
An approach for overcoming homopolymer-length sequencing errors in search and
alignment is presented. The proposed “homopolymer-length-filter” replaces ho-
mopolymers with single characters in both the reads and the reference. In some
sequencing technologies, this filter removes many of the machine-induced sequencing
errors, but still allows the filtered read to be aligned to the filtered reference. In some
sequencing and alignment technologies, this filter can increase the processing speed.

Homopolymer Length Filters

Roy Lederman†

Technical Report YALEU/DCS/TR-1465
October 25, 2012

‡ Applied Mathematics Program, Yale University, New Haven CT 06511

Approved for public release: distribution is unlimited.
Keywords: DNA, alignment, assembly, homopolymer, filter.



1 Introduction

Read alignment is a step in DNA sequencing procedures, in which one receives short
sequences, called reads, and attempts to estimate the location in some reference DNA
from which the reads are likely to have come.

There are two sources for differences between the reads and the “best matching”
substrings of the reference. The first source is true differences between the sequenced
DNA and the reference, we will refer to these as mutations. The second source for
differences is errors in the sequencing process, we will refer to these as machine-errors.

Different sequencing machines produce different types of machine-errors. Some ma-
chines are known to produce primarily homopolymer-length errors [1, 2]. Homopolymers
are consecutive repetitions of a letter in a string. For example, the string CATAAAG
has a homopolymer of length 3, composed to the letter A. When a homopolymer-length-
error occurs, a wrong number of repetitions is reported. For example, a homopolymer-
length-error in the string above may produce the string CATAAAAG. Our definition for
homopolymer-length error does not include the case of complete deletion of homopoly-
mers or single characters (producing a “homopolymer of length 0”) or insertion of char-
acters (turning a “homopolymer of length 0” to a character or a homopolymer). There
are extensions for these cases.

Reads that have a large number of machine-errors are difficult to align to the reference
even if they contain very few mutations, because the overall number of differences from
the reference is large. Furthermore, machines that produce homopolymer-length errors
may produce a relatively large number of machines-errors in reads that originate from
homopolymer-rich regions of the DNA, making these regions particularly difficult to
analyze.

Alignment algorithms use various approaches to find similarities between the reads
and the reference. Some consider possible variations which may have occurred at every
location and some rely on segments/seeds which are assumed to have very few errors.
However, when multiple errors are present in the read, these algorithms may be slow or
fail to find the correct result.

Special treatment of homopolymers has been proposed by several authors, for exam-
ple: [3, 4]. Here, we propose that search algorithms may benefit from essentially ignoring
the homopolymer-length rather than using it.
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2 Preliminaries

2.1 RLE

Run-length-encoding (RLE) is an alternative representation for strings. RLE translates
a homopolymer to a pair of a character ({A,C,G, T}) and a number ({1, 2, 3...}). For
example, the string Y = CATAAAG is encoded as (C, 1), (A, 1), (T, 1), (A, 3), (G, 1),
often written as 1C1A1T3A1G. We assume that the shortest RLE representation is
selected, so we represent AA as 2A, rather than 1A1A.

2.2 Flow space

Flow-space is a term used in pyrosequencing and semiconductor sequencing. For the
purpose of this discussion, we define the discrete-flow-space and the continuous-flow-
space as extensions of RLE.

The discrete-flow-space extends the RLE in two ways: the number in the pair is
allowed to be 0, and there is a restriction on the form of the RLE. This restriction
is referred to as the “flow sequence.” For example, given the flow sequence F =
ACGTACGTACGT..., the encoded string must take the form:
(A,α1), (C, β1), (G, γ1), (T, τ1), (A,α2), (C, β2), (G, γ2), (T, τ2).....
In this example, the string Y = CATAAAG is encoded as 0A1C0G0T1A0C0G1T3A0C1G.

The continuous-flow-space further extends the definition by allowing the number to
be any real number (sometimes non-negative real). The continuous-flow-space is used to
represent signal amplitudes in pyrosequencing and semiconductor sequencing.

3 Algorithm

We define the following filter for a string Y , which generates the filtered string Ŷ : replace
each homopolymer in the string Y with a single copy of the letter that is repeated in
the homopolymer. For example, Y = CATAAAG is transformed to Ŷ = CATAG,
removing consecutive repetitions of A in the homopolymer except for the first. This
transformation encodes Y in RLE, and then removes the numbers from the RLE.

We propose the following algorithm:

1. Filter the reference W to produce Ŵ .

2. Filter all reads {Y j}j to produce the filtered versions {Ŷ j}j.

3. Align {Ŷ j}j to Ŵ , possibly keeping some number of possible approximate candi-
dates.
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4. Convert the alignment coordinates back to the original coordinates and restore the
original reads {Y j}j.

