Parallelism in
Sequential Divide-and-conquer

Zhijing G. Mou, Steve Anderson, and Paul Hudak

Research Report YALEU/DCS/RR683
Febuary 1989

This research was supported by DOE grant DOE FG02-86ER25012.




Abstract

A programming paradigm called sequential divide-and-conquer (SDC) is identi-
fied. The structure of SDC algorithms is revealed by showing how they are composed
from a small set of parallel constituent functions. SDC’s sequentiality and parallelism
are studied. It is shown that despite the inherent sequentiality SDC algorithms often
can be computed in parallel with significant speedup and nearly optimal efficiency.
Three practical problems, Scan, Gaussian Elimination, and Triangle Linear System
are used as running examples in the discussion. A parallel programming language
called DIVACON is informally introduced so that the structure of SDC algorithms
can be naturally reflected in their programs. ’




Introduction

Divide-and-conquer, as generally described in literature [1],[5], [9], computes a function by
dividing the input data structure into two or more substructures, recursively applying the
function to each of substructures, combining the results for the substructures to obtain
the final result.

Although the recursive application of the computed function over one substructure is
independent of the applications over others, the substructures in general need to com-
municate with each other and perform an internal transformation at certain stages of
the computation. The inter-structure reference is intrinsic to all non-trivial divide-and-
conquer algorithms, and has crucial impact on the parallel implementation of the algo-
rithms. The conventional description of divide-and-conquer is inadequate as it fails to
address this important issue.

The problem was first recognized in [6]. In the formal model for divide-and-conquer
proposed there, the adjust functions, which perform cross-structure reference, were iden-
tified together with divide/combine operations as intrinsic constituents of divide-and-
conquer. Communication implied in divide-and-conquer algorithms, as a component of
adjust functions, therefore received the separate treatment it deserves, which in turn fa-
cilitated the mapping of divide-and-conquer algorithms onto parallel machines and the
parallel complexity analysis. As shown in [6], the model yields for a broad class of prob-
lems natural (to people) and efficient (on machine) algorithms.

Unfortunately, we have encountered some problems which resist our model in the
course of expanding its applications. We realized that those problems share one charac-
teristic: the computation on one substructure depends on the result of the computation
of another substructure to such a degree that the computation on the dependent sub-
structure really should wait for the complete computation on the other substructure.
The model in [6] cannot deal with these problems well because it insists on applying the
divide-and-conquer functions recursively over the substructures in parallel.

In this paper, we introduce a model for divide-and-conquer particularly for the prob-
lems with the above characteristic. To make a distinction, the model in [6] will from now
on be referred to as the parallel divide-and-conquer (PDC), and the model presented here
will be referred to as sequential divide-and-conquer (SDC).

It is generally believed that the parallelism in divide-and-conquer comes mainly from
the fact that a function can be recursively applied to more than one substructures in
parallel. It is therefore not obvious that SDCs can be computed on parallel machines with
any significant speed-up. In fact, we will show that SDCs indeed are totally sequential in
some well-defined sense. Nevertheless, we will show why SDC algorithms can be computed
on parallel machines with substantial speedup and nearly optimal efficiency. This seems
paradoxical and calls for in-depth understanding of sequentiality and parallelism. We
therefore have made an attempt at formalizing the concept of parallelism, which has
enabled us to explain naturally both the sequential and parallel aspect of SDC algorithms.

Both the SDC and PDC models reveal that divide-and-conquer algorithms can be
specified in terms of their constituent functions and regular structures over the con-
stituents. These constituents and the structures are well supported in a language called
DIVACON (7] which is being developed on the Connection Machine at Yale. We will give
an informal introduction to the language and use it to specify the SDC algorithms.




In section 1, we will informally introduce a subset of DIVACON and review briefly the
PDC model for divide-and-coquer. The SDC model is given in section 2 with examples.
In section 3, we establish that SDC algorithms are totally sequential with respect to its
constituents. In contrast with section 3, we will show in section 4 that SDCs can often be
computed in parallel with substantial speedup. Section 5 discusses the role of balancing in
SDC algorithms. In the last section, we study the efficiency of SDC algorithms computed
on multiprocessors.

