Abstract. The Bareiss (or Schur) and Levinson algorithms are the most popular algorithms for
solving linear systems with dense n X n Toeplitz coefficient matrix in O(n?) arithmetic operations.
Both algorithms have been generalised to solve linear systems whose n X n coefficient matrices A are
not necessarily Toeplitz (in O(n3) operations). We show in this paper that the generalised Levin-
son algorithm is a direct consequence of the generalised Bareiss algorithm, thereby considerably
simplifying its presentation in comparison to previous work.

Some Remarks on the Generalised
Bareiss and Levinson Algorithms

Iise Ipsen

Research Report YALEU/DCS/RR-762
February 1990

The work presented in this paper was supported by DARPA under contract N00014-88-K-0573.
Approved for public release: distribution is unlimited.

1. Introduction

The solution of linear systems of equations Az = b with real dense, non-singular coefficient
matrix A is usually accomplished by first determining a triangular factorisation of A [9]. There are
two types of triangular factorisations: lower-upper and upper-lower. A lower-upper factorisation
is given by A = LU, where L is a unit lower triangular and U an upper triangular matrix, while
an upper-lower factorisation provides A = UL, where U is unit upper triangular and I lower
triangular (a unit triangular matrix is a triangular matrix with ones on the main diagonal). For
non-singular A the factorisations are unique. The number of arithmetic operations required to
factor a » X n matrix is O(n3).

In Section 2 we give a simple, structural view of these triangular factorisations, which is
intended to lead to and facilitate the explanation of the generalised Bareiss algorithm in Section 3.
The generalised Bareiss algorithm [5] computes a matrix Q and the two triangular matrices U and

L such that _
@(3)-(%), “

As a product of 2 X 2 elementary transformations, @ is of the form

_ (L1 L
o= (%)
where Ly + Ly is unit lower triangular and Uy + U, unit upper triangular. The uniqueness of the
factorisations implies L=! = Ly + Ly and Uy + U; = U~!. Thus, the generalised Bareiss algorithm
computes explicitly the triangular factors I and L of A. The unit triangular factors L=! and U~! of
A~1 are obtained implicitly: in factored form as the product Q of 2 X 2 elementary transformations.
In Section 4 the generalised Bareiss algorithm is scaled to yield a symmetric factorisation for

symmetric positive-definite matrices A, the so-called Hyperbolic Cholesky algorithm [4].
Upon multiplication of the components in equation (*) by A~! one obtains

o(7)= (=)

where I is the identity matrix. This is the generalised Levinson algorithm [6] of Section 5; it
explicitly computes the matrix @ and the unit triangular factors L=! and U~! of A~!. The two
triangular factors of A are available implicitly, they may be determined from U = L 1A and
L=U"1A.

We also discuss how the matrix @ can be used to accomplish forward elimination and back-
substitution in order to determine the solution = to the linear system Az = b, when A is symmetric
positive-definite.

Section 6 concludes the paper with a combination of the Bareiss and Levinson algorithms for
the fast parallel solution of linear systems with persymmetric coefficient matrices. For the special
case of Toeplitz matrices, it seems to be identical to an algorithm from [8], but we provide a much
simpler description.

In each section, we discuss how the algorithms take advantage of the situation where the
coefficient matrix A is a Toeplitz matrix. A n X n matrix T is a Toeplitz matriz if its elements are
constant along the diagonals:

tonp1 tomg2 ... o

1

Linear systems of equations Tz = b with Toeplitz coefficient matrix T arise, for instance, from
time series analysis, Padé approximations, and discretisations of partial differential and integral
equations [3]. Because a n X n Toeplitz matrix contains at most 2n — 1 different elements, Toeplitz
linear systems can be solved with O(n?) or fewer arithmetic operations. In this case, the generalised
Bareiss and Levinson algorithms reduce to the classical Schur [2, 13] and Levinson [12] algorithms,
which perform the solution of n x n Toeplitz systems in O(n?) operations.

The purpose of this paper is to provide simple algebraic explanations for the algorithms. We
hope that our strategy of first presenting the methods for non-Toeplitz matrices followed by the
subsequent restriction to Toeplitz matrices gives a much clearer idea of the underlying structure of
the algorithms. The numerical issues associated with the methods, which we ignored in this paper,
are discussed in [3, 9]. We only consider here the case of real matrices, but the methods generalise
readily to the complex case. Reference [9] contains all the relevant facts about matrix theory.

2. Solution of Linear Systems based on Gaussian Elimination

Let A be a real non-singular coefficient matrix and b the right-hand side vector of the system
of simultaneous linear equations Az = b. When A is a dense matrix such systems are usually solved
by computing a triangular factorisation of A.

2.1. General Matrices

There are essentially two types of triangular factorisations. If all leading principal submatrices
of A are non-singular then the factoriation A = LU exists and is unique, where L is a unit lower
triangular matrix (i.e. a triangular matrix with ones on the diagonal) and U is an upper triangular
matrix with non-zero diagonal elements. The linear system Az = b can then be solved in three
steps

1. Factorisation A = LU
2. Forward Elimination Lc = b
3. Backsubstitution Uz = c.

Alternatively, if all trailing principal submatrices of A are non-singular, then the factorisation
A = UL exists and is unique, where U is a unit upper triangular matrix and L is a lower triangular
matrix with non-zero diagonal elements, so Az = b may be solved by computing

A=UL, Ud=b, I[z=d.

