatical inference by hill-climbing.
In formation Sciences 10:59-80, 1976.

R. Daley.
On the error correcting power of pluralism in BC-type inductive inference.
Theoretical Computer Science 24:95-104, 1983.

J. A. Feldman.
Some decidability results in grammatical inference and complexity.
In form. Contr. 20:244-262, 1972.

R. V. Freivald.

Finite identification of general recursive functions by probabilistic strategies.

In Proceedings of the Con ference on Algebraic, Arithmetic, and Categorial Methods in
Computation Theory, pages 138-145. Akademie-Verlag, 1979.

B. R. Gaines.
Maryanski's grammatical inferencer.
IEEE Trans. on Computers C-28:62-64, 1978.

E. M. Gold.
Language identification in the limit.
In form. Contr. 10:447-474, 1967.

[12]

[13]

[14]

(18]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

-51-

J. E. Hoperoft and J. D. Ullman.
Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, MA, 1979.

J. J. Horning.
A study of grammatical in ference.
PhD thesis, Stanford University, Computer Science Dept., 1969.

M. Machtey and P. Young.
An Introduction to the General Theory of Algorithms.

North-Holland, New York, 1978.

F. J. Maryanski and T. L. Booth.
Inference of finite state probabilistic grammars.
IEEE Trans. on Computers C-26:521-538, 1977.

E. Minicozzi. _
Some natural properties of strong identification in inductive inference.
Theoretical Computer Science 2:345-360, 1976.

M. F. Neuts.
Probabslsty.
Allyn and Bacon, Boston, MA, 1973.

K. M. Podnieks.

Comparing various concepts of function prediction.
Latvss gosudarst. Univ. Ucenye Zapisks 210:68-81, 1974.
(in Russian).

K. M. Podnieks.
Probabilistic synthesis of enumerated classes of functions.
Soviet Math. Dokl. 16:1042-1045, 1975.

C. Smith.
The power of pluralism for automatic program synthesis.
J. ACM 29(4):1144-1165, 1982.

L. G. Valiant.

A theory of the learnable.

In Procecedings of the Sizteenth Annual ACM Symposium on Theory of Computing.
Association for Computing Machinery, 1984.

A. Van der Mude and A. Walker.
On the inference of stochastic regular grammars.
In form. and Contr. 38:310-329, 1978.

R. Wiehagen, R. Freivald, and E.B. Kinber.
On the power of probabilistic strategies in inductive inference.
Theoretical Computer Science 28:111-133, 1984.