1 Preliminary

Notations used in the paper are taken from the language DIVACON [7], which is a
functional style parallel language designed to support programming under DC models.
In this section, we shall introduce informally the core of the language, which consists of

1. Two compound data types: tuples and arrays.
2. Three highly parallel primitives: divide/combine, local, and communication.

3. One functional form [2], namly, partially ordered function composition (POC); and
some important special cases of POC.

and review the PDC model proposed in [6].
Tuples: A n-tuples has the form Z = (zo,...,Zn-1). Two operations are defined over
tuples: projection and set-projection defined respectively as:

(projection:) 4 (Z0y e s TiyeneyTn—y) = 4
(set-projection:) . = (i,y) (Zo,+ .+, Tise ooy Tna1) = (T0y-++sYy-rrsTni)

As syntactic sugar, we sometimes use 7.t to stand for .1 7, and 7. = (¢,¢) to stand for
. = (t,y) Z Note that a binary operator @ can be considered naturally as a unary
operator over two-tuple or pairs:

69(1';3/) =Ty

For convenience, an integer one-tuple of the form (i) is often identified with i, particulary
in the case (i) is used as the a vector index.

Arrays: An array A is a function A : I — V, where I is its index set, V is its
value set. The index set I of a k-dimensional array is a set of k-tuples with the expected
continuity and monotonlc property. Array indexing is treated as function apphcatlon,
denoted simply by A 1. However, indexing is relative by default. Therefore 1f ) 1s
the index of the ﬁrst entry, the relative and absolute indices of an entry are 7 and 7'
respectively, then i=1- 10, where ‘-’ here is tuple’s element-wise subtraction. Backward
relative indezing is also allowed and denoted by A — ') For example, if A = [1 2 3 4]
then A(-0) = 4.

Like all other functions, an array A: I — V can be > considered as a set of argument-
value paris called its entries of the form (i,v), where i € I, and v € V. We encourage
this ‘set of pairs’ view of arrays since arrays are always distributed in our computatlon
model. It is important to remember an entry (z v) has both its indez value ¢ and value



d&,‘n m [ l [ J
die 1 |
dir | 1] ) "y T

Figure 1: Common Divide Functions

value although sometimes value value is referred to as value. A predicate p over array
entries by default is to be applied to the value values, but by adding a prefix ‘%’ this
default can be changed. For example if %(> 2) is applied in parallel to all entries of [1 2
3 4], we get [false, false, false, true].

The shape of a k dimensional array is a k-tuple defining the arrays size along each
dimension. The special function § can be used to obtain the shape (any entry of) an
array. For example, $.0 and $.1 will return the number of rows and columns of a matrix.
A special predicate atom? is defined to return true for arrays with size one along all
dimensions.

Divide and Combine Functions: The binary divide function dp;, m divides a
vector (one dimensional array) into two subvectors vy and v;, where vy consists of the
first m entries of v, and v, consists of the rest. Two important cases are m = 1 and
m =v/2(recall returns the size of a vector), which we give names of dj; and dj, respec-
tively. The subscripts ht and Ir stand for ‘head-tail’ and ‘left-right’ respectively.

A k dimensional array can be naturally regarded as a one dimensional array where
each entry is a (k — 1) dimensional array. The function dp;, therefore can be used to
divide higher dimensional arrays if we specify a particular dimension. This particular
dimension can be specified by supplying dji, m an additional argument. For example,
dir O divides a matrix along the first (row) dimension, and dj, 1 divides a matrix along
the second (column) dimension (Figure 1).

Operations over divide functions can be used to define new divide functions from more
basic divide functions. One such operation is the intersection operation denoted by A L.
Particularly, (d; 1) A (d; j) partitions an array along the ¢-th dimension by d; and the
J-th dimension by d; at the same time. This allows us to define

3, = (diy 0) A (diy 1)
dIQr = (d}u 0) A (dm 1)

which when applied to a matrix will divide it into four submatrices, in a respectively
unbalanced. and balanced fashion (Figure 1).

