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Abstract.  The multiplication of (large) matrices allocated evenly on Boolean cube config-
ured multiprocessors poses several interesting trade-offs with respect to communication time,
processor utilization, and storage requirement. In [7] we investigated several algorithms for
different degrees of parallelization, and showed how the choice of algorithm with respect to per-
formance depends on the matrix shape, and the multiprocessor parameters, and how processors
should be allocated optimally to the different loops.

In this paper the focus is on expressing the algorithms in shared memory type primitives.
We assume that all processors share the same global address space, and present communication
primitives both for nearest-neighbor communication, and global operations such as broadcasting
from one processor to a set of processors, the reverse operation of plus-reduction, and matrix
transposition (dimension permutation). We consider both the case where communication is
restricted to one processor port at a time, or concurrent communication on all processor ports.
The communication algorithms are provably optimal within a factor of two. We describe both
constant storage algorithms, and algorithms with reduced communication time, but a storage
need proportional to the number of processors and the matrix sizes (for a one-dimensional
partitioning of the matrices).

1 Preliminaries

Throughout the paper, N = 2" denotes the number of processors of an n-dimensional Boolean
cube, or n-cube. With respect to algorithms and data structures we factor N as N; X N,
(2™ x 2™) for two-dimensional partitionings of matrices, or as Nj x Nj x N} (2™ x 2m2 x 274)
for three-dimensional partitionings (defined later). We consider the matrix operation A — Cx D,
where all matrices are dense, C' a P x Q matrix, D a Q X R matrix, and 4 a P X R matrix.
We present algorithms for different initial and final allocations of the matrices: one-dimensional
(column or row), two-dimensional (block), and three-dimensional partitionings. The two initial
matrices C and D and resulting matrix A are assumed to be distributed among all the processors
in the same manner, except in the three-dimensional case.

A matrix element is assigned to only one processor initially. With P,Q, and R being powers
of two, P = 2P, @ = 2%, and R = 2", matrix element c¢;; of matrix C, 0 < i < P, 0 <
J < @, is assigned to a processor as shown in Table 1 for one- or two-dimensional partitionings,
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l Part. I Storage I Encoding | Processor address l

consec. | binary (Jg—=1Jq=2 - - - Jq—n)
column Gray (G(Jg=1Jq—2 - - -Jq—n))
cyclic binary (Jn=1Jn-2 - - -Jo)
Gray (G(n=1Jn—2 - - -Jo))
binary (ip—l":p—2 e ip-—nl
consec. Jq—1Jg=2 - - Jg—ny )
Gray (G(ip—1ip—2 -« - Tp—ny ||
2-dim. G(jg—1g—2 - - -Jaemy))
binary (fny—1%ny—2 - - - B0
cyclic Jnay=1Jna—2 - - - Jo)
Gray (G(inl—lin1—2 . 'Lo)”
G(jnz—ljn2—2 .. .70))

Table 1: Various ways of assigning matrix elements into processors.

consecutive or cyclic storage [6], and binary or Gray code encoding [10,6]. In the two-dimensional
partitioning, each column (row) is assigned to Ny (N3) different processors. The row partitioning
is obtained by replacing (j,¢) by (4,p). By replacing (3,4,p,9) by (4,k,q, r) or (i,k,p,r), the
processor assignment for matrix element dj; (of D) or a;, (of A) is obtained.

For a three-dimensional partitioning, matrix C is partitioned as N; block columns and matrix
D is partitioned into N} block rows. Each block column of C' and each block row of D are further
partitioned into N{X N; blocks. The resulting matrix A can be partitioned into NJx NN} blocks,
or as N{N} X Nj blocks, or into a form in-between these forms with the same communication
complexity. If the matrices C and D are initially partitioned into a N;y X N processor array, then
some communications are required to rearrange the data allocation for a matrix multiplication
in which all three nested loops in a matrix multiplication algorithm (expressed in a conventional
language) are parallelized. This communication has a data communication time that is of lower
order than the data communication for the matrix multiplication, except if there are very few
elements per processor.

In the following, all algorithms are described in a Crystal-like notation [2]. Each instruction is
defined as a function. By interpreting the first one, two, or three parameters as processor identi-
fier(s) in the one-, two-, or three-dimensional partitioning cases, parallel codes for the algorithms
are obtained. The communications are specified assuming a global address space. The processor
indices are part of the global address. For a naive implementation of the communications, for
instance by using a noncombining router, and without using multiple paths between pairs of
processors, efficiency may be lost due to poor scheduling (collisions), or poor path selection (non-
minimum path lengths, single paths). We expand the communication primitives (specification)
into a sequence of nearest-neighbor communications, also described in the Crystal-like notation.
Execution of the communication code replaces the high-level communication specification. The
communication primitives we use are all-to-all broadcasting on a (sub)cube, all-to-all reduction
(in a divide-and-conquer manner) (9], and matrix transposition (dimension permutation).




In the Crystal-like codes each function of [ parameters may be optionally followed by an
expression “ over domain; X domains X ---X domain;”, where domain; is the domain of the
ith parameter. [z,y], y > ®, denotes the set of integers {z,z + 1,...,y}, and [z,y) denotes
{z,z+1,...,y—1}. The statements enclosed between < and > form a conditional statement.
For example,

< condy; — resulty,
condy — resulty,
else — results >,

reads as “if cond; then resulty, else if condy, then result,, else results”. \+[f(5)*9(j)|0 < j < z]
denotes Zf;&(f(j) *g(j)). We use ¢(4,5),0 <3< P,0<j<Q,to denote the matrix element
at the i¢th row and jth column of C. d(j,k) and a(¢,k) are similarly defined. For matrices
distributed over a set of processors, in our case a Boolean cube, it is more convenient to identify
a matrix element by processor address, and the relative indices of the local submatrix. le, Id
and la are used to denote the local submatrices of C, D, and A, respectively.

We use a and & to distinguish between binary encoding and Gray code encoding of the

processor id (pid), i.e., @ = pid and & = G(pid), where G is the binary-reflected Gray code
encoding function.

For the analysis we denote the communication packet size by B, the communication start-up
time with 7, the time for the transmission of an element by ?., and the time for an arithmetic
operation by t,. For the communication system we consider one-port communication, for which
communication only can take place on one port at a time, and n-port communication, for which
all ports on each processor can be used concurrently.

2 Communication primitives

The communication routines we use for matrix multiplication on the Boolean cube are all-to-
all broadcasting, all-to-all reduction and matrix transposition. All-to-all broadcasting and the
reversed operation all-to-all reduction are described in detail in [9,11]. Matrix transposition
with one-dimensional partitioning has the same communication pattern as all-to-all personal-
ized communication [9], also known as complete exzchange [11]. With a two-dimensional square
partitioning into v/N x v/N blocks, optimal algorithms are described in [8,11]. For the transpo-
sition of a matrix partitioned into N7 X N, blocks, one can combine the one-dimensional matrix
transposition algorithm with the algorithm for the transposition of a two-dimensionally square-
partitioned matrix. The communication complexities of various algorithms are summarized in
Tables 2, 3 and 4. Note that the complexity of the all-to-all reduction is the same as that of
all-to-all broadcasting, if the number of elements per processor before the reduction is the same
as the number of elements per processor after the broadcasting.




