
In this report we solve the boundary value problems for the Helmholtz equation on
polygonal domains. We observe that when the problems are formulated as the bound-
ary integral equations of potential theory, the solutions are representable by series of
appropriately chosen Bessel functions. In addition to being analytically perspicuous,
the resulting expressions lend themselves to the construction of accurate and efficient
numerical algorithms. The results are illustrated by a number of numerical examples.
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1 Introduction

In potential theory, the Helmholtz equation is reduced to an integral equation by repre-

senting the solutions as single-layer or double-layer Helmholtz potentials on the bound-

aries of the regions. By taking the limit of the solutions to the boundary, the densities

of these potentials are shown to satisfy Fredholm integral equations of the second kind.

When the boundaries of the regions are smooth, the kernels of the integral equa-

tions are weakly singular, and the solutions are also smooth. This environment is well-

understood; the existence and uniqueness of the solutions follow from Fredholm’s theory,

and the integral equations can be solved numerically using standard tools (see, for ex-

ample, [12]).

When the boundaries of the regions have perfectly sharp corners, both the kernels

and the solutions of the integral equations are singular. The behavior in the vicinity of

corners of the solutions of both the integral equations and of the underlying differential

equation have been the subject of much study (see [31], [16] for representative exam-

ples), though the differential equation appears to have recieved more attention than

the integral equations. Comprehensive reviews of the literature can be found in (for

example) [19], [11].

The leading singular terms in the solutions, in the vicinity of corners, to both the

integral and differential equations are known (see, for example, [31]), and there are a

number of theorems describing the spaces to which the solutions belong (see, for exam-

ple, [29], [28]). In 1979, R. J. Riddell published a heuristic argument for the existence of

a certain asymptotic series for the solutions to the integral equations near the corners,

but this line of investigation does not appear to have been pursued further (see [22]).
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In this report, we provide a detailed description of the behavior of the solutions to the

integral equations in the vicinity of corners, in the specific case of polygonal boundaries.

We observe that the solutions in the vicinity of corners are representable by certain series

of appropriately selected Bessel functions. The analytical results are used to construct

highly accurate and efficient numerical algorithms, and are demonstrated by a number

a numerical examples.

This report is based on several specific analytical observations, which are described

in the following section.

2 The Fundamental Observation

Figure 1: A wedge in R2

2.1 The Neumann Case

Suppose that γ : [−1, 1]→ R
2 is a wedge in R2 with a corner at γ(0), and with interior

angle πα. Suppose further that γ is parameterized by arc length, and let ν(t) denote
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the inward-facing unit normal to the curve γ at t. Let Γ denote the set γ([−1, 1]). By

extending the sides of the wedge to infinity, we divide R2 into two open sets Ω1 and Ω2

(see Figure 1).

Let φ : R2\Γ→ C denote the Helmholtz potential (see, for example, [20]) induced by

a charge distribution on γ with density ρ : [−1, 1]→ C. In other words, let φ be defined

by the formula

φ(x) =
i

4

∫ 1

−1

H0(k‖γ(t)− x‖)ρ(t) dt, (1)

for all x ∈ R2 \Γ, where ‖ · ‖ denotes the Euclidean norm. Suppose that g : [−1, 1]→ C

is defined by the formula

g(t) = lim
x→γ(t)
x∈Ω1

∂φ(x)

∂ν(t)
, (2)

for all −1 ≤ t ≤ 1, i.e. g is the limit of the normal derivative of integral (1) when x

approaches the point γ(t) from outside. It is well known that

g(s) =
1

2
ρ(s) +

i

4

∫ 1

−1

K(s, t)ρ(t) dt, (3)

for all −1 ≤ s ≤ 1, where

K(s, t) =
k〈γ(s)− γ(t), ν(s)〉
‖γ(s)− γ(t)‖

H1(k‖γ(s)− γ(t)‖), (4)

for all −1 ≤ s, t ≤ 1, where 〈·, ·〉 denotes the inner product in R2(see, for example, [20]).

The following theorem is the first of the two principal results of this section. The
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proof can be found in [25].

Theorem 2.1 Suppose that N is a positive integer and that ρ is defined by the formula

ρ(t) =
N∑
n=1

bn(sgn(t))n+1
Jn
α
(k|t|)
|t|

+
N∑
n=1

cn(sgn(t))n
J n

2−α
(k|t|)
|t|

, (5)

for all −1 ≤ t ≤ 1, where b1, b2, . . . , bN and c1, c2, . . . , cN are arbitrary complex numbers.

