Abstract. The problem of finding a rank-revealing QR (RRQR) factorisation of a matrix A consists
of permuting the columns of A such that the resulting QR factorisation contains an upper triangular
matrix whose linearly dependent columns are separated from the linearly independent ones. In this
paper we present a systematic treatment of algorithms for determining RRQR. factorisations.

In particular, we start by presenting precise mathematical formulations for the problem of
determining a RRQR factorisation, all of them optimisation problems. Then we derive a hierarchy
of ‘greedy’ algorithms to solve these optimisation problems, and we show that the existing RRQR
algorithms correspond to particular greedy algorithms in this hierarchy. We present matrices on
which the greedy algorithms, and therefore the existing RRQR algorithms, can fail arbitrarily badly.

At last, motivated by our insight from the behaviour of the greedy algorithms, we present
‘hybrid’ algorithms that solve the optimisation problems almost exactly (up to a factor proportional
to the size of the matrix). Although the worst-case running time of the hybrid algorithms may
be combinatorial, we have not been able to find a matrix where this occurs. Applying the hybrid
algorithms as a follow-up to the conventional greedy algorithms may prove to be useful in practice.
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1 Introduction

The problem of finding a rank-revealing QR (RRQR) factorisation of a matrix A consists of permut-
ing the columns of A such that the resulting QR factorisation contains an upper triangular matrix
whose linearly dependent columns are separated from the linearly independent ones. RRQR factori-
sations are useful in problems such as subset selection and linear dependence analysis [19, 25, 33, 34],
subspace tracking [13, 6], and rank determination [9]. Further applications are given in [15, 11].

In order to determine a RRQR factorisation one could just adopt the brute force approach and
inspect all possible column permutations until one has found a factorisation to one’s liking. The
operation count, of course, is guaranteed to be combinatorial. Consequently, a lot of effort has gone
in designing RRQR algorithms whose operation count is polynomial in the size of the matrix.

The first such algorithm, the QR factorisation with column pivoting [7, 17], was developed by
Golub in 1965. It makes use of column permutations and orthogonal rotations to maintain the
triangular structure of the matrix. About ten years later a second algorithm was published by
Golub, Klema and Stewart [18], based on applying the first algorithm to certain singular vectors of
the matrix. At about the same time, a third algorithm appeared in a paper by Gragg and Stewart
[20] that works on the inverse of the matrix. These three algorithms constitute the basis for all
known RRQR algorithms.

Yet, it took another ten years for the next batch of algorithms by Stewart [28], Foster [15] and
Chan [9] to appear. By this time it was known that there are matrices for which Golub’s RRQR
algorithm [7, 17] can fail arbitrarily badly — Kahan’s matrix [24] is such an example.

Again the field lay fallow for several years. Recently Hong and Pan [23] proved that an optimal
RRQR factorisation is able to produce an estimate of a singular value that is accurate up to a factor
proportional to the matrix size. This result implies that, in exact arithmetic and with a combinatorial
operation count, RRQR factorisations have the potential of being accurate and reliable (much more
than that, though, the result represents a statement about the relation between matrix columns and
singular values: it says that there are k columns in the matrix that can reproduce, up to a factor in
the matrix size, the kth singular value of the matrix).

These days, the potential of RRQR factorisations is investigated for use in truncated singular
value decompositions [21, 10], Lanczos methods [13], total least squares [33], and sparse matrix
computations [4, 3, 5, 27]. Stewart has extended the RRQR factorisation by allowing orthogonal
rotations from the right, resulting in the so-called URV decomposition [1, 29, 31, 30].

The state of affairs regarding RRQR factorisations can be summed up as follows. Despite the
variety of algorithms, the problem of what it means to find a RRQR decomposition has never been
clearly defined. Most definitions of a RRQR factorisation are about as fuzzy as the one we gave in the
first sentence of this paper. Relationships or connections among the different RRQR algorithms are
not known. All algorithms have the potential of failing badly. For some we know the matrices where
they fail badly. No criteria, other than a few test matrices, are known for comparing algorithms and
judging their quality. Surprisingly, in numerical experiments most RRQR algorithms turn out to be
accurate and fast.

In this paper we present a systematic treatment of algorithms for determining RRQR factorisa-
tions. We start by presenting three precise mathematical formulations for the problem of determining
a RRQR factorisation: one is a maximisation problem, one is a minimisation problem and a third
one is a combination of the two. We derive a hierarchy of ‘greedy’ algorithms to solve the maximisa-
tion problem. It turns out that algorithms for solving the minimisation problem can be obtained by




running algorithms for the maximisation problem on the inverse of the matrix, and vice versa. This
gives two parallel hierarchies of greedy algorithms for determining RRQR factorisations. We show
that the existing RRQR algorithms correspond to particular greedy algorithms in this hierarchy.
Moreover, we present matrices on which the greedy algorithms, and therefore the existing RRQR
algorithms, fail arbitrarily badly.

At last, motivated by our insight from the behaviour of the greedy algorithms, we present three
‘hybrid’ algorithms that solve the optimisation problems with an accuracy given by the bounds
of Hong and Pan [23]. Although the worst-case operation count of the hybrid algorithms may be
combinatorial, we have not been able to find a matrix where this occurs. We present a few numerical
experiments to demonstrate that applying the hybrid algorithms as a follow-up to the conventional
RRQR algorithms may prove to be useful in practice.

2 The Problem

In this section we give mathematical formulations of the problem of determining a rank—reveahng
QR (RRQR) factorisation of a matrix M.

Let M be areal m x n matrix and m > n. We assume that the singular values o;(M) of M are
arranged in decreasing order,
(M) > ... > ou(M).

We also assume that k is a given integer such that 1 < k < n and ox(M) > 0. In the ap-
plications where rank-revealing factorisations are of relevance, ox(M) and op41(M) are usually
“well-separated”, and og41(M) is “small”, of the order of the error in the computation, which
means that the matrix has numerical rank k. Although our algorithms do not use this, it is useful
to keep it in mind.

Denote by
MII=QR

the QR factorisation of M with its columns permuted according to the n X n permutation matrix II.
The real m x n matrix @) has orthonormal columns, and the real n X n matrix R is upper triangular
with positive diagonal elements. We block-partition R as

k n—k
k Ry Rypa |\ _
n—k( 0 Rzz)_R’

where Rq1 1s a k X k matrix.

The RRQR Problem

The problems to be discussed in this paper are how to choose permutations IT such that
o'min(Rll) = O (M)

or
Umax(RQZ) ~ U'k+1(M)




or both hold simultaneously. So there are three objectives leading to three different problems, to all
of which we refer as ‘rank-revealing problems’. It is an open question whether these are really three
different objectives. That is, if we find a permutation such that omin(R11) & ox(M), does it imply
that omax(R22) & 0x4+1(M)? Our attempts at answering this question have not yielded sufficiently
good answers, and in this paper we will consider them as three independent objectives.

Satisfaction of the third objective, where both bounds are satisfied simultaneously, implies that
the leading k columns of MII have condition number o1(M)/or(M) and approximate the range
space of M to an ‘accuracy’ of ox4+1(M).