Model | Algorithm | Element transfers | min start-ups
one-port SBT (N-1)M n
n-port nRSBT -)M n

n

Table 2: Communication complexity of all-to-all broadcasting on an n-cube with M elements

per processor initially.

Model | Algorithm | Element transfers | min start-ups
one-port SBT LN—_A})-M n
n-port nRSBT N ;&, M n

Table 3: Communication complexity of all-to-all reduction on an n-cube with M elements per

processor initially.

Model | Algorithm | Element transfers | min start-ups
one-port SBT Zz- n
n-port nRSBT % n

Table 4: Communication complexity of all-to-all personalized communication with M elements

per processor initially.




2.1 One-dimensional Matrix Partitionings

The code for all-to-all broadcasting based on N translated Spanning Binomial Trees (SBT’s) [9]
with one-port communication is described below.

/* SBT broadcasting. */
/* Row direction, one-port, binary enc. */
le brdl(a,t,j',t) over [0: N)x [0: P) x [0: 2*%) x[0:n]=
L t=0-le(a,i,j),
else —
<0< < 2t‘1% — lebrdl(a,i, 5t — 1),

/* Get from (¢ — 1)th nbr and append. */

else — lebrdl(a® 2t1,4,5' — 2t_1%—,t -1 >>,
/* Order the N blocks by pid. */
lebrd(a,i,j)over [0: N)x [0: P)x [0:Q) = lcbrdl(a,i,j @ a%, n)

For Gray code encoding, « is replaced by & and lc_brd is redefined as:

/* Order the N blocks by G(pid). */ ‘
lebrd(é,i,j) over [0: N)x [0: P)x [0: Q) = le-brdl(d,i,(G( l_%\lj) ) &)Qﬁ + 7 mod %,n)

With n-port communication, all-to-all broadcasting based on N distinct translations of n
Rotated Spanning Binomial Trees (nRSBT), Spanning Balanced n-Trees (SBnT) and n Edge-
disjoint Spanning Binomial Trees (nRESBT) [9] are all optimal within constant factors. The
algorithm for nRSBT broadcasting is:

/* nRSBT broadcasting. */
/* Row direction, n-port, binary enc. */
lebrdl(a,u,i',j',t) over [0: N) x [0:n)x [0: £) x [0: 2t%) x[0:n]=

Lt=0— lc(a,u% +1,5"),

else —
<0<y < 2t“1% — lebrdl(o,u,v, 't — 1),
else — lcbrdl(a @ 2(utt-Nmodn o 51 41 _ 2t“1%,t -1 >>

lebrd(a,i,j) over [0: N)x [0: P)x [0:Q) =

le-brdi(e, | $],i mod 2, (sh(|%], X)) & 0)§ + j mod §,n)

b

With one-port communication, the code is described below. The code for n-port communi-
cation is included in appendix A.




/* SBT transpose. */
/* Column partitioning, one-port, binary encoding. */
letzpl(a,i',j,t) over [0: N)x [0: &) x [0:2:@) x [0: 0] =
Lt=0-le(a,?,j),
L%J mod2=0—
<0<j< 2“1% — letepl(a,d,j,t — 1)
else — letzpl(a® 2™, i, 5 — 2t'1%,t —-1)>,
else —
<0<j< 2t"1% — ledzpl(a® 2"t i + L j ¢t — 1)
else — lctzpl(a,i + %,j - 2t“1%,t —-1)>>,
letzp(a,i’,j)over [0: N)x [0: 1—1\3,—) X [0:Q) = letzpl(a,t,j,n)

With one-port communication, the code is described below. The code for n-port communi-
cation is included in appendix A.

/* SBT reduction. */
/* Between columns, one-port, binary encoding. */
laredl(a,i,k',t) over [0: N)x [0: P)x [0: £)x [0:n] =
<L t=0-la(a,i, k'),
l55=¢] mod 2 = 0 — la_redl(e,i,k',t — 1) + la_redl(a® 27,5, k',t — 1),
else — la_redl(a,i, k' + —ZBf,t — 1)+ laredl(a® 2"t i, k' + %,t —-1)>,
lared(a,i, k') over [0: N)x [0: P) x [0: &) = la_red1(e,i, k', n)

2.2 Two-dimensional Matrix Partitionings

All-to-all broadcasting based on the SBT and nRSBT routings within a column or row subcube
are the same as in the one-dimensional case, see appendix A.

Transposing a P x @ matrix partitioned into Ny X Ny blocks, implies that the processor
that holds block (7,5),0 < i < Ny, 0 < j < Ny, will hold block (4, ?) after the transposition.
For convenience, we assume that the shape of the submatrix defined by a block changes from
N% X 7% to ’]VB; X -]% (instead of changing to a % X ]—VP; submatrix). The transposition can
be decomposed into two phases. In the first phase, there are 2ln2—ml subcubes, such that each
subcube executes a transposition of min(Ny, N2)xmin(Ny, N3) blocks. In the second phase, there
are 2n—2min(m,m2) gyhcubes, such that each subcube executes a one-dimensional transposition.
The communication complexity is derived in [7]. The code for one-port communication is given
below.

/* SBT tranpose alg. with N1 x N, partitioning. */
f(t) over [0: n] =
< t < 2min(ny,ng) — 1,
ny > ng — 2t—2min(n1,n2)’




else — 22min(n1,n2)—t >,
letzpl(oq,as,i’,j',t) over [0: Ny) X [0: Ny) x [0: f(t)-fvjl—) x[0: N%) x[0:n]=
LKt=0— lc(al,ag,i',j'),
t < 2min(nqy,ng) —
/* two-dimensional transpose. */
< | g2ty ] mod 2 = | 5%y | mod 2 —
< tmod 2 =1— letapl(og @ 2m /2 0y, i 51 — 1) >,
else —
< tmod2=0— lctzpl(a,as® 2"2‘[t/2],i’,j’,t -1)>>,
/* one-dimensional transpose. */
n < ng —
<L ﬁ%-iﬂ- mod2=0—
<0<j' < 2t"'1—]% — letepl(ay, aq,t, 7't — 1),
else — letzpl(ag,az @277t 4,5/ — 2t'“1N%,t - 1) >,
else —
<0<y < 2t"1N—Q—2 — letepl(ar,az ® 2"t + ;ﬁ%,j’,t - 1),
else — lctazpl(ay,ay,i + ;;g—t,—,j' - 2t1_11%,t —1)>>,
else —
< ITS‘!']TI mod2=0—
<0< < 2*"1% = letzpl(ay, ag,?,j',t = 1),
else — letzpl(a; ® 2™ ¢, ay, i — 2t'“1N%,j’,t -1)>,
else —

<0< < 2t"1-1-\,}—>1— — letzpl(ey ® 2t g, 1, 5+ 5,%7,73 - 1),
else — letzpl(ay,as,i’ — 2t"1N%,j' + -9+ 1) >>>

gna+t'?
where ¢’ = t — 2min(nq, ny),
letzp(ay, az,1,j") over [0: N1) X [0: No) x [0 : N%) x[0: NQ{) = letzpl(ay, ag,¥,5',n)

With n-port communication, one can either run the n-port version for the two phases sepa-
rately, or pipeline the two phases. However, by treating the transposition as a stable dimension
permutation [4,5] and employing one of those algorithms a communication complexity lower
than that of the above algorithm can be obtained. The dimension permutation algorithm is
based on the fact that the two phases can be reversed, or mixed, preserving the permutation.

