TR 43N

Computer Physics Communications 37 (1985) 195-203
North-Holland, Amsterdam

CYCLIC REDUCTION ON A BINARY TREE |

S. Lennart JOHNSSON

195

Department of Computer Science, Yale University, New Haven, CT 06520, USA

Ensembles of large numbers of processors tightly coupled into networks are of increasing interest. Binary tree interconnect
has many favourable characteristics from a construction point of view, though the limited communication bandwidth between
arbitrary processors poses a potential bottleneck. In this paper we present an algorithm for odd-even cyclic reduction on a
binary tree for which the limited bandwidth does not increase the order of the computational complexity, compared to an ideal
parallel machine. The complexity is 2 log, N with respect to arithmetic operations, and 3 log, N with respect to communica-
tion. The communication complexity compares favourably with the best previously published result, @(log3N). We also show
that the benefits of truncated cyclic reduction are much greater for parallel reduction algorithms than for sequential algorithms.
A reduction in the computational complexity proportional to the reduction in the number of reduction steps is possible.

1. Introduction

With the rapidly developing integrated circuit
technology there is a growing interest in highly
concurrent computations. Several 16-bit processors
already fit on a chip in today’s technology, Seitz et
al. [1]. Within a few years on the order of a
hundred such processors with local storage, each
in the order of about 8-16 Kbytes, will fit on a
single chip. With processors of a larger grain, such
as 32-bit processors with floating-point arithmetic
in hardware, and substantial local storage, say
128-256 Kbyte a processor and its local storage
may demand one chip. A multiprocessor with a
large number of processing elements is indeed
feasible in the technology of the late eighties.

There are many possible models for multi-
processor architectures. One class consists of
processors with small local storage connected to a
global storage via a switching network. Examples
of this kind of architecture are the HEP by De-
nelcor, the NYU Ultracomputer, Schwartz [2],
Gottlieb et al. [3], and the TRAC machine of the
University of Texas at Austin, Sejnowski et al. [4].

Another class of architectures is defined by ma-

chines consisting of processors with local storage
interconnected in a network, with no shared re-
sources. Binary tree interconnection, 2-dimen-
sional mesh, and Boolean n-cube interconnection

are some often proposed topologies. The Caltech
tree machine, Browning [5], is a binary tree of
processors with local storage. The Caltech Cosmic
Cube [6] has the topology of a n-dimensional
Boolean cube. The Cedar machine of the Univer-
sity of Illinois, Kuck et al. [7], is a multiprocessor
with some global resources, as well as clusters of
processors interconnected in networks.

All the machines mentioned so far are of the
MIMD type, Flynn [8]. Each processor executes its
own instructions. Other machines like the ILLIAC
IV and the ICL DAP, both having processors
interconnected in a 2-dimensional mesh, and the
NON-VON machine of Columbia University,
Shaw [9], with processors interconnected in a bi-
nary tree, are of the SIMD variety. All processors
execute the same instruction, with the exception
that some may perform a no-op.

A richer interconnect has fewer potential bot-
tlenecks in interprocessor communication at the
expense of increased cost of wiring the processors
together. A Boolean n-cube is for a large number
of processors significantly more difficult to build
than a binary tree. In an n-dimensional cube of N
processors there are (N/2)log, N communication
paths. In a tree of N processors there are only N
channels, yet the diameter of the tree, ie., the
maximum distance between two processors, is only
2(log, N — 1), approximately twice the diameter of

0010-4655 /85 /$03.30 © Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Division)

196 S.L. Johnsson / Cyclic reduction on a binary tree

the cube. The diameter sets a lower bound for the
time to perform computations requiring global
communication. Solving a full rank, irreducible,
linear system of equations requires communication
between all processors among which the computa-
tions are divided. It is of interest to find efficient
algorithms for sparsely interconnected ensembles
of processors in order to simplify the construction
problem.