Suppose further that g is defined by (3). Then there exist series of complex numbers

β0, β1, . . . and γ0, γ1, . . . such that

g(t) =
∞∑
n=0

βn|t|n +
∞∑
n=0

γn sgn(t)|t|n, (6)

for all −1 ≤ t ≤ 1. Conversely, suppose that g has the form (6). Suppose further

that N is an arbitrary positive integer. Then, for all but finitely many angles πα, there

exist complex numbers b1, b2, . . . , bN and c1, c2, . . . , cN such that ρ, defined by (5), solves

equation (3) to within an error O(tN).

In other words, if ρ has the form (5), then g is smooth on the intervals [−1, 0] and

[0, 1]. Conversely, if g is smooth, then for each positive integer N there exists a solution

ρ of the form (5) that solves equation (3) to within an error O(tN).

Remark 2.1 Suppose that G : R2 → R solves the Helmholtz equation on a disc contain-

ing the wedge γ([−1, 1]), and that

g(t) =
∂G

∂ν(t)
(γ(t)), (7)

for all −1 ≤ t ≤ 1, where ν(t) is the inward-pointing unit normal vector at γ(t). Suppose
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further that N is an arbitrary positive integer. In [25] we observe that, for all angles πα,

there exists a function ρ of the form (5) solving equation (3) to within an error O(tN).

Remark 2.2 The precise relationship between the charge distributions ρ of the form (5)

and the boundary data g in equation (3) is described in detail in Appendix A.

2.2 The Dirichlet Case

Suppose that γ : [−1, 1]→ R
2 is a wedge in R2 with a corner at γ(0), and with interior

angle πα. Suppose further that γ is parameterized by arc length, and let ν(t) denote

the inward-facing unit normal to the curve γ at t. Let Γ denote the set γ([−1, 1]). By

extending the sides of the wedge to infinity, we divide R2 into two open sets Ω1 and Ω2

(see Figure 1).

Let φ : R2\Γ→ C denote the Helmholtz potential (see, for example, [20]) induced by

a dipole distribution on γ with density ρ : [−1, 1]→ C. In other words, let φ be defined

by the formula

φ(x) =
i

4

∫ 1

−1

k〈γ(t)− x, ν(t)〉
‖γ(t)− x‖

H1(k‖γ(t)− x‖)ρ(t) dt, (8)

for all x ∈ R2 \ Γ, where ‖ · ‖ denotes the Euclidean norm and 〈·, ·〉 denotes the inner

product in R2. Suppose that g : [−1, 1]→ C is defined by the formula

g(t) = lim
x→γ(t)
x∈Ω2

φ(x), (9)

for all −1 ≤ t ≤ 1, i.e. g is the limit of integral (8) when x approaches the point γ(t)
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from inside. It is well known that

g(s) =
1

2
ρ(s) +

i

4

∫ 1

−1

K(t, s)ρ(t) dt, (10)

for all −1 ≤ s ≤ 1, where

K(t, s) =
k〈γ(t)− γ(s), ν(t)〉
‖γ(t)− γ(s)‖

H1(k‖γ(t)− γ(s)‖), (11)

for all −1 ≤ s, t ≤ 1, where 〈·, ·〉 denotes the inner product (see, for example, [20]).

The following theorem is the second of the two principal results of this section. The

proof can be found in [25].

Theorem 2.2 Suppose that N is a positive integer and that ρ is defined by the formula

ρ(t) =
N∑
n=0

bn(sgn(t))n+1Jn
α
(k|t|) +

N∑
n=0

cn(sgn(t))nJ n
2−α

(k|t|), (12)

for all −1 ≤ t ≤ 1, where b0, b1, . . . , bN and c0, c1, . . . , cN are arbitrary complex numbers.