Before proceeding any further we should be more specific about those = signs. According to the
interlacing properties of singular values (Corollary 8.3.3 in [19] applied to RT) the bounds

(Il) Umin(Rll) < O'k(M)
(12) Omax(Ra2) > op41(M)

hold for any permutation II. So the RRQR problems can be precisely formulated as

Problem I: maxrr Omin(R11)

Problem II: min Omax(Ra2)

or that both be solved simultaneously, though that may not be possible all the time.

Because we believe that the time complexity of these problems is combinatorial, we are content
to find permutations II that guarantee

or(M)
p(n)

Omin (Rll) >

Omax(Ra2) < q(n)op41(M)

or that both bounds hold simultaneously. Here p(n) and ¢(n) are low degree polynomials in n. We
say that a permutation II that achieves one or both of these inequalities gives rise to a ‘rank-revealing
QR (RRQR) factorisation’ MII = QR. An algorithm that attempts to solve Problem I is called a
“Type-I algorithm’ and has the suffix I in its name. An algorithm that attempts to solve Problem II
is called a “Type-II algorithm’ and has the suffix II in its name.

3 Overview of RRQR Algorithms

We accomplish two tasks in this paper: first we demonstrate that all existing RRQR algorithms
form a hierarchy of greedy algorithms, and second we present a set of new algorithms that are more
accurate than the existing RRQR algorithms.

The existing algorithms in the literature guarantee that

Ok (M
n2k

Umin(Rll) > or Umax(RZZ) < Uk+1(M)n2n_k,




where the bounds are worst case bounds. In practice, however, the existing algorithms perform
quite well and the worst case bounds are rarely obtained. There also exists an algorithm [18] with
simultaneous worst-case bounds

or(M)

sy Omex(R22) < oppa(M)n2mn(n k),

Omin (Rll) >

In contrast, our new algorithms guarantee

or (M)

VEk(n—k+1)
Tmax(Ra2) < ox41(M)V/(k +1)(n — k),

or both. The ezistence of such RRQR factorisations was established in [23]. Although we believe
that the operation count of our new algorithms is combinatorial in the worst case, preliminary
numerical experiments indicate that they may be fast in practice.

Umin(Rll) >

or

We ignore brute force algorithms for finding permutations II because they do not exploit any
properties of the matrix. Their operation count is therefore always combinatorial.

Now we start with the presentation of a unified ‘approach to the existing RRQR. algorithms. Our
approach simplifies the presentation and analysis of these algorithms, and it also directly motivates
our new algorithms. To this end, we make the following simplification. If MII = QR is a QR
factorisation of M for some permutation II, and if RII = QR is a rank-revealing QR factorisation
of R, then

MM = QQR
is a rank-revealing QR factorisation of M. Hence one can ignore the original matrix M and work
with the triangular matrix R instead.

4 Type-1 Greedy Algorithms

It is our goal to find algorithms to solve Problem I,
Max Tmin (F11)
that guarantee
ok (M)
p(n) ’

where p(n) is a low degree polynomial in n. Problem-I is likely to represent a combinatorial optimi-
sation problem, and this suggests that a greedy algorithm might do well.

Umin(Rll) >

The basic idea for our greedy algorithm, which we call ‘Greedy-I’, is very simple. The objective
of Problem-I is to find k& well-conditioned columns of M. So suppose that we already have | < k
well-conditioned columns of M. Then Greedy-I picks a column from the remaining n — [ columns
of M such that the smallest singular value of the given [ columns plus the new column is as large
as possible. Starting with { = 0 this is done £ times to pick k¥ well-conditioned columns of M. Note
that Greedy-I does not discard a column once it has been chosen.




Algorithm Greedy-I
R(o) =R
For!=0tok—-1do

Set
I n-—1

I (A B\ _ .o
n—I( c)—R'

Denote the columns of B and C by b; = Be; and ¢; = Ce;.

1. Find the next column I 4 j of R® such that

(A bi) (A bj>
max  Omin = Omin .
1<i<n-1 C; ]

2. Exchange columns (I+1) and I+ j of R(), and re-triangularise it from the left
with orthogonal transformations to get R(+1).

In iteration ! = 0, Greedy-I selects the column of R with largest norm. If everything goes right
then R(*) should be a rank-revealed upper triangular matrix. It is important to keep in mind that
the dimensions of A, B and C change with every iteration of Greedy-I.

Step 1 of Greedy-I, which selects the next column to be added to A, is very expensive. We
make it cheaper, while at the same time retaining the greedy strategy, by performing step 1 only
approximately. Thus the algorithm becomes less greedy and more efficient. Since Greedy-I can only
find an approximate solution at best, further approximations will hopefully not make matters much
worse.

Before continuing we make a small simplification. If v; = ||c;||, where ||-|| represents the two-norm,

then
(A b (A b
Omin 0 ¢)~ Omin 0 .

This means, only the two-norm of the columns of C' matters rather than individual elements in a
column. Therefore the problem amounts to determining the smallest singular values of an upper
triangular matrix of order { + 1.

Now we present a sequence of successively less greedy approximations to step 1 of Greedy-I that
give rise to most of the existing RRQR algorithms. In other words, we show that most existing
RRQR algorithms can be viewed as approximations to algorithm Greedy-I.

In the first approximation, the determination of the smallest singular values omin(-) is replaced
by directly computable quantities. We choose to approximate the smallest singular value of a matrix
by the reciprocal of the largest two-norm of the rows of its inverse: if D is a non-singular matrix of




order n and

then

. 1
. < . . .
a'mln(D) S lrsnilgnn ”7'5“ < O'mm(D)\/ﬁ

Consequently, the smallest singular value of a non-singular matrix of order n can be estimated up
to a factor of v/n.

Algorithm Greedy-I.1
Replace step 1 in algorithm Greedy-I by:
Find the next column ! + j of R such that

eTAb,-'l_ eTAbj‘l_
RO AU

where e{ is the hth row of the identity matrix of order [ 4+ 1.

max min

= min
1<i<n—1 h h

An algorithm similar to Greedy-I.1 was proposed by Stewart [29] where for reasons of efficiency
the Frobenius norm rather than the two-norm is used.

Although we say that Greedy-I.1 is an approximation to Greedy-I, this does not necessarily imply
that Greedy-I reveals the rank better than Greedy-I.1. It only means that Greedy-1.1 is less greedy
than Greedy-1. In particular, if in iteration ! Greedy-I and Greedy-1.1 have the same submatrix A
then the omin of the leading ! + 1 columns from Greedy-I is larger than or equal to the o, of
the corresponding columns from Greedy-I.1. But there is no guarantee that in the subsequent
iteration [ + 1 the omin of the leading [ 4+ 2 columns of Greedy-I will be larger than or equal to the
Omin Of the corresponding columns of Greedy-1.1. This is because the greedy algorithms are not
allowed to change their minds and to throw out a column selected in a previous iteration, and the
best local choice in one step does not necessarily lead to the global optimum.

A b\7TH (AT —A byt
0 %) ~\0 7

the upper left I x | block A™! is already available from the previous step, and only the last column
of the inverse needs to be computed for each i, which requires n — [ matrix vector multiplications.
But carrying the inverse along with us at every stage is costly in terms of space and we first get rid
of that.