The tree is a particularly interesting intercon-
nection in that it scales well. With several
processors per chip, the demands for interchip
channels remain constant for the tree interconnec-
tion, regardless of what size tree is being costructed,
and regardless of what number of processors with
local storage fit on a chip, Leiserson [10]. For a
2-dimensional mesh with M processors per chip
we know of no better growth rate of the number of
interchip channels than VM. For an n-dimen-
sional cube with an m-cube per chip, the corre-
sponding growth rate is (log,N — log, M)log, M
for an n-dimensional cube with an m-cube per
chip (N=2", M=2"),

In the following we will describe an algorithm
for odd-even cyclic reduction on a binary tree of
processing elements. There is no global storage, no
global control. Each processor executes its own
instructions. Hence, the model architecture is of
the MIMD type with no globally shared resources.
Synchronization of computations in different
processors is accomplished via message passing.
The communication time between adjacent pro-
cessors is denoted .. This time is sufficiently long
to allow for the communication of the data re-
quired for the reduction computations on one
equation. The time to perform the reduction com-
putations on one equation is denoted 7,. The
estimates of the computational complexity that are
derived based on these assumptions can be refined
with additional assumptions on the architecture of
the processors and the communication protocol. In
our complexity estimates we assume that computa-
tion and communication can take place concur-
rently. However, data being communicated during
one time step can first be used in a computation,
or another communication, during the next time
step.

The main result presented in this paper is an

O(log, N) algorithm for cyclic reduction on a bi-
nary tree of processors. This algorithm represents
an improvement by a factor of log, N over the
previously best published binary tree algorithm,
Presnell, Pargas [11]. Expressions for the computa-
tional complexity of the algorithm are derived
below. The constants of proportionality are small.
We also briefly discuss truncated cyclic reduction.
The cases with multiple equations per node, and
multiple independent problems are discussed in
detail in ref. [12].

2. Odd-even cyclic reduction

Odd-even cyclic reduction for a tridiagonal
system of N equations of full rank can be carried
out in the following way, Hockney, Jesshope [13],
assuming A is of full rank and of dimension
N =2"-1. Subscripts denote equation number
and superscripts denote reduction and back sub-
stitution steps. -

Reduction

a,j = e,»a{_‘zlj-u,

cf = fiel o,

b/ =b/"' + e,/ + faldin,

)’ij =)’ij_1 + ei)’f—}}“ + fiyi’:zlf",

€= _a'j~l/bij-—211_,,

f;’ = _C{*]/bi]:zl/"’

where i = {2/,2#2/,342/ . 2" -2/},
for reduction steps j= {1, 2,...,n—1}.
The initial conditions are

0_ 0_ 0_ 0_
a;=a;,,b/=b, c;=c;,and y’ =y,

After n—1 reduction steps only one equation
remains

a%txg + b3 xgn-1 + chlx e = il
A correct solution for x,.-1 is obtained with,

Xxo=Xxy.1 =0. Having solved for x,.-: the other
variables are obtained through back substitution.

S.L. Johnsson / Cyclic reduction on a binary tree 197

Back substitution
Xp-1=yp=1 /by
x,= (07 = af g = b) /6
where i = {2/71,3%2/71 542/71 | 2n—2J"1)
and j={n-1,n-2,...,1}.

A careful count gives a total of 17N — 18n + 2
arithmetic operations.

If the tridiagonal system is sufficiently diago-
nally dominant then the reduction can be
terminated after m <n steps, since the reduced
system numerically can be considered as a diago-
nal system. The reduction in the number of reduc-
tion and back substitution steps is 2(n —m — 1),
and the reduction in the total number of oper-
ations is 16*(2""™" —1)—18(n — m) + 2.