3 Matrix multiplication

3.1 One-dimensional partitioning

We consider column partitioning. For row partitioning, similar algorithms can be derived.

¢ Algorithm A(-,1,1). Compute A in-place by broadcasting of C' from every processor
that has elements of C' to every processor that has elements of D. Processor a = PI D(3)




Column Partitioning:
R

brd. C, « .
A(', 1, ]-) i Chay Duq L_——————> Cisy Doy = 24 A
. C, brd. D, « . [P . A,
'A(°71’3): C*aa-D*a i_i_’__;______/; Ca*7 -D*a I‘Z> Ca*y-D** Py | L Aa* i /; A*a
.D o d. A, &
A(1,4):  ChoyDyo 222l 0 p 220 [Ol yo zedb g ) o

Row Partitioning:

A(51,1) 1 Cowy Dow 2224 ¢, D, 2R FL 4
A(1,3):  CowyDow 2228 ¢, D, 2204 ¢ p,, 2RO AL,
A(,1,4):  CowyDow 2294 0 p,, 2200 yo xed Al

Figure 1: Notation summary of algorithms for one-dimensional partitioning,.

computes CD(x, Lr—_ﬁﬁj) for all j mapped to a, where PID is the allocation function as
described in Table fr

e Algorithm A(:,1,2). Compute A by a transpose of C and broadcasting of CT from every
processor that has elements of CT to every processor that has elements of D. Processor
a = PID(j) computes CD(x, ]_[—ﬁ]—J) for all 7 mapped to a.

N

o Algorithm A(-,1,3). Compute A by a transpose of C, broadcasting of D from every
processor that has elements of D to every processor that has elements of CT, and transpose

AT, Processor @ = PID(j) computes C( [P’i—]—J,*)D.
N

o Algorithm A(-,1,4). Compute A in-space by a transpose of D, and reduction of partial
inner products of A.

The algorithms are identified by A(number of ports used concurrently, number of loops par-
allelized, algorithm identifier). Algorithm .A(-,1,2) is clearly inferior to algorithm .A(-,1,1) with
respect to communication complexity, and is not further considered for the one-dimensional
partitioning, but will be considered for the two-dimensional partitioning. For row partitioning
the roles of C and D are interchanged. Figure 1 characterizes the basic algorithms, the corre-
sponding algorithms for row partitioning is also included for comparison. The two subscripts
denote the ordinal numbers of block rows and block columns. The superscript denotes the ordi-
nal number of the partial inner product result. The number in the square brackets (eg. [R] in
A(-,1,1)) is the number of processors that minimizes the arithmetic time for each algorithm.

A complete matrix multiplication algorithm based on rotations of the matrix C is given
below:

/* A Rotation Algorithm A(1,1,1). */
/* Column partitioning, Gray code encoding. */
le(é,i,j',t) over [0: N)x [0: P)x [0: &) x [0: N) =

8




< t=0-c(i,a% + 5",
else — lc((&+1)mod N,i,5,t — 1) >,
ld(&,7,k") over [0: N) x [0: Q) x [0: &) = d(j,ax + k'),
la(&,1,k',t) over [0: N)x [0: P)x [0: £)x [0: N] =
Lt=0-0,
else — la(G,i, K, t — 1) + (\+ [le(d 4,5, — 1)
i 1d( (& +1 — 1) mod N)§ + 7, k1[0 < 7' < 8]) >,
a(i,k) over [0: P) x [0: R) = la(| %Y ], i,k mod £ N)

A naive implementation of the above code may use more storage than necessary. For instance,
each processor needs to store all the N column blocks of C. However, a reasonable compiler can
resolve this problem by deallocating unused space, or by using shared variables.

Note that the rotation operation implies nearest-neighbor communication, if & and (& +
1) mod N are in adjacent processors. Since & is the Gray code encoding of the processor id,
i.e., the jth block column is stored in processor pid with & = G(pid) = j, rotation of C implies
nearest-neighbor communications. For binary encoding, i.e., the jth block column is stored in
processor o = j, we redefine lc and la as follows:

/* G(t) is the binary-reflected Gray code of t. */
G(t)=t® |4,
/* G~1 is the inverse function of G. */
G lt)=<t=0-0,
else —t® G (|1]) >,
le(a,i,j',t) over [0: N)x [0: P)x [0: %) x[0:N)=
Lt=0— c(i,a%+j'),
else — Ie(G™Y((G(a) 4+ 1) mod N),i, 5t — 1) >,
la(a,i,k',t) over [0: N)x [0: P)x [0: £)x [0: N] =
£t=0-0,
else — la(a,i,k',t — 1)+ (\+ [le(a, 3,5, t — 1)
*1d(e, G((G™a) +t— 1) mod N)& + 7, k)0 < j' < &]) >

Instead of all-to-all broadcasting through rotations a Gray code exchange algorithm can be
used:

/* A Gray code Exchange alg. A(1,1,1). */
/* Column partitioning, binary code encoding. */
/* T(t) is the index of the tth transition bit in the Gray code
on n bits = the number of trailing 1’s. */
T(t)=<tmod2=0—0,
else — 14+T([£])>,
le(a,i,j',t)over [0: N)x [0: P) x [0: %) X[0:N)=
Lt=0— c(i,a% + 71,




else — le(a @271 4 ¢t -1)>,
ld(a,j, k') over [0: N) x [0: Q) x [0: &) = d(j,aE + &),
la(a,i,k',t) over [0: N) x [0: P)x [0: £)x[0: N] =
Lt=0-0,
else — la(a,i, k't — 1)+ (\+ [le(a, i, 55t — 1)
cld(, (a® Gt~ 1)§ + 7, K0 < 7' < §]) >,
a(i, k) over [0: P) x [0: R) = la(| %} |, i,k mod £, )

For Gray code encoding, the Gray code exchange algorithm can also be used. The code is
similar and is included in appendix B. Note that the rotation algorithm, and the Gray code
exchange algorithm can be viewed as one-dimensional versions of Cannon’s [1] and Dekel’s
[3] algorithms, respectively. The encodings only affect which N block rows of D within each
processor interact with the current block column of C.

