.

Alternation
and
the Computational Complexity of Logic Programs
June, 1982
Research Report 239
Ehud Y. Shapiro

Alternation
_ and
the Computational Complexity of Logic Programs

Ebud Y. Shapiro!

‘Department of Computer Science
Yale University
New Haven, CT 06520

Abstract.

We investigate the complezity of derivations from logic programs, and find it closcly
related to the complexzity of computations of alternating Turing machines. In
particular, we define three complezity measures over logic programs — goal-size,
length and depth — and show that goal-size is linearly related to alternating space, the
product of length and goal-size 8 linearly related to alternating trec-size, and the
product of depth and goal-size is linearly rclatcd to alternating time. The bounds
obtasned are simultancous. :

As an application, we obtain a syntactic characterization of Nondeterministic Lincar
Space and Alternating Linear Space via logic programs.

1. Introduction

Since the introduction of the resolution principle by Robinson [18] there have been attempts to
use it as the basic computation step in a logic-based programming language [4, 11]. Nevertheless,
for general first order theories, neither resolution nor its successive improvements were efficient
enough to make the approach practical. A breakthrough occured when a restricted form of
logical theories was considered, namely Horn theories. Since the pioneering works of Colmerauer,
van Emden and Kowalski [6, 9, 14], the idea of a procedural interpretation to Horn-clause logic
has materialized. There is a growing body of theory of logic programming (e.g. [1, 9, 15, 16]),
and the programming language Prolog [2, 19], which is based on this idea, is a viable alternative
to the programming language Lisp in the domain of symbolic programming (17, 21].

IThe author acknowledges the support of the National Science Foundation, grant No. MCS8002447.

Author’s current address: Department of Applied Mathematics, Weizmann Institute of Science, Rehovot
76000, ISRAEL.

The model-theoretic, fixpoint and operational semantics of logic programs have been studied
by Apt, van Emden and Kowalski [I, 9], among others. The current paper studies the
computational complexity of logic programs. The results reveal similarities between logic
programs and alternating Turing machines. Since the complexity of alternating Turing machines
is well understood, these results provide a basis for evaluating the complexity of logic programs.

The application of these results provide a link between the structural complexity and
computational complexity of logic programs, a relation rarely found among practical
programming languages. The close relationship of logic programs to alternating Turing machines
may also be considered as further evidence for their potential as a programming language for
parallel machines [5, 7, 8].

Our goal in this work is to provide a theoretical basis for analyzing the computational
complexity of concrete logic programs. The applications of our results suggest, however, that
complexity theory in general may benefit from the study of this computational model. .

2. Logic programs

2.1. Definitions and examples

A logic program is a finite set of definite clauses, which are universally quantified logical
sentences of the form

A« BB,,..,B, k20

where the A and the B's are logical atoms, also called unit goals. Such a sentence is read “A is
implied by the conjunction of the B’s", and is interpreted procedurally “to satisfy goal A, satisfy
goals B, and B, and ... and B,”. A is called the clause’s head and the B's the clause’s body. If
the B’s are missing, the sentence reads ‘A is true" or ‘‘goal A is satisfied””. Given a unit goal, or
a conjunction of goals, a set of definite clauses can be executed as a program, using this
procedural interpretation. Figure 1 establishes some relationships between logic programs and
concepts from conventional programming languages.

An example of a logic program for quicksort is shown as Program 1. We use upper-case strings
as variable symbols and lower-case strings for all other symbols. The term [] denotes the empty
list, and the term [X]}] stands for a list whose head (car) is X and tail (cdr) is Y. The results of
unifying the term [A,B|X] with the list [1,2,3,4] is A=1, B=2, X=]3,4], and unifying [X]Y] with
[a] results in X=a, Y==]].

In establishing the relationship between computations of alternating Turing machines and logic
programs, we develop below logic programs that simulate alternating Turing machines. A

Procedures Definite clauses
Procedure calls Goals

Binding mechanism,
data selectors and constructors Unification

Execution mechanism Nondeterministic goal reduction
Figure 1: Common programming concepts in logic programs

Program 1: Quicksort
anrt([Xle],Ya) -
partition(Xs,X,Ys1,Ys2), qsort(Ysl,Zsl), gsort(Ys2,Zs2), append(Zsl,[X]|Zs2],Ys).
gsort([],[])

partition(|Z|Xs),X,Ys,[Z]|Zs]) — X< Z, partition(Xs,X,Ys,Zs).
partition([Y|Xs],X,[Y]Ys),Zs) — XY, partition(Xe,X,Ys,Zs).
partition([.X,[].0)-

append([X]Xs),Ys,[X|Zs)) ~— append(Xe,Ys,Zs).
append([],Xs,Xs).

simpler precursor of these programs is Program 2. It is a logic program that simulates a two- -
state pushdown automaton that accepts palindromes over an arbitrary alphabet. The procedure
pal(@Q,X.Y) stores in Q the state of the automaton, in X the remaining input string and in Y the
pushdown stack. The semantics of pal(Q,X,Y) is “The pda accepts the string X starting from
state Q and stack contents Y.” The program is designed to succeed on the goal pal(0,S,[]) iff S is
a palindrome. The clauses in the program are of the form

accept(q,[A]X],S) « accept(q’, X,S’).
Such a clause reads “The pda accepts [A|X] in state g and stack contents S if it accepts the
string X in state ¢° and stack contents S°”. The last clause, pal(gl,]},[]), says “The pda accepts
the empty string in state gl and empty stack”.