Combine functions in this paper are treated simply as the left-inverse [3] of the divide
functions. For a divide function d, d~! is used to denote the corresponding combine
function. Vector catenation operation is a left-inverse for both dj; and d;,, and we give
it the name cat since it is used many times.

't is so named because it is essentially the intersection over partitions in modern algebra [3].




Local Functions: Let f: X — Y be a function, A an array of type I — X, then !f
(read as “bang f”) is a function that maps A to an array B of type I — Y by applying
in paralle] f to the contents of each entry. For example !(+1)[1 2 3] = [2 3 4].

When the operator ! is given an integer argument in the form of !.7, then a function is
defined over the ‘super-entries’ along the ¢-th dimension. For example, if (reduce +) is a
function mapping a vector to a single value by summing up the entries, then !.0 (reduce +)
will map a matrix into a vector. We will also allow ! to be applied to tuples; in particular,
if f is a function defined over arrays, (Ao, A;) are arrays, then ! f (Ao, A1) = (f Ao, f A1).

Note that in the context of divide-and-conquer, the term ‘local’ refers to functions
that contain no inter-structure communication[6]. It is strongly local if it contains no
inter-entry communication, otherwise weakly local. Thus !f applied to an array is always
strongly local, while (1.7 f) for array, and !f for tuples of arrays are generally not.

Communication Functions: Communication from a set A to a set B can be gener-
ally modeled by a binary relation R from A to B such that for a € 4 and b € B, (a, b) € R
iff a receives a message from b. We will however restrict ourselves to the communications
whose relations happen to be functions. Therefore, a communication from A4 to B can be
specified by a function f: A — B.

Similarly, given two arrays A: I — X, and B: J — Y, a function f : I — J fully
specifies a communication from A to B. That is, each entry (;, z) of A will receive the
value of an entry in B with index (f ;) For practical reasons, we would also hope that

the value x of the entry would not be lost after the communication. Therefore we define
for f, A, B:

Nf(B A)= A where A' i = (A1, B: f1)
Observe that each entry is mapped to a pair where its old value is saved as the first
element, and the value acquired from the communication is the second element.
For example, if corr = id is the identity function, then
teorr ([12], [3 4)) = [(3, 1) (4, 2)]

Communications defined above is always one-directional. For bidirectional communica-
tion we define:

U(far f)(As B) = (1fa(A, B), 11/s(B, 4))

For example,

M(corr,corr) ([1 2], [3 4]) = ([(1,3)(2,4)], [(3,1)(2,4)))

The same method can be used to specify communication from an array to itself. When
!'f takes only one array as argument, we define

NfA = 1(A,A)

For example, if f (i, j) = (i, 0), !!f applied to a matrix M will broadcast M(i, 0) to all
entries in the ith row for all rows.

Functions like f, corr above will be referred to as communication generators. Sur-
prisingly, a very broad class of functions over arrays seem to share a very small set of
communication generators in their DC algorithms. Many of the generators are also so
simple that they are not dimension sensitive, and applicable to arrays of different dimen-
sions:



corrt =1 @ correspondent communication

mirr 1 = —1 @ mirror-image communication

bréi=¢ @ broadcast from one entry to all

last &7 = -¢ @ broadcast from a entry with backwards index
vm-row-br 7 = 1.0 @ from vector to matrix br row-wise

vm-col-br ¢ = 1.1 @ from vector to matrix br col-wise

row-brci= (.= 0c)/ @ matrix br row-wise
col-breci= (.= le¢)i @ matrix br col-wise

Note that !!'corr(A,B) will make each entry in A communicate with an entry with
the same index in B, therefore achieves the correspondence communication. !!mirr(A,
B) will make each entry in A communicate with an entry with the same but backward
index in B, thereby achieving the mirr-tmage communication. Both corr and mirr are
one-one generators, and any entry needs to send at most once during communications
they define. All other functions are broadcast generators as some entry (entries) need(s)
to send value(s) for unbounded number of times.

