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Abstract. Algorithms for the multiplication of matrices of arbitrary shapes using the
full communications bandwidth of multiprocessors configured as Boolean cubes are pre-
sented. The main new feature of the algorithms is the organization of the data motion. The
communication is optimal for algorithms accumulating the inner-products for the product
matrix in-place, assuming a traditional matrix multiplication algorithm requiring 2PQR
arithmetic operations for the operation C « C + A x B, where A is a P X @ matrix and
B is a @ X R matrix. For matrices with at least % elements of the common dimension per
processor in a Boolean n-cube all communication channels are used in every multiplication
step of the algorithm. The presented algorithms are valid regardless of matrix size relative
to the number of processors. For the multiplication of “small” matrices relative to the
number of processors the common dimension is parallelized to the extent possible.

1 Introduction

The multiplication of matrices of arbitrary shapes is an important operation in many com-
putationally intensive scientific applications. The number of floating-point processors in
todays supercomputers range from a few to a few thousand. The next generation super-
computers with performance of a trillion (floating-point) operations per second are expected
to have thousands to tens of thousands of processors interconnected by some form of net-
work. With the current technologies the communication capabilities are often the limiting
factor with respect to performance, especially where different technologies meet, as at the
chip and board boundaries. Effective use of the communication bandwidth is critical for
maximum performance. The communication needs are minimized by a good choice of ad-
dress map, i.e., data placement, and routing algorithms that minimize path lengths and
congestion once an address map is given.

Several different networks are used for interconnection of processors in highly concurrent
systems, with two-dimensional meshes, butterfly networks, and Boolean cubes being the
most common. We focus on Boolean cube networks. In such a network of N nodes, each
node has log, N neighbors. With sufficiently high data motion capability at each node,
communication may be performed on all ports concurrently, and the full communications
bandwidth of the network, and the technology, used.

Cannon [2] has given an algorithm for the multiplication of square matrices on two-
dimensional meshes. Since a two-dimensional mesh is a subgraph of a Boolean cube [11],
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[5], it is possible to use Cannon’s algorithm on a Boolean cube by emulating a mesh [6].
Dekel et al. [3] have described an algorithm for multiplication of square matrices on a
Boolean cube with an even number of dimensions. Both Dekel’s and Cannon’s algorithms
assume that the number of matrix elements is equal to the number of processors. A gener-
alization of Cannon’s algorithm to matrices of arbitrary shapes and sizes is given in [7] and
[9]. Cannon’s algorithm may use up to four communication (unidirectional) channels per
processor concurrently. Dekel’s algorithm only use two (bidirectional) channels at a time.
The algorithm presented below concurrently use all n (bidirectional) channels in a Boolean
n-cube.

The paper is organized as follows. In the next section, we introduce a few basic results
regarding the specific communication operations used in the multiplication algorithms. In
Section 3, we generalize Dekel’s algorithm to the multiplication of Px Q and Q x R matrices
on a Boolean n-cube, configured as a product cube of v/N x /N processors, and show how
the Boolean cube bandwidth can be fully utilized, assuming P,Q,R > +/N. Section 4
generalizes the algorithm to Boolean cubes configured as a product cube with Ng x Ny
processors, NoNy = N. Section 5 generalizes the algorithm further to matrices of arbitrary
shapes and sizes multiplied on Boolean cubes of arbitrary configuration. Conclusions are
found in Section 6.

2 Preliminaries

The focus of this paper is on communication efficient algorithms. In this section we in-
troduce some of the notation used throughout the paper, and some basic results regarding
communication in Boolean cubes. These results are needed for the proof of the optimality of
the communication in the matrix multiplication algorithms that are the main contribution
of this paper.

In the following log denotes log,. The bit-wise exclusive-or operation is denoted “@®”
and Z, = {0,1,---,n — 1}. The number of 1-bits in the binary representation of 7 is
|[é]]. *™ denotes a string of n instances of , where * is either 0 or 1. D(3) is the ordered
set of dimensions (in an increasing order) for which the corresponding bits of the binary
representation of 7 are one. The dimension of the least significant bit is zero. It is the
rightmost bit in a field. For example, D((10110)) = {1,2,4}. |D(i)| denotes the cardinality
of the set D(z). |D(¢)| = |i]|. Let e(D(:),z) be the zth element in the set D(3), 0 < z <
|[é]| = 1. Ais a P x Q matrix, B a Q X R matrix, and C a P x R matrix, where P = 2P,
Q = 29, and R = 2". The element in row i and column j of matrix 4 is a(t,7),1 € Zp,
J € 2q. b(i, ) and c(4, j) are similarly defined. The axis encoding the rows is axis zero, and
the axis encoding columns is axis one. Processors along axis zero are identified by k and
along axis one by £. The matrices are distributed over the nodes of a Boolean n-cube with
N = 2" nodes. The cube is factored with ny dimensions along axis zero and n; dimensions

along axis one, ng + n; = n. The length of processor axis zero is Ny = 27 and of axis one
N1 =2™M,

Let 5(1,0) = (0) and S(n,0) = S(n — 1,0)|n — 1[S(n - 1,0) for n > 0, where “|”
is the concatenation operator of two sequences. For instance, S (3,0) = (0,1,0,2,0,1,0).
S(n,0) is the transition sequence in a binary-reflected n-bit Gray code [13]. If S(n,0) =
(21,22, +, Z(an_1)), then

S(n,s) = ((¢1 + s) mod n, (22 + s) mod =, - 5 (T(gno1y +s)mod n), 0<s<m.

2




For instance, §(3,1) = (1,2,1,0,1,2,1). Let a(t,n,s) be the tth element of the sequence
S(n,s),1<t< 2"~ 1.

The communication times are measured by the number of elements transferred in se-
quence. Concurrent communication on all ports of all processors is assumed possible, unless
stated otherwise. All communications links are bidirectional.

A particular communication pattern that is used for one phase of the matrix multipli-
cation algorithm is bst-inversion [14]. A bit-inversion in an n-cube implies that processor i
sends its data to processor ¢ @ (17) for all i’s.