5. Refine the alignment by examining the restored reads.

The search/alignment step may use any search/alignment algorithm. In our experi-
ments (see below) we used both a permutations-based aligner with integrated filters, and
“wrapped” versions of other aligners.

In this basic form, the filter makes the search algorithm unaware of homopolymer-
lengths, until the refinement is performed. Therefore, homopolymer-length-errors do
not affect the algorithm. Indeed, this filter removes important information that could
be used for alignment, but it often leaves enough information to allow the algorithm
to generate a list of candidates. Once a list of candidates is produced, the original
homopolymer-lengths can be used to refine the results.

The filter creates shorter strings, which are often processed much faster and much
more efficiently than long strings. Indeed, simple truncation of the strings also produces
shorter strings, but the filtered strings may have fewer errors and contain information
from the entire length of the original string. Since many algorithms process shorter
strings much faster, this property of the filter makes it useful even when homopolymer-
length-errors are not the dominant variation.

We observe that mutations and machine-induced errors that are not homopolymer-
length-errors may produce “mismatches” and “indels” in the filtered reads. However, the
number of these errors is similar to the number of errors in the original reads. Reads with
very large numbers of homopolymers, which may have many homopolymer-length-errors
are likely to have a smaller number of variations after the filter is applied.

3.1 Generalization and extensions

In some sequencing machines, homopolymer-length errors are more likely to occur in
relatively long homopolymers. It is therefore possible to truncate homopolymers at
some length, rather than replace them with a single character. This is a Homopolymer-
length-truncation that restricts the length of each homopolymer, as opposed to a string-
truncation, which restricts the length of the entire string and cuts the end of the string.
For example, if we truncate homopolymers at 2, both Y 1 = CATAAAG and Y 2 =
CATAAAAAAG are transformed to Ŷ = CATAAG.

It is also possible to encode homopolymers as new letters of the alphabet. To do this,
we extend the alphabet from {A,C,G, T} to {A1, A2....C1, C2, ....G1, G2....T 1, T 2....}. For
example: Y = CATAAAG is encoded as Ŷ = C1A1T 1A3G1. In this case homopolymer
errors no longer appear as indels, but rather as mismatches, which some search algorithms
handle better. Homopolymer-length-truncation is possible here as well.
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homopolymers can also be encoded in a discrete-flow-space or a virtual-flow-space. A
flow-space representation of the string uses the machine’s true flow sequence, which was
used to generate the read. This representation can be extended in the ways described
above. This representation is useful, when the machine misses (or adds) a character,
because in the flow-space the missing character appears as a mismatch, rather than an
indel. This observation about the flow-space allows us to define the virtual-flow-space,
where some other flow-sequence is used. These virtual-flow-sequences may “mask” not
only machine errors, but also some mutations. Several virtual-flow-sequences and non-
repetitive virtual-flow-sequences may be used, possibly on overlapping segments of the
reference rather than on the entire reference as a single string.

The basic idea to remove homopolymer-length information from reads does not imply
that homopolymer-length information cannot be used to define some search parameters
or reintroduced to support some aligner decisions. For example, a search algorithm
can use information about long homopolymers to conclude that it is unlikely that the
entire homopolymer was deleted. It is also possible to calculate quality measures for
each character in the filtered strings (like the quality measures which are often added
to regular reads). One can also store the original lengths of segments, which can help
aligners distinguish between filtered reads: the strings AATGC and ATTTTTTGGGC
are both represented by the filtered string ATGC, but given a filtered read ATGC, which
had the original length 10, one can estimate that the read is related to the first string
rather than the later string.

3.2 Additional applications

While we discuss this algorithm in the context of aligning/mapping reads to a reference,
the algorithm can be extended to other search and string-comparison/string-alignment
applications. In particular, it can be used for similarity/overlap search in libraries of
reads, for error correction etc.

An additional application is assembly. This algorithm can be used to assemble filtered
“skeletons” of genomes (or more generally, of an assembly graphs). These “skeletons”
can then be “inflated” by reintegrating information from the original reads to estimate
the correct homopolymer-lengths. Alternatively, the algorithm can be integrated into
specific search parts in the regular construction of graphs.

Homopolymer-length machine-errors pose a significant problem in assembly based on
pyrosequencing and semiconductor sequencing. However, in the “filtered space,” some
of these machines have a very low error rate. Therefore, these machines may have
advantages over other sequencing machines, at least in creating the “filtered skeletons.”
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4 Implementation and results

We implemented a preliminary prototype of the algorithm as a modified edition of a
basic permutations-based mapper prototype which we introduced in [10, 11], using the
pigeonhole principle to align filtered reads in the presence of indels.