In DC algorithms, a communication function in general is followed by a local function.
Communication always maps arrays to arrays of pairs, local function are often defined to
map arrays of pairs to arrays. Some combinations of communication functions and local
functions occur so frequently it is worth giving them special names. In particular, from
a binary operator @ over two types, we define [@] to be the binary operator over two
arrays of the type by:

[®] = '@ : Ncorr
which performs ‘entry-wise’ operation over two arrays of any dimension. For example,
[+1([1 2], (3 4]) =!(+)[(3,1)(4,2)] = [4 6]

Functional Forms: %: Functional forms are used to combine several functions to-
gether to form a new function, therefore allowing complex function to be hierarchically
constructed from basic functions. Function composition denoted usually by ‘o’ is one of
the best understood function combining forms. Its application to programming specifi-
cation is however limited for the imposed linear ordering over the component functions.

Partially ordered composition (POC) is simply a generalization of conventional func-
tion composition. Relations over component functions are allowed to be any partial order
relation [3] in POC rather than only total order relation [3]. It is well-known that a
partial order relation corresponds to a directed acyclic graph (DAG) and vice versa. We
therefore can define a POC by defining its DAG. Formally, a POC G always has the form:

G (v0, .0y Un—1) 2t (20, ooy Tp—1) = (Y05 -+» Yg—1)
where (y0,0, -.-, ¥0,¢) = v0(0,05 ---, Z0,p)

(y(n—l),Oa ) y(n—l),q) = v(n—l)(x(n—l),()a ) x(n—l),p)

2The term ‘functional form’ is from [2].




where vg, ..., vp—1 are poc’s n nodes, zo,...,Zp—1 are poc’s p in edges, Yo, ...,Yq-1 are
poc’s q out edges. The n equations in the where clause specify for each node its adjacent
list, with the in edges on the right-hand-side, and out edges on the left-hand-side.

A POC G like above can be instantiated by supplying it with n functions. The call
f = G(fo, .-, fn—1) therefore will match f; to the node v;, fs jth input to vis jth in edge,
fi’s kth output to v/s kth out edge. The result f is a function that takes p inputs and
returns q outputs. Functions fo,..., fn—1 are called f’s components. Notice that there
is no reason why f cannot act as a component in a POC, particularly, we can define a
function recursively by using itself as a component.

There are some special POC forms worth being identified. One of them of course is
the conventional linear function composition, which we will denote by ‘:’. Another is the
function tuple form, defined as !(fo...fi) (20, 2k) = (fo Zo,...[1 zk >.

Conditionals are given by ‘p — f;g¢’ with the usual meaning, p — f is treated as
p— f;id.

Filters denoted by ‘=’ work with functions that map an array a to an isoxllorphig
array a’. If p is a predicate over the index sets, then !p = f a = a", where a” 1 = a' ¢
if p i, else a” 1 = a' 1. The essential difference between conditional and filter should be
observed. For example,

(<27 —+1)[4321]=[4332
<2?=!(+1)[4321]=[5421]

Parallel Divide-and-conquer: Parallel divide-and-conquer algorithms in [6] all
have the following general form:

f=p— fos(c:h:!f:g:d)

where f’s constituents d,c,g,h,p, fy are respectively divide, combine, preadjust, postad-
just, base case predicate, base function. 3

A higher order functional DC was given in [6] to specify a parallel divide-and-conquer
algorithm directly from its constituents. Observe that the ‘else’ part in the following
definition is a POC with the graph given in Figure 2.