Program 2: Simulating a pushdown automaton

Pal(qo,[AIXLY) b pal(qO,X,[Am).
pal(qO,[AIX],Y) «— pal(ql ,X,Y)
pal(g0,.X)Y) — pal(q1,X.Y).
pal(gl,[A[X],[A|Y]) < pal(gl,X.Y).
pal(gl,[1.]).

2.2. Computations

A computation of a logic program P can be described informally as follows. The computation
starts from some initial (possibly conjunctive) goal A; it can have two results: success or failure.
If a computation succeeds, then final instantiations of the variables in A are conceived of as the
output of the computation. A given goal can have several successful computations, each resulting
in a different output.

The computation progresses via nondeterministic goal reduction. At each step we have some
current goal A A,...A . A goal A, and a clause A’«~B,,B,,..,B, in P are then chosen
nondeterministically; the head of the clause A’ is unified with A; via a substitution 6, and the
reduced goal is (Al"“'Ai-l'Bl’Bz’""Bk’Ai +1""’Au)" The computation terminates when the
current goal is empty.

We proceed to formalize these notions. We follow the Prolog-10 manual [2] in notational
conventions, and Apt and van Emden [1] in most of the definitions. A term is either a constant,
a variable, or a compound term. The constants include integers and atoms. The symbol for an
atom can be any sequence of characters, which is quoted if there is possibility of confusion with
other symbols (such as variables, integers). Variables are distinguished by an initial capital letter.
If a variable is only referred to once, it does not need to be named and may be written as an
“anonymous” variable indicated by a single underline _.

A compound term comprises a functor (called the principal functor of the term) and a sequence
of one or more terms called arguments. A functor is characterized by its name, which is an
atom, and its arity or number of arguments. An atom is considered to be a functor of arity 0.

A substitution is a finite set (possibly empty) of pairs of the form X—t, where X is a variable
and ¢ is a term, and all the variables X are distinct. For any substitution §={X —t,, Xy—ty,
.y X,—t.} and term s, the term &8 denotes the result of replacing each occurrence of the
variable X by ,, 1<i<n; the term &8 is called an instance of s.

A substitution 4 is called a unifier for two terms s, and s, if 8,0=s,0. Such a substitution is

called the most gencral unifier of &, and s, if for any other unifier §, of s, and s,, 8,0, is an
instance of s,0. If two terms are unifiable then they have a unique most general unifier [18].

We define computations of logic programs. Let N=A,A,,....A , m>0, be a (conjunctive) goal
and C=A+«B,,...B,, k20, be a clause such that A and A; are unifiable via a substitution 8, for
some 1<i<m. Then N'==(Al,...,A‘._l,Bl,...Bk,A'.H,...,Am)O is said to be derived from N and C,
with substitution 8. A goal A Jﬂ of N’ is said to be dersved from AJ. in N. A goal B JJ of N’ is
said to be invoked by A, and C.

Let P be a logic program and N a goal. A derivation of N from P is a (possibly infinite)
sequence of triples <N'.,C'.,0‘->, #=0,1,... such that N; is a goal, C; is a clause in P with new
variable symbols not occuring previously in the derivation, 6, is a substitution, Ny==N, and N, _,
is derived from N; and C; with substitution ;, for all £>0.

A derivation of N from P is called a refutation of N from P if N=0 (the empty goal) for
some [>0. Such a derivation is finite and of length I, and we assume by convention that in such
a case C;=0 and ;={}. If there is a refutation of a goal A from a program P we also say that
P solves A.

Figure 2 shows a refutation of the goal pal(q0,[a,b,a],]]) from Program 2.

<pal(q0,[a,b,a],]]), pal(¢0,[A0|XD],Y0) «— pal(¢0,X0,[A0[YD]), {A0—a,X0—[b,a],YO—[} >
<pal(q0,[b,a],[a]), pal(g0,[A1|X1],Y1) «— pal(g1,X1,11), {A1—b,X1—[a],Y1—[a]}>
<pal(q1,[a],[a]), pal(q1,|A2|X2),[A2[Y2]) « pal(ql,X2,Y2), {A2—a, X2, Y2} >
<pal(q1,[},), pal(ql,[.0), {}>

<0,0{}>

Figure 2: An example of a refutation

A more intuitive, though less complete way to describe a successful compution of a logic
program (i.e. a refutation) is via a refutation tree. In a refutation tree nodes are goals that occur
in the computation, with their variables instantiated to their final values, and arcs represent the
relation of goal invocation. The refutation tree that corresponds to the refutation in Figure 2 is
simply the list of goals in this refutation, which are the first elements of the triples, connected
with arcs. The refutation tree in Figure 3 corresponds to the refutation of gsort([2,1,3],L) from
Program 1. Depth of indentation reflects depth in the tree.