In the case communication can take place concurrently on all the ports of a processor, the
data set for the matrix C is partitioned into n equal pieces. Each such piece is broadcast through
a unique path. In the case of the Gray code exchange algorithm the paths are obtained through
rotation of the dimensions, such that if the edges in dimension T'(¢) are used by path 0 during
step ¢, then path u uses the edges in dimension (7'(¢) + u) mod n during the same step.

/* A Gray code Exchange alg. A(n,1,1). */
/* Column partitioning, binary code encoding. */
le(a, u, i, j',t) over [0: N)x [0:n) x [0: E)yx[0: &) x[0: N) =
Lt=0— c(ui:- + i’,a% + 7',
else — lc(a@ 2(T(E=1+u)modn o 41 41 4 _ 1) >,
ld(a,j,k") over [0: N)x [0: Q) x [0: &) = d(j,a & + &),
/* Shuffle (cyclic left-shift) u steps of t. */
sh(u,t) over [0:n) X [0: N) = (tmod 2"~*)2* 4 | L],
la(a,u,?,k',t) over [0: N)x [0:n) x [0: E)x[0: £)x[0: N] =
Lt=0-0,
else — la(o,u,#,k',t — 1) + (\+ [le(e, u, 7,5/, t — 1)
xld(a, (a® (sh(u, G(t — 1)) % + 7, kN[0 < j' < &) >,
a(i, k) over [0: P) x [0: R) = la(| 5|, |&],imod £,k mod &, V)

Both the previous algorithms operate with constant storage requirements. The number of
communication actions is linear in the number of processors, but can be reduced, if there exists
sufficient storage to employ a doubling algorithm. Note that by using a high-level specification
for the communication, the code below is independent of how the communication is realized, and
hence independent of for instance network topology, and low level communication primitives.

The initial allocation of C and D, and the final allocation of A are the same for all the
algorithms for column partitioning that we consider. The allocations are shown below, and
omitted in the following.
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/* Initial allocation of C and D. */

le(o,i,5") over [0: N) x [0: P) x [0: {) = (s, aN + 71,
ld(a,j,K) over [0: N) x [0: @) x [0+ %) = d(j, s 1 k),
/* Final location of matrix A. */

a(i, k) over [0: P) x [0: R) = la(| 4|, 4,k mod &)

/* A Doubling Algorithm A(-,1,1): */
lebrd(a,i,j)over [0: N)x [0: P) x [0 Q)= lc(l_LJ, i,jmod ),
la(a,i,k") over [0: N)x [0: P) x [0: ) =\+ [lc_brd(a ,7)*ld(e, j, k)0 < j < Q]

/* Algorithm A(-,1,3): */

letzp(a,i’,j) over [0: N)x [0: —1}\3,) x[0:Q)= lc([ﬂj,a% + ¢, j mod —1%—),

ldbrd(c, j, k) over [0: N)x [0: Q) x [0: R) = ld(| %], j, k mod &),

latzp(a,i',k) over [0: N) x [0: &) x [0 R) = \+ [letzp(a, ¢! ,]) * ld brd(a,j,k)|0< 7 <Q],
la(e,i,k") over [0: N)x [0: P)x [0: &) = latzp(|E |, mod & Lol + k)

/* Algorithm A(-,1,4): */

ldtzp(a, j', k) over [0: N) x [0: TC\),'-) x[0:R)= ld([kg-],a% + ',k mod £),
la(o,i,k)over [0: N)x [0: P)x [0: R) = \+ lle(er,1,5") * ld_txp(a,] 0L 5 < 7%]
lared(a,i, k') over [0: N)x [0: P) x [0: £) = \+ [la(c’ i, +E)0< o < N

Table 5 shows the total number of arithmetic operations in sequence. If P,Q, and R all are
multiples of N, then all three algorithms have the same arithmetic complexity. For P, Q,R>N,
the differences of the arithmetic complexities are within constant factors. Table 6 shows the
total number of elements transferred in sequence and the minimum number of start-ups for
P,Q,R > N. The superscript | on A denotes a linear array algorithm, and superscript ¢ a
Boolean cube algorithm. For some values of P, @, and R less than N, the communication
complexity can be smaller than what is given in the table, because some of the broadcastings
and personalized communications may complete earlier. The communication complexity for the
general case is complicated and described in [7]. The data transfer time compares as PQ : QR :
PR, approximately, by considering the hlghest order term of A(-,1,1), A(+,1,3) and A(-,1,4) and
assuming P,Q,R > N. Note that for £ N = Q = N, the communication complexity of A(-,1,1)
is less than that of A(+,1,4), which in turn is less than that of A(-,1,3). For a detailed analysis,
see [7].

3.2 Two-dimensional partitioning

The algorithms described for the one-dimensional case have analogues in the two dimensional
case. Algorithm .A(-,1,1) that computes A in-place by broadcasting C in its two-dimensional
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| Algorithm | Number of arithmetic operations |

A(,1,1) 2PQ[E]
A(1,3) 2QR[§]
A(,1,4) | PR2IZ] - D+ PR+ 8, [8D

Table 5: The arithmetic time for one-dimensional column partitioning.

| Algorithm | Element transfers | min start-ups
A(LL1) (V- 1)P[F] N-1
A°(1,1,1) (N - 1)P[¥] "
A°(1,19) | (V- DQIE  FIRI+Fg [ om
A0 |- P TR o
Aln,1,1) (V- DP[F] N1
EGEREY VIl ;
Ae(u.12) | TV~ D BT+ EAT T ET ] o
A [ IV DPIF + 9TF o

Table 6: The communication complexity using one-dimensional column partitioning, assuming
P,Q,R>N.
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form requires broadcasting of elements of C' along rows and broadcasting of elements of D along
columns. The two broadcasting operations need to be synchronized in order to conserve storage.
Cannon [1] has described such an algorithm for mesh configured multiprocessors (that can be
emulated on Boolean cubes) and Dekel et al. [3] described such an algorithm making use of
the Boolean cube topology. These algorithms are special cases of matrix multiplication using
broadcasting algorithms that preserve storage requirements.

The algorithms corresponding to the four one-dimensional algorithms (\A(+,1,4) has two vari-
ations) are

e Algorithm A(-,2,1). Compute A in-place by broadcasting of C in the row direction and
D in the column direction such that each processor receives all elements of the rows of
C mapped into that processor row and all elements of D mapped into the corresponding
column of processors. Processor aj,ay then computes C( L[—;Ff_—]J,*)D(*, I_TNi—]—J) for all 4

1

mapped to a; and all 7 mapped to az. The communication operations are broadcasting
from multiple sources within rows and columns.