Suppose further that g is defined by (10). Then there exist series of complex numbers

β0, β1, . . . and γ0, γ1, . . . such that

g(t) =
∞∑
n=0

βn|t|n +
∞∑
n=0

γn sgn(t)|t|n, (13)

for all −1 ≤ t ≤ 1. Conversely, suppose that g has the form (13). Suppose further

that N is an arbitrary positive integer. Then, for all but finitely many angles πα, there

exist complex numbers b0, b1, . . . , bN and c0, c1, . . . , cN such that ρ, defined by (12), solves

equation (10) to within an error O(tN+1).
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In other words, if ρ has the form (12), then g is smooth on the intervals [−1, 0] and

[0, 1]. Conversely, if g is smooth, then for each positive integer N there exists a solution

ρ of the form (12) that solves equation (10) to within an error O(tN+1).

Remark 2.3 Suppose that G : R2 → R solves the Helmholtz equation on a disc contain-

ing the wedge γ([−1, 1]), and that

g(t) = G(γ(t)), (14)

for all −1 ≤ t ≤ 1. Suppose further that N is an arbitrary positive integer. In [25]

we observe that, for all angles πα, there exists a function ρ of the form (12) solving

equation (10) to within an error O(tN+1).

Remark 2.4 The precise relationship between the charge distributions ρ of the form (12)

and the boundary data g in equation (10) is described in detail in Appendix A.

2.3 The Procedure

Recently, significant progress has been made in the numerical solution of of the boundary

integral equations of potential thoery on regions with corners (see, for example, [13], [2]).

Essentially the only remaining sticking point is the efficient discretization of the singular-

ities at the corners, which are typically resolved using nested discretizations. We observe

that the detailed analysis in this report and the explicit representations (5) and (12) lead

to much more efficient discretizations.

For example, in the Neumann case, to resolve the solution in the vicinity of a corner

with interior angle πα, we construct a purpose-made discretization of functions of the
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forms

Jn
α
(kt)

t
, (15)

J n
2−α

(kt)

t
, (16)

where 0 ≤ t ≤ b is the distance from the corner, and n is a positive integer (see, for

example, [18]). We also construct a quadrature for integrals of the form

∫ b

0

K(s, t)σ(s) ds, (17)

for appropriately chosen t, where K is defined by (4) and σ has the forms (15), (16)

(see, for example, [17], [30]). The boundary integral equations are then solved using the

Nyström method combined with standard tools. We observe that the condition numbers

of the resulting discretized linear systems closely approximate the condition numbers of

the underlying physical problems.

Observation 2.5 While the analysis in this report applies only to polygonal domains,

a similar analysis carries over to curved domains with corners. A paper containing the

analysis, as well as the corresponding numerical algorithms and numerical examples, is

in preparation.

Observation 2.6 In the examples in this report, the discretized boundary integral equa-

tions are solved in a straightforward manner using standard tools. However, if needed,

such equations can be solved much more rapidly using the numerical apparatus from, for

example, [24].
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Remark 2.7 Due to the detailed analysis in this report, the CPU time requirements of

the resulting algorithms are almost independent of the requested precision. Thus, in all

the examples in this report, the boundary integral equations are solved to essentially full

double precision.

3 The Algorithm

To solve the integral equations of potential theory on polygonal domains, we use a mod-

ification of the algorithm described in [2]; instead of discretizing the corner singularities

using nested quadratures, we use the representations (5), (12) to construct purpose-made

discretizations (see, for example, [18], [17], [30]). A detailed description of this part of

the procedure will be published at a later date. The resulting linear systems were solved

directly using standard techniques. We illustrate the performance of the algorithm with

several numerical examples.

In Table 1, the Neumann and Dirichlet problems were solved on each of the domains

in figures 2, 3, 4, 5, where the boundary data were generated by charges outside the

regions for the exterior problems and inside the regions for the interior problems. The

numerical solution was tested by doubling the number of nodes near the corners and

comparing the computed potentials.

In Table 2, the Neumann and Dirichlet problems were again solved on each of the

domains in figures 2, 3, 4, 5, except this time the boundary data were generated by

charges inside the regions for the exterior problems and outside the regions for the

interior problems. Since, in this case, the true potentials are avaiable analytically, the

numerical solution was tested by comparing the computed potential to the true potential
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at several arbitrary points.

In Table 3, we solved the interior Dirichlet problem on the relatively simple domains

in figures 2, 3, where the boundary data were generated by charges inside the regions. We

computed the numerical solution using both our algorithm and a naive algorithm which

used nested discretizations near the corners. The solution produced by our algorithm

was then tested by comparing the computed potentials at several arbitrary points.