Lemma 1 [14] A tight bound for bit-inversion on the complete processor address by every
processor in a Boolean n-cube is K with K elements per processor.

Proof: The required bandwidth is nNK and the available bandwidth is n N , which gives
the lower bound K. An upper bound equal to the lower bound is given by the following
algorithm. Divide the local data set into n parts, and exchange part ¢, 0 < ¢ < n—1,
according to the sequence of dimensions i, (i + 1) mod n,- -+, (i+ n — 1) mod n. All n data
sets can be exchanged concurrently without edge conflict. I

In general, with bit-inversion on only a subset of the processor address bits of every
processor, the communications requirements are reduced, but not the lower bound.

Lemma 2 [10] Any tight bound for communication in a Boolean n-cube is also a tight bound
for the same communication in all disjoint n dimensional subcubes of an n' dimensional
cube, when the subcubes are identified by the same n dimensions, n' > n.

The significance of this lemma is that even though only a fraction - of the total band-
width of the n’-cube is used, the communication time cannot be reduced when the com-
munication in each subcube is optimal. Hence, in the case of the same bit-inversion on a
subset of the bits of the address space the tight lower bound is still K for K elements per
processor. The bits subject to inversion define a subcube, and the bits not inverted define

the disjoint instances of the subcubes in which inversion is performed.

When the Boolean cube is factored as an Ngx Ny cube, then the alignment of one of the
operands implies a combination of bit-inversion and all-to-all personalized communication
[8] within subcubes. In all-to-all personalized communication every processor sends a unique
set of data to every other processor. For instance, if n; > ngy then the alignment of row
2™ —1 of A requires a bit-inversion on ny-dimensional subcubes and all-to-all personalized
communication within (ny — no)-dimensional subcubes. The following lemma gives lower
and upper bounds for the alignment confined to row/column subcubes for Boolean cubes
configured as an Ny X N; cube.

Lemma 3 If every processor k in an ny-cube sends unique sets of ZTIE,,—O— elements to each
of 2™M7"0 processors, ny > ng, defined by k @ (1m0 *™M~"0) then a tight bound for the com-
munication complezity is K if ng > 0 and %{ for ng = 0.

Proof: For ng = 0, the communication is all-to-all personalized communication in an nq-
cube. A tight bound of complexity —I-,_,{— is given in [8]. For ng > 0, the lower bound can
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be derived from the bit-inversion alone. The entire data set K in a processor is subject to
the same bit-inversion on mg bits. The required bandwidth is Kn¢2™. To determine the
available bandwidth the n; dimensional cube is considered as an ng cube of “supernodes”
consisting of 2"~ cube nodes, and 2" ~™ communication channels between every pair of
“supernodes”. The available bandwidth is ng2mt =027 and the lower bound K follows.

For the upper bound for ng > 0 partition each of the o7~ 2,11
sets. Set s of size n—lzTIf_—,,o is assigned an exchange sequence s,(s+ 1) mod ny,--+,(s+ny —
1) mod nq. The exchange on a dimension is conditional, and determined by the dimensions
involved in the personalized communication of the set of size 2nfino , and the bit-inversion.
All n; different exchange sequences can be performed concurrently, and all blocks of size
Wff_ng that needs to be exchanged in a dimension can be exchanged as one transfer
operation should that be advantageous. The permutation can be completed in n; exchanges.
Each set of Tf—‘% elements require 2n£n0 element transfers in sequence by this algorithm,

and the total number of element transfers in sequence is K. |l

== local data sets further into nq

3 A block algorithm

In this section we first generalize Dekel’s algorithm for the operation C' «— A x B + C to
the multiplication of P X P matrices distributed uniformly over the processors of a Boolean
n-cube, 2p > n, n even. We assume that the processors of the Boolean cube are factored
such that ng = & dimensions are assigned to axis zero and ny = % dimensions are assigned
to axis one. Then we generalize the algorithm to the multiplication of a P x Q matrix
by a @ X R matrix, p,q > no and ¢,7 > ny. Finally, we present an algorithm that use
all communication channels of a Boolean n-cube. The case ng # n; is treated in the next
section.

3.1 Dekel’s algorithm

Dekel’s algorithm [3] assumes that A and B are P x P matrices, P = 27, and that the
number of Boolean cube processors is P2. The algorithm consists of two phases: alignment

and multiplication.

Alignment: a(i,7) — a(i,i® j), Vi, j € Zp,
Multiplication, step ¢, 0 <t < P — 1:
a(i, §) < a(i,j & 2*:P0)), if t £ 0, Vi, 5 € Zp,
b(i, j) « b(i @ 2¢(5P0), 7),if t # 0, V4, j € Zp,
c(4,7) «— a(i,j) * b(¢, j) + c(3,7), Vi, j € Zp.

With one element per processor and (z,j) being a processor address, the column index of
an element of A is the same as the row index of an element of B for every processor (i, 7)
after the alignment phase, and for each step of the multiplication phase. Moreover, for any
integer, complementing the bits of its binary encoding according to the transition sequence
in a binary-reflected Gray code, such as the sequence S(p,0) for a p-bit number, produces
every integer that can be encoded in p bits precisely once. Hence, during the course of the




algorithm, processor (4, 7) receives all the elements of row ¢ of matrix A and column j of
matrix B appropriately synchronized.

Replacing a(t,p,0) by a(t,p,s),1 < s < p—1, yields a matrix multiplication algorithm
that for each ¢ performs an exchange in dimension (a(t,p,0)+ s) mod p instead of dimen-
sion a(t,p,0). This observation is the basis for defining an algorithm that fully uses the
communications bandwidth of the Boolean cube.