Algorithm A(-,2,2). Transpose C, perform a multiple source broadcast along processor
rows for the elements of CT in that processor row, and accumulate inner products for A
through multiple sink reduction in the column direction (of the processors). The accu-
mulation can be made such that NPT elements for each column of D are accumulated in

each processor by all-to-all reduction. A processor oy, ag receives C(x, LTT%]-J) during the
Ny

broadcasting operation, then computes the product C(x, | é_ ND(| _é_ 151 % ]). The
er] er] r'ﬁ‘;]

summation over index ¢ is the reduction operation along columns.

e Algorithm .A(+,2,3). Transpose C, perform multiple source broadcasting of the elements
of D within processor rows, accumulate inner products in the column direction. The

multiple sink reduction is performed such that each processor receives all —1% elements of
N% distinct columns of D, such that AT is computed. (Alternatively, the accumulation can
be made such that E;;——]I:,—J—v— elements for each column are accumulated in a processor
selected such that the proper allocation of A is obtained through a some-to-all personalized

communication within rows.) Processor aj,as computes C(l'fyv};;'lj , Lf}é‘l" )D(Lf-jé-1J’ *)
1 1

for all 4, 5 such that | —~| = @y and [—i—] = ay.
751 %1

e Algorithm A(-,2,4). Transpose D, perform a multiple source broadcasting of the elements
of DT within processor columns, accumulate the partial inner products for elements of
A by multiple sink reduction along processor rows such that the elements of at most
[NR;] columns are accumulated within a processor column. After the transposition and

broadcasting processor oy, a2 has the elements C( [T—_’?_—T_] , I‘Fé-_Tl )D( [rf]J ,*) for all 7 such
) . Ny Np Np

that L—T—"A%TJ = oy and j such that I_F_J%TJ = ag.

Algorithm A(-,2,5). Transpose D, perform a multiple source broadcasting of the elements

of C within processor columns, accumulate inner products for elements of A by multiple

sink reduction along processor rows, such that each processor receives —]% elements of AT
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Figure 2: Notation summary of the algorithms for two-dimensional partitioning.

R j j i
for each of 7 columns of D. Processor ay,a; computes C(x, sz‘éﬂj)D(I‘Hé;]J’ Lf}?ﬂ")

for all ¢ such that |_——§—_| = o7 and j such that L—:&—J = aj.
(71 %1

Figure 2 characterizes the 5 algorithms. The two subscripts in sequence are used to denote
the ordinal numbers of block rows and block columns of the N 1 X N3 blocks. The “x” sign means
union of all the block rows (or columns). The superscript denotes the ordinal number of the
partial inner product result. The number in the square brackets (eg. [PR] in A(+,2,1)) is the
minimum maximum number of processors to minimize the arithmetic time for each algorithm.
Algorithm .A(+,2,2) has a matrix transpose in addition to the communication of C as in algorithm
A(+,2,1). But, unlike in the one-dimensional case algorithm A(+,2,2) may have a higher processor
utilization than algorithm A(-,2,1).

The broadcasting in .A(1,2,1) can be realized by a rotation algorithm, which yields Cannon’s
algorithm [1]. Unlike the one-dimensional case, an initial alignment is required in order to
synchronize between the rotations of C and D. For N; = N, = v/N, the code is shown below.
For Ny # Nj, say N1 > Nj, we further partition the submatrix C in each processor into ]ﬂvi-

blocks and simulate the algorithm for Ny x N; blocks. Each processor simulates % processors.
The code is included in appendix B.

/* Cannon’s Algorithm A(1,2,1): */
/* Assume N1 = N, = v/N, Gray code enc. */
le(@y, 62,7, 5',t) over [0: vVN)x [0:vV/N) x [0: =) x[0: ) x[0:VN) =
Kt=0- e(brfe +¢, 627k + ),
else — le(éy,(é2 + 1) mod VN, ', j/,t — 1) >,
ld(é1,62,5",k',1) over [0: v/N) x [0: vVN) x [0: -2) x [0 T x[0:VN) =
Kt=0-ddFe +7,aade+ ),
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else — ld((&1 + 1) mod V'N, &g,5, k', t — 1) >,
la(&y, ég,4',k',t) over [0:v/N)x [0:+/N) x [0: \/—)X[O \/—)X[O VN] =
Lt=0-0,
else — la(éy,é9,7, k' t— 1)+ (\+ [lc(dl,&z, i3t —1)
*1d(Gn, b, ', K, 1 = 1)[0 < ' < R]) >,
a(i, k) over [0: P) x [0: R) = la_red(| K|, [E ;imod -, kmod £)

It is also possible to design a matrix multiplication algorithm based on the SBT, or the
nRSBT communication algorithms. For Algorithm .A(-,2,1), the temporary storage for each
processor becomes % for C and % for D, instead of I—:'A%- and QTVE for Cannon’s or Dekel’s algo-
rithms. However, the number of start-ups is reduced to O(nq +n2), instead of O(N;+ N2). Note
that the initial alignment steps can be eliminated. It is possible to interleave the communication
and multiplication steps to save half of the storage,. However, an initial alignment is required
for such an algorithm.

The initial allocations of C' and D, and final allocation of A for the five algorithms below are
the same, and is described once and for all. For Algorithms .A(+,2,2) and \A(+,2,4), la is replaced
by la_red.

/* Initial allocations of C and D. */

le(ay, az,i,5") over [0: Ny) x [0: Ny) x [0: - ~o) X [0: Q—) = c(alN + 012%- + 5,
ld(as, az, §', k') over [0: Ny) x [0: Ny) x [0 .Nl)x[ ﬁ)_d(al;?l t i 1K),
/* Final allocation of A. */

a(i,k)over [0: P)x [0: R) = la([ﬂfgl_l, L%Zj,i mod I—%,k mod TVR;)

/* A Doubling Algorithm A(-,2,1): */
lerow(ay, ag,1',j) over [0: N1) X [0: Np) x [0: %) x [0: Q) = le(oy, [%’2_], 'y 7 mod ),
ld_col(ay,az,j,k") over [0: N1) x [0: N2) X [0: Q) X [0: ) = ld([%lJ,az,j mod k’),
la(oq, ag,t', k") over [0: N1) X [0: N3) x [0: N%) x [0: ) =

\+ [lerow(an, @, 7, 5) * ld-col(ay, a3, 5, K')|0 < j < Q]

/* Algorithm A(-,2,2): */
letzp(ay,az,i,j") over [0: Ny) x [0: Nz) x[0: & ;) X[0: % L) =
te(((en i + )/ &), L+ 1)/ &), (o o 4 ) mod £ oo+ ) mod ),
letzp_row(oq,as,i,j") over [0: N1) X [0 Ny)x[0:P)x[0: )
letzp(a, | $2],i mod 4,5,
la(ay, 2,3, k") over [0: Ni) X [0: No) x [0: P)x [0: & )=
\+ [ledzp-row(a, az,i,j") * ld(a1, ag,7', k)0 < 5 < —9—]
la_red(ay, aq,i', k") over [0: N1) x [0: Ny) x [0: £ 7)) x[0: —B—) =
\+ [la(al,az,alN +7,k)|0 < of < Nq]
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| Algorithm ] Number of arithmetic operations |
Ac("2’1) 2QI- ] |-N2-l

A(2,2) | (2[x] - 1)f7v;1P ryo YNJ (] + [ 1w ]
A°(+,2,3) (2f-04 - DR+ Y2, fNJ [3] + f;«%] h\i?ﬂ
A°(+2,4) (2fN 1- 1)f]—vﬂR + 2 fm 1 f§1 + fN, 1 fva
A(25) | @] - DI P+ [ 1[5 + (R [2]

Table 7: The communication complexity for optimum buffer sizes, two-dimensional partitioning,
and one-port communication.