gsort([2,1,3],[1,2,3])
partition([1,3],2,[1],[3])
2>1
partition(]3],2,[),13])
2«3
partition([},2,0,0)
gsort([1],1])
partition([},1,[,0)
gsort([},[)
geort([],[))
appcﬂd(u:m’lll)
gsort([3],[3])
partition([],3,[,0)
gsort([],[])
gsort([),[)
append([},[3],[3])
append([1],[2,3],[1,2,3])
append([,[2,3],[2,3])

Figure 3: An example of a refutation tree

2.3. Semantics

We define semantics of logic programs, which is a special case of the standard model-theoretic
semantics of first order logic [9]. An interpretation is a set of variable-free goals. The Herbrand
universe of P, H(P), is the set of all variable-free goals constructable from constants and
functors that occur in P. We define the ¢nterpretation of P, I(P), to be the set {A| AcH(P) and
P solves A}. Van Emden and Kowalski [9] show that J(P) is the minimal model in which P is
true. They also associate a transformation 7p with any program P, and show that I{P) is the
least fixpoint of 7, The transformation rp is defined as follows. Let I be a subset of H(P).
- Then a variable-free goal A€H(P) is in rI) iff there is a variable-free instance A—B,,B,),..B, of
~ aclause in Psuch that B is in I for all 5, 1<i<k.

U C Q is the set of universal states, and
Q — Uis the set of existential states.

An alternating Turing machine is called a nondeterministic Turing machine if it has at most
one transition for any universal state and k-tuple of tape symbols.

A step of M consists of reading one symbol from each tape, writing a symbol on each tape,
and moving each of the heads left or right one tape cell, in accordance with the tramsition
relation 6.

A con figuration of an ATM M is an element of Qx(["‘)”‘, representing the state of the finite
control, the nonblank content of the k tapes to the left of the k heads, and the content of the &
tapes to the right of the k heads, including the symbols on which the heads are positioned. A
configuration is called universal if its state is in U, ezistential if its state is in @—U.

A configuration J is a successor of a configuration a if § follows from a in one step, according
to the transition rule 6. A computation path a,, a,,.. is a (possibly infinite) sequence of
configurations of M for which a;,_, is a successor of a;, for all i>1.

A computation trece of M is a rooted, directed tree whose nodes are configurations of M and
every path in the tree is a computation path of M. A computation tree T of M is complete if it
has the following properties:

1. For every universal configuration a in T and every successor § to a there is an edge
(a,f)in T.
2. All the leaves of T are universal configurations.

A configuration a leads to acceptance if it is the root of a finite, complete computation tree.

A computation tree T accepts a string z if it is finite, complete, and its root is the
configuration <qo,[]k,z,[]k'l>, where [] denotes the empty string.)

We say that M accepts z if it has a computation tree that accepts z, and define L(M) to be
the set of strings accepted by M.

The space of a configuration is the sum of lengths of the nonblank tape contents of the
configuration. The space of a computation tree T is the maximum space of any configuration in
T. The time of T is the maximum length of any path in T. The size of T is the number of nodes -
in T.

An alternating Turing machine M operates in space S(n) if for every string zeL(M) of length
n there is a computation tree of M of space S(n) that accepts z. Similarly, M operates sn time
T(n) if for every string zeL(M) of length n there is a computation tree of M of time 7(n) that
accepts z. M operates in tree-size Z(n) if for every string zeL(M) of length n there is a
computation tree of M of size Z(n) that accepts z (cf. [20]). Note that we measure only
accepting computations.

2.4. Complexity measures

We define complexity measures over refutations, using the notion of refutation tree. Let R be
a refutation. We define the length of R to be the number of nodes in the refutation tree. The
depth of R is the depth of the tree. The goal-size of R is the maximum size of any node of the
refutation tree, where the size of a goal is the number of symbols in its textual representation.
Definition 2.1: We say that a logic program P is of goal-size complezity G(n) if for
any goal A in I(P) of size n there is a refutation of A from P of goal-size < G(n).
P is of depth complexity D(n) if for any goal A in I(P) of size n there is a
refutation of A from P of depth < D(n).
~ Pis of length complezity L(n) if for any goal A in I(P) of size n there is a
refutation of A from P of length < L(n).
We say that an interpretation I is of goal-size complexity G(n) if there is a logic program P
such that I(P)=I and the goal-size complexity of Pis G(n). We assume similar definitions for
the depth complexity and length complexity of interpretations.

3. Alternating Turing machines

Alternating Turing machines, introduced by Chandra, Kozen, and Stockmeyer [3], generalize
nondeterministic Turing machines. An alternating Turing machine (ATM) is a Turing machine
with two types of states, existential and universal. An ATM in an existential state functions
similarly to a nondeterministic Turing machine: it accepts if and only if at least one of its
applicable next moves leads to acceptance; in particular, it rejects it has no applicable next move.
An ATM in a universal state accepts if and only if each of its applicable next moves leads to
acceptance; in particular, it accepts it has no applicable next move. When discussing
computations informally, we adopt the procedural point of view that a process (=configuration)
in an existential state spawns a new process for any of its applicable next moves, and accepts if
at least one of them accepts, and that a process in a universal state spawns a new process for any
of its applicable next moves, and accepts only if all of them accept.

