Fast Strictness Analysis Via
Symbolic Fixpoint Iteration

Charles Consel
Research Report YALEU/DCS/RR-867
September 1991

This work is supported by the Darpa grant N00014-88-K-0573

Fast Strictness Analysis
Via Symbolic Fixpoint Iteration

Charles Consel

Yale University
Department of Computer Science
New Haven, CT 06520

consel@cs.yale.edu

September 6, 1991

Abstract

Strictness analysis (at least for flat domains) is well understood. For a
few years the main concern was efficiency, since the standard analysis was
shown to be exponential in the worst case [5]. Thus lots of research evolved
to find efficient average-case algorithms. In Yale Haskell we have implemented
a new, fairly radical strictness analyzer that computes fixpoints via symbolic
manipulation of boolean functions. This extremely simple approach also is
extremely fast — the strictness analysis phase of our compiler typically takes
about 1% of the overall compilation time.

1 Introduction

The goal of strictness analysis is to determine, for every function in a program, the
parameters in which it is strict. Strictness information is crucial to the implemen-
tation of a non-strict language such as Haskell, since conventional machines are best
suited to strict, or eager evaluation. Knowing that a function is strict in a given ar-
gument allows one to evaluate that argument eargerly and thus avoid creating delay
structures, or “thunks.”

Although theoretically well understood, the existing approaches to strictness anal-
ysis may be computationally expensive. This paper presents a new approach to strict-
ness analysis based on “early fixpoint computation”: a fixpoint of a recursive boolean

1

function is computed prior to considering actual abstract values. This can be viewed
as performing a pending analysis as described in [5], but doing so statically. As a
result, in practice, we have noticed that this technique requires much fewer itera-
tions than conventional methods. The reader can verify this fact with the examples
presented here.

An additional advantage of our symbolic strictness analysis is its great simplicity
— it is easy to describe (indeed, it corresponds to a typical black-board description of
the strictness analysis process), easy to prove correct, and easy to implement.

This paper is organized as follows. Section 2 introduces the approach with exam-
ples. Section 3 presents the algorithm. Section 4 discusses how strictness properties
are used for code generation. Finally Section 5 assesses the method and proposes
some future improvements.

2 The Approach

Usually strictness analysis is achieved through abstract interpretation (see [1, 7, 5],
for example) using the two-point abstract domain {L, T} with ordering L C T. The
idea is that if £ is a function of three arguments (x, y, z), it is said to be strict in x if

ffLlyz=1 foranyyand:z

where, as is customary, the abstract version of function f is denoted by f*.

Let us first introduce our approach to discovering this property for non-recursive
functions. Then, we investigate how to extend it to handle recursive functions.

2.1 Non-recursive Functions

One can think of symbolic strictness analysis as expressing the conditions under which
a function fails to terminate. For this purpose we can use the value True for L and
False for T. As a simple example, consider the following function.

f xyz=if x then y else z

The “termination condition” of £ is z V (y A z). This boolean term can be read as
follows: £ fails to terminate if x fails to terminate or if both y and z fail to terminate.
From these strictness conditions one can derive the extensional strictness behavior of
f, that is,

fflyz=1 foranyy:z
ffell =1 foranyz

Following this idea, we can define a translation function fail that produces a
monotone boolean formula representing the conditions under which an expression
fails to terminate.

1. If k is a constant, then fail k = False.
2. If x is a variable, then fail x = z.

3. If p is a binary built-in function, strict in both its arguments, then

fail p(eq, e2) = (fail €1) V (fail e2)

4. fail (if e, then e; else e3) = (fail e1) V ((fail €2) A (fail e3))
where operators A and V have the usual meanings.

oAy = True, ifz =y = True oV oy = False, if z =y = False
y= False, otherwise. Y= True, otherwise.

2.2 Recursive Functions

Our strategy to handle recursive functions consists of performing statically a pending
analysis. As such, it relies on the following theorem.

Theorem 1 ([5]) If, while evaluating f(z) we find that it depends on the value of
f(z) again, returning L as the result of the second (nested) call to f(z) is correct
with respect to the semantics of recursive monotone boolean functions.

Pending analysis is implemented in a manner very similar to caching. In essence,
a list of pending arguments is maintained. When the arguments of a function call
already exists in the pending list, the value L is returned. Notice that this approach
aims at computing fixpoints in the presence of actual abstract values.

Our strategy goes one step further in that it abstracts the pending analysis tech-
nique from the abstract values: a fixpoint is computed on a recursive boolean func-
tion prior to applying it to abstract values. This is done as follows. Given a recursive
boolean function f#, its body is evaluated without any strictness properties; at each
recursive call f#(6;,---,8,) (where 6; is a boolean term) a new instance [4] of f#
is created. When a given recursive call matches an already existing instance, it is
replaced by L (that is True). The correctness of this is ensured by Theorem 1 given
above.

As an example consider the Factorial function with “accumulator”.

3

fact (n, a) = if (n == 1) then a else fact((n - 1), (a * n))

Using the translation function fail described earlier, the usual boolean algebraic
laws, and the instantiation process outlined above, we have

fact*(n,a) = (n V False) V (a A fact*((n V False),(nV a))) (1)

fact*(n,a) =nV (aA fact*(n,(nV a))) [Identity]
fact*(n,(nVa)))=nV((nVa) A fact®(n,(nV (nV a)))) (2) [Instant. and Subst.]
fact*(n,(nVa))=nV(aA fact#(n,(nV a))) [Assoc. and Absorp.]
fact*(n,(nV a)) =nV (aA True) (3) [Theorem 1]
fact*(n,(nVa))=nVa

fact*(n,a) =nV (aA(nVa)) [Unfold.Jfact*(n, (n V (0 V 2)))

fact*(n,a) = (nV a) . [Commut. and Idempot.]