/* Algorithm A(.,2,3): */
letzp(ay,az,i,j") over [0 : N1) x [ Nz) x[0: ) x[0: &)=
te(l(ar i + )/ 5], L(on e + 7)/L ] (enfe 4 ) mod & (as -+ 57) mod 2,
ldrow(ay, 02,5, k) over [0: Ny) X [0: Ng) x[0: Q—) x[0:R)=
ld(e1, | 52], 7',k mod 4),
latep(ay,ag,1,k) over [0: Ny) x [0: No) x [0: £- ) x[0:R)=
\+ lletzp(a, as, i, ') * ld_row(ay, ag, 5’ ,k)[O < J < Q],
latzp_red(oq, aq, 1, k') over [0:Ny)x[0:N2)x[0: ) x [0: —1%-) =
\+ [latzp(al, az, ', a; 4~ N1 + k)]0 < af < Ny,
la(ay, aq,t', k") over [0 : Nl) x[0:Ny)x[0:£- A7) X [0: ) =
la_txp_red([alN +1 /N2J |_a2N2 + K /N1J (alN + z’) mod £ ~ ,(a221 + k") mod £ )

Algorithms A(-,2,4) and A(-,2,5) are included in appendix B.

Table 7 shows the total number of arithmetic operations in sequence. Note that if P, Q
and R are multiples of Ny and N, then the arithmetic complexities of the algorithms are the
same, and indeed the same as for a one-dimensional partitioning. Table 8 shows the total
number of elements transferred in sequence and the minimum number of start-ups with one-
port communication. By using some approximations, the values of N; and N, that minimize the
number of elements transferred for different algorithms are shown in Table 9. The resulting total
complexities are shown in Table 10. By considering the highest-order term, the data transfer
times compare as @ : P : R : R : P from A(1,2,1) to A(1,2,5). It can be shown [7] that for P,
Q and R being multiples of N; and Ny, the complexities of algorithms .A(+,2,3) and .A(,2,5) are
always higher than that of min(\A(+,2,2), A(-,2,4)), if the optimum values of N; and N, are chosen
for each algorithm. Table 11 shows the communication complexity with n-port communication
and optimum packet size. For a detailed analysis and optimum choice of algorithms, see [7].
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| Algorithm ] Element transfers [ min start-ups

A(1,2,1) (N2 — 1)[%1 f—j%] n
+(N: - 1)fN1”NJ
A(1,2,2) | [x7] sz] n+ le] [ 1(V2 — 1) 2n
+le1 [NQ](NI - 1)
A°(1,2,3) ng [&1n+ [+ fNJ(Nz -1) 3n
+fN1”N2](N1 -1+ [F1#]n
A(1,24) | [#] fNJ n+ fNJ [ 1N — 1) 2n
+fN1”NJ(N2 - 1)
A°(1,2,5) [- -H-Ni;l n+ I—Nl-” 1(N1-1) 3n
+[ 7 ”NQ](NZ 1)+ I-Nl-l [Ng]"

Table 8: The communication complexity using two-dimensional partitioning.

| Algorithm | Ny | N, |

A(1.2,1) | /B | /BY
A%(1,2,2) of | VB
A(1,2,3) | /9| (X
Ac(1,24) | VB |
A(1,2,5) | /B | /9

Table 9: The optimum values of Ny and N; for P, @ and R being multiples of N and one-port
communication.

[ Algorithm | Trin
A°(1,2,1) ¥t + (VPR - Bt + 07

A2(1,2,2) 284, + £ (2VQR + =), 4 207
nP(1+2)—(P+

A°(1,2,3) | BB, + R (2vPQ + LR EHD gy 4 gr

A(1,2,4) | R, + L (2y/PQ + 2=yt 4 onr
nR(1+%)- R

A°(1,2,5) | 9P, + Lo(2vQR + "L,y 3r

Table 10: The total complexity with optimum Values of Ny and N3 for P, @ and R being
multiples of N and one-port communication.
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| Algorithm ] min communication time |
A¢(n,2,1) max(—lZl[Nl] |'N2]tc + ngT,
ML R Tt + )
A22) | o+ (YT Fte + Vo= Dr)?

HUA1 5L + TRt

a@23) | o7+ (/T [Fe +m— D7)
+H TR e + V=177

FURII + [F1 14

A(n,2,4) | nr+ (wNJ [t + /(n - 1)7)?
HIFNZ 1L 4 [ BT £ sl

A%(n,2,5) | nr+( [—N—l—] [—]\—,2—] te +/(n = 1)1)?
/TR 1t + Vn = Dy’

I TR 2t + TR 1 Mt e

Table 11: The communication complexity for optimum buffer sizes, two-dimensional partltlon-
ing, and n-port communication.

3.3 Three-dimensional partitioning

In the case of a three dimensional partitioning of the Boolean cube each N x Nj subset of
processors compute the product of a P X -]% matrix and a ]—% X R matrix If the matrices

are initially allocated such that there are distinct submatrices P X Na’ and N, X R assigned
to each set of & N7 processors then the multiplication in each subset is the same as in the two

dimensional partitioning, except that Q is replaced by 2 ~7- In addition, there is an accumulation
3

phase at the end. The number of arithmetic operations for this part of the computation is
[ N,] [——r] log N4 without any plpehmng, and all partial products being accumulated in the same

way. The matrix A is allocated among N, processors. If there are several elements of the matrix
3
A that are stored in the same processor, then the accumulatlon can be made faster by using

Fedlb=a

all-to-all reduction. The arithmetic complexity becomes E 5

fNH—ﬂ n3 TNH,ﬁ
complexity for the reduction is Z 2 [—-—L——] ¢t 221 [—%g217. When |'—T'| |'N,] > Ni,it

is an all-to-all reduction, and the commumcatlon complexity of the reduction i is approxxma,tely

alba
(1- N,)[ N’] [ N,]tc + Zz_l —12—@—2—]1-. For detailed complexity analysis, see [7]. The code is

given below.