For completeness, we provide a formal definition of an ATM, adapted from Chandra et al. [3],
and Fischer and Ladmer [10]. A k-tape alternating Turing machine is a seven-tuple
M=(k,Q,4,I'6,9,,U), where

@ is the set of states,

A is the input alphabet,

I is the tape alphabet,

€ I' — A is the blank symbol,

6 € (QxI*)x(QxI*x {left, right}¥) is the next move relation,
gq € Q is the initial state,

The fundamental results of Chandra et al. relate the computational complexity of alternating
Turing machines to those of deterministic Turing machines.

4. Simulations among alternating Turing machines and logic programs

The similarity between an abstract interpreter of logic programs and the execution mechanism
of alternating Turing machines is quite apparent. The existential state of the ATM corresponds
to the nondeterministic choice of a clause whose head unifies with a goal. The universal state
corresponds to the simultaneous satisfaction of the the goals in the body of the clause. A goal
immediately fails if the head of no clause unifies with it; a Turing machine rejects if it is in an
existential state with no applicable next move. A goal immediately succeeds if it is unifiable with °
a unit clause — a clause with an empty body; an ATM accepts if it is in a universal state with no
applicable next move.

The remainder of this section provides these intuitions with a precise foundation. We describe
simulations between logic programs and alternating Turing machines, and use them to relate the
complexity measures defined over logic programs to complexity measures over alternating Turing
machines.

4.1. Simulating a Logic Program with an Alternating Turing Machine

In Simulation 1 a logic program P is simulated by an ATM M. M uses existential branching
to nondeterministically choose both the next clause to be invoked and the unifying substitution,
and universal branching to simultaneously satisfy all the goals in the body of the clause.

Simulation 1: An alternating Turing machine simulates a logic program

Let P be a logic program. We describe an ATM M with the property that
for-any variable-free unit goal A, M accepts A iff P solves A.

The ATM M stores P in its finite control, and initially has A written on its
tape. From its initia] state it proceeds as follows: using existential branching, it
chooses a clause A'<B,,B,,...,B,;, k>0, in P, and writes on its tape a
substitution #. It then computes A’0, verifies that A=A’6, and erases everything
from the tape except 6. Then, using universal branching, it chooses B, for some
i, 0<i<k, applies § to B;, erases everything from the tape except B;f and returns
to its initial state. [

10

Note that M accepts if the invoked clause has an empty body, and rejects if it fails to find a
clause in P whose head unifies with its current goal. Also note that it is straightforward to
extend M to cope with input goals which are neither unit nor variable-free.

The goals in the body of a clause may share variables. An alternating Turing machine cannot
simulate solving a conjunctive goal with shared variables directly, as universally spawned
processes do not share their tape. Hence M has to agree on the final value of the shared
variables before universally invoking the processes that will work on each goal separately. M
accomplishes this by choosing a substitution # that both unifies the current goal with the invoked
clause and instantiates all the goals in the body of the clause to their final values in the
refutation R it simulates. The definition of M prevents it from further instantiating invoked
goals, as the unification it performs is one-way (i.e. it checks that A=A’6, not that A0=A"9).

We say that M accepts A in n sterations if it has a computation tree that accepts. A in which
every path in the tree contains at most n occurrences of M being in its initial state.

Lemma 4.1: Let P be a logic program, M the ATM that simulates P as described in
Simulation 1, A a variable-free goal, and rp, the transformation associated with P as
defined above. Then A is in 77({}) iff M accepts A in n iterations.

Proof: We prove the lemma by induction on n. For n=1, if A is in r}({}), then there is a
clause A’ in P for which A is an instance via some substitution 8. Hence M can choose the
clause A'— and the substitution 8, verify that A=A'4, and when it universally chooses a goal in
the body of the clause A’«~ it accepts, since the body is empty.

Conversely, if M accepts A in one iteration, i.e., without returning to its initial state, it
means that it had an empty universal choice during the first iteration. By the definition of M
this can happen only if M found a clause A'~ and a substitution # such that A=A'6. By
definition of p, if follows that A is in r},({})

Inductively assume that the lemma holds for any 1<n, for some n>1. If Ais in 1'}’;”({}), it
follows by the definition of 7 that there is a clause p=A'«~B,,B,,...,B,, k20, and a substitution
0 such that A=A'0 and B is in 7g({}) for every 1<i<k. By the inductive assumption, M
accepts B0 in n iterations, for every 1<i<k. Hence when applied to the goal A M can choose
the clause p and the substitution #, and accept A in n+1 iterations.

Conversely, assume that M accepts A in n+1 iterations. Let p=A'<B,,B,,...,B, be the
clause chosen by M in its first iteration, and 8 the chosen substitution. M accepts B in n
iterations, for every 1<i<k. By the inductive assumption B is in 7({}), and by the definition
of 7p it follows that A are in 2D [

The following is a corollary of the lemma above and the fixpoint results of van Emden and
Kowalski [9].

Corollary 4.2: Let P, M, and A be as in Lemma 4.1. Then M accepts A iff P solves
A.