Applying Gaussian Elimination (without pivoting) to factor the n x n matrix A requires %n3+0(n2)
arithmetic operations, and performing the two subsequent steps by triangular system solution
requires another O(n?) operations.

In many applications the matrix A satisfies a stronger condition than the two above: it is
symmetric positive-definite (and so are all its contiguous principal submatrices). In this case, U =
DLLT and I = DyUT and the two symmetric factorisations A = LDLLT and A = UDyUT exist,
where Dy, and Dy are diagonal matrices with positive elements on the main diagonal. Symmetry
saves half of the work in the factorisation step, so only in® + O(n?) arithmetic operations are
necessary.

2.2. Toeplitz Matrices

The Levinson algorithm exploits the persymmetry of Toeplitz matrices T: TT = JTJ, where
J is the permutation matrix, also called ‘exchange matrix’, with ones on the anti-diagonal [9)].
Obviously, if T is persymmetric, so is its inverse.

Persymmetry implies that the triangular factors from the two types of factorisations are per-
mutations of each other. In particular, let 7 = DUy, where Dy, is a diagonal matrix and Uy, a

2

U U U U u v u u v u u u U U U U

T T z u u u U U U ~

A= 1% . v ouwow | | %% P =0
® =z z =z ® z T u U U U
® = = = ® = =« ® =z Uu

Figure 1: Evolving Non-Zero Structure of a 4 x 4 Matrix
During the Computation of A = LU.

unit upper triangular matrix, and similarly I = DyLy, where Dy is diagonal and Ly unit lower
triangular. Then

T = LDLUy, =UDyLy, and T =JTYJ = (JLEI)(IDyJ)(JUTT),

implying that JL{J = L, JDyJ = Dy, and JUTJ = Uy,
If T is also symmetric, i.e. t; =t_; for 1 << n —1, then

JTJ =T = LD,LT = UDyUT,

so L = JUJ. In particular, the last row of T is the reverse of its first row, and its last column the
reverse of its first column.

The solution methods outlined above are not able to exploit any Toeplitz structure. That is,
even though the n x n matrix T is described by at most 2n — 1 parameters, the operation count for
the linear system solution is still O(n3). In order to explain algorithms that solve Toeplitz systems
in O(n?) arithmetic operations, it is helpful to first consider how Gaussian elimination changes the
zero structure of a general matrix during the factorisation process.

2.3. Structural View of the Factorisations

Gaussian elimination (without pivoting) accomplishes the factorisation A = LU by computing
successive columns of the unit lower triangular matrix L and successive rows of the upper triangular
matrix U by zeroing out successive columns in A. The zero-structure of the matrices occuring in
the evolution from the original matrix A to the final upper triangular U are depicted in the 4 x 4
example of Figure 1. There, z represents an element which is generally non-zero, u an element
of the final matrix U , a blank a zero element and ® an element doomed for elimination in the
current step. The partitioning distinguishes those elements in the upper part of the matrix that
have ceased to participate in computation. In each step, an appropriate multiple o of the latest
row of U, which is the one just underneath the horizontal partitioning line, is subtracted from each
row beneath it in order to remove the elements in the next column. So, all operations are of the
form

lower row = lower row — a * latest row of U.

In this process no previously introduced zeros are destroyed, because the latest row of U has the
same zero structure as all the lower rows to which it is added. Note that in each step all the rows
can be modified simultaneously and independently.

The computation of the factorisation A = UL proceeds in a similar manner.

3. The Generalised Bareiss Algorithm

In [2] Bareiss proposed an algorithm for solving square, non-symmetric Toeplitz systems. The
process of factoring the matrix in Bareiss algorithm is identical to the Schur algorithm, which is

3

[v v u u] [v v u u] [v v u u] [(v v u u]
® =z = =z u U u U U U u u u
y ® vy vy ® r z u U u U
(A)_ z z ® z U vl_,|2® | u _([2')
A r @ = = T ® =z z ® i L
y ¥y ® y vy ® L1 11
z z z ® [A [A | l
I Y R B T R B I Y R R B | ! 11

Figure 2: Evolving Non-Zero Structure of a 4 x 4 Matrix
During the Generalised Bareiss Algorithm.

based on [13]; in addition, Bareiss realised that forward elimination could also be accomplished by
recursions similar to those used for the factorisation. In [5] it was shown how to generalise this
algorithm to non-Toeplitz matrices. In contrast to Gaussian elimination, which computes either
A = LU or A = UL, the generalised Bareiss algorithm computes factors of both factorisations
A = LU and A = UL by working with two copies of the matrix A:

The next section explains how to reduce two copies of the original matrix A to an upper triangular
matrix and a lower triangular matrix, and the one following argues that these triangular matrices
are (in exact arithmetic) identical to the ones obtained from Gaussian elimination.