3. Cyclic reduction on a binary tree

In finding good mappings of computations on
to a network of processors it is important to know
the manner in which an algorithm makes use of
the data, i.e., how a data structure is traversed.
The access pattern can be illustrated by a compu-
tation graph in which nodes correspond to data
and computations, and edges to information ex-
changes. A computation graph for odd—even cyclic
reduction is shown in fig. 1. The edges are labelled
with the step of the reduction algorithm during
which the data exchange occurs. Nodes are labelled
with the equation number. :

In the mappings considered here nodes in the
computation graph shall be mapped to distinct
processors. From the computation graph in fig. 1
it is clear that no proximity preserving map on to a
binary tree exists. The fanout of the centre node is
2(log, N —1). Some of the nodes adjacent to the
centre node in the computation graph can, in the

2 2 2 2

0=l =pfén] mpm] F Tk] com] =P] =0=1: 1=0=1=F %] =0=] S Eé=]=0=1=Pb¢=1 <0
1 2 3 4 L) 6 7 8 9 10 11 12 13 14 15

Fig. 1. A graph representation of odd-even cyclic reduction.

tree, be no closer to the node hosting the centre
node than @(log,log,N). Presnell and Pargas
mapped the nodes of the computation graph into
the leaves of the binary tree. With their algorithm
each step requires time @(log,N), and the total
time is O(log2N).

We will now show that an inorder mapping of
equations to nodes in the tree yields an algorithm
that has a complexity of 3 log, Nz, if 7, < ¢, and
2 log,Nt, if t,> 1. Fig. 2 shows an inorder
labelling of a binary tree.

For N =2"—1 the distance between the centre
node, i.e., the root, labeled 2"~ !, and the nodes
2""1+1, is n— 1. Hence, the first reduction step
cannot be completed in a time less than (n — 1)z,.
However, unlike the mapping used by Presnell and
Pargas, the inorder mapping allows successive steps
of the reduction phase to be pipelined. The back
substitution starts at the root and proceeds to-
wards the leaves. :

One can associate a wave front with each reduc-
tion step. The first wave front is initiated by the
leaves. The tridiagonal system is solved when the
wave front for the back substitution, initiated by
the root, reaches the leaves. The required com-
munication paths for reduction step 1 are indi-
cated in fig. 3. The tree edges forming the path
from the leftmost and rightmost leaf nodes to the
root need only transmit one equation. Edges con-
necting leaf nodes with their respective parent
node also only need to transmit one equation. All
other edges have to transmit two equations in the
first reduction step. The reduction computations
are carried out in the nodes that store the equa-
tions subject to modification.

The algorithm described next in some detail

fovei

Fig. 2. Inorder labelling of a binary tree.

198 S.L. Johnsson / Cyclic reduction on a binary tree

level

Fig. 3. Communication for reduction step 1.

distinguishes only between the root, the inter-
mediate level nodes, and the leaf nodes. The nodes
on the path from node 1 and node N to the root
are executing the same code as other intermediate
level nodes for reasons of simplicity and clarity.
No loss of performance occurs. The time for the
additional communication is masked by the time
required for communication in other parts of the
tree.

The algorithm starts and terminates in the leaf
processors. They send their equations to their re-
spective parent processors. These nodes (at level
n — 2 from the root) send the two equations they
receive to their parents, and perform the computa-
tions for reduction step 1 on the equation they
store. The processors at level n— 3 receive two
equations from each of their two children
processors. One of the equations a processor re-
ceives from each of its children processors is to be
forwarded to its own parent processor, one is used
in reduction step 1 for the equation the processor
stores. Hence, processors at level n — 3 send two
equations to their parents, precisely as nodes at
level n—2. After n—1 steps equations 2"~ + 1
have propagated to the root. Assuming that a data
item can first be used during the time step follow-
ing the one during which it was received, one
additional step is needed to complete reduction
step 1. The leaf nodes do not participate in reduc-
tion step 2. The effective tree height is reduced by
1 per reduction step.

By pipelining the reduction steps a new reduc-
tion step can be initiated every other time step.
Associating a wave front with each reduction step,
wave fronts are spaced one level apart. There is a
maximum of n/2 wave fronts in the tree during

the reduction phase. Pipelining occurs naturally in
a system in which synchronization is accomplished
via message passing. As soon as a processor has
finished the communication actions, and computa-
tions associated with a reduction step, it proceeds
to the next reduction step. If the partner processor
in a communication is not ready to participate, the
requesting processor has to wait until the partner
is ready.