11

Simulation 1 describes the ATM M in high-level concepts. Before analyzing the complexity of
M's computations we show how M can perform the necessary low-level computations and
bookkeeping of each iteration in a reasonable amount of time and space, using three tapes. Each
iteration begins with M having a variable-free unit goal A on its first tape. M then writes down
on its second tape a substitution 4, and existentially chooses a clause A'<B,,B,,...,B, from P,
which is stored in its finite control. It then computes A'0 on its third tape. If A’ has ¢ variables
then M needs at most ¢ passes on ¢ and no more than |A'd] tape cells to compute A'd. It then
verifies that A=A'0 by scanning its first and third tapes. Following this step M universally
chooses a goal B,, for some 1<i<k, and computes B,f on its first tape, using at most ¢’ passes on
0, where ¢’ is the number of variables in B;. It then erases everything from its three tapes except
for B;S, and enters its initial state. :

It is not difficult to see that the size of A and § dominates the space and time needed for that
iteration, and that if both are bounded by some constant g then M’s iteration can be performed
in space and time cg, for some constant ¢ uniform in P. Furthermore, if 8 is such that the size of
B# is bounded by some constant g’, for all 1<i<k, there there is a substitution #° such that
A0 =Af and B,0'=B0, 1<i<k, and the size of 8’ is bounded by maz{g, kg’}. Hence the
following lemma.

Lemma 4.3: Let P be a logic program and M the ATM that simulates P as defined in
Simulation 1. Then there is a constant ¢ uniform in P that bounds the complexity of
M's iterations as follows. If M has a computation that accepts A in which the size of

every goal is bounded by some g>0 then M has a computation that accepts A, performs
the same selection of clauses, operates in space cg and performs each iteration in time

cg.

We proceed to analyze the complexity of M's simulations as a function of the complexity of
P's refutations. We do so by showing that for any variable-free goal A and any refutation R of
A from P there exists an accepting computation of M on A that mirrors R in a natural way, and
bound the complexity of that computation. ‘

Theorem 4.4: Let P be a logic program of depth complexity D{n), goal-size
complexity G(n) and length complexity I(n). Then there exists an alternating Turing
machine M and a constant ¢ uniform in P such that M operates in time eD(n)G(n)
space ¢G(n) and tree size cL(n)G(n), and that L(M)=I(P).

Proof: Let R = <N°,Co,0 >, <N,,C;0,>, ., <B/{}, {}> be a refutation of length I. The
idea of M’s computation that mirrors R is to make the same choices of clauses as R. When M
invokes the clause C.=A+—B it applies to every goal B’ in B a substitution 4. Since M does not
change invoked goals, B'0 is the final instantiation of this goal in M's computation. Hence, in
order for M to mirror the refutation R, M has to be clairvoyant about the final instantiation in
R of the variables in B". In other words, M has to choose @ such that B'¢=B0.6; ,...6, for all

12

B'in B.

We argue that such a choice of 8 does not impair M's ability to make the same choice of
clauses as in R. On the first goal of R, Ny=A4, M invokes the clause C°=A’<—Bl,82,...,Bk and
chooses a substitution & such that B'.0=B’.0001...01 for all s, 1<i<k. This provides the base case
for our inductive argument.

Let A be a goal which is invoked in the i*h derivation step of R and is resolved in the j*¢
derivation step with the clause C =A'«B and the substitution §. We can inductively assume
that when M starts working on the goal A this goal is already instantiated to Af, where
6=0,6, ,...0, By the definition of R, ¢ A is a unifier for A89; ,..0 i1 and A'. Since
A0S, .0 =A0 ; it follows from properties of substitutions that Af=A64; “...010 j+1"'01’=
A’OJG j+l'"5!' Hence A# is unifiable with A’, and M can choose the clause C 5 .

Assume that the refutation R is of length [, goal-size g and depth d. We bound the space,
time and tree-size of the computation of M that mirrors R as a function of [, g and d.

Consider the space of M's computation. By assumption the size of every goal in the
computation is bounded by g, hence by Lemma 4.3 the space of M's computation need not
exceed cg, for some constant ¢ uniform in P.

Consider the time of M’s computation. Each of M's iterations corresponds to an invocation
of a clause, hence the number of its iterations along any path in the accepting computation tree
need not exceed d, the depth of R. By Lemma 4.3 the time of each iteration need not exceed cg,
for some constant ¢ uniform in M, hence the total time used by M is bounded by cdy.

Consider the tree size of M's computation. At most one universal branching occurs between
two configurations in which M is in its initial state. The number of times M is in its initial state
in the computation tree is bounded by !, the length of R. The number of steps of each iteration
is bounded by cg, hence the tree size of the computation is bounded by clg. Together these three
claims establish the theorem. [

4.2. Simulating an Alternating Turing Machine with a Logic Program

Naturally, to simulate existential branching in an ATM we use the nondeterministic choice of
the clause to be invoked, and to simulate universal branching we use the goals in the body of the
clause. Simulation 2 below describes a logic program P that simulates a one-tape alternating
Turing machine M following these guidelines. It has one predicate accept(Q,L,R), with the
property that for any configuration <Q,L,R>, P solves the goal accept(@,L,R) iff this
configuration leads to acceptance. The predicate stores in its first argument M'’s state, in its
second argument the used part of the tape to the left of M's head, and in its third argument the
used part of the tape to the right of M's head, including the cell M's head is positioned on. By
“used part of the tape” we mean the smallest contiguous portion of the tape that includes all
non-blank tape cells and all cells visited by M.