DC(d,c,g,h,p, fs) =p— fos(c:h: ()f:g:d)

The well-known scan function over vectors (scanv = v/, where v'(i) = ¥i<; v(k)) was
given as PDC in [6]:

scan + = DC (di, cat, id, h, atom?, id)
where h + = (lid, !(+)) : !(nil, (last 0))

Example (Scan PDC): Consider (scan +) [1 2 3 4]. The vector is divided by dj, into ([1
2], [3 4]); Recursive parallel application of scan will give us ([1 3], [3 7]); The communication
function !!(nil, (/ast 0)) maps them to ([1 3], [(3,3) (7,3)]. The left vector is not changed since its
communication is !!nil. By applying !id and !(+) respectively to the left and right, we get ([1 3],[6
10]); The final result is given by their catenation [1 3 6 10].

®In [6], p was built into d, and here we have made it an explicit constituent.



f f

Figure 3: POCs used in Sequential Divide-and-conquer

2 Sequential Divide-and-conquer Algorithms

A function f : X — Y is a SDC, if there exist the following constituent functions:

Divide : d: X — X x X is a divide function in X;
Combine: ¢:Y xY —Y is a combine function in Y;
Adjust : p:X xY — X is the (cross-)adjust function;
Base Predicate: p: X — Boolean is the base predicate;

Base Function: fo: X' =Y, where X'(C X) = {z]p z,z € X}

such that

f =SDC1 (d":,ﬂ’pafb)
where the functional SDC1 and a POC G; used in the functional are:

SDC1 (d’cal‘apa fb) = frac

where fre=p— fb;Gl(da C, 1, frec,frec)
Gl (d’c,“7f’f) T = y

where y = ¢ (yo,%1)

vo=f 70
n=/,1z
x,l =u (yOazl)

(an Il) =dz

The POC G, used in above SDC is drawn on the left of Figure 3. By definition SDC
can be computed by the following general procedure:




Algorithm 2.0: General SDC Algorithm

Input: Constituents d,c,pu,p, fy of SDC f: X =Y, r€ X
Output: y= fz, (ye€Y)

base: if p z then return f; z; else:

divide: d z = zg, z;;

recursion 1: f zg = yo;

. adjust: p(zp, 1) = z}

. recursion 2: fz} =y

combine: return ¢(yo,y1) O

RO

We can immediately see some of the important differences between SDCs and PDCs:

(1) They use different POCs (Compare Figure 2 with Figure 3).

(2) Recursive application of f to the two sub-structures can be done in parallel in
PDC, and not in SDC.

(3) In PDC an adjust function maps two structures from X (preadjust) or Y (postad-
just) to two structures in the same domain, while in SDC, an adjust function maps two
structures, one from Y, one from X, and map them to a structure in X.

Nevertheless, SDC and PDC share many features. Most obvious of all:

(1) They are both computed by dividing the argument, computing the function re-
cursively over the (adjusted) sub-argument, and combining the subresults to get the final
result.

(2) They share the same set of constituent functions, namely the divide, combine,
adjust, base predicate and base functions. All but the adjust functions have exactly the
same functionality in both PDC and SDC.

Scan, for example, can be computed not only by PDC but also SDC. In the following
SDC algorithms, a vector is equally divided into the left and right subvector, scan over
the left is first computed, the adjust function then adjusts the value of the right according
to the result of the left, scan then is computed over the adjusted right. Final result is the
vector catenation of the two subresults.

Algorithm 2.1: Scan (over a vector).
Input: A vector v (size of power of two).
Output: v' = scan v, where v/(i) = Yy, v(k)
Method: (Balanced) SDC. -
Program:
scan + = SDC1 (di, cat, psean, atom?, id)
where psan + = (=07?) = (!(+) :N(last 0)) O

Note that adjust function p,een takes two vectors, and maps the second one to a new
one by adding to each entry the last entry of the first vector. However, because of the filter
‘=07, this ‘fetch and add’ operation take effect only on the first entry of the second vector.

Example(Scan SDC): Consider (Scan +) [1 2 3 4]. The vector is divided into [1 2], [3 4]; scan |1
2] = [1.8]; p ([1 3], [3 4]) gives [(3+3) 4] = [6 4], and scan [6 4] = [6 10]. The final result is thus



(136 10].

Another example of an SDC algorithm is Gaussian Elimination.