On completion of the last reduction step the
root processor computes the variable x,.-1 and
sends it to its two children processors. Those com-
pute the variables x,--2 and x;, ,.-2. For the sake
of program uniformity we also have the root
processor send x, to the left child and x,.; to
the right child. By so doing each node will receive
two x-values from its parent in the back substitu-
tion phase. There is one wave front propagating
from the root towards the leaves in the back
substitution phase. There are n computations and
n — 1 communication steps in sequence.

A concise description of odd-even cyclic reduc-
tion on a binary tree is given in the form of
pseudo-code in the appendix. The progression of
the computations is for N =15 illustrated in figs.
4-9. Superscripts refer to reduction step. The
numbers on edges and nodes denotes the equation
number. A few time steps of the back substitution
computations are shown in fig. 10-13.

The computational complexity is:

Reduction (n — 2)(max(1,, t.) + 1) +1,+ 1,
n>1;

Back substitution (n — 1)z, + nt,.

In the estimates 7. is the maximum time re-
quired for a communication, and ¢, is the maxi-
mum time required for arithmetic operations on
one equation. For each reduction step, except the
last, the required time is 7. + max(r,, z.). If 1, > 1,
then the total time for cyclic reduction with one
equation ‘per node is (2n — 1)r,. With 7.> ¢, the
time is (3n — 4)t.. This computational complexity
is of the minimum order for a full rank, irreducible
system of equations. The constant of proportional-
ity is lower than the constant for more versatile
interconnection networks such as the perfect shuf-

S.L. Johnsson / Cyclic reduction on a binary tree 199

Fig. 4. Cycle 1 of the reduction phase. Fig. 8. Cycle 5 of the reduction phase.

Fig. 10. Cycle 1 of the back substitution phase.

Fig. 7. Cycle 4 of the reduction phase. Fig. 11. Cycle 2 of the back substitution phase.

200 _S.L Johnsson / Cyclic reduction on a binary tree

Fig. 12. Cycle 3 of the back substitution phase.

t=10

Fig. 13. Cycle 4 of the back substitution phase.

fle and the Boolean n-cube, under the same com-
putational model, [12].

The estimates can be refined somewhat with the
following assumptions:
® the time for communication is proportional to

the number of values communicated; _
® the time for arithmetic is proportional to the

number of arithmetic operations;
® communication and computation can overlap in

a pipelined fashion. _

In the reduction phase 2 equations, i.e., 8 varia-
bles are communicated between processor pairs. In
the back substitution phase 2 variables are com-
municated. In the reduction phase 2 multiplica-
tions, 4 multiply-and-add operations, and 2 divi-
sions are covered by 7,. In the back substitution
phase 2 multiply-and add operations, and 1 divi-
sion are performed.

If 1} denotes the time for communication of 1
variable, and 1! denotes the time for a multiply-
and-add operation, assuming that division can be
accomplished in this time as well, the following
alternate estimates can be derived.

Reduction (n — 3)(z} + 8 max(z}, r}))
+21; + 4 max(21}, 1})
+3max(24), 1) +2e] n>3,
2t + 4 max(21}, 1}) _,
+3max(2e],) +2e] n=2;
Back substitution (n — 1)(2z} + 1})
+max(s}, 1}) n>1,

used. The processors along the paths from the
leftmost and rightmost leaves to the root also only
have to send 4 values to their respective parent
processor in the reduction phase. This property
results in special treatment of trees with n < 3.

4. Truncated cyclic reduction

The reduction in the total time for cyclic reduc-
tion on a binary tree that is possible if the reduc-
tion process can be truncated after m < n steps,
depends on the ratio between ¢, and ¢.. If the time
for communication is insignificant, then a reduc-
tion step effectively takes place in the entire tree at
once, and the total computation time is propor-
tional to the number of reduction steps. However,
if 7.3 1, then there is a propagation time propor-
tional to the height of the tree regardless of how
few reduction steps are actually taken, disregard-
ing the degenerate case with 4 being a diagonal
matrix. Hence, the complexity of the tree al-
gorithm is reduced by truncating the reduction
process, but the order remains the same. The com-
plexity of truncated cyclic reduction on the tree is

Reduction (n —1)¢, +(m — 1) max(t,, t.) +1,,
Back substitution (n — 1)z, + (m + 1)z,.