3.2 Naive extension
3.2.1 Square matrices

Each processor holds a 2P~% x 2P~% submatrix (consecutive assignment [6]). The data
assignment is defined by the address map

T T T T C C Cc
(wp_qwp_g - Wp_n p_g__l wo | Wy Wp_g - Wp_n Wy _n_y - -wE).
N— -

-

rpT ’Up rpc vp®

All operands have corresponding address maps. Virtual processor address bits (labeled vp)
define local storage addresses, whereas the real processor address bits (labeled rp) define
different physical processors. The superscripts “r” and “c” denote “row” and “column”,
respectively. The exchange operation defined by the exclusive-or operation on the virtual
processor address bits reorders data in the local storage of all processors, but there is no
exchange between real processors. An exclusive-or operation on bits in the real processor
field implies an exchange of all data between pairs of processors. The local address map is
preserved.

Lemma 4 The alignment on the bits in the virtual processor address field, and the steps of
the multiplication phase correspondmg to bits in this address field defines a complete matriz
multiplication on blocks of size 2P~% x 2P~ %,

Lemma 4 follows from the recursive nature of the binary-reflected Gray code. This block
matrix multiplication can be replaced by any suitable matrix multiplication algorithm in
each node, without affecting the part of the algorithm requiring interprocessor communi-
cation. For instance, a block, matrix-vector, or SAXPY [12] based algorithm may be used
depending on the architecture of each node.

Theorem 1 The multiplication of two square matrices of size P X P on an n-cube, 2p > n,
can be performed by applying the algorithm by Dekel et al. [3] to the real processor address
field, and by employzng any suitable matriz multiplication algorithm for the local blocks of
size 2P7% X 2P~7% , assuming consecutive assignment of matriz elements to real processors.

The time complexity of the algorithm is,

1. Communication:

: . nP?
o Alignment: %%
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o Multiplication: (v N — 1)%2.

2. Arithmetic: 271\3,3—.

The alignments of the matrices A and B are assumed to take place concurrently in the
above estimates. The arithmetic time is reduced in proportion to the number of processors,
but the largest communication term only in proportion to the square root of the number of
processors. The data motion for the matrix A only uses one cube dimension per processor,
and so does the data motion for B. A total of two cube dimensions are used for each
processor, in each step of the multiplication algorithm. The communications capability of
Boolean cubes of many dimensions is poorly utilized.

3.2.2 Rectangular matrices

In the block algorithm in the preceding section, the critical assumption for the alignment
is that the address fields for P, @, and R are of the same length. Hence, by extend-
ing each of these address fields to max(p,q,r) bits the alignment will be correct regard-
less of matrix shape. The extension can be made by adding high order bits (unused).
In the multiplication phase, an all-to-all broadcasting is performed within rows of A and
columns of B. Every element of a column of B must visit every processor row to which ele-
ments of A are allocated. This requirement implies that the exchange sequence is of length
max(min(P, No), min(Q, No)). Similarly, every element of a row of A must visit every pro-
cessor column to which elements of B are allocated. This requirement implies that the
length of the exchange sequence must be max(min(R, N1), min(Q, N1)). With ng = ny = 2
we have:

Corollary 1 The multiplication of a P x Q matriz by a Q X R matriz on a Boolean
n-cube factored as two %-cubes, can be performed by a block version of Dekel’s al-

gorithm requiring 2]'-\;—;—N-'| l'\/%] [%1 min{max(P,Q, R),v/N} arithmetic operations, and

max( [\;—}—\7] , [7—%—] ) [TQ]\?] {min(max(p, q,7),%) + min(max(P, Q, R),v/N) — 1} element trans-
fers in sequence with concurrent communication of A and B.

The number of processors performing arithmetic operations is min(P,v/N) min(R,/N).
In this set a processor is active min(Q,T) out of T = min(max(P,Q,R),v/N) steps.
The number of processors involved in communication during the multiplication phase is
min(P,v/N)T for matrix A. For the matrix B min(R,v/N)T processors participates in
the communication. Every processor performing arithmetic operations also performs com-
munications, but the converse is not necessarily true. Techniques for increased processor
utilization for P,Q, R < /N are given in section 5.

3.3 A block algorithm using all cube dimensions

By partitioning the matrix A into 1 x X blocks and the matrix B into A X 1 blocks the
matrix multiplication is transformed into A rank % updates. The idea in the algorithm
below is to perform the communication for the different high rank updates concurrently. If
Q> 12”—\/]7 , then A = 2 and % communication channels per processor are used for both A



and B. The full communications bandwidth is used. We refer to the P X % blocks of A

and the —f\)v— X R blocks of B as level-one blocks in order to distinguish this blocking from the
blocks assigned to individual processors, the level-zero blocks. The naive block algorithm
modified as described below is used for the multiplication of each pair of level-one blocks.

3.3.1 Data allocation

Each level-one block is allocated to the processors with consecutive assignment [6] (as in
the preceding section), and different level-one blocks assigned cyclically. The address map
for A is

T T T T T
(wp_lwp_2 . .wp_.;_, wp—%—l . .wo I
N -~ 7\ ~~ 7
rpT vp0O™
c C C Cc C [+ (o4
We—1Wg—2 " Wq—y W1 " Wy_py 2 We_p_n_y " Wo
N -’ "\ N J
vple rpc vp0e
and for B it is
T T T T T T T
(}Uq—lwq—‘l wq—u/wq-—u—l Wop—2 Wymp—2_1" " Wo
vpl” rpT vp0™

c c c [
Wy Wyg* " Wy n Wy _n_y - “wg)

~ /\\ "
~~

rp° vp0°

assuming that A < % is a power of two and g = logA. This assumption is only made

for notational convenience in the address map. The blocks at level zero are defined by
the fields labeled vp0. The level-zero block size for 4 is [ 2] x [;9%], and for B it is

[2%] X [%]. Level-one blocks are identified by the field labeled vpl, and labeled with
m,0 < m < XA — 1. The concatenated rp and vp0 fields define the level-one blocks. Each
such block is distributed uniformly over all vN x v N processors. The partitioning of the
matrices is illustrated in Figure 1. Solid lines define boundaries of level-one blocks, and
dashed lines boundaries of level-zero blocks. Typical level-one and level-zero blocks are
represented by large and small shaded areas, respectively.