Algorithm 2.2: Gaussian Elimination.
Input: A matrix m of size n * (n + 1) representing a linear system with n unknowns.
Output: An upper triangle system m’ represented the same way.
Method: By (unbalanced) SDC.
Program:
ge = SDC1((dn0), (dn0)~ 1, ptge, p, 1d)
where pg = F = (Wocg, : !!(row-br k) : !(col-br 0))
locge((z,y), (u,v)) =z *xvfu—y
p=(=17:%.0) @ base predicate: one row matrix?
F=(> (k, %.1)) @ filter: column index greater than k?
k=(%$1 - $.0) @ k: the column being eliminated. O

Recall that (dp 0) is the unbalanced division over array along the first dimension. It
would divide a matrix M into two sub-matrices: (Mj, M;) where M}, consists of the first
row of M, M; the rest. Since M, satisfies the base predicate p = (= 17 : $.0), which
tests if the matrix has only one row (recall $.0 returns the size along dimension 0 for
any array), the base function is applied. Since the base function is identity function, the
Gaussian Elimination of M}, is simply itself.

The adjust function is then applied to (Mp, M;). It is the linear composition of three
functions: (1) the inter-array communication !!(col-br 0) will broadcast Mj’s jth entry to
M,’s jth column; (2)the intra-array communication !!(row-br k) broadcasts each entry in
M;’s jth column to the row to which the entry belongs, where k is the difference between
M,’s column and row dimensions; (3) the local function locge is then applied, which is
defined over a pair of pairs since each communication preceded produced a pair. It should
be verified that M;’s kth column will be eliminated after the adjust function is applied.
Filter is used in the adjust function to make the already eliminated entries inactive (recall
%.1 returns the entries column index for matrices).

Example (Gaussian Elimination Unbalanced SDC): Let the system be represented by matrix M:

3 211 7
6 1 2 2 11
3 4 3 2 12
1 3 5 4 13

The matrix M is divided into two submatrices: the first row My and the rest M. M, satisfies the
base predicate, and is mapped to itself by the base function id. The inter-array communication
!!(col-br 0) is applied to Mo and Mj, the result is M}:

[(6,3) (1,2) (2,1) (2,1) (11,7)]
(3,3) (4,2) (8,1) (2,1) (12,7)
(1,3) (3,2) (5,1) (4,1) (13,7)

The intra-array communication !!(row-br 0) is then applied to M}, we get:

((6,3),(6,3)) ((1,2),(6,3)) ((2,1),(6,3) ((2,1),(6,3)) ((11,7),(6,3))
((3,3),(3,3)) ((4,2),((3,3)) ((3,1),(3,3)) ((2,1),(3,3)) ((12,7),(3,3))
((1,3),(1,3))  ((3,2),(1,8)) ((5,1),(1,3)) ((4,1),(1,3)) ((13,7),(1,3))

b



Local function locy, is then applied:

3+3/3-3 4#3/3—-2 3x3/3—1 2x3/3—1 12%3/3—7

6+3/6—3 1%3/6—-2 2+3/6—1 2%3/6—1 11x3/6—7
1#3/1-3 3%3/1—2 5x3/1—1 4%3/1—1 13%x3/1—7

0 -3/2 0 0 -3/2
=|lo 2 2 1 5
0 7 14 11 32

Notice that the first column is eliminated. This matrix is to be recurisively eliminated, the result
after the recursive elimination will be combined with My to form the final result.

When a structure z € X is divided into several substructures, it is possible that some
of the substructures are no longer elements of X. For instance, a right triangle can be
partitioned into two right triangles and a rectangle, but the rectangle is not in the domain
of right triangles. We will call sub-structures of this type odd sub-structures, and divide
functions that yield odd sub-structures will be called odd divide functions.