The reduction in the computational time is di-
rectly proportional to the reduction in the number
of reduction steps. Hence, the effect of truncating
the reduction process is much more significant on
this kind of architecture than on a sequential
machine. On a sequential machine most of the
time is spent in the first few reduction steps. On
such a machine approximately half the time is

S.L. Johnsson / Cyclic reduction on a binary tree 201

devoted to the first reduction step, and last back-
substitution step.

S. Parallel cyclic reduction

Parallel cyclic reduction [13] allows a tridiago-
nal system to be solved in log, N steps on an ideal
parallel machine with no restrictions on the com-
munication bandwidth. The cyclic reduction al-
gorithm used above needs 2 log, N steps, and has
an operations count of @(N). Parallel cyclic re-
duction has an operations count of O(N log,N).
Parallel cyclic reduction can be performed in log, N
steps also on some processor networks such as the
perfect shuffle, and the n-cube [12] even under the
constraint of limited communication bandwidth.

The inorder map of equations to processors that
we use to obtain a running time proportional to
log, N both with respect to communication and
computation, does not fit parallel cyclic reduction
well. With the inorder map the leaves contain all
the odd equations (labeling equations from 1 to
N), and only odd equations. In parallel cyclic
reduction arithmetic operations are performed on
odd equations during every step. After the first
step these operations involve communication with
nodes storing other odd equations. Hence, the first
reduction step in Hockney’s parallel algorithm re-
quires root to leaf communication, and the remain-
ing step leaf to leaf communication, some of which
have to go through the root. Each step has a
communication time proportional to log, N, and
the total time complexity is @(log2N). Successive
steps cannot be pipelined to decrease the time for
communication through the root.

6. Summary and conclusions

A concurrent algorithm for odd-even cyclic
reduction on a binary tree of processing elements
is presented. The running time of the algorithm is
proportional to log, N, both in terms of the time
for basic arithmetic operations, and in terms of the
time for communication of single data items. The
constant of proportionality is 2-3, and indeed
slightly smaller than the constants of proportional-

ity for perfect shuffle and Boolean n-cube net-
works. ‘

The computational complexity of the binary
tree algorithm also compares favourably with al-
gorithms for architectures with processors inter-
connected to storage via a switch network, such as
the TRAC and the Ultracomputer. The time to
traverse the switch is proportional to log,N in
those architectures. Pipelining of the switch can
improve the bandwidth of the switch, but the
sequential dependencies of the cyclic reduction
algorithm are such that effective use cannot be
made of such a feature. Hence, the complexity is
0(log2N) for cyclic reduction on these architec-
tures.

The relative decrease in running time rendered
by truncating the reduction process after m<n
steps depends on 1_/7,. With nt, < mz, the reduc-
tion is proportional to (n — m) /n, and with 1> ¢,
the reduction is proportional to (n — m)/3n. The
payoff in reduced computation time is much more
significant than on a uniprocessor.

The inorder map of equations to processors
does not fit Hockney’s parallel cyclic reduction
algorithm well. Indeed, with an inorder map the
communication time is proportional to ¢(log3N).

Our computational model is of the MIMD type,
and in our algorithm different processors execute
different programs. However, there is a high de-
gree of uniformity. Only three different types of
code are employed. The root has one type, the
intermediate level nodes another type, and the leaf
nodes the third type. The appendix contains pseudo
code for the algorithm, and serves to illustrate the
simplicity of the code in each node, as well as a
programming style for systems with synchroniza-
tion via message passing.