By Lemma 4 the alignment and subsequent exchange and multiplication operations
related to the vp0° field of A and vp0” field of B define a block matrix multiplication local
to every processor. Note that since no = nq the lengths of the two fields, vp0° and vp0” are
the same. The exchange on the vpl field is a local memory move. This exchange implies
that in the next several steps a new pair of level-one blocks will be multiplied. Local memory
moves can be avoided by a suitable address calculation during the multiplication phase.

3.3.2 Alignment

The alignment is performed on the processor address fields alone, i.e., after the alignment
processor (k,£) has column indices

(**---*k@ﬁ**u-*)

vple p° vp0°




Matrix A Matrix B

7/

. \\

R
Level-zero block: size \/%\7 X % Level-zero block: size ﬁ]‘\? X -\/_RN
Level-one block: size P X %%— Level-one block: size % X R

Figure 1: Partitioning of the matrices.
of the matrix A, and row indices

N, o’
vpl” rpT vp0™

(**-.-*k@ﬂ**---*)

of the matrix B, where *- - - % denotes all numbers that can be represented by that bit-field.
The matrices are properly aligned. For a processor in row k and column £, the alignment of
A involves the set of cube dimensions ’D(k\/Jv ) (the higher-order % cube dimensions are used
for the encoding of rows) and the alignment of B involves the set of cube dimensions D(2).
Clearly, D(kv/N) N D(£) = ¢. Note that the set of dimensions involved in the alignment
operation does not depend on the level-one block index m.

The number of processor dimensions involved in the alignment of A is |D(kV/N)| = ||K]|
for processor row k. The number of dimensions involved in the alignment of B is |14l
for processor column ¢. The number of processor dimensions involved for A ranges from
zero to min(p, 3) and for B from zero to min(r,2). The data volume that needs to be
communicated per processor is [\/Lﬁ] I—\;L]V] for A and [%] [%'] for B. The naive block
algorithm does not fully use the communication bandwidth of the Boolean cube.

We first constrain the alignment of a row to be confined to its row subcube, and the align-
ment of a column to be confined to its column subcube. By Lemma 1 and Lemma 2 the min-
imum number of element transfers in sequence under this constraint is max( {—\/P—%] [ \/Q_N] v3)

for A and max( [V&N] [%1, %) for B. It can be shown that the complexity still holds even
when [\/i]—\ﬂ [%1 is not a multiple of %. The time for the alignment of both operands is

max( [f—iﬁ] I‘%\?] , [%1 [7621'\7]’ %). The alignment of each operand is sped up by a factor of 2
by concurrent communication within subcubes, compared to the algorithm in the preceding
section.




Lemma 5 A lower bound for the alignment of A and B on a Boolean n-cube configured
with no = ny = % > 1 and P,Q, R > /N is (EXUQ

Proof: Consider the %7— processors in rows {12!} and columns {1271}, i.e., the pro-
cessors to which the lower right quarter submatrix of each operand is allocated. These I—X—
processors form a (n — 2)-dimensional subcube. Each processor in the subcube needs to
exchange % elements with the subcube storing the lower left quarter submatrix of A, and
% elements with the subcube storing the upper right quarter submatrix of B. The total

number of elements that must be sent out of the subcube is @LQ—. The total number of
links that connect to processors outside the subcube is 2%. |

Corollary 2 Restricting the alignment to row/column subcubes is optimal if P = R, and
suboptimal by at most a factor of two for P,Q,R > +/N.

The worst case is P > R or P < R. We will now present an algorithm that has a lower
complexity than the subcube alignment algorithm for this case.

The alignment of A is a bit-inversion on the column address field. The bit-inversion is
dependent on the row address. Lemma 2 applies to each subcube, but not to the complete
alignment operation. Different row subcubes execute different bit-inversions. Similar argu-
ments apply to the alignment of B with respect to column subcubes. If column dimension
£; must be routed for the alignment within processor row k of A, then k, = 1. The key
observation for the algorithm outlined here is that in the row complimentary to row k with
respect to bit s, k @ 2F¢, column dimension £, is not included in the alignment, since in
that row k; = 0. Hence, if the alignment of A is performed one column dimension at a
time, then part of the data can be exchanged within the subcube with k, = 1, and part
of the data exchanged by sending it to the complimentary row with respect to the column
dimension being routed, exchanging it there, and sending it back to the original row sub-
cube. With § elements per processor and §,. elements exchanged in the complimentary row
subcube the time for the alignment on one column dimension is max(6 — 8., 6.+ 2), which is
minimized for 6, = |_%_| — 1. The optimal time for the alignment on one column dimension
can be derived as ]'%'] +1if§ > 2,0r 1if § = 1. Note that the communication between
a row and its complimentary row is in the 1 — 0 direction before the exchange and in the
0 — 1 direction after the exchange. The elements can be pipelined. Figure 2 shows the
three steps for the alignment on a 6-cube with the alignment performed one dimension at
a time. The shaded area represents the rows for which alignment is required during the
next step. To complete the description of the algorithm we notice that for each alignment
(column) dimension, there is a unique row dimension. The cube dimensions for row and
column encoding are disjoint, and it follows that the alignment can be performed on all di-
mensions concurrently. The data set is divided into 5 pieces, and set u, 0 < u < 2, subject
to alignment, if necessary, in column dimension u, (v + 1) mod Zoo(u+ % —1)mod 2.
Tl}lle total time for the alignment of A is g—(”\/%] I'\/%] 114 1) for [\/—}%] [7%] > %,and %
otherwise.

Lemma 6 An upper bound for the alignments of A and B is min{%( [5%] + I—%\%]) +
n,max(%g,?v—Q)} with P,Q,R > +/N, };V—Q > 2 and %Q > 2.
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Figure 2: The three steps for the alignment of matrix A on a 6-cube.




The conditions of % > 2 and %9— > 7 are required, since both algorithms described
above assume that the data set can be split into at least 5 parts. A tight bound for the
alignment when P,Q, R < v/N is max(p,r).