3.1. Structural View of the Factorisation

In contrast to Gaussian elimination, which eliminates columns, the generalised Bareiss algo-
rithm eliminates diagonals, which turns out to be crucial for the exploitation of Toeplitz properties.
This is shown in the 4 x 4 example of Figure 2; there an element of the final matrix I is denoted
by I, and the letters z, y, z denote elements that are generally non-zero. The upper copy of A is
transformed to upper triangular form and the lower copy to lower triangular form. This is accom-
plished by ‘rotating’ in step k rows 7 + k in the upper matrix with with rows ¢ in the lower matrix
(in Figure 2 those rows are made up of identical letters z, y or z) so as to eliminate one element in
each of them, namely (i + k,7) and (7,7 + k):

row ¢ + k in upper matrix | _ 1 — 0 itk row ¢ + k in upper matrix
row ¢ in lower matrix T\ —Bitk, 1 row 7 in lower matrix ’

The two rows are selected to have the same zero structure, so already introduced zeros are preserved.
Note that in each step all pairs of rows can be modified simultaneously and independently. The
transformation matrix @ is thus made up as a product of these 2 x 2 ‘rotations’.

We can now express the generalised Bareiss algorithm formally. As a matter of simplicity, we
just refer to entire rows of the matrix rather than individual elements and do not show how one can
save operations by taking advantage of the increasing number of zero entries in the matrix. Below,
the vectors agg) are initialised to be the ¢th row of the matrix A. From now on, quantities carrying a
positive superscript will be associated with the upper matrix, and those with a negative superscript

4

will be associated with the lower matrix. In the kth step, the kth subdiagonal of the upper matrix
and the kth superdiagonal of the lower matrix are removed; that is, elements (¢ + k, ¢) in the upper
matrix and elements (z,7 + k) in the lower matrix are removed by appropriately combining the

(3 + k)th row a*=Y of the upper matrix with the ith row a{~F+D)

itk . of the lower matrix.

Factorisation in the Generalised Bareiss Algorithm

1<i<n, d9=g
1<k<n-1,1<i:<n-k,

o — (k1) (k1) o (k1) (k1)
Cijik = @ p 7 [0 Bitki = @ik 103k Lk

“Si)k _ 1 —Q itk “z(-lﬁl)
ag-k) =\ —Birs 1 a§"°+1) .

Now the kth rows of U and L are respectively given by afck"l) and ai_""'k).

3.2. Correctness of the Factorisation

It remains to explain why indeed the generalised Bareiss algorithm computes triangular fac-
torisations of the matrix A.

As illustrated in the previous section, the transformation matrix @ that reduces the two copies
of a A to triangular matrices consists of products of 2 x 2 ‘rotations’, and ‘rotations’ belonging to
the same step are disjoint. The matrix @ for the 4 X 4 example in Figure 2 is of the form

1 117 1 1TT7 1

1 1 1

The right-most of the three matrices eliminates the first pair of off-diagonals. The z’s in the first
subdiagonal of its top right part represent the multipliers for removing the first subdiagonal in the
upper matrix; similarly the z’s in the first superdiagonal of the bottom left part are the multipliers
for removing the first superdiagonal in the lower matrix.

Because subdiagonals are removed in the upper matrix and superdiagonals are removed in
the lower matrix, the transformation matrices applied at each step consist of two lower triangular
matrices in the top half and two upper triangular matrices in the bottom half of the matrix. Due
to the particular zero structure of these triangular matrices the product @ of these transformation
matrices is shown in [5] to have the form

1

P | e e Ll L2)
Q— . . 1 ¢ .. . —.(Ul U2)

If Ais a n X n matrix, then the 2n X 2n matrix @ consists of four n X n triangular matrices, whereby
L, is unit lower triangular, L, is strictly lower triangular, U; is strictly upper triangular, and U, is
unit upper triangular. But Ly + L, is a unit lower triangular matrix, and so is its inverse; similarly
Uy + U, and its inverse are unit upper triangular matrices. Moreover, in

0 AN _ (L1t L2)A
A (Uy + Un)A
(L1 + Lq)A is upper triangular, and (U; + U,)A is lower triangular. Due to the uniqueness of the

triangular factorisations we must then have L = (L1 + L2)™%, U = (U1 + U2)7Y, (L1 + L2)A = U
and (U + U2)A = L. Consequently,

Q A _ (LA _ (U
A)—\UtA) " \L)"

Thus, the generalised Bareiss determines explicitly the triangular factors U and L of A and
implicitly (as the product of the ‘rotations’ making up Q) the unit triangular factors L=! and U~!
of A1,

In [5] it is proved that the generalised Bareiss algorithm does not break down if all contiguous
principal submatrices of A are non-singular. This is a more stringent condition than needed for the
independent computations of A = LU and A = UL by Gaussian elimination, which only require
all leading or all trailing principal submatrices of A to be non-singular.

3.3. Forward Elimination and Backsubstitution

Instead of solving a triangular system the transformation matrix @ may be used to perform
forward elimination, as Bareiss [2] already realised in the Toeplitz case. From the last equation in
the previous section we see that the application of Q amounts to a premultiplication by L~1 and
U1, thus Q can also be applied to the right-hand side b in order to effect forward elimination

b L% c
°(s) - (73) - (2):
Backsubstitution can now be performed by solving either Uz = ¢ or Lz = d in —’-‘2,3 + O(n)
arithmetic operations. Employing a trick from Bareiss [2], one could alternatively determine the

upper half of z from Uz = ¢ and the lower half from Lz = d, which would require only “72 + O(n)
operations.