Observation 3.1 It is easy to observe from the values of k and figures 2, 3, 4, and 5

that the regions are between approximately 1 and 15 wavelengths in size. A discussion

of the use of these techniques on large-scale problems will be published at a later date.

In the examples in tables 2, 1, and 3, k has been chosen so that no resonances, real or

spurious, were encountered.

Observation 3.2 We observe that if the boundary values are produced by charges inside

the regions for the exterior problems, or outside the regions for the interior problems,

then certain terms in the representations of the solutions near the corners vanish. More

specifically, in the exterior Neumann case, the terms c1, c2, . . . in (5) vanish. In the

interior Dirichlet case, the terms b0, b1, . . . in (12) vanish.

4 Extensions and Generalizations

4.1 Other Integral Equations

The apparatus of this report generalizes to other boundary integral equations, such as

the combined-potential integral equation (see, for example, [6]) and related situations.

This line of investigation is being vigorously pursued.
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Figure 2: Γ3: An equilateral triangle in R2
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Figure 3: Γ4: A right triangle in R2

4.2 Curved Boundaries with Corners

While this report only deals with the solution of the Helmholtz equation on domains with

polygonal boundaries, a similar analysis applies to the case of curved boundaries with

corners. More specifically, if the boundary is smooth except at corners, the solutions

to the associated boundary integral equations of potential theory are also representable

by series of elementary functions. This analysis, along with the requisite numerical

apparatus, will be described in a forthcoming paper.

4.3 Generalization to Three Dimensions

The generalization of the apparatus of this report to three dimensions is fairly straight-

forward, but the detailed analysis has not been carried out. This line of research is being

vigorously pursued.
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Figure 4: Γ5: A star-shaped polygon in R2
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Figure 5: Γ6: A tank-shaped polygon in R2

4.4 Robin and Mixed Boundary Conditions

This report deals with the solution of the Helmholtz equation on polygonal domains with

either Dirichlet or Neumann boundary conditions. There are two additional boundary

conditions that have not yet been analyzed in detail: the Robin condition, which specifies

a linear combination of the values of the solution and the values of its derivative on

the boundary; and the mixed boundary condition, which specifies Dirichlet boundary

conditions on some sides of the polygon and Neumann boundary conditions on others.

The results of this investigation will be reported at a later date.
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Boundary
k

Number Running Largest Condition
curve of nodes time absolute error number

Interior
Neumann
problem

Γ3 17.0 330 0.28642E+00 0.32955E-13 0.26840E+01
Γ4 20.0 380 0.53601E+00 0.40764E-12 0.58822E+01
Γ5 5.0 968 0.61500E+01 0.36809E-12 0.58674E+01
Γ5 15.0 1048 0.78522E+01 0.92945E-12 0.58642E+01
Γ6 5.0 1103 0.89752E+01 0.39892E-13 0.21551E+01
Γ6 15.0 1233 0.12196E+02 0.47158E-12 0.36966E+01

Exterior
Neumann
problem

Γ3 17.0 330 0.32818E+00 0.42646E-15 0.26858E+01
Γ4 20.0 380 0.41981E+00 0.33521E-13 0.58866E+01
Γ5 5.0 768 0.31816E+01 0.67236E-15 0.58642E+01
Γ5 15.0 768 0.31114E+01 0.51226E-13 0.58641E+01
Γ6 5.0 1103 0.89982E+01 0.20447E-13 0.21544E+01
Γ6 15.0 1103 0.90010E+01 0.38989E-12 0.46689E+01

Interior
Dirichlet
problem

Γ3 14.0 252 0.14846E+00 0.41611E-14 0.14278E+02
Γ4 20.0 362 0.33653E+00 0.19385E-12 0.27116E+02
Γ5 5.0 720 0.26324E+01 0.66780E-14 0.27116E+02
Γ5 15.0 800 0.30556E+01 0.14096E-13 0.26880E+02
Γ6 5.0 1031 0.72338E+01 0.38829E-12 0.54196E+01
Γ6 15.0 1161 0.91036E+01 0.64988E-12 0.89957E+01

Exterior
Dirichlet
problem

Γ3 14.0 252 0.14276E+00 0.22170E-13 0.14499E+02
Γ4 20.0 362 0.38597E+00 0.46190E-13 0.29318E+02
Γ5 5.0 720 0.25672E+01 0.64990E-12 0.52029E+02
Γ5 15.0 800 0.31965E+01 0.40631E-12 0.38847E+02
Γ6 5.0 1031 0.69795E+01 0.47156E-13 0.73436E+01
Γ6 15.0 1031 0.64006E+01 0.83544E-13 0.98740E+01