3.3.3 Multiplication

Lemma 7 [8] A lower bound for the data transfer time of the matrices A and B during

multiplication is [Iﬂé_%Rﬁ] (v/N -1) for P,Q,R>+/N.

Proof: Every processor needs to receive ENQ elements of A from each of (v/N —1) processors.
The lower bound for this all-to-all broadcasting within row subcubes is [%%] (VN -1) [8].
But, since all row subcubes perform the same communication and are fu112y utilized for this
lower bound the subcube lower bound is also the total lower bound by Lemma 2. The
bound for B is derived similarly, and since the set of dimensions used for the broadcasting

of A and B are disjoint the lemma follows. I

For the multiplication phase the binary-reflected Gray code exchange sequence accom-
plishes an all-to-all broadcasting [8] within columns for B, and within rows for A. Any
sequence with this property applied to both A and B in the same order is acceptable. The
exchange sequence S(%,s),1 < s < 2—1, is as appropriate as S(%,0). It follows that £ pairs
of blocks can be exchanged concurrently, with % cube dimensions along each axis of the ma-
trices. The total data transfer time for the multiplication phase is I-\/iﬁ] [%%\;] (VN —1) for

the matrix A and ]'—\/-Bﬁ] [ Z%ﬁ] (VN —1) for B, for multiplication performed on a /N x VN
2
processor Boolean cube. When P, R > +/N and Q is a multiple of 2V N, the bound is tight.

For the rank % algorithm level-one block column m of A multiplies block row m of B.
All level-zero blocks of level-one block m of A and B are subject to the exchange sequence
S(3,m). Let A(k, £, m) be the level-zero block assigned to processor (k, £) of level-one block
m of matrix A. The multiplication phase for level-one block column m of A4 and block row
m of B involves the data motion defined by

A(k,6,m) — A(k,£®2°3™) m), Vm € Z,,Vk, L€ 2 /% concurrently,

B(k,¢,m) — B(k® 2°‘(t’%’m),£,m), Vm € Z,,Vk,L € Z s concurrently.
The index for time, ¢, ranges from 1 to v/ — 1. Note that the communication for exchanges
of A and B can be performed concurrently. Moreover, since a(t, §,m1) # o(t, %, ms), my #
my for all ¢, the communication can be performed concurrently also for all m € Z ». In any

communication step all cube dimensions are used for \ = 7.

3.3.4 The Algorithm

In the pseudo code below we express the concurrency in the communication during align-
ment as well as multiplication. The algorithm MACC (Multiplication using All Channels
Concurrently) restricts the communication to be confined to within subcubes. For the con-
current alignment the local data set is divided into as many sets as there are dimensions
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in the alignment operation. In the algorithm below this division is based on the level-one
blocks. This division may yield too few sets if A < 7, and a different strategy for partition-
ing the local data sets preferred. The data sets that are permuted according to the different
exchange sequences during the alignment define clusters of level-one blocks. All blocks in a
cluster are exchanged concurrently. Clusters are treated sequentially. The number of blocks
in a cluster is equal to ||k|| for A, except for the last cluster that has A mod ||k|| blocks if
A mod [|k|| # 0. Hence, if ||k|| = 1 there are A clusters with a single level-one block in each.
One exchange operation suffices for each block. If XA = ||k|| = 2 (i.e., k = v/N — 1), then
there is only one cluster of % blocks, each of which requires 2 exchange operations. Each
block in a cluster has its unique exchange sequence.

Algorithm MACC

forall k,£ € Z 5 do
/* Alignment phase: */
do concurrently for (1) and (2)
(1) for " := 0 to [[k|| -1 do /* Loop through all the ||k|| aligned dimensions. */
for k" := 0 to [”—2[{] —1do /* Loop through all clusters. */
forall € € Z);) do  /* Concurrently for all blocks of the same cluster. */
if e+ k"||k|| € Z) then  /* Special care for the last cluster. */
Ak, Ly e+ k7| |E]]) = Ak, £ @ 22PH):(erMmodlikl) ¢ 4 k7| ||
endif
endforall €
endfor k"
endfor 4"
(2) for y°:=0to ||¢]| - 1
for k¢:=0to |'”’\7“'| —1do
forall € € 2}y do
if e + k°||¢|| € Z) then
B(k, L, €+ k°|[€]]) « B(k @ 22Ot modlitl) g ¢ 4 kefje]])
endif
endforall ¢
endfor k°
endfor ¢
enddo
/* Multiplication phase: */
fort:=0to VN —1
ift # 0 then
/* Concurrent communication for all A pairs. */
forall m € 2,
do concurrently for (1) and (2)
(1) A(k,£,m) — A(k, L@ 203m) m)
(2) B(k,t,m) — B(k @ 2*(3™) ¢, m)
enddo
endforall m
endif
for m := 0 to A — 1 /* Block inner-product. */
C(k,L,m) — C(k,L,m)+ A(k,£, m)* B(k,£,m)
endfor m
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endfor ¢
endforall &, £

In the alignment phase, the loop indexed by k™ enumerates the clusters for processor
row k. The loop indexed by 4" scans through the dimensions included in the alignment
for processor row k. The concurrency for all the blocks of the same cluster is explored by
the loop indexed by e. The if-statement following it makes sure that € + &7||k|| is a valid
level-one block. It is required when A mod ||k|| # 0. For the multiplication phase it is
important that the loop over the level-one blocks is inside the loop for the level-zero blocks
(t). Excess data motion is otherwise required. The algorithm above is optimal (within a
factor of two for the alignment phase) for P,R > v/N and Q being multiple of %\/]7 given
the data assignment, and offers a reduction in communication complexity by a factor of 2
compared to the naive block algorithm.

Theorem 2 The data transfer time for algorithm MACC with concurrent communication

on all ports of a Boolean n-cube is {%—1}—;@](% + (VN - 1)) [&N_-], which is optimal
2

within a small constant factor with the operands distributed uniformly over the processors

configured as a product of two %-cubes, P = R and P,Q,R > +/N.