If A is symmetric positive-definite, the application of QT can replace the triangular system
solution for backsubstitution. To this end, let I denote the identity matrix of the same size as A,
and

y=(I 1)QT (Dfl D-l) (;) = (L1 + L) D; e+ (Uy + U)T DGl
=L Tp{te+UT D[—Jl;
because ¢ = L~'b and d = U~1b, so
y=L TD L%+ U TDG U b= A2 + A71b = 2471 = 2a.

In order to obtain z, rather than 2z, observe that ¢ and d each give rise to one z, and applying the
transformations instead to (Ac (1 —A)d)T, where A is any real number, yields

=(I 1)QT (DEI DI—JI) ((1 i‘c/\)d> =2+ (1-NA=Az+(1- Nz ==

6

[to t1 tz t3] o t1 t2 i3 to t1 t2 t3 to t1 t2 t3
' ! ' i ! 1 1 1 !
t—1 to i1 t2 , to t; t? to t}/ 1,21 to t}’ t?’
2 b1t b b K y S S
1 ' !
toz t—p t_1 1o i, t, th ", £ i
" 1"t

so0 81 sz s3 0 EAE A sy 53 s
s—1 So s1 82 sy s s s? sy s’ sf
s_2 s—1 so s1 s, s, s§ s, s, s s, s, s

L $-3 8-2 s-1 so J 5.3 8—2 8—-1 8o $-3 S—2 8-1 8o $§-3 S—2 S-1 So

Figure 3: Evolving Structure of a 4 x 4 Toeplitz Matrix
During Bareiss Algorithm; Initially s; = ¢;.

In particular, A may be set to either zero or one so as to require only one of the right-hand sides ¢
or d as input.

For symmetric positive-definite matrices A the generalised Bareiss algorithm permits the so-
lution of the linear system Az = b with the following three steps:

1. Determine @ such that Q (::) = (%)

2. Determine (ccl) =Q (g)

-1
3. Determine z = (I I)QT (DL DGI) ((1 :}c/\)d) .

Because the generalised Bareiss algorithm determines a non-symmetric factorisation a;iyx #
Bitk,i, and it can generally not take advantage of the symmetry of a matrix in order to reduce the
number of arithmetic operations — except if the matrix is a symmetric Toeplitz matrix: then the
operation count decreases by fifty percent compared to the non-symmetric Toeplitz case, as shown
in the next section.

3.4. Specialisation to Toeplitz Matrices
If the matrix T to be factored is a Toeplitz matrix, then the generalised Bareiss algorithm is
identical to the original Bareiss algorithm [2], which exploits the structure of a Toeplitz matrix.
Figure 3 displays the evolution of the structure of the 4 x 4 Toeplitz matrix

to t1 1ty I3
1 to t1 1o
t_o t_-1 to h
t_s t9 t_1 1o

T =

during the course of Bareiss algorithm. Although the triangular factors of a Toeplitz matrix are
generally not Toeplitz, the ‘working part’ of the matrix in Bareiss algorithm is Toeplitz as shown
in Figure 3 and below, because identical elements along each diagonal result in identical ;4 ; and
Bii+k for each step; this makes it possible to exploit the Toeplitz structure.

In particular, denote the elements of T by t;; = t;_;, 1 < ¢,j < n. Rows a; and a, constitute
the respective first row of I/ and last row of L. Since T is Toeplitz, at the beginning of the first step
all the elements necessary for further computation are contained in rows ay and a, of the upper
matrix and rows a; and a,—; of the lower matrix. The multipliers are

Lit1,i 5] tiit1 i1 .
ai,i+1=‘t_—,=%‘=al, 5i+1,i=t:;—'+1=-g=,31, 1<i<n—-1.
1,0 i+1,2

7

These multipliers are used in the rotations, as above, to construct rows al(l)l of the upper matrix
(-1)

7

of the lower matrix, 1 < i < n — 1. Hence rows 3,...,n of the upper matrix and

(1)

rows 1,...,n — 2 of the lower matrix retain their Toeplitz structure, and rows agl), ar’, afb__lz) and

agnl) encompass all necessary information for further computation, see Figure 3.

In general at the beginning of step k, rows k + 1,...,n of the upper matrix as well as rows
1,...,n — k of the lower matrix have Toeplitz structure. If we represent the upper and lower
triangular parts of the two matrices by separate vectors

and rows a

b =(0 ... o0 gl oafD), D= (W4 L oY 0 Ll o)
7 = (0 ..o alED L GH), A o (GRG0 L o),

then bgf'__ll) and bﬁf“l) contain all the distinct elements in the respective upper and lower triangular

parts of the upper matrix, while b,(z—_';:'l) and bg"kﬂ) contain all distinct elements in the respec-
tive lower and upper triangular parts of the lower matrix, see Figure 3. Thus, the following two
‘rotations’ embody all the distinct computations on the Toeplitz matrix during step k:

by) (2,) b (%)= (2, ™) W)

)=) Gt) L) = a7 G
The transition to the next step is accomplished by considering the next lower row in the upper
matrix and the next higher row in the lower matrix: '

0 1
bg?z = bgleZ, bff_)m = bg?kZT, where Z = O 1
0

This leads to the following form of the factorisation process in Bareiss Algorithm, which is also
called ‘Schur algorithm’ [13]. Below, 0; denotes a row vector consisting of k zeros, and the rows

b(])

are represented by their individual elements.