Because

If the greedy algorithms have not failed at the lth stage, the [ leading columns must be “well-
conditioned”. Hence A must be a well-conditioned matrix. Therefore omin(A) cannot be “small”,
which in turn implies that no row of A~! can have a large two-norm. But if the addition of a new
column, say the ith, produces a small singular value then the two-norm of some row of the inverse




of the corresponding matrix must be large. But since we assumed that no row of A~! is large this
must mean that some component of the last column of the inverse

)
vt

must be large in magnitude. Thus the second approximation to step 1 of Greedy-I,

X -1 _A-1p. —1
(o 2) |=IC)
0 i h

still avoids the selection of a very bad column.

)

Algorithm Greedy-1.2
Replace step 1 in algorithm Greedy-I by:
Find the next column ! + j of R such that

()
‘Yi—l h

max min
1<i<n—1 h

To eliminate the n — I backsolves A~1b; in Greedy-1.2 we make further use of the observation
that A is probably well-conditioned, so ||A71b;|| ~ 1, and any large value must come from ;. Thus
the third approximation to step 1 of Greedy-I,

()
7! h

still tries to avoid selecting a very bad column. This is nothing but the standard QR algorithm with
column pivoting [17, 7].

-1

~ Y,

min
h

Algorithm Greedy-1.3 (Golub-I)
Replace step 1 in algorithm Greedy-I by:

Find the next column [+ j of R® such that maxi<i<n—1% = Vj-

This algorithm can be implemented efficiently because the column norms 7; need only be updated
during each iteration, rather than re-computed from scratch [7].

The approximations still to be discussed do not result in algorithms that are faster than Golub-
I — in fact they may be slower — but they are necessary to derive the remaining existing RRQR
algorithms.




The goal is to make a further approximation to

BB =
in iteration I/, where a; is the {th diagonal element in the final upper triangular matrix in Golub-I.
To this end compute the right singular vector of the submatrix C' of R®) corresponding to its largest
singular value ||C||. So the next approximation consists of finding the (n — ) x 1 vector v such that

Cv=|Cllu,  |oll =[lull =1,

and choosing as the next column the column j that corresponds to the largest component in mag-
nitude of v,

lvjl = | gmax fuil.

Algorithm Greedy-1.4 (Chan-I)
Replace step 1 in algorithm Greedy-I by:

Find the next column !+ j of R for which |vj| = maxi<i<n—1|vi].

This algorithm was discovered independently by Chan and Hansen [12] and is related to the
algorithm in [9]. Its choice of column j can be justified as follows. The Cauchy-Schwartz inequality
gives

75 = ICejll = llull ICejl| 2 [u" Cejl = [IC] Jus1.

As v has n—1 elements and satisfies ||v|| = 1, it must have a component v; for which |v;| > 1/v/n — 1,
this is true in particular for the largest component in magnitude of v. Using this in y; > ||C|| |vj]
gives
Q41
<7 < = ; -

\/m —_ 7] —_ al-l'l) aH—l ISI?;,{_I%
That is, the v; from algorithm Chan-I will be almost as large as that from algorithm Golub-I, if
both algorithms were given the same ! columns in A.

5 Threshold Pivoting Algorithms

We can make even further approximations to Chan-I. Algorithms Golub-I and Chan-I can be viewed
as selecting large diagonal elements (pivots) at each stage to keep the smallest singular value as large
as possible. According to the interlacing property (12) of singular values, ||C|| > 0141(M), so

o1+1(M) 0<I<k-1, where a;31 = max ||Ce|.

Jn—1" 1<i<n—I

But all that is really needed is

a1 >

a'min(Rll) ~ o'k(M)a

which means one may be able to get away with choosing pivots that are only as large as o3 (M).
That is, instead of trying to achieve

|(R11)”|R".«0’1(M), 1<ILE,




we only try to ensure that
|(R11)y| = o (M), 1<I<k.

Golub-T and Chan-I try to keep all the pivots as large as possible at each stage. But since omin(R11)
will be smaller than the smallest pivot, we are hoping that only the size of the smallest pivot is
important, so that the conditions on the larger pivots can be relaxed.

Versions of Golub-I based on this also go by the name of ‘threshold pivoting’, and we now present
two such algorithms. The first algorithm represents one of the first RRQR algorithms [18, 19] and,
as we will show later, has the distinction of being able to solve both Problem-I and Problem-II
simultaneously. Our name for the algorithm derives from the last names of its authors.

Algorithm GKS-I
Let R = UXVT be the SVD of R with
k n—k
V= (i V).

1. Compute V;.
2. Apply algorithm Golub-I to the rows of V4, VIl = Q, VL.

3. Compute the QR decomposition RIl = QR, which is the required rank-
revealing factorisation.

To see that this is indeed a threshold pivoting algorithm, partition the SVD of R as follows
_ b 0 T
R—U( 0 22)(V1 V) .
Substituing the result of step 3, QT RII = R, in step 2 gives
VIR = QTEUTQ.
Since R~! and the leading k columns of VT represent upper triangular matrices,

|(I{1)u|
l (R) iil
Because VT is the result of QR with column pivoting on a matrix with orthonormal rows, the largest

element in magnitude in the ith row of V{T is (171)“. and |(V1)i;| > 1/+/n. Combining the inequalities
gives a lower bound on the pivots,

1

<IWFR™Y = (=7 < 00

5 or (M)
|(R)y| = ===
So algorithm GKS-I behaves like a threshold pivoting algorithm.

We now describe a threshold pivoting algorithm that we call ‘Foster-I’ because it is related to
an algorithm proposed by Foster (see Algorithm 2 in [15]). For a given §, where § is presumably
about as big as o(M), Foster-I tries to achieve omin(R11) = 6 by choosing pivots greater than or
equal to 6. To this end it searches the rows of R, bottom up, for an element of magnitude greater



than 6. When it finds such an element it adds the corresponding column to Rj; and continues the
search. As in all greedy algorithms for Problem-I, once a column has been added to R;; it is never
discarded again. The algorithm halts when it has finished searching n rows. If it succeeds in finding
k elements larger than 6, then the first k pivots are at least as large as 6.

Algorithm Foster-I
i=n,count =n,l=0
While (count > 1) do

Find the maximal element in row i: |R;;| = max{|Ril, ..., |Rin|}
If (|Rij| > 6) then
Insert column j between the Ith and (I + 1)st columns
Re-triangularise R
l=1+1
else
t=1t—1

count = count — 1

Here we have come to the end of our approximations to Greedy-I, which was a greedy algorithm
for solving the Type-I problem

max Omin(R11).

6 (Pessimistic) Analysis of the Greedy Algorithms

In the previous sections we have presented a succession of approximations to algorithm Greedy-I
with little formal justification. Now we need to investigate how big ox(M)/omin(R11) from these
algorithms can be. Algorithm Greedy-I represents the ‘best’ method in the greedy sense, so we
expect its worst case behaviour to be indicative of that of the other greedy algorithms.

Fortunately a quick and dirty analysis turns out to be sufficient.
Suppose Greedy-I has already set aside ! columns

=6 ¢)

where A is a [ x [ matrix. It then chooses as the (I 4+ 1)st column that column j which when added
to A maximises the smallest singular value, so

_ . AN . A b
0141 —ISI?Sa;(_IUmm 0 ¢ = Omin 0 ¢ .

In order to estimate how small ;1 can be we need to compute a lower bound on the smallest
singular value. To this end we compute a lower bound instead for the column Golub-I would select,

10




given the same A, because this also serves as a lower bound for the column Greedy-I picks. So
assume that Golub-I picks column ¢. This column has the largest norm among all columns of C.