Appendix. A binary tree algorithm

Root processor(i):

Xo=0xy,;=0
k=1
m=i/(2k)

202

Reduction computations

while m is even do

receive (al, bl. cl, y1, a,_, b;_ 4, Ci_py Viei)

from the left child

l'CCCiYC (ai+k* bi+k9 Civks Vivk» ar, bl', cr, yr)

from the right child
e,=—a,/b_,
= —c;/b;
=€,y
¢ =fiCisx
bj=b+ec,_;+fa,.,
Yi=yiteyiwtfiyisu
k=2k
m=m/2
enddo
The last reduction step
for m odd do
receive (a,_4, by, Ci g, Yioy)
from the left child
receive (a4, bivy, cdyy, Yivs)
from the right child
= _al/bi—k

= —¢/bi ik
=ea_y

R s

0o

8

¢ =fiCirk

b=>b+ec;_, +fiaiix
yi=yitey _wtfiyik

enddo

Back substitution

x;=/b;

send (x;_,, x,) to the left child

send (x;, x,,,;) to the right child

Intermediate level processor(i):
k=1
m=1i/(2k)

Reduction computations
while m is even do

receive (al, bl, cl, yl, a,_,, b4, Ci_s» Yi_i)

from the left child

S.L. Johnsson / Cyclic reduction on a binary tree

receive (a4, b,y is Civir Yisks ar, br, cr, yr)
from the right child

send (@, %, bi_y» Cigs Yicks Qigies bivss Civkr Vitk)
to the parent

e,=—a,/b_,
fi=—ci/bii;

a,=e;a;_y

¢ =JiCivk"

bj=b+ecc,_y+fa,..

yi=Yiteyixtfiik

k=2k

m=m/2

enddo

The last reduction step for node i

for m odd do

receive (a,_;, b,_,, ¢;_x, ¥i_;) from the left child

receive (@, 4, b1 4, iy x> Vi4x) from the right child

send (a;_x, bi_ys Cimis Yicks inis by, Civk> Yisk)
to the parent

e,=—a,/b,_,
fi=—c¢/bix
a;,=ea;,_;
¢i=fiCisx

bi=b+ec,_,+fa,,

Yi=Yit eyt [V

send (a;, b;, ¢;, y,) to the parent
enddo

Back substitution

receive (X;_,4, X;,,,) from the parent
X =(yi—a;x;_ 3 — €iXi424)/b;

send (x,_,4, x;) to the left child

send (x;, x,,,,) to the right child

Leaf processor(i):

send (a,, b;, ¢;, y;) to the parent

Back substitution
receive (x,_;, x,,,) from the parent

x;=(y—ax,_;— Cixis1)/b;

S.L. Johnsson / Cyclic reduction on a binary tree 203

References

[1] C. Lutz, S. Rabin, C.L. Seitz, D. Speck, in: Proc. Conf. on
Advanced Research in VLSI (Artech House, 1984) p.
1-10.

[2] J.T. Schwartz, ACM Trans. on Programming Languages
and Systems 2 (1980).

[3] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe,
L. Rudolph and M. Snir, IEEE Trans. Comput. C-32
(1983) 175.

[4] M.C. Sejnowski, E.T. Upchurch, R.N. Kapur, D.P.S.
Charlu and G.J. Lipovski, in: Proc. National Computer
Conf. IEEE (1980) p. 631.

[5] S.A. Browning, Technical Report 1980: TR: 3760, Com-
puter Science, California Institute of Technology (January
1980).

[6] C.L. Seitz, The Cosmic Cube, CACM (1985).

[7] D. Kuck, D. Lawrie, R. Cytron, A. Sameh and D. Gajski,
The Architecture and Programming of the Cedar System,
in: LASL Workshop on Vector and Parallel Processing
(August 1983).]

[8] M.J. Flynn, Proc. of the IEEE 12 (1966) 1901.

[9] D. Shaw, The NON-VON Supercomputer, Technical Re-
port, Dept. of Computer Science, Columbia University
(August 1982). .

[10] C.E. Leiserson Area-Efficient VLSI Computation (MIT
Press, Cambridge MA, 1982).

[11] H.A. Presnell and R.P. Pargas, in: Proc. 1981 Conf. on
Functional Programming Languages and Computer Archi-
tecture, ACM (1981) p. 107.

[12] S.L. Johnsson, YALEK /CSD/RR-339 (October 1984).

[13] R.W. Hockney and C.R. Jesshope, Parallel Computers
(Adam Hilger, London, 1981).