Schur Algorithm: Factorisation Part of Bareiss Algorithm

(190 oo 1@) =(tenpr .t o)
1<k<n—1, ap=tED a0 g = T)
<Ok 1® B tgc_)k_l) _ (1 -ak) <0k SR G A 7:7(:!:61.)1)
0 0 R L B 1 0p RN TR A
(@ B o Ok) B (1 —ak) (G B L t("k'i_l) Ok)
- - - =1_ -k -k —k+1 :
tCH o 15D R o, B 1 J\4GkD o GE gRD g
Now the kth rows of U and I are respectively given by
(0, 2§« ... tg;k—)kq) and (t(—_n’?k+l oGP AP).

The recursions for forward elimination and backsubstitution are similar to those in the factorisation;
see also [4].

If the Toeplitz matrix T is symmetric positive-definite, then @; = f; and, as explained in
Section 2, the last row of the Toeplitz matrix is the reverse of the first one, so its computation may
be omitted, hence reducing the operation count by fifty percent. The Schur algorithm for this case
follows:

Schur Algorithm for Symmetric Positive-Definite Matrices

(1O @ O)=(to t1 ... tar1)

1<k<n—1, pp =151,
GO AN (1 ——pk) O O s
0 t;;';) oo lER —pr 1 tgc-k+1) tg;liﬂ) e

4. The Hyperbolic Cholesky Algorithm

The hyperbolic Cholesky algorithm [4] (see also [1, 7]) computes both Cholesky factorisations
A=UUT and A = LLT, where UT = D%J/ 2T and £T = Di/ 2LT, of the symmetric positive-definite
matrix A. If D is a diagonal matrix whose diagonal equals the diagonal of A, then

D-1/2 A\ _ (T _ [DT
Qu D-1/2 Al ~\ur)]~ D:‘J/zUT .

4.1. Connection to the Generalised Bareiss Algorithm
1/2

Premultiplying both sides of the equation by gives, due to the uniqueness

1/2
U
of the factorisation, the following relations between the quantities computed by the Bareiss and

Hyperbolic Cholesky algorithms:

) () (3)= (220 = ()
py?) ! D=2 J\ 4 DyUT L

D1/2 D—1/2
() D1’2)QH(D‘m) =
U

Thus, as also shown in [5], the Hyperbolic Cholesky algorithm is a ‘scaled’ version of the generalised
Bareiss algorithm.

Instead of the ‘rotations’ of the generalised Bareiss algorithm, the Hyperbolic Cholesky algo-
rithm uses hyperbolic rotations to eliminate a pair of elements. In particular, if the generalised
Bareiss algorithm removes element (i + k, %) in the upper matrix and element (¢,%+ k) in the lower

matrix by applying
(1 —ai,i+k)
~Bitk,i 1

and

to rows 1+ k and ¢, then the Hyperbolic Cholesky algorithm removes elements in the same positions

via the hyperbolic rotation
1 (1 —Pi+k,i)
Vi- Pligg NPtk

where p;1ri = v/ it+kBitk,i- This can easily be seen in a 2 X 2 example, where

A=(g g).

The generalised Bareiss algorithm computes

1 a b a b
1 -« b ¢ 0 c—b%/a
-8 1 a b a-b2jc 0 |’
1 b ¢ b ¢

where o = b/a and § = b/c. The Hyperbolic Cholesky algorithm computes
1 Vi b/ NN,
1 1 —p b/\fe +Jc - 0 c—b%/a
V1-p? —p l 1 va blva | | Va=bJc o |’

1)\ sive Ve bive Ve

where p = b/+/ac. Thus, p = 1/af.

The process of forward elimination and backsubstitution proceeds as in the generalised Bareiss

but with @ replaced by
D—1/2
Qu (D—I/Z) .
As a consequence, the Hyperbolic Cholesky algorithm gives rise to a scaled Schur algorithm based

on rotations
=)
1-— pz —Pk 1

4.2. View of Hyperbolic Cholesky Factorisation as a Downdating Process
Unlike the generalised Bareiss algorithm the Hyperbolic Cholesky algorithm can take advantage
of the symmetry of non-Toeplitz matrices. If only one Cholesky factor is desired, it suffices to

compute
D-—l/2 A+ _ [,T
a (") (1) (%),

where A4 consists of the upper triangle of A including the diagonal, and Ay consists of the strict
upper triangle of A excluding the diagonal. As a product of hyperbolic rotations, the matrix Qn

is pseudo-orthogonal, that is,
1 I

10

U U u u v U ou ou v ou ou u v U u
z z v u ou v U u v U u
vy vy z =z v ou U ou
z y z u
—_ —_—
® z =z ® =z ®
® vy ®
®
(a) Removing Successive Diagonals.
u U ou v U ou ou v U U u u
z ¢ z T r z vy
z T y v T T z =z
(V) _ Yy z y z
= — — — —_— .
w r T T r T =z r r ® v v
z ® ¥y ®
®

(b) Removing Successive Rows.