To deal with DC algorithms with odd division, we define a variant of SDC. A function
f:X =Y isan (odd) SDC if:

f =SDC2 (d,c,u1,p2,p, f)

whered: X - X xZx X Divide function
p:Yx2Z—2 "Adjust function one
pe:ZxX—-X Adjust function two
¢, p, fi: same as in SDC1

SDC2 (da Cy 1, 12, P, fb) = fadc

where f&dc =p— fb;G2(d3 C M1, M2, fadca.fadc)
G2 (dac,”laﬂ%f,f) wTr=y

where y = ¢ (yo,¥1)

Yo= [ o
=/

2= 1 (yo,2)
xll = K2 (z”xl)
n=/[r

(zo,z1)=d =

Observe that the function f is not to be applied recursively to an odd structure since
it is not in f’s domain. However, an odd structure is not to be simply thrown out in
DC algorithms. As dictated by the POC G; (see Figure 3 right), the second (real) sub-
structure is adjusted through the odd structure by the two adjust functions successively
after the first sub-structure has been computed. A general algorithm computing odd

SDCs can be derived by modifying Algorithm 2.0. An example odd SDC problem is the
linear triangle system.

Algorithm 2.3: Lower Triangle System (TR).

Input: The pair (M,V), where M is a n * n lower triangle matrix, V is a vector of size n.
Output: A vector C such that M x C =V.

Method: (Unbalanced odd) SDC.

10




Program: ,
tr = SDC2 ( dr,cat, p1, p2, size_one?, try)
dy = dtrpoc (ditadhl)
p1 = !(*) : N(last (0,0))
2] (Za (Ma V)) = (M7 [’] (Vs Z))
size_one? (m,v) = atom? v
try = (/) : Ncorr O

Observe that the divide function is defined in turn by POC dtrpoc, which is defined
below. The same POC will be used in Section 5 to define the divide function in balanced
SDC algorithm for triangle system.

dtrpoc (dm,dy) :: (M,V) = (Mo, Vo), Z, (M1,V1)
where (M, nothing, Z,M,) = dyy M
(VOaVl) = dv |4

The divide function divides a triangle system of size n into two smaller triangle systems
of size one and (n-1) respectively and an odd structure Z, which is the first column of the
triangle matrix. The base function is trivially defined over systems of size one. Adjust
function u; broadcast the solution to the odd column, a local multiplication is performed
to produce a new column. This new column is subtracted from the vector of the second
subsystem by p2. The SDC is then recursively applied to the second subsystem.

Example (Triangle System Unbalanced SDC): Let the system (M, V) be:

3 3
2 1 4
4 21 11
1 2 31 18

After the division, it is divided into a system of size one (Mo, Vo), a matrix corresponds to the
first column of M without the first element Z, and a system of size three (My,V;):

2 1 4
(Mo,Vo)=[3][3], Z=[4}, (MI,V1)=[2 1 ][11}

1 2 31 18

The system (Mo, V) satisties the base predicate, and by applying the base function, we get a
solution vector S = [1]. The adjust function u, is applied to (S, Z) in two steps:

(2,1) 2
(5, Z) =1n(1ast(0,0)) [ 54, 1; } =1(s) { 4 ]

1

b

Let the result of u; be Z’, the adjust function p, is applied to (2',(M1,V1)), which simply
subtracts Z’ from V. The adjusted sub-system therefore becomes:

HAH

which can be rescursively solved to get the solution of [2 3 4], the final solution is therefore [1 2 3 4].

11




5 Balancing in SDCs

Let us illustrate the role of balancing in SDC algorithms through examples.

The SDC algorithm for the Triangle System given previously used unbalanced divi-
sion. The balanced version for the same problems is given below. A system of size n is
now divided into two systems of size n/2, and a size n/2 square matrix. The algorithm
proceeds by solving the first subsystem, multiplying the result vector by the square ma-
trix, subtracting the result of the multiplication (a vector) from the column vector of the
second subsystem, and then solving the (adjusted) second subsystem. It is noticeable
that the combine function cat, adjust function ug, base function f3, and the POC used
to construct the divide function are all shared by both the balanced and unbalanced
versions.