Just as in algorithm Greedy-1.1, we estimate op,in by the reciprocal of the largest two-norm of
the rows of the inverse 1
(A bq) _ (A‘l —A"lblq‘yq_l) ‘
0 7 0 3

The norm of the row with the largest norm among the leading [ rows of the inverse is bounded from
above by

2 b “2
T 4—1 -1 -1 gll -1 V 1 1
mzaXIleiA | + [l A~ bqllv, S—&I+—&I Yq <V2 P Yq <V2 F Vg

where the penultimate inequality is a result of the Cauchy-Schwartz inequality. The norm of the
(I + st row of the inverse clearly cannot exceed the upper bound on the maximal norm of the
leading ! rows. Since the maximal row norm of the inverse approximates the smallest singular value
of the matrix we have 1 5

1

Ol41 2> \/QUTl)Ul(M)%"’

Using the interlacing property (12)

max > —GH'I(M)

Ve = 1$i$n—l7i 2 T moi
with the above inequality gives a lower bound for the smallest singular value
o] 1
a1(M) 2l + 1)(n—1)

This goes to show that even if the leading [ columns had been selected so that &; was as accurate
as possible, there could be a potentially serious deterioration in the quality of estimation from lth
to (I 4 1)st singular value if the (I 4+ 1)st column is chosen according to a greedy strategy. This is
because a greedy algorithm, once it has decided on a column, can never get rid of it. And a column
that partcipates in an accurate estimation of &; may not be a column to be included in an accurate
estimation of &741. In particular, the estimate &;41 worsens with the ill-conditioning of the leading
l columns in R('g.

G141 > o111 (M)

In fact, there exist matrices that almost achieve the above bound. One such example is the
Kahan matrix [24]

0 --- 0 1 —¢ --- —c¢
Kn: (‘) ‘S “‘ : 9 ’1 . ’ )
: .. 0 : .. —c
0 --- 0 srt 0 --- 0 1

where ¢?+52 = 1. Greedy-I, Greedy-I.1, Greedy-1.2 and Golub-I do not cause any permutation of the
columns of K,,. We prove this for Greedy-I by induction. Since all columns of K,, have unit norm,
no column permutations are necessary in the first iteration of Greedy-I. Suppose no permutations
are necessary during the first [ iterations, so

Kn:<K1 by ... b,,-,).

C1 ... Cp-l
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In the (I + 1)st iteration Greedy-I selects the (I + 1)st column by examining

amin(K’ ﬁf):amm(K’ :) vi=llell, 1<i<n-—L.

But all b; are identical for the Kahan matrix, as are all 4;, hence no permutations are necessary in
iteration [ + 1.

Yet K, is not in rank-revealed form. For n = 100, k = 99 and ¢ = 0.2, the singular values are

o100(K100) ~ 3x107°
o99(K100) =~ 0.1482
5’99 ~ 4x 10_9.

Although the 99th and 100th singular values are well-separated, the smallest singular value of the
first 99 columns chosen by the greedy algorithms is exponentially smaller than o99(K100).

Traditionally, the Kahan matrix has served as an example to demonstrate the failure of algorithm
Golub-I to make the last diagonal element of the same order of magnitude as 0100(K100). But from
our discussion it is clear that Golub-I pursues a different mission: it wants to make g9 & 099(K100)-
And it fails in that.

7 (Optimistic) Analysis of the Greedy Algorithms

Now that we have seen how badly the greedy algorithms do, we wonder why they do so well in
practice? This question seems to be related to other rare matrix events like pivot growth in Gaussian
elimination with partial pivoting. Foster [16] considers this question for QR without column pivoting.
The case of QR with column pivoting seems to be much harder to analyse and we can only give
informal reasons why the greedy algorithms Golub-I, Chan-I and GKS-I are so effective.

The basic idea is to derive a lower bound for Omin(R11) of the form

O'k(M)

AW < Omin(R11) < o (M),

where W is a k x k triangular matrix with
wi<1,  [Wul=1,

and the inequality is component-wise. The lower triangular matrix in Gaussian elimination with
partial pivoting satisfies these same two properties as the W matrices and is usually well-conditioned
(or as Kahan [24] would say “intolerable pivot growth is a phenomenon that happens only to nu-
merical analysts who are looking for that phenomenon”). Of course this does not prove anything
and more work is needed in this regard.

We start with the derivation of the above bound for algorithm Golub-I. Here we define the
matrix W by
R11 = DVV, D= dia,g(Ru),

where diag(R11) is a diagonal matrix whose diagonal elements are the same as those of Ry;. The
diagonal elements of Rij in Golub-I satisfy |(Ri1)i| > |(R11)ij], hence W fulfills the required
conditions

W <1, Wil = 1.

12




The interlacing properties (12) of singular values and the first few inequalities in Section 5 imply
that

O’i(M)
Ri)iil = o > ————,
[(R11)ii| = i > —

Since D is a diagonal matrix, its singular values equal its diagonal elements, so

1<i<k.

1 1D < v
Tin(D) 72 (M)
From omin(R11) > Omin(D)0min (W) the desired bound for Golub-I follows
or(M)

Omin (Rll) >

VoWt

Next we derive the bound for algorithm Chan-I. The proof is similar to that of Theorem 3.1 in
[9]. We first define the n x k auxiliary matrix Z. Its columns are composed of the right singular
vectors v(") associated with the largest singular values of the lower right block of order n — [ + 1,

Rgz), of the final triangular matrix R. That is, Z is a lower trapezoidal matrix with columns
0

Z€1=Z1: 1Sl§k,

0 )
o

where Rglz)v(’) = ||Rgl2)||u(') and [|[v(]] = [|u(|| = 1. Then the lower triangular matrix W for Chan-I
is given by

Z:(T)D, D=diag(Z11 Zkk),

where Z;; are the diagonal elements of Z.

According to algorithm Chan-I, the first component of v() is the largest in magnitude, hence

W] <1, [Wii| = 1.

Moreover, ||[v®|| = 1 implies
1
2l =002 75 1<k,
and 1 1
=1 — Omin > —=.
o~ o2 7

From the interlacing property (12) of singular values, ||R§2|| > 01(M), and the fact that v is a

right singular vector with
1
POF IR = [
RSN

we get

1
0'1(M) )

12F R~Y|| = [|[v®)T [RE) Y| <

Since ZT and R are upper triangular this implies

vk
or(M)

IPWTREH| < (127 R7H| < v max (|27 R7Y| <

13




Hence
IRT . VE
ID=HIW=H| ~ or(M)
gives the desired bound for algorithm Chan-I

or(M)

in(R11) > —————+.
7o (1) 2 S

At last we derive the bound for algorithm GKS-I, which is also given in [18] and in Theorem
12.2.11in [19]. Let R = ULV7 be the SVD of R and partition

k n—Fk
V= (V1 Va )

Algorithm GKS applies algorithm Golub-I to VT, so
VITH =Qu VlTw
where V; is a lower trapezoidal matrix. The matrix W for GKS-I is defined by

‘71:<V5)D) D:dla'g(f/ll ‘_/kk))

where V;; are diagonal elements of V; and W is a lower triangular matrix. Because Vi comes from
algorithm Golub-I, its diagonal elements are the largest elements in magnitude in each column, so
|Vii| > |Vji| and the matrix W satisfies the required properties