Table 1: Numerical results for the Helmholtz Neumann and Dirichlet problems, with
boundary data produced by charges inside for the interior problems, and charges outside
for the exterior problems. The results were tested by doubling the number of nodes near
the corners.
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Boundary
k

Number Running Largest Condition
curve of nodes time absolute error number

Interior
Neumann
problem

Γ3 17.0 300 0.21332E+00 0.10637E-12 0.26840E+01
Γ4 20.0 380 0.51532E+00 0.40858E-14 0.58822E+01
Γ5 5.0 888 0.44069E+01 0.77807E-12 0.58678E+01
Γ5 15.0 968 0.54840E+01 0.72651E-12 0.58642E+01
Γ6 5.0 1103 0.82281E+01 0.19629E-12 0.21551E+01
Γ6 15.0 1233 0.10702E+02 0.85866E-13 0.36966E+01

Exterior
Neumann
problem

Γ3 17.0 330 0.26114E+00 0.39361E-13 0.26858E+01
Γ4 20.0 380 0.47460E+00 0.24299E-13 0.58866E+01
Γ5 5.0 768 0.28891E+01 0.21976E-13 0.58642E+01
Γ5 15.0 848 0.36247E+01 0.15480E-13 0.58641E+01
Γ6 5.0 1233 0.11114E+02 0.26442E-13 0.21544E+01
Γ6 15.0 1233 0.10633E+02 0.63324E-12 0.27749E+01

Interior
Dirichlet
problem

Γ3 14.0 252 0.13164E+00 0.11935E-14 0.14267E+02
Γ4 20.0 362 0.32332E+00 0.17205E-13 0.27116E+02
Γ5 5.0 720 0.22676E+01 0.60295E-13 0.27116E+02
Γ5 15.0 800 0.32559E+01 0.40323E-13 0.26809E+02
Γ6 5.0 1031 0.63333E+01 0.39089E-12 0.54196E+01
Γ6 15.0 1161 0.95445E+01 0.16712E-12 0.89957E+01

Exterior
Dirichlet
problem

Γ3 14.0 252 0.12741E+00 0.10749E-12 0.14499E+02
Γ4 20.0 362 0.37710E+00 0.59616E-13 0.29318E+02
Γ5 5.0 720 0.22715E+01 0.43344E-12 0.52029E+02
Γ5 15.0 800 0.32999E+01 0.14326E-12 0.38847E+02
Γ6 5.0 1031 0.63988E+01 0.26817E-13 0.73436E+01
Γ6 15.0 1161 0.97222E+01 0.12680E-12 0.65323E+01

Table 2: Numerical results for the Helmholtz Neumann and Dirichlet problems, with
boundary data produced by charges outside for the interior problems, and charges inside
for the exterior problems. The results were tested by comparing the computed potential
to the true potential.
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Boundary
k

Number Running Largest Condition
curve of nodes time absolute error number

Interior
Dirichlet
problem

Γ3 14.0 252 0.18070E+00 0.17986E-13 0.14267E+02
Γ4 20.0 362 0.32343E+00 0.76927E-12 0.27116E+02

Table 3: Numerical results for the Helmholtz Neumann and Dirichlet problems on several
simple regions, with boundary data produced by charges inside for the interior problems,
and charges outside for the exterior problems. The results were tested by comparing the
computed potential to the potential computed by a näıve algorithm.
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5 Appendix A

In this section, we describe the precise relationship between the charge distributions ρ

of the forms (5), (12) and the boundary data g in equations (3) and (10), in the vicinity

of a corner.

5.1 The Neumann Case

Figure 6: A wedge in R2

Suppose that γ : [−1, 1] → R
2 is a wedge in R2 with a corner at γ(0), and with

interior angle πα. Suppose further that γ is parameterized by arc length, and let ν(t)

denote the inward-facing unit normal to the curve γ at t. Let Γ denote the set γ([−1, 1]).

By extending the sides of the wedge to infinity, we divide R2 into two open sets Ω1 and

Ω2 (see Figure 6).