For the case P,Q,R < VN algorithm MACC has an alignment complexity of %, which
can be modified to max(p,r) by performing the alignment only on the rows/columns to
which data is allocated. The communication complexity during multiplication can be re-
duced to max(P,Q,R) — 1 by limiting the exchange sequence to the set of processors to
which data is allocated. The modification consists in replacing the upper loop bound for ¢

by T = max(min(P,v/N), min(Q, VN ), min( R, vN)).

4 Non-square machines

In the previous section we assumed that the number of cube dimensions along both matrix
axes was the same (ng = ny = %). With ng cube dimensions along axis zero, and ny
dimensions along axis one, a cube with 2 max(no, nq) dimensions is emulated by introducing
max(ng,ny) virtual dimensions along the axis with min(ng,n1) cube dimensions. Let |no —
n1| = B, then 2P virtual processors are assigned to each processor along the axis with the
fewest number of processors [9]. For each communication between processors along the axis
with the fewest processors, there are 2% exchange steps between processors along the other
axis. Communication along virtual processor dimensions are local memory moves, and can
be avoided with suitable address calculation.

We illustrate the multiplication of square matrices on a machine with ng # ny for the
case no = 2 and n; = 1. For the illustration one level-zero block per processor is assumed.
Hence, vp0° = 1+ vp0”. Figure 3 illustrates the initial level-zero block assignment. Dashed
lines define physical processor boundaries, and dotted lines virtual processor boundaries for
the emulation of a 4-cube with four processors along each axis.

The alignment of the matrix A is along axis one. It is performed as if ny dimensions
were assigned to each axis. If ng > nq then blocks of 26 processor rows are aligned in the

13




00 : 01 Eog 0,3 0,0 : 0,1 éog 03
0 11112 13 0 1112 1a)
________ '________ U U,

2,0 1 2,1 i2g 2,3 2,0 : 2,1 522 02,3
_________ | D I S

3,0 © 3,1 533 3,3 30 3,1 E3g 3,3

: , ! :
Initial allocation of matrix A Initial allocation of matrix B

Figure 3: Initial allocation of level-zero square blocks for P x P matrices on a 3-cube.
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2223020 21 ] 2031102 13
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Allocation of matrix A Allocation of matrix B

after alignment after alignment

Figure 4: Square level-zero block allocation after alignment for P x P matrices on a 3-cube.

same way, i.e., the alignment is performed using k" = 2° [2%] as the row index for alignment
when the column index refers to the virtual processor (block) level. If ny > ng, then the row
index k" = k is used for the alignment of A at the virtual processor level. The alignment
of the matrix B is performed as if there were ng dimensions assigned to each axis. The
alignment for the case where ng = 2 and ny = 1 is shown in Figure 4.

The lower bound for the alignment of matrices A and B can be shown to be the same as
in Lemma 5 for ng,n; > 1 and P,Q, R > +/N. The optimal time for alignment confined to
row/column subcubes is H'%] |’N%'| /n1]n for A and [I'NB]—] [-]%] /no]no for B by Lemma, 3,
or Lemma 2. Hence, the subcube alignment is sub-optimal by at most a factor of two also
in the case ng # n;.

The matrix multiplication phase is shown in Figure 5 for A = 1. The blocks being
multiplied have the same shading. Note that in the multiplication phase the blocks being
exchanged are always of the shape 279" x 2vP%° for both A and B.

To use all the cube dimensions during multiplication the matrices A and B are divided
into A blocks, as in the case ng = ny, with A = max(ng,n1). Without loss of generality,
we assume ng > n1. For the mth level-one block row of B, the exchange sequence follows
S(no,m), m € Zn,. Since there are ng different cube dimensions assigned to axis zero, all
the A exchange sequences can be executed concurrently. For the mth level-one block column
of A, the exchange sequence is also S(ng, m). The dimensions 0,1,---,n0—mny —1 are inter-
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Matrix A4

Figure 5: Square level-zero block multiplication for P x P matrices on a 3-cube.
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preted as the virtual dimensions and the remaining n; dimensions as physical dimensions.
For every step of these ng sequences of exchanges, there are n; exchanges between physical
processors using all the ny cube dimensions, and ng — n; local data movements. As before,
the local data movements can be avoided by address calculation.

We express the algorithm in terms of three subroutines: matrix-align, matrix-mpy-
and-add, and matrix-exchange. The routines apply to matrices of arbitrary shapes, and
arbitrarily factored Boolean cubes. Each processor stores 22 blocks of each operand in the
emulation of the virtual cube of 2max(ng, n;) dimensions. v selects one of these 28 blocks.
For convenience, level-zero blocks are defined for virtual processors indexed by k',¢'. For
instance, A(K’, ', m), k',{' € Zmax(No,N1)» 18 the level-zero block in virtual processor row
k' and virtual processor column £ of level-one block m. G(¢) is the binary-reflected Gray
code of ¢. The subroutines are complicated by the address calculation for the local data
movements avoided.

Subroutine matrix-align (4, B, ng,ny, A)
forall k € Zn,,L € ZN, do
B |no — ny|
forv:=0to 26 -1do
if ng > ny then

k' —k
£ — 028 + o
295
zll — z
else
B — k26 + 0
7
k/l — k
£ 2| 4]
endif

do concurrently for (1) and (2)
(1) for 4" := 0 to ||k"|| - 1 do
for £ := 0 to [ﬂz}im'] -1do
forall € € Z”ku” do
if e+ k"||k"|| € Z) then
A(k',ﬁ', e+ krllkn”) - A(kl,ﬂl ® 2e(D(k”),(e+,yr)mod||k”||), €+ kr”k//”)
endif
endforall ¢
endfor k"
endfor 4"
(2) for v¢:=0 to [|¢"]| — 1
for £°:=0 to [“—2’}—,ﬂ'| —1do
forall € € Zjjen) do
if € + k°||¢"|| € Z) then
B(k’,ﬁ', €+ kcng//”) - B(k" ® 26('D(€”),(6+'y")mod||Z””),KI, e+ kcllf”H)
endif
endforall ¢
endfor k¢
endfor ¢
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enddo
endfor v
endforall i, j
return

In the subroutine above, real processors are indexed by k, £ while virtual processors are
indexed by k', €. For ng > ny, the alignment of row k is determined by k" = 28 |_2%J, ie.,
the least significant 8 bits of k£ are set to 0-bits.