Since each column of V; has unit norm, |V;;| > 1/4/n, and since W7 and the final matrix R are
upper triangular, one gets

IREH . URg

Valw= < o= < 1P R < IR

Moreover, from Section 5 we know that (with R now renamed R)

_ 1
VIR = =27 = —=—=.
“ 1 “ “ 1 “ O'k(M)
Combining the last two inequalities yields

O'k(M)
Val[W=H|

Omin (Rll) >

To summarise, we have demonstrated in this section that the failure of algorithms Golub-I,
Chan-I and GKS-I depends on ||W~1||, where W is a triangular matrix satisfying

wi<1,  [Wal=1

The lower triangular matrix L in Gaussian elimination with partial pivoting satisfies the same
properties as W, and it generally turns out that ||L=!(| is small, say like O(n). Although this does
not prove anything, it does show that all these rare matrix events are closely related. The probability
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of pivot growth in Gaussian elimination with partial pivoting is closely related to the probabilities
of Golub-I, Chan-I and GKS-I failing.

For the above matrices W of order k a tight upper bound on ||W~!|| is well-known, e.g. [14, 22,

26, 24], to be
w1 < %\/4’0 +6k—1<VE2,  k>1

and, as illustrated in Section 6, the Kahan matrix essentially achieves this bound.

8 Unification

After having discussed greedy algorithms for the solution of Problem-I
max omin (R11),

we now turn to greedy algorithms for Problem-II
nll_}n o'max(R22) .

Fortunately, a simple observation greatly reduces this task.

Section 3 explains why it suffices to solve Problem-I for triangular matrices R and to consider

S _ [ Ri1 R
foon ne (B )

Suppose that R is non-singular, invert both sides of the above equation,
-1 -1 -1
Tp-1_ (Ri1  —Rig RiaRy, T
wrict= (TR o,

and take transposes on both sides
. R 0
RTn= ( e - )
U\ -re RLET Ry

Now Problem-II can be formulated as

1
mino R = min —m
I max( 22) T O'min(R2_21)
1
MAaXIy Crmin (Rz_zl)
1

maxyy O’min(Rz—zT ) '

Hence solving Problem-II is equivalent to solving Problem-I for the inverse. We call this the unifi-
cation principle as it lets us unify the algorithms and analyses of Problem-I and Problem-II.

Applying a Type-I algorithm to the inverse gives
51 _ A Pi1 P
R =G ( By,
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where P11 is an upper triangular matrix of order n —k, Py is an upper triangular matrix of order k,
and (hopefully) omin(P11) = an_k(R‘T). Hence we need to make some adjustments as P;; should

correspond to R;ZT , which is lower triangular. Moreover, P;; should really have been the lower right
block. '

The necessary adjustments are achieved by a sequence of permutations, which can be accumulated
in @ and II. First permute the two block columns and the two block rows,

Pu Piz\ _ (P2 Pu)_ (P O

0 Pzz Pzz 0 P; 12 P 11 '
Then reverse the ordering of the columns and of the rows in P;; and P, separately. This is
accomplished by means of permutation matrices J, of order p that have ones on the anti-diagonal,

(P22 0 ) . ( T P2 Jr 0 )

Py Py Jn—k P2tk Jn-kPr1dn-k )

Now the resulting matrix has the desired form, it is lower triangular with P;; in the lower right
corner.

Therefore, the postprocessing step consisting of the above permutations proves that applying
a Type-I algorithm to the rows of the inverse amounts to executing a Type-II algorithm. In fact,
we call such an algorithm the Type-II version of the Type-I algorithm. This notion is completely
symmetric with respect to the two types, as one can equally well construct a Type-I version of a
Type-II algorithm in order to solve Problem-I.

Unification Principle: Running a Type-I algorithm on the rows of the inverse of the matrix
yields a Type-II algorithm.

9 Type-II Greedy Algorithms

In this section we illustrate the unification principle by exhibiting the Type-II version of algorithm
Golub-I, and by proving that algorithm GKS-I also solves Problem-II.

We use the name ‘Stewart-II’ for the Type-II version of algorithm Golub-I, as it was first proposed
in [28], though not quite in the form in which we are presenting it.
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Algorithm Stewart-II
RO =R
For!=0ton—k—1do

Set
n—1 1

n—1I A B__(l)
T e)e

1. Find the next column j of R®) such that

T 4-1)| — (|.T 4-1
max_[leF A7 = |ef 471

2. Exchange columns (n — ) and j of R(), and re-triangularise it from the left
with orthogonal transformations to get R(U+1).

Clearly, algorithm Stewart-II obtains the right ordering of the columns by sending the selected
columns to the right end of the matrix. In all other matters it is completely equivalent to running
Golub-I on the rows of the inverse.

A few clarifying remarks may be in order. Just because a Type-II version of an algorithm can
be constructed by applying a Type-I algorithm to the rows of the inverse of the matrix, this does
not mean that is also how it should be implemented. There may very well be a way to reformulate
the Type-II version so that it avoids explicit dealings with inverses.

Furthermore, it is important to realise that a Type-I algorithm and its Type-II version, in general,
come up with different column permutations; and that solving Problem-I does not entail solving
Problem-II. All the unification principle says is that if there is an algorithm for solving Problem-I,
then a simple modification will give an algorithm for solving Problem-II, and vice versa.

There is another advantage of the unification principle. It allows us to carry over the analyses
and worst-case examples for a Type-I algorithm, with suitable modifications, to its Type-1I version,
and vice versa. A few examples follow.

In Section 6 we explained that the lower bounds for the singular values estimates from algorithms
Golub-I, Chan-I and GKS-I can be cast in the form

O'k(M)

O'min(Rll) > T —111)
n||W-1]

where W are triangular matrices satisfying
IWI < 1v |VVii| =1

The unification principle therefore admits upper bounds for the singular value estimates from the
Type-II versions of Golub-I, Chan-I and GKS-I of the form

Tmax(Ra2) < ori1(M)n||W1],
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where, again, W are triangular matrices satisfying

w|i<1,  |[Wul=1

As for other existing Type-1I algorithms, the Type-II version of Chan-I, which we call Chan-
II, was published apparently independently in [20, 15, 9]. The Type-II version of GKS-I was first
published in [18] and will be called GKS-II. The Type-II version of Foster-I, to which we refer
as Foster-II, was first published in [15]. The detailed exposition of Foster-II in [15] also serves to
illuminate our algorithm Foster-I.

We still owe a justification of our claim that GKS-I also solves Problem-II ([19, 18]). Let R =
UXVT be the SVD of the final triangular matrix R, where

k n-—k
k Vit Vi _ _ (%
n—k<V21 sz)’v’ 2“( z:z)
This implies
1 ||R1_11|| T p—1 -1 1
— = =1, S IVaRa | S IET7l = =5
omin(Ri)IViT I 1IViTY| H ! or(M)
and
——1—=0' '(R_1)>0' .(E—lv )>0’ .(2—1)0 ({/22):_—_1____
”R22” min 22 ) Z Umin\~9 22) Z Omin 2 min U'k+1(M)||‘/2_21||’
so M
o _
omin(Ri) 2 2D Rl < ot (M)IViS
vl

According to the CS decomposition, Section 2.6 in [19],
Vil = 1Vaz 'l

Since GKS-1 attempts to keep ||V;7'|| small, it therefore automatically also tries to keep ||V |
small. Therefore GKS-I solves both, Problem-I and Problem-II.