1te. The communication
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/* Algorithm A(.,3,1): */

/* Matrix C is partitioned as N{ x N{Nj. */

le3(ay, az,a3,%,5") over [0: N{) x [0: Nj) x [0: N)x [0: NB{_) x [0: —ﬁz,gj—vz) =
C(alwplr + 7, 043% + 027\,—5% +3"),

/* Matrix D is partitioned as Nj N} x Nj. */

ld3(ai,aq,a3,5',k") over [0: N{) X [0: Nj) x [0: Ni) x [0: N,N,) x[0: 2,) =
d(asj% + 0117\,%@ + 3", azN% + k'),

/* Broadcast C along N} direction. */

le3row(ay, o, as,i,j") over [0: N{)x [0: N5)x [0: Ni) x [0: N%,) x [0: N%) =
le3(ay, [J—I%&J,ag,i’,j' mod —]\fm),

/* Broadcast D along N direction. */

ld3_col(on, a2, 03,5, k') over [0: NJ) x [0: N3) x [0: N}) x[0: N,) x [0: N%) =

ld3(|_ﬂ1—ij s, a3, j’ mod N,N,,k),

/* Compute partial inner product loca,lly */

la3(ay, a2, 03,7,k") over [0: N{) x [0: N§) x [0: N§) x[0: NL{) x [0: N%) =
\+ [le3row(ay, ag, 3,1, ') % 1d3_col(a, a2, as, 5, K')|0 < j' < 7%]’

/* Reduction along N} direction. */

la3_red(ay, 0z, 03,7, k') over [ tN))X[0: Ny x[0: Ny x[o: £ A7) X [0: ’1‘\%) =
\t+ [1a3(en, az, oy, [ 202 | £ 1 i, (a3 mod M)+ K)I0 < af < N,

/* Relabeling processor indices as two- dimensional. * /

la2(oq, 0,1, k") over [0: N1) x [0: Ng) x[0: £ ) X [0 ) =
la3_red(| 21, | 2272, (a1 mod & MM + a2 mod 48,1, k),

/* Resulting matrix A is partitioned as N1 X N2 */

a(i, k) over [0: P) x [0: R) = la2( Li;lj, |_—R—2J,z mod 7\%, k mod £

Note that in the above algorithm, the matrix A is partitioned into Ny x N, blocks with no
extra communication after the reduction step. Depending on how the data set is divided during
the reduction steps, the resulting matrix A can be partitioned into N{ x N, N4 blocks, N/ Njx N}
blocks, or some blocking scheme in-between those two.

If the matrices C and D initially are partitioned into Ny X N, blocks, then transformations
are required to change the allocation into N{ x N3 N4 blocks, and N{ N4 x N} blocks, respectively.
The transformation can be specified as follows.

le3(ou, g, 03,7, 7") over [0: N{) x [0: N3) x [0: N§) x [0: ) x[0: W) =
lc2(a1 + |_—75J-_|,a3—% + I_N%—N"’rj,z mod £ s (a2 mod N2 )N'N’ + 3,
ld3(a1,a2,a3,3 ', k") over [0 N1) x [0: NJ) x [0 N3) x[0: N’N’) x [0: —;) =

ldz(ag%’la, + |_N,N,J a3 3+ [k'—NZJ (e mod % o )N'N' + 7", k' mod R)
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4 Conclusion

We have shown how algorithms for distributed architectures, such as a Boolean cube, can be
expressed in terms of a shared global address space, and how the translation between local and
global addresses can be carried out. We have also shown how the network and low level com-
munication features of the architecture can be encapsulated into generic global communication
primitives, such as all-to-all broadcasting within a (sub)cube, all-to-all reduction, matrix trans-
position (dimension permutation). These primitives can either be integrated into compilers, or
incorporated into the communication system by providing different communication modes. The
communications would be transparent to the user. The architectural dependence is hidden in
the communication primitives. The algorithms for matrix multiplication that we have used for
illustration cover algorithms that parallelize one, two, or all three loops of a matrix multipli-
cation, and for each degree of parallelization algorithms that are optimal for different matrix
shapes and architectural parameters.

Appendix

A Communication primitives

A.1 One-dimensional partitioning

/* An nRSBT transpose algorithm (column part., n-port). */
letzpl(a,u,i,j',t) over [0 N)x[0:n)x[0:5)=x[0:2-%)x[0:n]
<<t_0—>lc(a1,u + 77,
Lm] mod 2 =0—
L 0<Lj<2t- 1—9— — letzpl(a,u,i',j ,t— 1)
else — lc_t:cpl(aGB 2(u—tymodn o 41 51 _ ot= anN,t— 1) >,
else —
€0<j< 218 e tmpl(aEB gu-timodn o, 4t 4 B 5t —1)
else —>lc.tmp1(a u, i’ + L, j - 2t71 Q yt=1)>>,
letzp(a,i',j)over [0: N)Xx [0: ﬁ) x[0:Q)=
letzpl(a, [MJ mod n, ¢, [ 45 JQN +7 mod 7, n)

/* nRSBT reduction. */
/* Between columns, n-port, binary encoding. */
laredl(a,u,i',k',t)over [0: N)x [0:n) x [0: E)x[0: Byx[0:n] =
< t=0-la(a,ul + ¢, sh(u, | EX ) E + K mod £),
| 5e=Fmoaw) mod 2 =0 — la_redl(a u,t k' t— 1)+ laredl(a ® 2(“'t)m°dn u,i', K,t-1),
else — laredl(a,u,i’, k' + £,1 — 1)+ laredl(a@2(e-tmodn o i k' + & ¢ —1) >,
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lared(e,i,k') over [0: N)x [0: P) x [0: &) = la_redl(a,|%],i mod £, &', n)

A.2 Two-dimensional partitioning

/* SBT broadcasting (row direction, one-port). */
lerowl(on, aq,7,5,t) over .[0 :Ny)x[0:Ny) x[0: N%) x [0: 2t—1%) X [0:ng] =
Lt=0— lc(al,a%z,,f/),
else - 0<j < 2t‘1]% — lerowl(og, ag,,5',t — 1),
else — lcrowl(ay,as ® 28714, 5 — 2t‘1N—%,t —1)>>,
lerow(ay, ag,i,j) over [0: N;) x [0: N3) x [0: ]—%) X [0:Q) =lerowl(ay,as,,jd agN%,ng)

/* nRSBT broadcasting (row direction, n-port). */
lerowl(oy, ag,u, ', §',t) ovi}' [0: Nl), X [0:Ny)x[0:ng)Xx[0: nrfNI) x[0: 2t-]%) X [0:ng] =
Lt=0-— lc(al,az,um + 7',?J )7
else - <0< j' < 2t‘11% — lerowl(oq, ag,u,?,j',t — 1),
else — lcrowl(ay,ay @ 2(utt=1)modny 4 41 51 _ 2t"11—\%,t —1)>>,
lecrow(aq, ag, v, i’,j).'ov](\a]r [0: M) X1[>0 : N3) X [ONng) x [0: 621;\,1) x[0:Q)=
lerowl(ay, oz, | "5, 4 mod 5=, (sh(u, [152]) ® a2) 55, n2)