We also implemented “Earplugs” to demonstrate how existing aligners can be “shielded”
from “homopolymer-length-noise.” “Earplugs” produces a filtered version of the refer-
ence and of the reads. The filtered reference and the filtered reads are then indexed and
aligned as if they were any standard reference and reads, using standard alignment soft-
ware. At the final step, “Earplugs” converts the output “SAM” files to “reinflated SAM”
files, transforming back from “filtered coordinates” to the original reference coordinates.

Both the modified permutations-based aligner and “Earplugs” are early prototypes
that demonstrate the algorithm. The current versions are not yet available for standard
alignment pipelines. “Earplugs” will be available at http://alignment.commons.yale.edu.

We tested the permutations-based mapper and several other aligners: BWA[5],
BWASW[6], BOWTIE2[7] and CUSHAW2[8], with and without “Earplugs shielding.”
All the software packages were used in single thread mode. CUSHAW2 was used in
“have ssse3 = 0” mode, CUSHAW2 may be significantly faster when used on systems
that support SSE4 extensions in addition to the SSE2 extensions that it used on our
computers. Our implementation does not use processor extensions. BOWTIE2, BWASW
and CUSHAW2 are more memory-efficient than this implementation of a permutations-
based aligner. We used reads generated by Mason[9] from a human reference genome.

The search times are the search times reported by the software, or the overall run
time (including the initial filtering) in the case of BWA. We experimented with several
different parameters. In some setups we configured the aligners to report several possible
alignments in order to reduce the effect of the internal criteria and filters used by each
software package.

The results for BWA are not presented in the figures because BWA works better with
shorter reads. However, “wrapping” BWA with “Earplugs” often allows BWA to align
many more reads. For example, in an experiment with shorter reads (200bp), BWA
aligned 63.6% of the reads correctly in 1096 seconds, whereas the same mode of BWA
with “Earplugs” aligned 83.7% in 282 seconds. In another experiment, where we used a
simpler model to simulate a high rate of homopolymer-length errors in homopolymer-rich
regions of the genome, BWA aligned 2.5% of the reads in 206 seconds, whereas BWA
with “Earplugs” aligned 98.6% in 45 seconds. A node with E5620 CPUs was used in
these experiments.

Preliminary results indicate that the permutations-based algorithm with the inte-
grated filter is significantly faster than the other software packages and that it produces
comparable or significantly better results in many cases. “Earplugs” accelerates existing
software considerably. For long reads, there is usually little reduction in accuracy, and
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there is often an increase in accuracy. Since the processing time of many algorithms
depends on the length of the reads, some of the speed increase can be attributed to the
shorter reads.

The results obtained using a permutation-based aligner with a built-in filter indi-
cate that integrating the filter into alignment algorithms may make these algorithms
considerably faster and more accurate.
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Figure 1: Search times and number of reads mapped correctly

105 reads, 500bp long, human genome
AMD Athlon II X2 250 CPU, 32GB RAM

Figure 2: Search times and number of reads mapped correctly: aligners with and without
“Earplugs”

105 reads, 500bp long, human genome
AMD Athlon II X2 250 CPU, 32GB RAM
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Figure 3: Search times and number of reads mapped correctly (higher sequencing noise)

105 reads, 500bp long, human genome, Mason parameter k = 0.2
AMD Athlon II X2 250 CPU, 32GB RAM

Figure 4: Search times and number of reads mapped correctly: aligners with and without
“Earplugs” (higher sequencing noise)

105 reads, 500bp long, human genome, Mason parameter k = 0.2
AMD Athlon II X2 250 CPU, 32GB RAM
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Figure 5: Search times and number of reads mapped correctly (higher sequencing noise,
longer reads)

105 reads, 750bp long, human genome, Mason parameter k = 0.3
E5620 CPUs, 48GB RAM

Figure 6: Search times and number of reads mapped correctly: aligners with and without
“Earplugs” (higher sequencing noise, longer reads)

105 reads, 750bp long, human genome, Mason parameter k = 0.3
E5620 CPUs, 48GB RAM
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5 Conclusions

An approach for the alignment of reads in the presence of homopolymer-length-errors
has been presented. The proposed approach is based on removing “noise” from reads by
“ignoring” parts of the information in the reads.

It has been demonstrated that the remaining information is often sufficient for align-
ment, and in particular for alignment of relatively long reads. Subsequent refinements
of the alignment results may use the original information. The method can be used in
related applications, such as assembly.
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