At last we demonstrate how the worst-case example of a Type-I algorithm can be converted to
a worst-case example for its Type-II version. Section 6 illustrates that the Kahan matrix

1 0 - 0 1 —¢ - —c¢
K, = 0 .S : 0 1

| e

0 -.. 0 sn1? 0 --- 0 1

represents a worst case for algorithms Greedy-I, Greedy-1.1, Greedy-1.2 and Golub-I. It follows from
the unification principle that the modified Kahan matrix whose inverse is given by

1 —¢ -+ —c st ..o 0
_ ‘. . n—2 N
o R | B ‘
e : . 0
o --- 0 1 0 e 001

where ¢? + s? = 1, represents a worst case for algorithms Greedy-II, Greedy-1I.1, Greedy-I1.2 and
Stewart-1I1, the Type-II versions of the respective Type-I algorithms.
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MaxT Omin (R11) ming Omax(R22)
Greedy-1 Greedy-I1
| |
Greedy-1.1 Greedy-I1.1
| |
Greedy-1.2 Greedy-11.2
| |
Golub-I Stewart-11
| |
Chan-I Chan-I1
GIiS—I GKlS—II
Foster-1 Foster-11

Figure 1: The Greedy Algorithms.

10 Summary

This ends our presentation of the existing RRQR algorithms. We gave three mathematical problems
that we called rank-revealing problems,

Problem I: maxrr Omin(R11)

Problem II: ming Omax(Ra2)

and the third was to solve Problem-I and Problem-II simultaneously. We then exhibited a sequence
of successively less greedy algorithms to solve Problem-I. By means of the unification principle we
demonstrated the existence of Type-1I versions of these algorithms which are also greedy but solve
Problem-II instead. Figure 1 illustrates the two parallel hierarchies made up from the Type-I and
Type-1II algorithms, where the corresponding Type-I and Type-1I algorithms are next to each other,
and each algorithm is less greedy than the one above it. Each of the existing RRQR algorithms has
a place in this hierarchy. Examples of exponential failure of these greedy algonthms are provided
by the Kahan and modified Kahan matrices.
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We have ignored the greedy algorithms based on condition number estimators for triangular
matrices, e.g. [22, 2, 5, 4, 3, 29], because their behaviour depends very much on the particular
condition number estimator.

The worst case bounds

or(M -
Omin(R11) > 2(2,6 ), | Roz|| < g1 (M)n2"*

reveal that Type-I greedy algorithms work pretty well for small k, while Type-II greedy algorithms
work well when k is close to n. This prompts the question whether a Type-I and a Type-II greedy
algorithm can be combined into a single algorithm that works all the time. The answer is given in
the next section.

11 Overview of the Hybrid Algorithms

In this section we present algorithms Hybrid-I and Hybrid-II. They are guaranteed to solve Problem-
I and Problem-II, respectively. We also present algorithm Hybrid-III. It is guaranteed to solve both
Problem-I and Problem-II simultaneously.

In particular, Algorithm Hybrid-I guarantees that
ox(M)

VEk(n—k+1)
Umin(Rll) V k(’n —k+ 1)

Note that Hybrid-I does not solve Problem-II. According to the unification principle the Type-11
version of Hybrid-I, which we call Hybrid-II, must guarantee that

Omin (Rll) >

o'ma.x(R22)

IN

Omax(R22) < oppr(M)V(k+1)(n — k)
Jmin(Rll) Z Gmax(Rzz)

k+D)(n—k)

Note again that Hybrid-II does not solve Problem-I. Hybrid-III does solve both Problem-I and
Problem-II simultaneously, and it guarantees that

, o (M)
‘Tmm(Rll) Z \/k(n——k+1)
max(Raz) < opan(MV(E T D(n— k).

Of course the brute force algorithm, which tries every combination of columns, also solves these
problems but its operation count is combinatorial. What about the hybrid algorithms? Unfor-
tunately we lack a complete analysis of the worst case operation count of the hybrid algorithms,
although we believe that it may be combinatorial as well. However, preliminary experimental results
in Section 15 demonstrate that the hybrid algorithms are rather efficient in practice.

As in the previous sections we assume that k is given. Although this may not be a realistic

assumption, a proper choice of k depends very much on the problem to be solved, and we refer
to [18, 28] for the discussion of this issue.
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12 Algorithm Hybrid-I

The algorithm Hybrid-I is a combination of Golub-I and Stewart-II, though in a practical imple-
mentation one may want to replace Stewart-II by Chan-II.

The obvious strategy of running Stewart-II after Golub-I is not guaranteed to solve Problem-I
because Golub-I and Stewart-II almost always produce a unique ordering of columns, so the result
of this strategy would merely equal the result of Stewart-II.

Instead, our idea is to alternate between Golub-I and Stewart-II and to let each work on a
different part of the matrix: Stewart-II works on the (1,1) block of order k, and Golub-I on the
(2,2) block of order n — k + 1 of the matrix. Suppose Golub-I has picked the best column from the
(2,2) block and put it in position k. Stewart-II then determines whether the kth column is indeed a
good column. If not, it puts the worst column from the (1,1) block into position k. Now it is again
Golub-I’s turn to put the best column from the (2,2) block in position k. This process continues until
Golub-I and Stewart-IT agree on the kth column. To understand the resulting algorithm Hybrid-I,
we briefly review Golub-I and Stewart-II.

Golub-I is good at approximating the largest singular value of MII = QR. In its first iteration it
finds the ‘most linearly independent’ column of R, i.e. the column with largest norm. Suppose we
permute this column to the first position and retriangularise the matrix. Then the first column r11e1
of the resulting triangular matrix approximates the largest singular value of M,

lrlll < Jmax(M) < \/ﬁ|r11|.

Since Stewart-II is the Type-II version of Golub-I it is good at approximating the largest singular
value of M~ by finding the ‘most linearly independent’ row of R~1. Suppose we permute this row
of R~! to the last position and retriangularise the inverse, to get the triangular matrix R~ =
MR~Q. Then the last column r;; e, of R~! approximates the largest singular value of M~1,

Il < Omax(M ™) < /|

But since R~ is triangular, 7y, is the trailing diagonal element of R and it approximates the smallest
singular value of M,

o'min(M) < Irnnl < \/ﬁamin(M)~

We illustrate Hybrid-I on a 5 x 5 example, where & = 3 and the symbols ‘a’ represent non-zero
matrix elements. First we run Golub-I on the (2,2) block of order (n — k + 1) so that diagonal
element ri; has largest norm among all columns of the (2, 2) block
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x z x x z
z z x z

Tkk T T

x z

z

Now we enlarge the (1,1) block from order k£ — 1 to order k so that the kth diagonal element
can transfer information between the two algorithms. Then we run Stewart-II on the (1, 1) block of
order k so that the (modified) diagonal element 7 has smallest norm.