Since the art of simulation is not as developed for logic programs as it is for Turing machines,

13

the logic program that simulates the transitions of M is described explicitly. The program is
slightly complicated by the need to treat reaching the ends of the used part of the tape as special

cases.

Simulation 2: A logic program simulates a one-tape alternating Turing machine

Let M be a one-tape ATM. Its trapsitions are of the form <gq,0,9°,7,D>, with the
interpretation “from state g on symbol o enter state ¢°, write the symbol 7, and move in
direction D". We define a logic program P that simulates M.

The simulating program P has one predicate, accept(L,Q,R), whose semantics is “the
configuration <Q,L,R> leads to acceptance”. P has two types of axioms that define
this semantics, which correspond to existential and universal configurations. We give
some examples of such axioms; a complete description of them appears in Figure 3.

Axioms of the first type say that for any existential configuration a and
configuration # that is a successor to a, a leads to acceptance if § leads to acceptance.
For example, assume that M has the tramsition <g,0,q°,7left>, where ¢ is an
existential state. The clause that corresponds to this tramsition says: “if a is a
configuration with state g in which the head is positioned on the symbol o, and the
configuration f is a successor to a, obtained by writing 7, moving the head to the left,
and entering state ¢’, then a leads to acceptancé if B leads to acceptance.” The clause
reads:

accept(q,|X|L],[0|R]) «— accept(g’,L,|X,r|R]).
This clause assumes that M's head is in the center of the tape, i.e., that neither the left
half nor the right half of the tape are empty. The following clause handles the case in
which the left half of the tape is empty:

accept(q,[],[0|R]) « accept(q”,[},[#,7R)).
The head writes r and moves to the left as before, but now it is positioned on the blank
symbol #, and the left half of the tape remains empty.

The case where the right half of the tape is empty needs treatment only if o=#,
otherwise the transition is not applicable. The clause for this case is:

accept(q,[X1L],[l) — aceept(q’,L,[X,7]).
After the head moves to the left, the right half of the tape contains 7, which is the
symbol M wrote before it moved, and X, the symbol that was to the left of M’ head.

Finally, if o=+ we also need a clause that deals with an empty tape:
accept(q,[},])) — accept(q”,[},[#,7]).

This clause combines ideas from the two previous clauses. The treatment of transitions

14

in which the head movement is to the right is similar, except that it has fewer special
cases.

The clauses of the second type correspond to universal configurations. They say that
for any universal configuration a, if ﬂl,ﬂz,..,ﬁk, k>0, are all the successors to a, then o
leads to acceptance if 4, and B, ... and §, lead to acceptance; if k=0 the axiom simply
says that a is accepting. To express this P has one clause for every pair <g,0> such
that g is a universal state and o is a tape symbol.

For example, assume that M has no transitions on the universal state ¢ and the
symbol 0. This means that a configuration in which M is in state ¢ and looking at the
symbol o is accepting. The corresponding clause in P is:

accept(q,L,[o|R)).

And if o=#, we also add to P the clause:

accept(q,L,[)).

As another example, assume that the only two transitions M has on the universal
state ¢ and the symbol o are <g,0,p,1,right> and <go,p’,7"left>. The clause that
corresponds to these two tramsitions is:

accept(q,[X|L},[o|R]) «— accept{p,[r.X|L],R), accept(p",L,|X,7’|R]).

This transition assumes that the head is in the center of the tape. Similar to
existential configurations, the cases where the head is in the left or right end of the tape
peed special treatment. For example, the clause that handles the case where the head
has reached the left end of the tape is:

accept(q,[),[0|R]) «— accept(p,[r},R), accept(p”,[},[#,7’|R]).
The treatment of the other cases is similar. Figure 3 summarizes them.

The generalization to a k-tape machine is not difficult: for each additional tape one
adds to accept two arguments, for storing the left-half and right-half of the tape, and
simulate the transitions accordingly. [J

The correctness of Simulation 2 follows from a detailed, though simple, case analysis of the
clauses in Figure 3, which shows that the refutation trees of the program P that simulates M
reflect directly the complete computation trees of M. This analysis also shows that the depth
complexity of P is identical to the time complexity of M, and that the length complexity of P is
identical to the tree-size complexity of M. It is also easy to see that the goal-size of refutations
for the program P that simulates M is linear in the space of M's computations, since each goal

15

¢ Existential states. For every existential state ¢ and input symbol o:

» Left move. If M has a transition <g,0,¢°,r,left> then P has the clauses:
e Center of tape: accept(q,[X]L],[0|R]) — accept(q’,L,[X,7R]).
e Left end of tape: accept(q,[},[0|R]) — acc-nt(q’,L,[#,7R]).
e Right end of tape (if o=#): accept(q,[X]L],[]) — accept(q’,L,|X,7}).
e Empty tape (if o=#): accept(q,[,) — accept(q’,[.l#.7)-
» Right move. If M has a transition <gq,0,¢",,right> then P has the clauses:
e Center and left end of tape: aceept(q,L,[0|R]) — accept(q’,[r|L],R)
e Right end and empty tape (if o=#): accept(q,L,[]) «— accept(q’,[rIL],]}).

e Universal states. For every universal state g and input symbol o, P contains clauses
of the form A — A, A,,... Ap where k>0 is the number of transitions M has in
state g on symbol o. ’

» Center of tape: accept(q,[X]L], [alR]) — A}, Ayy. AL I the i*% transition on
<gq,0> is <q,0,¢°,r,right> then A, is the goal acccpt(f *,n.X]|L),R). If that
transition is <g,0,¢",n,left> then A is accept(q’,L,[X,7|R]).

» Left end of tape: accept(q,[},[0|R]) — A +A,, where the goal for a
transition <q,0,g°,r,right> is accept(q’ [and for <q0,9° ,nleft> is
aceept(q”,[,[#,71R]).

» Right end of tape (if a==#) accept(q,[X]L],[) — A,, Ay,... ,A where the
goal for <q,#,9’,nright> is accept([g’,7,X]L],[]) and for <q,#,q ,r,lcﬁ> is
accept(q’,L,[X,7]).

» Empty tape (if as#) accept(q,[],[[) — 4,, A,,... ,A,, Where the goal for
<q,#, ,rright> is accept(q’,[7],]]) and for <gq,#.,q° ,r,lcft> is
accept(q”,[,l#.,1)- [

Figure 4: A logic program simulates a one-tape alternating Turing machine

in the computation is a notational variant of the corresponding configuration in the simulated
computation.

Theorem 4.5: Let M be a k-tape alternating Turing machine that accepts a language
L in time T(n), space S(n) and tree-size Z(n). Then there exists a logic program P of
depth complexity T(n), goal-size complexity ¢S(n) and length complexity Z(n) such that

L(M)={X] accept(q0, 0%.X,0%) is in I(P)}, where g0 is the initial state of M and c is
a constant uniform in M. [J

5. Applications

In this section we describe applications of the results above. They are based on the following
observations concerning the logic program P that simulates the ATM M, as defined in

Simulation 2.

1. If M does not go outside of its original input, then only clauses marked “center of
tape” in Figure 3 need to be included in P. For any substitution, # and any clause
A«—B,,..B, in P, the size of B,f is equal to the size of A8, 1<i<k.

2. If M is nondeterministic (i.e. with at most one transition per symbol in any universal
state), then every clause of P contains at most one goal in its body.

Definition 5.1: A clause A—B,,...,B, is called lincar if if for every i, 1<s<k, the size
of B; is less than or equal to the size of A, and the number of occurrences of any
variable in B, is less than or equal to the number of its occurrences in A.

Lemma 5.2: A linear logic program is of linear goal-size complexity.

Proof: (Informal) consider a refutation tree from such a program. The size of the sons in this
tree can not exceed the size of their parent by the definition above. [

The following theorem characterizes Alternating Linear Space in terms of interpretations of
linear logic programs.

Theorem 5.3: If Pis a logic program of linear goal-size complexity then I(P) is in
Alternating Linear Space. If L is in Alternating Linear Space then there is a linear logic
program P and a goal A containing the variable X such that L=={X0| Af is in I(P)}.

Proof: Let P be a logic program of linear goal-size complexity. By Theorem 4.4 there is an
ATM M such that L(M)=I(P), and M operates in linear space. Hence I(P) is in Alternating
Linear Space.

Let L be a language in Alternating Linear Space. Then there is an ATM M such that
L(M)=L and M operates in linear space. By well-known compression techniques (cf. [13]) we
may assume that M has only one tape, and that it does not go outside of the space of its original
input. By Theorem 4.5 there is a logic program P such that P solves accept(q0,[},X) iff X is in
L(M). Using the observations made above and the fact that M does not go outside of the space
of its original input we can restrict PP to contain only linear clauses. [J

A clause A—B, where B is a unit goal, is called a tranes formation. The following theorem
characterizes Nondeterministic Linear Space in terms of interpretations of linear logic programs
in which every clause is a transformation.

Theorem 5.4: If Pis a logic program of linear goal-size complexity and every clause in
P is a transformation then I(P) is in Nondeterministic Linear Space. If L is in
Nondeterministic Linear Space then there is a linear logic program P in which every

clause is a transformation and an atom A containing the variable X such that L={X0|
Abis in I(P)}.

17

Proof: Let P be a logic program of linear goal-size complexity such that every clause in Pis a
transformation. By Theorem 4.4 there is an ATM M such that L(M)=I(P), and M operates in
linear space. The use M makes of universal branching is to choose the goal in body of the
invoked clause to work on next. Since P has at most one goal in its body, the corresponding M
has only one universal choice in its only universal state. In other words, M is a nondeterministic
Turing machine that operates in linear space. Hence I{P)is in Nondetermiuistic Linear Space.