Subroutine matrix-mpy-and-add (4, B, C,ng, nq, A, t)
forall k € Zn,,L € Zn, do
B |no — mi|
for m :=0 to A — 1 /* Block inner-product. */
for v:=0to 26 — 1 do
T — 2mG(t mod 2ﬁ—m) + G( Lmj)
if ng > ny then
K —k
O — 428 + o
CK' t,m) — C(K',t',m)+ A(K', £ & (k' mod 28) @ z,m) * B(K', (", m)
else
k' — k26 4o
O — 1
C(K',t/,m) «— C(K',£',m) + A(K',£', m) + B(k' & (¢’ mod 20) @ z, ', m)
endif
endfor v
endfor m
endforall k&, ¢
return

In the subroutine above, z keeps track of all the local exchanges. For m = 0, z at time
t can be derived as

@ {2a(t/,max(n0,n1),0) I 1<t < t,a(t',max(no,nl),ﬂ) < ﬂ} - G(t)

where @ applied to the set of numbers means an exclusive-or operation on all the elements
in the set. For an arbitrary m, z at time ¢ becomes

Ph {2a(t”mx(noml>im> | 1<t <t o', max(no,ny), m) < ﬂ}

= 2™G(t mod 2°~™) + G ([—L—D :

9omax(ng,n1)—m

The local alignment for row &’ is &’ mod 26. For ny > n1, an exclusive-or of z and &’ mod 28
with the column index of A guarantees the correct interaction between the corresponding
blocks of A and B in the same real processor.

Subroutine matrix-exchange (A4, B, ng,n1, A, t)
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forall k € Zn,,¢ € Zn, do
— l'n,o - n1|
forv:=0to 2°-1do
if Mo _>_ ny then
kK —k
O — 2840
forall m € Z) concurrently for (1) and (2) do
(1) if a(t,ny1,m) > B then
A(k/,fl, m) — A(kl,zl @ 2a(t,n1,m), m)
endif
(2) B(K', €', m) «— B(k' @ 20(tmom) g/ )
endforall m, (1), (2)
else
0 — 1
K — k2% + o
forall m € Z) concurrently for (1) and (2) do
(1) if a(t,ng, m) > B then
B(k", ﬁ/, m) - B(k' @ 20:(15,n0,m)7£/7 m)
endif
(2) A(K', £, m) — A(K', £ @ 20(mm) )
endforall m, (1), (2)
endif
endfor v
endforall &,/
return

The complete matrix multiplication algorithm for arbitrary ng and nq is:
Algorithm MACCG

call matrix-align(A, B, no, n1, max(ng, n;))
call matrix-mpy-and-add(A4, B, C, n, ny, max(ng, n1),0)
for ¢t := 1 to 2max(n1,m0) _ 1 do

call matrix-exchange(A, B » M0, M1, max(ng, ny),t)

call matrix-mpy-and-add(4, B, C, no, 71, max(ng, n1),1t)
endfor ¢

The configuration of the set of processors has no effect on the number of element
transfers in sequence for the alignment, considering only hlgher order terms. The blocks
being exchanged in the multiplication phase are of size [Z- | X [+2- x| for the matrix A

and [+ SV AR [ w-| for B. The total data transfer time during the multiplication phase is
[No] X |'>\N1'|(N1 1)~ for A and [/\N] X I-N (No—1) =~ /\QAJ,% for B.

Theorem 3 The communication complexity for the multiplication of a P X Q matriz A
and a Q X R matriz B on a Boolean n-cube configured as an Ny X N1 cube is at most

max([[R51 [ 1/malnn, [T TR /molmo) +max([ #1151 (N1 = 1), [ 291 [ (No—1)).

18



Matrix A  Matrix B 1 copy of A 4 copies of B
T T

| 0.0.0,0.0.1 0.0.0

e — — 4+ — — e — e — — - — o - ——

1.0.011.0.1 0.0.1
]

R S R
: 2.0.0/2.0.1

-t —— ] - == 1.0.0

: 3.0.0;3.0.1 - - =

: . 1.0.1

2.0.0

2.0.1

3.0.0

3.0.1

Figure 6: Partitioning of rectangular matrices with copy/reduction, R< Q < P

For the multiplication phase with N = NoX Ny constant, the optimum values of (No, Ny)
should be chosen such that %11?%1)- ~ % is satisfied for P > Ng and R > N;. If P < Ny and
R < Ny, then the optimum aspect ratio is 1. This aspect ratio minimizes the length of the
longest processor axis. If Ny and Ny can be chosen independently, then the optimum value
of No = max(P, Q) and of Ny = max(Q, R).

5 Matrices of arbitrary sizes

If P < Ng and R < Ny, then the processor utilization during multiplication can be improved
by parallelizing the loop on @ (index t). The number of matrix kernels that can be executed
concurrently is v = min(Q, [ %]). The multiplication is represented as rank % updates. A
third axis is introduced for the encoding of the different, concurrent matrix multiplications.
The length of this axis is y. A distribution of the different block columns of A and block
rows of B to distinct subcubes precedes the multiplication, and a reduction succeeds it. For
each rank % multiplication a copy operation as described in the previous paragraph may
be necessary. Figure 6 gives an example where both copy and reduction is required. Blocks
are identified by z.y.z. The third index labels the third axis. Blocks with identical labels
are multiplied together. Reduction is required for all blocks of same z and y and different

z’s. The number of copies of blocks of size % is f%l] for A and f%] for B. The number

of processors performing arithmetic operations is PRy. The matrix product requires 2%
local arithmetic operations plus PR independent reduction operations on sets of size . The
arithmetic time is 2% + log .