Figure 4: Two Different Orders of Rotations in the Hyperbolic Cholesky
Algorithm Applied to a 4 x 4 Matrix.

Multiplying the previous equation by its transpose and exploiting the pseudo-orthogonality of Qu
yields ££T = VVT - WWT, where V = D1/ 2A, is an upper triangular matrix with positive
diagonal elements, and W = D~1/244 is a strictly upper triangular matrix. Denote by /; the
columns of W, so ££T = VVT - 3 LT and V() = V. We can view the Hyperbolic Cholesky
algorithm as computing a sequence of Cholesky downdating problems: each problem consists of

7 41
premultiplying (V(vt)) and

T) by hyperbolic rotations resulting in (0
(2

vy T _ peyeT LT

such that V(+1) is an upper triangular matrix with positive diagonal elements, see for example [11].
The Hyperbolic Cholesky algorithm computes the rotations in the same order as the generalised
Bareiss algorithm. This is also the order that a downdating process would choose, as Figure 4
illustrates. Instead of removing successive diagonals, as shown in Figure 4(a), one can also pipeline
the rotations so as to remove successive rows; see Figure 4(b).

Reducing the Hyperbolic Cholesky algorithm to a sequence of downdating problems may facil-
itate its round-off error analysis due to the availability of round-off error analyses for downdating
problems.

5. The Generalised Levinson Algorithm

The first explicit algorithm for solving n x n Toeplitz systems with O(n?) operations was
introduced by Levinson in 1947 [12]. More recently, Levinson’s algorithm was extended to non-
Toeplitz matrices by Delsarte, Genin and Kamp [6], just as Bareiss algorithm [2] was extended to the
generalised Bareiss algorithm [5]. In previous work [10] we have shown that the Schur algorithm can
be derived as the result of trying to increase the degree of parallelism in the Levinson algorithm
(i.e. by getting rid of the inner products). Conversely, we will now show that the generalised
Levinson algorithm is a simple consequence of the generalised Bareiss algorithm. Our version of
the generalised Levinson algorithm is simpler and more intuitive than the one in [6] as it does
without the exchange matrix J, and it establishes a direct connection to the other factorisation
methods.

11

5.1. From the Generalised Bareiss to the Generalised Levinson Algorithm
The generalised Bareiss algorithm computes

A U
°(3)=(%);
where A = LU and A = UL are the triangular factorisations of a non-singular matrix A. Postmul-

-1
tiplying both sides of the equation by (A A‘l) gives

o) = gA™Y\ _ (L7

I)] - \LA71) \U!
since A=l = U-1L-1 and A~! = [-1U-!. Thus, by applying the matrix Q to the identity matrix
the generalised Levinson algorithm determines explicitly the unit triangular factors L~! and U~!
of A=! and implicitly (by forming U = L=1A and L = U~!A) the non-unit triangular factors of A.
Now we consider how the elements of Q are actually determined by the generalised Levinson
algorithm. If initially a() = a;, 1 < i < n, where a; is the ith row of A then the kth step of the
generalised Bareiss algorithm combines the (¢ + k)th row a,(-f_;l) of the upper matrix with the ith

oW a(k+1) of the lower matrix:
a® (1)
1 —oyy |
i+ 1,9+k itk ~
((- k)) (“ﬁi+k,i 1)((k+1)), 1<i<n—k,
where

(k+1) ; (k1)

k-1 —k+1
()/() Bitki = ;4 L

Qiitk = @iy ;
to remove element (i+k, 1) in the upper matrix and element (¢, i+k) in the lower matrix. Eventually,
(k Y is the kth row of U and a("+k) is the kth row of L.
This implies that the kth row of TA™! = L1 is ¢,(ck) = a}ck_l)A‘1 and the kth row of
LA-'=U1is 1/),(;"%) = ai‘n"'k)A‘l. In particular, 1/J§O) =a;A™! = el and PO = g, 471 = €T,
where e; are the n X 1 canonical vectors with a one in position ¢ and zeros everywhere else. This

motivates
¢§o) =gA =€l 1<i<n.

T

If
p =aDat, 9P =dfPal 1ci<n-k,

then it follows by induction that

itk = 1/),(ikl)A T Aer, Pigri = 97 Aeigr/ 1/1,(:;1):461;%,

k .
i = 1 —aiik) i 1<i<n-—k.
%(k) —Bitk,i 1 ¢(—k+1) ’ <1<

Note that only elements i...7 + k of ¢(k) and ¢(may be non-zero. To keep the presentation
simple, we do not take advantage of this fact in the description of the generalised Levinson algorithm
below.

and

12

The above derivation shows that, in contrast to the presentation of the generalised Levinson
algorithm in [6], there is no need for the exchange matrix J. Its occurrence in the symmetric
Levinson algorithm is an artefact of the symmetric Toeplitz structure, as explained in the next
section.