Let φ : R2\Γ→ C denote the Helmholtz potential (see, for example, [20]) induced by

a charge distribution on γ with density ρ : [−1, 1]→ C. In other words, let φ be defined
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by (1). Suppose further that g : [−1, 1]→ C is defined by (2). It is well known that

g(s) =
1

2
ρ(s) +

i

4

∫ 1

−1

K(s, t)ρ(t) dt, (18)

for all −1 ≤ s ≤ 1, where

K(s, t) =
k〈γ(s)− γ(t), ν(s)〉
‖γ(s)− γ(t)‖

H1(k‖γ(s)− γ(t)‖), (19)

for all −1 ≤ s, t ≤ 1, where 〈·, ·〉 denotes the inner product in R2.

It is straightforward to show that

K(s, t) =
H1(k

√
s2 + t2 + 2st cos(πα)√

s2 + t2 + 2st cos(πα)
k|t| sin(πα), (20)

when both −1 ≤ s < 0 and 0 < t ≤ 1, or both 0 < s ≤ 1 and −1 ≤ t < 0, and

K(s, t) = 0, (21)

if either −1 ≤ s, t < 0 or 0 < s, t ≤ 1.

In this section, we show that if ρ has the forms

ρ(t) =
Jµ(k|t|)
|t|

, (22)

ρ(t) = sgn(t)
Jµ(k|t|)
|t|

, (23)

where µ > 1
2

is a real number, then, for certain values of µ, the function g defined by (18)

is representable by certain series of smooth functions.
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The following theorem states that if ρ has the form (22) and µ = 2m−1
α

or µ = 2m
2−α ,

where m is an arbitrary positive integer, then g defined by (18) is smooth.

Theorem 5.1 Suppose that m is a positive integer. Suppose further that ρ ∈ L2([−1, 1])

is defined by the formula

ρ(t) =
J 2m−1

α
(k|t|)
|t|

, (24)

for all −1 ≤ t ≤ 1. Suppose finally that g is defined by (18). Then

g(s) =
1

2

∞∑
n=1

hn(2m−1
α

)
Jn(k|s|)
|s|

, (25)

for all −1 ≤ s ≤ 1, where hn : R→ C is defined by the formula

hn(ν) = i · n · sin(παn)
(Hn(k)Jν(k)

n+ ν
− kHn+1(k)Jν(k)−Hn(k)Jν+1(k)

n2 − ν2

)
, (26)

for all real ν and all positive integers n, where πα is the angle at the corner (see Figure 6).

Likewise, if

ρ(t) =
J 2m

2−α
(k|t|)
|t|

, (27)

for all −1 ≤ t ≤ 1 and g is defined by (18), then

g(s) =
1

2

∞∑
n=1

hn( 2m
2−α)

Jn(k|s|)
|s|

, (28)

for all −1 ≤ s ≤ 1, where hn is defined by (26).
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The following theorem states that if ρ has the form (23) and µ = 2m
α

or µ = 2m−1
2−α ,

where m is an arbitrary positive integer, then g defined by (18) is smooth.

Theorem 5.2 Suppose that m is a positive integer. Suppose further that ρ ∈ L2([−1, 1])

is defined by the formula

ρ(t) = sgn(t)
J 2m

α
(k|t|)
|t|

, (29)

for all −1 ≤ t ≤ 1. Suppose finally that g is defined by (18). Then

g(s) = −1

2

∞∑
n=1

hn(2m
α

) sgn(s)
Jn(k|s|)
|s|

, (30)

for all −1 ≤ s ≤ 1, where hn is defined by (26).

Likewise, if

ρ(t) = sgn(t)
J 2m−1

2−α
(k|t|)
|t|

, (31)

for all −1 ≤ t ≤ 1 and g is defined by (18), then

g(s) = −1

2

∞∑
n=1

hn(2m−1
2−α ) sgn(s)

Jn(k|s|)
|s|

, (32)

for all −1 ≤ s ≤ 1, where hn is defined by (26).

5.2 The Dirichlet Case

Suppose that γ : [−1, 1]→ R
2 is a wedge in R2 with a corner at γ(0), and with interior

angle πα. Suppose further that γ is parameterized by arc length, and let ν(t) denote
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the inward-facing unit normal to the curve γ at t. Let Γ denote the set γ([−1, 1]). By

extending the sides of the wedge to infinity, we divide R2 into two open sets Ω1 and Ω2

(see Figure 6).