If P> @ and @ < Ny, then only Q out of min(P, Ny) processors along axis zero
perform arithmetic operations at any time, and min(P, Ng) > Q steps are required for the
multiplication of A with a column of B. Similarly, if R > @ and @ < Nj, then only Q out
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Figure 7: Partitioning of rectangular matrices with copy, @ < R P

of min(R, N1) processors along axis one perform arithmetic operations at any given time.
To increase the processor utilization and shorten the length of the loop on ¢ the matrix A
is replicated such that the number of instances along axis one is f%], and the matrix B is

replicated such that the number of instances along axis zero is [g] The range for the loop
on tis 0 — @ — 1. The replication of the operands assures that min( P, No) X min(R, Ny)
processors are used effectively for multiplication and communication. Figure 7 illustrates

the replication of A and B for the case 5 =4 and g = 2.

6 Conclusion

We have presented a matrix multiplication algorithm with linear speedup of the arithmetic
and optimal use of the communication capacity of Boolean cube networks for max(ng, n)
elements per processor of the common axis, where ng and n; are the number of cube dimen-
sions allocated to the two matrix axes. The communication complexity for the multiplication
of a PXQ matrix A and a Q X R matrix B on a Boolean n-cube configured as a Ngx Ny cube
is max([[ 5 113 1/mlna, [[1 1841 /no] o) + max([ {51 [k 1 (Ve = 1), [ 1 T2 (Vo -
1)). The arithmetic complexity is [7\%] [N-%] max(min(P, No), min(R, N1), Q). We also give
algorithms with arithmetic complexity I'N%] []—\%1 Q@ For P < Ny and/or R < N; at an
increased communication cost. Parallelization of the common axis (Q) is also described.

The algorithms presented here use constant storage. If the storage is sufficiently large
to allow all-to-all broadcasting within rows and columns to be performed by spanning tree
algorithms then log NV steps suffice, and the communications bandwidth can be fully utilized
[8]. But, the storage requirement per processor is proportional to &jﬁRQ, i.e., a factor of

VN higher than for the algorithms presented here.

It is also possible to generalize Cannon’s algorithm such that the full communications
bandwidth of the cube is used. The generalization can made since there exists n edge-disjoint
Hamiltonian cycles in a 2n-cube, [4], [1], [15]. The matrices are assigned to the processors
by a two-level partitioning, as in the algorithms described here. The storage per processor
is the same as for our algorithms. However, the local control at each processor is more
complicated, because the known method for constructing the n edge-disjoint Hamiltonian
cycles is quite complex (double recursion), and the path encoding complicated.

20




Acknowledgement We thank John Smagula for proofreading the manuscript. This
work has been supported in part by the Office of Naval Research under Grant N00014-89-
J-1906.

References

[1]

[2]

(3]

[4]

(5]

[6]

[7]

(8]

(9]

[10]

[11]

Jacques Aubert and Bernadette Schneider. Decomposition de la somme cartesienne
d’un cycle et de ’union de deux cycles hamiltoniens en cycles hamiltoniens. Discrete
Mathematics, 38:7-16, 1982.

L.E. Cannon. A Cellular Computer to Implement the Kalman Filter Algorithm. PhD
thesis, Montana State Univ., 1969.

Eliezer Dekel, David Nassimi, and Sartaj Sahni. Parallel matrix and graph algorithms.
SIAM J. Computing, 10:657-673, 1981.

Marsha Foregger. Hamiltonian decompositions of products of cycles. Discrete Mathe-
matics, 24:251-260, 1978.

Geoffrey C. Fox, S.W. Otto, and A.J.G. Hey. Matrix algorithms on a hypercube i:
Matrix multiplication. Technical Report Caltech Concurrent Computation Project
Memo 206, California Institute of Technology, dept. of Theoretical Physics, October
1985.

S. Lennart Johnsson. Communication efficient basic linear algebra computations on
hypercube architectures. J. Parallel Distributed Comput., 4(2):133-172, April 1987.
(Tech. Rep. YALEU/DCS/RR-361, Yale Univ., New Haven, CT, January 1985).

S. Lennart Johnsson. Data parallel programming and basic linear algebra subroutines.
In John R. Rice, editor, Proceedings of the IMA Workshop on Mathematical Aspects
of Scientific Software, pages 183-196. Springer Verlag, 1987. YALE/DCS/RR-584,
September 1987.

S. Lennart Johnsson and Ching-Tien Ho. Spanning graphs for optimum broadcasting
and personalized communication in hypercubes. Technical Report YALEU /DCS/RR-
500, Dept. of Computer Science, Yale Univ., New Haven, CT, November 1986. Revised
November 1987, YALEU/DCS/RR-610. To appear in IEEE Trans. Computers.

S. Lennart Johnsson and Ching-Tien Ho. Algorithms for multiplying matrices of ar-
bitrary shapes using shared memory primitives on a Boolean cube. Technical Report
YALEU/DCS/RR-569, Dept. of Computer Science, Yale Univ., New Haven, CT, Oc-
tober 1987. Revision of YALE/DCS/RR-530. Presented at the ARMY Workshop on
Medium Scale Parallel Processors, Stanford Univ., January 1986.

S. Lennart Johnsson and Ching-Tien Ho. Shuffle permutations on Boolean cubes. Tech-
nical Report YALEU/DCS/RR-653, Department of Computer Science, Yale University,
October 1988.

S. Lennart Johnsson and Peggy Li. Solutionset for AMA/CS 146. Technical Report
5085:DF':83, California Institute of Technology, May 1983.

21




[12] C. L. Lawson, R.J. Hanson, D.R. Kincaid, and F.T. Krogh. Basic linear algebra
subprograms for Fortran usage. ACM TOMS, 5(3):308-323, September 1979.

[13] E M. Reingold, J Nievergelt, and N Deo. Combinatorial Algorithms. Prentice-Hall,
Englewood Cliffs. NJ, 1977.

[14] Quentin F. Stout and Bruce Wager. Passing messages in link-bound hypercubes. In
Michael T. Heath, editor, Hypercube Multiprocessors 1987. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1987.

[15] Alan Wagner, 1988. Personal communication.

22