We further observe that the inner products in the denominators of a;;+x and Biyk; can be
replaced by recursive equations, thus saving about O(2k) operations in step k of the generalised
Levinson algorithm. Define the denominators of a; ;4% and B;4r,; by

dg_k+l) = ¢§‘k+1)Ae,-, dfi;l) = 1/)1.]:_;1) Aeitk,

so that L i . 1
itk = ¢§+;1)Aei/ d,(— N Bk = 9) Aeiri/ d,(ujc).

in terms of dg'k"'l) and d*71). . initially

We can now derive recursive equations for dz(—k) and dt¥) PR

i+k+1
dgo) = 'l,bfo)Ae; = e,TAe; = a;, 1<i1<n.
From the above definition and the computation of ¢§_k) it follows that

A = 9P ae; = T de; — Bip v Aey = dTFHY - i ipkBiprid

i+k
-k
= (1= 0k Biri)dd .

Similary, one shows that
k k-1
d,(-+)k =(1- ai,i+k,3i+k,i)d,('+k),

Our formulation of the generalised Levinson algorithm is summarised below.

Factorisation in the Generalised Levinson Algorithm

1<i<n, 90 =€, d=a;

70

1<k<n-1,1<i<n-k,
Qiitk = ¢§f,;1)A6z‘/ dTF B = 0T A/ d,(f,;”

i = (1 - aigrBirrddss, A7 = (1— aiinBipni)dl Y

ik =(! —ai,i+k) Vi)
¢§—k) —Bitk,i 1 ¢§—k+1)

The kth rows of L=! and U~ are respectively given by ¢£k—1) and 1/)1(0—n+k), and the kth diagonal

elements of U and L by dg“_l) and dgc_"*'k).

Because it computes the same quantities o; ;4% and Biyk,, hence the same matrix @, as the
generalised Bareiss algorithm, the generalised Levinson algorithm does not break down as long as
all contiguous principal submatrices are non-singular. Moreover, forward elimination and backsub-
stitution can be done in the same manner as for the generalised Bareiss algorithm.

For a symmetric positive-definite matrix A, the generalised Levinson algorithm determines
L=, U1, Dy, and Dy. Alternatively, the Hyperbolic Cholesky algorithm can be used to derive a
symmetric version of the generalised Levinson algorithm that computes the Cholesky factorisations
A~ = U TU-' = LT L1 of the inverse.

13

5.2. Specialisation to Toeplitz Matrices

If the matrix T at hand is a Toeplitz matrix then the generalised Levinson algorithm reduces
to the Levinson algorithm [12]. The Levinson algorithm is derived by applying to the Bareiss
algorithm the relations

P& =a®h a7, N =aPA 1<i<n—k
Hence, only the vectors '«b,(:l_ll), w(k 1) ¢("k+l) and ij('k“) are needed; see Section 3.4. Since the

genera,hsed Levinson algorithm computes the same multipliers a; ;+r and Btk as the generalised
Bareiss algorithm, the Toeplitz case simplifies to

k— -k —k+1 k-1
o = gk = P Ter /T VTer, Br = Bigrs = ¥ D Terga /ol Tersa.
In contrast to the Bareiss algorithm, which requires the three different elements agj_lll), agl *+1) and

ag k’f:i), only one set of quantities, @b(i 1 and ¢§_k+1) for instance, suffices to compute both mul-

tipliers for the Levinson algorithm. Hence, about half of the arithmetic operations in the Levinson
algorithm can be saved when only one of the factorisations is desired (that is, the computation
of the vectors with subscript n in the algorithm below can be omitted). For simplicity, we write

¢gk_l) = 1/),(5_’11) and ¢$¢_k+1) gb(k+1) , and we also exploit the fact that only elements ¢, ..., i +k
of Q/J,Z(i)k and ¢1(—k) may be non-zero.

Factorisation in the Levinson Algorithm

1<i<n, $0=¢0 =40 =¢0 =1, d=1t

1<k<n-1,
ap =5Vt o) e Be=oT (4 L 6T
di+1 = (1 — axBr)dk

g — T)
(k) (",Bk 1) ¢£"k+1) 0
¢#) 1 —ay Y
() = (b 1) (yen ™)

The kth rows of L=! and U~! are respectively given by
(6 0,k) and (04 ¢THH),
and the kth diagonal elements of U and I by dj, and d —k+1-
If the matrix T is symmetric positive-definite then ¢§_k) = d)gk).f and ¢7(7,k) = ¢$fk)J , and
because of L=JUJ also ¢£;’“) = ngk)J . Hence the algorithm simplifies as follows.

Factorisation in the Levinson Algorithm for Symmetric Positive-Definite Matrices
1SZS’IZ, ¢£0):17 dy =1
1<k<n-1,
(k 1)(t R 7)T/dk, diy1 = (1—p%)dk

(k-1)
(k) _ 0
¢ =(1 _pk)(qsgk—l)«f 10)

14

6. A Parallel Algorithm for Persymmetric Systems

During the usual process of solving a linear system Az = b as described in Section 2.1, the
factorisation and forward elimination part can be performed simultaneously. The backsubstitution
part, however, cannot be overlapped with the other two because the first step in the solution of the
upper triangular system requires the last element obtained from the solution of the lower triangular
system in the forward elimination.