k k+1
T T T Zz T
T T T T
Tkk ® Y
T T
€

A run of Golub-I followed by Stewart-II constitutes one iteration. The circled elements in the
(1,2) block are modified by orthogonal rotations from the left due to re-triangularisation in Stewart-
II. They are part of the (2,2) block for the subsequent run of Golub-I and illustrate how one
algorithm changes the part of the matrix associated with the other algorithm. The (1,1) block
input to Stewart-II undergoes similar changes in column k due to column permutations during
Golub-1.
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Algorithm Hybrid-I(k)
RO =R/ 1=0
Repeat

=141, permuted =0

RO = (1‘1

Golub-I:

Set

Qi

) , where A is of order k — 1 and C is of order n — k + 1

1. Find the column k + j — 1 of R() such that ||Ce;|| = maxi<i<n—k+1]|Ceil|
2. If ||Ce|| < [|Ce;|| then

permuted = 1

Exchange columns k and k + j — 1 of R")

Re-triangularise it from the left with orthogonal transformations to get

ROV = (A g) , where A is of order k and C is of order n — k

Stewart-I1I:

3. Find the column j of R such that ||e] A7!|| = max; i<k [|e] A7}
4. T ||eT A1) < [|eT A=1|| then
permuted = 1

Exchange columns j and k of R")
Re-triangularise it from the left with orthogonal transformations to get R(H1).

until not permuted

The final matrix is

R= (Rll }—?'12) = (Rll R12> , where Ry; is of order k — 1 and Ry, is of order &
Ry Ry

The two if-statements assure that permutations are performed only in case of a strict inequality but
not in case of a tie.

We proceed with an analysis of Hybrid-I because it is not clear that Hybrid-I eventually halts,
and that it indeed increases omin(R11). We first show that if Hybrid-I halts then

a’k(M)
Vikn—k+1)
‘Tmin(Rll) VEk(n—k+1).

Suppose Hybrid-I halts. Then Golub-I applied to R23 does not change the first column rye; of Ry,

Omin (Rll) >

Umax(R22)

IN
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where 7y is the kth diagonal element of R. Hence

Omax (R22) > Umax(RZZ)

>
Iriel 2 Jn—ktl- Vn—k+1

since Ry is a submatrix of Rys. Moreover, Stewart-II applied to Ri; does not change the last row
7’]‘,]‘,(3",1‘,1 of Rll, and

Irkkl < O'min(Rll)\/I;-

Combining the two inequalities for rgy gives the first desired bound

a'max(R22) < a'min(Rll) vV k’(n —k+ 1)

Applying the interlacing property (12) to Raz,

Umax(RZZ) > ‘Tk(M)
Vn—k+1 " vVn—k+1

and combining the previous two inequalities yields the second desired bound

7rxk] >

O'k(M)

VE(m—k+1)

Omin (Rll) >

Thus, if Hybrid-I halts it solves Problem-I.

In order to prove that Hybrid-I indeed halts, we make use of the fact that columns are permuted
only in case of strict inequalities. The basic idea is to show that |det(A)| is a strictly increasing
function during the algorithm. Remember that A is the leading principal submatrix of order k.
Since | det(A)| is unique for any given column ordering, no column ordering repeats if | det(A)| is

strictly increasing. As there are only a finite number of column orderings, Hybrid-I must eventually
halt.

It remains to show that |det(A)| is strictly increasing during Hybrid-I. By assumption from
Section 2 we have that (M) > 0. So we can assume that our initial ordering of columns is such
that | det(A4)| > 0. Stewart-II does not change det(A) because | det(A)|is invariant under application
of orthogonal transformations from the left to (A B) and to C; and under permutation of the

columns of A and of the columns of g . To see how Golub-I affects det(A) we divide Golub-I

into two phases: the first phase keeps | det(A)| invariant while the second one may change | det(A)].
Accordingly we identify and separate the first column (57  yeT )T of the matrix affected by Golub-I1,

JORE)!

In the first phase the columns of (g) are permuted, so that the first column of the permuted C

has largest norm among all columns of C, and then the permuted C is re-triangularised to give C.
In the second phase, the relevant matrix elements are v and the non-zero elements o and g of Cey,

kE k+1
x % % %
k Yy o  *
k+1 [
*
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Golub-I permutes columns k and k + 1 if 2 < o 4+ 2, in which case the matrix becomes

k k+1
* % * *
k o vy *
E+1 B *
*

The matrix is re-triangularised by eliminating 3 via a Givens rotations from the left, which affects
only rows k and k£ + 1 and results in

k k+1
* * * *
k a4+ (2 z %
k+1 z *
*

where the two ‘a’ represent new numbers. Other than the kth diagonal element, which changed
from v to \/a? + 32, no diagonal element of A changed. But the kth diagonal element underwent

a strict increase in magnitude since |y| < y/a? + 2, and therefore | det(A)| is a strictly increasing
function during Hybrid-I. Consequently, algorithm Hybrid-I must halt.

Section 15 presents some numerical experiments on the running time of Hybrid-I.

13 Algorithm Hybrid-11

In this section we present algorithm Hybrid-II, the Type-II version of Hybrid-I. According to the
unification principle, Hybrid-II guarantees that )

O’max(RZZ) < Uk+1(M) (k + 1)(n — k)
Tmin(R11) Imax(R22)
VE+T1)(n—k)

From the interlacing properties (I1) and (I2) it follows that Hybrid-I(k+1) guarantees the same
bounds as Hybrid-II(k). Thus, one way to implement Hybrid-1I(k) is via Hybrid-I(k+1).

v

Algorithm Hybrid-II(k)
Hybrid-I(k+1)

Although non-singularity is needed for the application of the unification principle, this imple-
mentation of Hybrid-II(k) has the advantage of doing without the requirement that the matrix be
non-singular. However, to reduce the proof that Hybrid-I(k+1) halts to the proof for Hybrid-I(k)
requires og4+1(M) > 0, which may not be true. Our proof that Hybrid-II halts does so without this
assumption, and it also enables us to design the more accurate algorithm Hybrid-III by providing
additional insight into the nature of the problem.
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The basic idea of the proof is again to demonstrate the strict increase of the determinant of
the leading k x k principal sub-matrix during Hybrid-II. Unfortunately we cannot prove that the
absolute value of the determinant of the leading (k + 1) X (k + 1) block is strictly increasing because
that would necessitate the assumption og41(M) > 0. To facilitate understanding of the proof, we
first describe in more detail the implementation of Hybrid-1I(k) based on Hybrid-I(k+1).

Algorithm Hybrid-II(k)
RO =R 1=0
Repeat
l=1+1, permuted =0
Set

RO = (A ]é) , where A is of order k and C is of order n — k

Golub-I:
1. Find the column k + j of R such that ||Ce;|| = maxi<i<n—k+1[|Ceil|
2. If ||Cei|| < ||Cej|| then

permuted = 1

Exchange columns k + 1 and k£ + j of R®
Re-triangularise it from the left with orthogonal transformations to get

RO = (A g) , where A is of order k + 1 and C is of order n — k — 1.

Stewart-1I:
3. Find the column j of R®) such that ||e;17fi'1|| = maxi i<k |leF A7)
4. If ||e] A7 < [|leT A~ then
permuted = 1
Exchange columns j and k + 1 of RO
Re-triangularise it from the left with orthogonal transformations to get R(*+1.
until not permuted

The final matrix is

R= (Rll Rz = Ri B , where Ry is of order k + 1 and Ry; is of order k
Ry» Ry»

As in Hybrid-I, the two if-statements assure that permutations are performed only in case of a
strict inequality but not in case of a tie.