Let φ : R2\Γ→ C denote the Helmholtz potential (see, for example, [20]) induced by

a dipole distribution on γ with density ρ : [−1, 1]→ C. In other words, let φ be defined

by (8). Suppose further that g : [−1, 1]→ C is defined by (9). It is well known that

g(s) =
1

2
ρ(s) +

i

4

∫ 1

−1

K(t, s)ρ(t) dt, (33)

for all −1 ≤ s ≤ 1, where

K(t, s) =
k〈γ(t)− γ(s), ν(t)〉
‖γ(t)− γ(s)‖

H1(k‖γ(t)− γ(s)‖), (34)

for all −1 ≤ s, t ≤ 1, where 〈·, ·〉 denotes the inner product in R2.

It is straightforward to show that

K(t, s) =
H1(k

√
s2 + t2 + 2st cos(πα)√

s2 + t2 + 2st cos(πα)
k|s| sin(πα), (35)

when both −1 ≤ s < 0 and 0 < t ≤ 1, or both 0 < s ≤ 1 and −1 ≤ t < 0, and

K(t, s) = 0, (36)

if either −1 ≤ s, t < 0 or 0 < s, t ≤ 1.
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In this section, we show that if ρ has the forms

ρ(t) = Jµ(k|t|), (37)

ρ(t) = sgn(t)Jµ(k|t|), (38)

where µ > 1
2

is a real number, then, for certain values of µ, the function g defined by (33)

is representable by certain series of smooth functions.

The following theorem states that if ρ has the form (37) and µ = 0 or µ = 2m−1
α

or

µ = 2m
2−α , where m is an arbitrary positive integer, then g defined by (33) is smooth.

Theorem 5.3 Suppose that m is a positive integer. Suppose further that ρ ∈ L2([−1, 1])

is defined by the formula

ρ(t) = J 2m−1
α

(k|t|), (39)

for all −1 ≤ t ≤ 1. Suppose finally that g is defined by (33). Then

g(s) =
1

2

∞∑
n=1

hn(2m−1
α

) Jn(k|s|), (40)

for all −1 ≤ s ≤ 1, where hn is defined by formula (26).

Likewise, if

ρ(t) = J 2m
2−α

(k|t|), (41)
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for all −1 ≤ t ≤ 1 and g is defined by (33), then

g(s) =
1

2

∞∑
n=1

hn( 2m
2−α) Jn(k|s|), (42)

for all −1 ≤ s ≤ 1, where hn is defined by (26).

Finally, if

ρ(t) = J0(k|t|), (43)

for all −1 ≤ t ≤ 1 and g is defined by (33), then

g(s) =
2− α

2
J0(k|s|) +

1

2

∞∑
n=1

hn(0) Jn(k|s|), (44)

for all −1 ≤ s ≤ 1, where hn is defined by (26).

The following theorem states that if ρ has the form (38) and µ = 0 or µ = 2m
α

or

µ = 2m−1
2−α , where m is an arbitrary positive integer, then g defined by (33) is smooth.

Theorem 5.4 Suppose that m is a positive integer. Suppose further that ρ ∈ L2([−1, 1])

is defined by the formula

ρ(t) = sgn(t)J 2m
α

(k|t|), (45)

for all −1 ≤ t ≤ 1. Suppose finally that g is defined by (33). Then

g(s) = −1

2

∞∑
n=1

hn(2m
α

) sgn(s)Jn(k|s|), (46)
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for all −1 ≤ s ≤ 1, where hn is defined by (26).

Likewise, if

ρ(t) = sgn(t)J 2m−1
2−α

(k|t|), (47)

for all −1 ≤ t ≤ 1 and g is defined by (33), then

g(s) = −1

2

∞∑
n=1

hn(2m−1
2−α ) sgn(s)Jn(k|s|), (48)

for all −1 ≤ s ≤ 1, where hn is defined by (26).

Finally, if

ρ(t) = sgn(t)J0(k|t|), (49)

for all −1 ≤ t ≤ 1 and g is defined by (33), then

g(s) =
α

2
sgn(t)J0(k|s|)− 1

2

∞∑
n=1

hn(2m−1
2−α ) sgn(s)Jn(k|s|), (50)

for all −1 ≤ s ≤ 1, where hn is defined by (26).
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