We will now show how one can combine the Bareiss and Levinson algorithms in order to
perform all three steps of solving a linear system Az = b in parallel, where A is a persymmetric
matrix. It appears that this algorithm when applied to Toeplitz matrices is identical to one given
in [8], but we give a much simpler description here.

Suppose that there are enough processors, i.e. O(n?), available; and that a division, or a
multiplication followed by an addition constitutes one arithmetic operation. The computation

QTIb_l:]L‘lc ¢\ _ (L'
T I b) \L U d)’ d) \U1%)’
where the multipliers oy and Sy are computed as in the Bareiss algorithm, performs the factorisation
and forward elimination. It requires 2(n — 1) parallel operations because the computation of the

multipliers cannot be overlapped with their application.
Because T' = UDyLy = LDy,Uy, and because of persymmetry we actually have

U L' ¢\ _ (D L' ¢\ _{ Dl L' ¢
L U d) \DyLy U-' d)~ \JDLTJ JU;TJ d)’

and 2 = U-lc = g 1DElc. Because the Levinson algorithm delivers the elements of Dy, the
divisions y = Df, ¢ can be performed concurrently with the forward elimination (possibly with a
lag of O(1) steps). Note that the elements of the vectors ¢ and y are computed in the order 1,...,n,
and the rows of JUZTJ in the order n,...,1. Consequently, the rows of UrTy = (JUphT are
available in the order 1,...,n, so the columns of JU[, ! are available in the order 1,...,n (the
premultiplying matrix J just permutes the rows and has no effect on the columns). Thus, the ith
column of U[! is available by the time the ith element of y has been computed so that the linear
combination z = U, Ly of the columns of g 1 can be performed concurrently with the factorisation
and forward elimination in 2n 4+ O(1) parallel operations.

The algorithm for Toeplitz matrices can be implemented on O(n) processors [8] in 2n parallel
operations, but seems to require a considerable amount of broadcasting. If a truly systolic imple-
mentation without broadcasting is desired then we believe that this algorithm has the same time
complexity as the one in [4], which uses the matrix Q to perform backsubstitution, see Section 3.3.
At last note that the asymptotic time complexity is the same for persymmetric and for Toeplitz
systems.

Acknowledgements

I would like to thank Jean-Marc Delosme, Liz Jessup and Jin-Hong Ma for their careful reading
of the paper.

15

References
[1] Ahmed, H.M., Delosme, J.-M. and Morf, M., Highly Concurrent Computing Structures for
Matriz Arithmetic and Signal Processing, IEEE Computer, 15(1982), pp. 65-82.
[2] Bareiss, E.H., Numerical Solution of Linear Equations with Toeplitz and Vector Toeplitz Ma-
trices, Numer. Math., 13(1969), pp. 404-24.
[3] Bunch, J.R., Stability of Methods for Solving Toeplitz Systems of Equations, STAM J. Sci. Stat.
Comput., 6 (1985), pp. 349-64.
[4] Delosme, J.-M. and Ipsen, I.C.F., Parallel Solution of Symmetric Positive Definite Systems
with Hyperbolic Rotations, Linear Algebra and its Applications, 77 (1986), pp. 75-111.
[5] ————, From Bareiss’ Algorithm to the Stable Computation of Partial Correlations, Journal
of Computational and Applied Mathematics, 27 (1989), pp. 53-91.
[6] Delsarte, P., Genin, Y. and Kamp, Y., A Method of Matriz Inverse Triangular Decomposition,
Based on Contiguous Principal Submatrices, Linear Algebra and its Applications,
31(1980), pp. 199-212.
[7] ———, Generalized Schur Positivity Test and Levinson Recursion, Proc. Europ. Conf.
Circuit Theory and Design, 1983, pp. 321-3.
[8] Gohberg, I., Kailath, T., Koltracht, I. and Lancaster, P., Linear Complexity Parallel
Algorithms for Linear Systems of Equations with Recursive Structure, Linear Algebra
and its Applications, 88/89(1987), pp. 271-315.
[9] Golub, G.H. and van Loan, C.F., Matriz Computations, The Johns Hopkins Press, 1983.
[10] Ipsen, I.C.F., Systolic Algorithms for the Parallel Solution of Dense Symmetric Positive-Definite
Toeplitz Systems, Numerical Algorithms for Modern Parallel Computer Architectures,
Springer Verlag, 1988, pp. 85-108.
[11] Lawson, C.L. and Hanson, R.J., Solving Least Squares Problems, Prentice Hall, 1974.
[12] Levinson, N., The Wiener RMS (Root-Mean-Square) Error Criterion in Filter Design and
Prediction, J. Math. Phys., 25(1947), pp. 261-78.
[13] Schur, 1., Ueber Potenzreihen die im Innern des Einheitskreises Beschraenkt Sind, J. Reine
Angewandte Mathematik, 147 (1917), pp. 205-32.

16