Algorithm 5.1 Balanced SDC Algorithms for Triangle System.
Input: A lower triangular matrix M, a vector v of size n.
Output: a vector z such that M * 2 = v.
Method: Balanced odd SDC.
Program:
tr = SDC2 ((dtrpoc (d?,d;,), cat, p1,p2,size_one?, try)
p1 = (1.0 (reduce +)) : !(*) : !'vm-col-br
U2 , size_one?, try, dtrpoc: same as in Algorithm 2.3 O

Recall that (1.0 reduce +)) reduces a matrix to a column by applying (reduce +) [6]
to all rows of the matrix.

Example (Triangle System Balanced SDC): Let the system (M, V) be the same as in the example
for Algorithm 3.2. After the division, we get two triangle sub-systems of equal sizes (Mp, Vo) and
(M1,V1), and a square matix Z:

weva=[3 ] (5] 2=[1 3] oem=[5][4]

The system (Mo, V1) can be recursively solved to obtain the solution vector S = [1 2]. The adjust
function p, is applied to (S, Z) in three steps:

(5, 2) =tm—col-be [ 8: 3 8: 3; ] =1(s) [ ‘; : ] =>1.0(reduce+) [ g ]

The function pz then adjusts the second sub-system (Mj,V;) by subtracting the above vector
from V;. The system (M;,V;) after adjustment becomes:

1 3
3 1 13
which has the solution of [3 4]. The final result is therefore [1 2 3 4].

Now let us check if we have gained anything from balancing. Recall that time used
by balanced (binary) SDC algorithm is given by:

Ty(n) = 2% Ty(n/2) + Ta(n) + Tu(n) + Ty (n)

16



Since the divide and combine functions in Algorithm 5.1 are valid, they take O(1) time. It
is easy to verify that both adjust functions p; and p2 involve only strong local functions,
correspondent and broadcasting (in reduce) communications, and therefore take O(log n)
time. Therefore, time used by Algorithms 5.1 is given by:

Tir(n) = 2% Ty (n/2) + O(log n) = O(n)

Compared with the O(n * log n) time complexity for the unbalanced algorithms, the
balancing has given us an additional O(log n) speedup!

In the unbalanced SDC algorithm for Gauss Elimination each time one column is
eliminated when the adjust function is applied. The algorithm can be modified to use
balanced division, and an adjust function that must also modified to eliminate more than
one column. However, one will find that the overall time complexity of the balanced
version is not better than the unbalanced one. The following proposition helps to explain
why balancing will contribute to speedup in some but not all situations.

Proposition 5.1 Let f, fu be respectively balanced and unbalanced SDC algorithms,
corey and core, be respectively the time complezity of their core constituents. Then

T(fs) = o(T(fu)) #f T (corey) = O(T (corey)).

The complexity for core constituents for Triangle System algorithms are the same
in both balanced and unbalance version. While for Gaussian Elimination, the adjust
function in the balanced version is of higher order complexity than that in the unbalanced
version. That is why balancing contributed to speedup for the former and not for the
latter.

6 Consumed Resources and Efficiency

Efficiency of a parallel algorithm is as important as its speedup if not more so, and
is typically defined as the ratio between speedup and number of processors used [10].
We would, however, prefer to study the efficiency through the concept of processor-time
resource consumption (PT). By which we mean the discrete integration of number of
processors over the time used to implement a parallel algorithms (Figure 7). If the
number of processors does not change over time, the resource consumption reduces to the
conventional concept of time-processor product [10]. Given a parallel algorithm, the ratio
of PT consumptions in the cases of using one processor and n processors will, as can be
verified, give us the efficiency.

Due to the regularity of DC algorithms, the PT value of DC algorithms can actually
be given by recurrence equations. The general form of such recurences for balanced and
unbalanced SDCs can be shown as:

PTb(n) =2+ PTb(n/2) + PTdcm
PTy(n) = PTy(n — m) + PT,(m) + PTycm

where the PTy., stands for the PT resource consumed by divide, combine, and adjust
functions.

17