Again, as we had assumed that o;x(M) > 0, we can assume that our initial ordering of columns
is such that | det(A)| > 0. Although this proof is based on Hybrid-I(k+1) it is slightly different from
the proof we gave for Hybrid-I1(k) because now we are focussing on column k instead of column k +1.
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Clearly, Golub-I does not affect | det(A)| but Stewart-1I does. We divide Stewart-II into two phases.
The first one keeps | det(A)| invariant while the second one may change | det(A)|. Accordingly we
identify and separate the last column (a¥ «ef ) of the matrix affected by Stewart-II,

a=(12).
a
In the first phase the columns of A are permuted so that the last row of A1 has largest norm
among all rows of A=, and then the permuted A~! is re-triangularised from the right to give AL
In the second phase the relevant matrix elements are ¢, the element 8 above it and the tralhng
non-zero v of el A,
k k41

*  x *
k vy B .
k+1 @

Since Stewart-II is the Type-II version of Golub-I, it permutes to the last position the column
corresponding to the row with largest norm in the inverse, whose relevant elements are

*
k
k+1

Stewart-II permutes columns k£ and k + 1 if

k+1
*
B
yo |-

1
S+ 55> or 2 < o+ (2.

QU %

Q=

But this is the same situation as in Hybrid-I(k), and it follows that the kth diagonal element of R1;
changes from v to \/a2 + (32 while all other diagonal elements of R1; remain unchanged. As we just
proved that |y| < y/a2 + B2, | det(A)| is strictly increasing during Hybrid-II.

Because we were able to prove that Hybrid-II halts, requiring only that o (M) > 0, we can show
directly that Hybrid-II(k) satisfies

Tmax(R22) < opqpr(M)V/(k+1)(n — k)

Omin (Rll) > o'max(R22)

VEFD)n—k)

The proof is similar to the one that establishes the bounds for Hybrid-I.

A

14 Algorithm Hybrid-I1I

Our last new algorithm is Hybrid-III, which satisfies

. ox(M)
O'mm(Rll) > \/Em
o'max(R22) < Uk+1(M) V (k + 1)(” - k)
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There are several implementations of Hybrid-III. We present the one that is simplest to describe.
This implementation, motivated by the fact that the determinant of the leading principal submatrix
of order k is a strictly increasing function in both Hybrid-I and Hybrid-II, consists of running
Hybrid-I and Hybrid-II in alternation until no more permutations take place.

Algorithm Hybrid-III(k)
Repeat

Hybrid-1(k)
Hybrid-1I(k)

Until no permutations occur

The halting argument for Hybrid-III follows easily from the halting of Hybrid-I and Hybrid-II.
We had shown earlier that during Hybrid-I and Hybrid-II, the determinant of the leading k x k

principal sub-matrix is a strictly increasing function. So it must be true during Hybrid-III also.
Hence Hybrid-III halts.

When Hybrid-III has halted both Hybrid-I and Hybrid-II do not cause any further permutations
in the matrix. Therefore the bounds guaranteed by Hybrid-I and Hybrid-1I must hold simultaneously
now. That is

o or(M)
mln(Rll) Z \/m
Tmax(R22) < opqa(M)V/(k+1)(n —k)

must be true.

15 Some Numerical Experiments

Although we have demonstrated that the three hybrid algorithms halt in exact arithmetic, we
know very little about their worst case running times. In this section we present some preliminary
numerical results for Hybrid-1, which also apply to Hybrid-1I and Hybrid-IIT as the implementations
for the latter two algorithms can be based on Hybrid-I. In practice, the hybrid algorithms are best
run as post processors to the more efficient greedy algorithms, like Golub-I or Chan-II.

In the experiments to follow, we counted the number of iterations in Hybrid-I when it is run after
Golub-1. To prevent cycling in the algorithm due to round-off errors we carried out permutations
only if the pivot increased by more than n2e¢, where € is the machine precision. In order to estimate
the dependence of the running time of Hybrid-I on the matrix size n and the separation of the
singular values o (M)/ok4+1(M), we generated 50 random matrices of size fifty, to which we applied
Hybrid-I with k¥ = 37. Then we multiplied the last n — k singular values of these fifty matrices by
0.1 to increase the separation between the singular values but did not change the singular vectors.
Hybrid-I was applied to these fifty new matrices. The same process was repeated on one hundred
random matrices of size one hundred with & = 75. Table 1 shows how many times Hybrid-I required
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Matrix size — 50 50 100 100
k— 37 37 75 75
Avg(;205) — | 1.0804 | 10.804 | 1.0406 | 10.406
no. of iter. | | no. of occurences |
1 21 25 16 45
2 7 8 3 8
3 5 3 9 9
4 5 4 15 15
) 4 4 11 6
6 1 5 13 6
7 0 0 6 1
8 1 0 7 5
9 4 1 4 1
10 1 0 7 1
11 1 0 1 1
12 0 0 0 2
13 0 0 4 0
14 0 0 0 0
15 0 0 0 0
16 0 0 1 0
17 0 0 1 0
18 0 0 1 0
19 0 0 1 0
| Total [ 50 [ 50 [ 100 | 100 |

Table 1: Hybrid-I Run-time Estimate

a certain number of iterations. Hybrid-I seems to require fewer iterations when the gap between
or(M) and og41(M) is larger, and — in these experiments, at least — the number of iterations does
not deteriorate too much with increase in matrix size.

16 Conclusion

In this paper we proposed three optimisation problems which we called ‘rank-revealing’ QR problems.
We presented a unifying treatment of the existing algorithms by placing them in a hierarchy of greedy
algorithms. Finally we presented three new hybrid algorithms for solving the three rank-revealing
problems. Unfortunately we were not able to estimate the worst-case running time of the hybrid
algorithms.

Most of the discussion for the rank-revealing QR factorisations can be extended in a simple
manner to rank-revealing LU (RRLU) factorisations [8] by replacing orthogonal transformations
with elementary Gauss transformations and row interchanges for partial pivoting. Partial pivoting
prevents the ill-conditioning of the Gauss transformations. Compared to RRQR factorisations, the
bounds for RRLU factorisations are generally worse and, due to pivoting and the resulting fill-in,
their operation are counts higher. It is not clear to us which applications would benefit from RRLU
factorisations.
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It turns out that very naturally the hybrid algorithms give rise to new algorithms for computing
the URV decomposition [32, 31, 30] and also to a new divide-and-conquer algorithm for the SVD.
This will be the subject of a forthcoming paper.

In this paper, we present only one algorithm for each of the three optimisation problems, but one
can easily design other kinds of approximate and exact algorithms. Our motivation for the three
hybrid algorithms was to perform column interchanges based on what we believed would result in
a high rate of convergence. But sometimes one may want to trade off number of column exchanges
for maintainance of sparsity [4, 3, 27] or minimisation of communication costs.

The ideas presented in this paper may aid in the design of special-purpose algorithms. Instead
of choosing the best two columns to exchange, one could compromise and choose a column exchange
that maintains sparsity or keeps communication costs low, while still ensuring that the determinant
of the leading k x k principal sub-matrix increases strictly so that the algorithm halts. We hope
that the ideas presented in this paper prove helpful in developing algorithms for such problems.
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