/* SBT broadcasting (column direction, one-pogt). */
ld_coll(aq,az,j', k', t) over [0: Ny) x [0: Np) x [0: 202 )x[0: £)x[0:n] =
<<(t e —fld(al?ag,j',gc’), ) x| )% [0:2°57) X [0 57) X [0: mq]
else - <0< 5 < 2t‘1]% — ld_coll(ay, az,j', k't — 1),
else — ld_coll(ay @21, o, 5" — 20712 Kt — 1) >>,
ld_col(ay,az,j,k") over [0: Ny) X [0: N2) x [0: Q) x [0 ) = ldcoll(ay, 02,5 @ alj—%,k’,nl)

/* nRSBT broadcasting (column direction, n-port). */
ld_coll(ay,az,u,j',k',t) over [0: N1) X [0: Ny) X [0:nq) X [0: 2t%) x [0: m]}\fz) X [0:nq] =
Lt=0— ld(al,az,j’,unﬁv + k),
else - <0< j' < 2t"1N1 — ld_coll(ay, ag,u, j', k', t — 1),
else — ld_coll(ay @ 2(wtt-1)modny ), o 51 _ 2t"1]—\c,"-1-,k',t —-1)>>,
ld-col(ay,az,u,5', k) over [0: N1) X [0: N3) X [0:7n1) x [0: Q) x [0 nﬁ%) =
ld_coll(on, 0z, |22 | k' mod ;b%’ (sh(u, L%’—I—J) ® al)%, ny)
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B Matrix Multiplication

B.1 One-dimensional partitioning

/* A Gray code Exchange alg. A(1,1,1). */
/* Column partitioning, Gray code encoding. */
le(é,1,7',t) over [0: N)x [0: P)x [0: %) X[0:N)=
< t=0- c(i,a® + 5",
else — lc(G(GY(a&) @ 2TE-DY 4, 5t — 1) >,
ld(&,5,k") over [0: N)x [0: Q) x [0: &) = d(j,d% + k'),
la(&,1,k,t) over [0: N)x [0: P)x [0: £)x [0: N]=
Lt=0-0,
else — la(a,i, k', t— 1)+ (\+ [le(@&, 1,5t = 1)
ld(@, 68 (1= )& +3, M0 < 7 < §) >,
a(i, k) over [0: P) x [0: R) = la(| Y|, i,k mod &, N)

B.2 Two-dimensional partitioning

The index [ in the following code denotes the rank of the Ennfﬁ%’l_}v&)l blocks within each processor.

The number of the communication steps after the initial alignment is 2 max(Ny, No) — 2 in the
code. It is possible to reduce it to N3 + N3 — 2 by a more complicated code.

/* Cannon’s Algorithm A(1,2,1): */
/* Nmaz = max(Ny, N3) and Nypin = min(Ny, N3). */
le(on, 02, 1,7/, §',t) over [0: N1) X [0: Np) x [0: {maz) x [0: g2—) x [0: 52=) X [0 Nypao] =
< Ny 2Ny —
€ t=0—clafr + 1,09+ +5),
/* Initial alignment. */
((a2%+l+a1)modN1)N2

t=1-le(oq,| N |, (I + a1) mod %\g-,i’,j',ﬂ),
/* The last block gets from next proc. */
l_ -—1—>lc(a1,(a2+1)modN2,0,z,J,t——1),

/* Other blocks get from right locally. */
else — lc(ay, 00,1+ 1,7, 5t —1)>,
else —
€ t=0—clafr + 14+, 005 + 59,
t=1— lc(al,(aln?; +1+ ag) mod Ny, 1,4, 5,0),
else — le(ay, (a2 + 1) mod Ny, i, ,j ,t— 1) >>>>,

ld(ea, as,1,j', k', t) over [0: Ny) x [0: No) x [0: 2 R [0: Nmm)x[ ! Nppaz) =
K Ny <Ny —
<<t—0-—>d(a1N1+l + 7, a2N + &),
o oz Ymod Na ) N;
{ = ].—->ld(t( 1N1+l+]\]22) 2) 1J L(l+a2)N2J mod Nz)],kl O)
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[ = Nmaz noE — 1 — ld((eq + 1) mod Ny, a,0,5', k1 — 1),
else — ld(ay, 09,1+ 1,5, k't —1) >,
else —
<<t=0—->d(a1 +y,a2N2+l +k/),
t=1— ld((agﬁg +1+a1) mod Ny, 9,1, 5K, 0),
else — ld((a1 4+ 1) mod Ny, 0,1, 7, k't — 1) >>,
la(ay, ag, 1,4, k', t) over [0: N1) X [0: N3) x [0: %f:‘sf) x [0: ]—Vﬁ:) X [0: NSZ) X [0: Npypaz] =
Lt=0-0,
else — la(a, 9,1, k't — 1) + (\+ [le(en, a2, 1,4, 5,1 — 1)
*ld(a1, 0,1, 5, K, 1 = D]0 < j' < g2=]) >,
a(i,k) over [0: P)x [0: R) =
& Ny > Ny — la(| 5], | 22|, | B | mod —l ,imod £~ e ,k mod & > N),
else — la(| 5], |22, |22 ] mod zmodﬁ,kmodN,N2)>>

/* Algorithm A(-,2,4): */
ldtzp(as,ag,j', k") over [0: Ny) x [0: N2) x[0: —Q—) x[0: & ) =
ta(((er § + 0/ B aads + B)/ ]y (ar R 4+ 7)) mod &, (anft + k) mod £2),
ldtzp_row(ay,as,t,j ) over [0 N1) X [ 0 No)x[0: 5 2 ) X[0:R)=
ld txp(al? I_k_NlJ,J 7k mOd Ny )7
la(ay, a,i,k) over [0: N1) x [0: Np) x [0: £- ) X[0:R) =
\+ [le(on, @z, ¥, §") * ld tzp_col(ay, ag, j' ,k)]O <jl< & %1
la_red(oq, g, k) over [0:Ny)x[0:Ny)x[0: £ ;) X [ R2) =
\+ laas, 0, i,z f¥ + ¥)[0 < o < V]

/* Algorithm A(-,2,5): */

ldtzp(ay,az,j', k") over [0: N1) X [0: No) x [0 : N%) x [0: 'JIV%{) =
(| (o1 + 5/ %15 L(OlzN1 +K)/ %],
(a —0‘2--{-]/) mod % ’(0‘21\7 + k') mod R),

lecol(ay, oz, 1, ) over[ tN1) X [0:Nz)x[0: P)x [0: &)=
lc(l.TlLa?,lmOd M >.7/)7

latzp(ay, az,i,k") over [0: Ny) x [0: No)x [0: P)x [0: N By=
\+ [lecol(ay, ag,t,5") x ld_tep(ay, as, 5, )0 < j < T £,

latzp_red(ay,as, i, k") over [0: N1)x [0: Ny) x [0: ) x [0: )
\+ [la_t:cp(al,a2,a2N2 + i, EN0< af < Nz],

la(ay, aq,7, k") over [0 : Nl) X[0:Ng)x|[0: ) x [0: ) =
la txp_red(l_alN +1 /N2J l_agN2 + k’/Nlj (alN + z’) mod £ ~ ,(a221 + k") mod £ )
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