Let L be a language in Nondeterministic Linear Space. Then there is an ATM M such that
L(M)=L, M operates in linear space, and does not go outside the space of its original input. By
an argument similar to the proof above there is a linear logic program P such that P solves
accept(q0,[,X) iff X is in L(M). Since M has at most one transition for any universal state g
and tape symbol o, the clauses in P are all transformations by construction. [

Corollary 5.5: Let P be a linear logic program in which every clause is a
transformation. Then the problem of deciding whether P solves A, where A is a
variable-free goal, is PSPACE-complete (cf. [13]).

8. Conclusions

After introducing the concept of alternation, Chandra et al. [3] comment: “Certain problems
seem more convenient to program using the construct of alternation, but we do not know
whether alternation will find its way into programming languages or have a role to play in
structured programming. Such questions present themselves to further research”. Motivated by
the idea of applying alternation to structured programming, Harel [12] has developed And/Or
programs. The results of this paper suggest that a programming !anguage that embodies the
concept of alternation already exists.

Logic programs are simple enough to be amenable to theoretical analysis and expressive enough
to be a real programming language. This combination suggests that theoretical studies of this
computational model are likely to have some practical implications, in addition to increasing our

understanding of computing in general.

Acknowledgements

I am grateful to Dana Angluin and Gregory Sullivan for discussions that helped to establish the
results described in this paper.

1]

(2]

8]

[4]

5]

(6]

7]

[8]

[9]

[10]

18

References

K. R. Apt and M. H. van Emden.

Contributions to the Theory of Logic Programminyg.

Technical Report CS-80-12, Department of Computer Science, University of Waterloo,
February, 1980.

D. L. Bowen, L. Byrd, L. M. Pereira, F. C. N. Pereira and D. H. D. Warren.

PROLOG on the DECSystem—10 User’s Manual.

Technical Report , Department of Artificial Intelligence, University of Edinburgh, October,
1981.

A. K. Chandra, D. C. Kozen, L. J. Stockmeyer.
Alternation.
Journal of the ACM 28(1):114-133, January, 1981.

C.L. Chang and R. C. T. Lee.
Symbolic Logic and Mechanical Theorem Proving.
Academic Press, New York, 1973.

K. L. Clark and S. Gregory.

A relational language for parallel programming.

In Proceedings of the ACM Con ference on Functional Programming Languages and
Computer Architecture. ACM, October, 1981.

A. Colmerauer.

Metamorphosis grammars.

In L. Bolc (editor), Natural language communication with computers, . Springer-Verlag,
1978.

John S. Conery and Dennis F. Kibler.

Parallel interpretation of logic programs.

In Proceedings of the ACM Con ference on Functional Programming Languages and
Computer Architecture. Association for Computing Machinery, October, 1981.

M. H. van Emden and G. J. de Lucena.

Predicate logic as a programming language for parallel programming.

In K. L. Clark and S. A. Tarnlund (editors), Logic Programming, . Academic Press, 1982.
To appear.

M. H. van Emden and R. A. Kowalski.
The semantics of predicate logic as a programming language.
Journal of the ACM 23:733-742, October, 1976.

M. J. Fischer and R. A. Ladner.
Propositional dynamic logic of regular programs.
Journal o f Computer and System Sciences 18:194-211, 1979.

[11]

[12]

[13]

(14]

[18]

[16]

[17]

(18]

[19]

[20]

[21]

19

C. Cordell Green.

Theorem proving by resolution as a basis for question answering.

In B. Meltzer and D. Michie (editors), Machine Intelligence 4, pages 183-205. Edinburgh
University Press, Edinburgh, 1969.

David Harel.
And/or programs: A new approach to structured programming.
ACM Trensactions on Programming Languages and Systems 2(1):1-17, January, 1980.

J. E. Hopcroft and L. D. Ullman.
Introduction to Automata Theory, Languages, and Computations.
Addison Wesley, 1979.

Robert A. Kowalski.
Predicate logic as a programming language.
In In formation Processing 74, pages 569-574. North-Holland, Amsterdam, 1974.

Robert A. Kowalski.
Logic for Problem Solving.
Elsevier North Holland Inc., 1979.

Robert A. Kowalski.
Algorithm = Logic + Control.
Communications of the ACM 22(7):424-436, July, 1979.

Drew V. McDermott.
The Prolog phenomenon.
SIGART Newsletter 72, July, 1980.

J. A. Robinson.

- A machine oriented logic based on the resolution principle.

Journal of the ACM 12:23-41, January, 1965.

P. Roussel.
‘Prolog: Manuel Reference et d* Utslisation.
Technical Report, Groupe d'Intelligence Artificielle, Marseille-Luminy, September, 1975.

Walter L. Ruzzo.

Tree-size bounded alternation.

In Proceedings of the 11th ACM Sympoccum on the Theory of Computing, pages
352-359. Association for Computing Machinery, 1979.

Warren D. H. D. , Pereira L. M. , Pereira F. C. N.

Prolog - the language and its imlementation compared with Lisp.

In Symposium on Arti ficial Intelligence and programming Languages, pages 109-115.
SIGART/SIGPLAN, August, 1977.