Notice that fact* is initially instantiated with its paramaters (Line 1). In Line
2, a new instance of function fact* is created with the values (n,(n V @)). In Line
3, a recursive call to an existing instance is replaced by value True (by Theorem
1). The final boolean term (n V a) indicates that function fact is strict in both its
parameters.

Let us now give the details of the algorithm.

3 The Algorithm

An important part of the algorithm is the process of transforming a boolean term
into a canonical form. This is crucial to the instantiation mechanism: it ensures that
a finite number of instances is created.

Let us examine the domain of boolean terms noted BT
0 ::= True | False | z | And(61,---,0a) | Or(61,--+,0n)

where z is an identifier of the program being analyzed.

For simplicity, we use n-ary boolean operators. Also, for a given or-term, we
assume that, by associativity, inner or-terms are moved to the top level (similarly for
and-terms).

Although the domain of boolean terms is composed of finite sets of values a term
may grow infinitely for a given recursive call. To prevent from this, we define a

4

canonical form for boolean terms as follows: a boolean term is in canonical form if it
is in disjunctive normal form, lexicographically ordered, and simplified. Let us detail
each of these conditions.

We require a boolean term to be in disjunctive normal form. This eases consid-
erably the simplification process because an or-term has a straightforward structure;
it consists of boolean values, identifiers or and-terms.

The structure of the disjunctive normal form allows to define a total order on
boolean terms; as detailled below, we shall use the lexicographic order, noted <jez.
This ordering makes it possible to determine equality on boolean terms.

name(6;) <iez name(6s)

where
name: BT — String
name(True) = True
name(False) = False
name(z) = =z
name(And(6y,---,0,) = concatenate(name(6;), - -, name(6,))

The last component of the canonical form is the definition of simplification rules
to ensure that infinite boolean terms cannot be constructed. These rules are based
on the usual algebraic laws of the Boolean algebra. Notice that when a rule applies to
both V and A, the notation == is used. Also, we assume that the rules are applied
in a fixed order.

Idempotence = Or(0y,---,0,) = Or(6},---,8;,) s.t. Vi,j € {1,---,m},i#j =0 #0;

And(6y,---,6,) => And(8},---,8},) st.¥i € {1,---,m}, 6; # True

Tdentity = And(6y,--:,0,) = False ifdi e {1,---,n} s.t. 6; = False
Y=13 or(6y,---,0,) = O1(6,---,6,) st.¥ie {l,---,m}, 6; # False
Or(6y,--+,0n) = True ifdi € {1,---,n} s.t. 6; = True

The set of boolean terms in canonical form is noted BT. The process of trans-
forming a boolean term into its canonical form is noted simpl.

Let us now examine the algorithm displayed in Figure 3. For simplicity we assume
that a program consists of a unique function; this restriction is lifted in the next
section. Domain Hist captures the instantiation mechanism introduced in Section
2.2: it keeps track of the boolean terms with which the boolean function is called.
This is represented as a set of call patterns. When a pattern already exists the
corresponding call is replaced by value True (by Theorem 1).

1. Syntactic Domains
¢ € Const [Constants]

z € Var [Variables]
p € Po [Strict Built-in Operators]
f € Fn [Function Names]
e € Exp [Expressions]
e u= c|z|ple, - en) | f(er, - ,€n) | if €1 then ez else e3
Prog := {f(z1,:*,2s) = €}
2. Domains

6 € BT [Boolean Terms]
o € Hist C BT
p € Env = Var — (BT +[BT" x Hist — BT))

3. Functions -
Sprog : Prog — (Hist x BT)
S : Exp —» Env — FunEnv — BT

Sprog [{ f(z1,-++52n) = €}l = ((p LfD)(e1,---,2a) 0) L 1
where p = L[(M01,-+,0n). Ao. (< 01,-+-,0n > € 0) = True,
(S [e] (LOx/zk]) (0 U{< br,--+,0n >}))/f]

Slepeo = < o, False>
Slelpo = <o, plz]>
S [p(e1, - -ren)l po = <o, Or(by,--,0n)) >
where <oy, 6> = Slalpo
< Opy 0,> = S[en] pona
S [if e; then e; elsees] po = < o3, Or(f1, And(62, 05)) >
where <oy, 0> = Sle]po
< 09, 0> = S [[egﬂ p o1
<03 03> = Ses] po:
S [f(er,-sen)l po = (p [f]) (simpl(),- -, (simpl(6n))) on
where <oy, 00> = Slepo
<O, 0> = S [en] pona

Figure 1: The Algorithm

Extending the Algorithm

In this section we discuss some extensions to our approach to cope with any kind
of recursive functions. To do so, we distinguish two classes of recursive functions:
mutually and non-mutually recursive functions. This distinction is based on the
information provided by the dependency analysis.

For non-mutually recursive functions, the strategy is to analyze functions in “lexi-
cal scoping order”, that is, starting at the leaves of the dependency graph and working
up. This strategy requires a minor modification of our algorithm: once a function
is analyzed, the environment is extended with the resulting boolean function. Then,
subsequent calls to this function will use this boolean function. As an example,
consider again function fact whose boolean function is

fact*(n,a) = (n V a)

assume an inner function contains the call fact” (z,y); this would produce the boolean
term (z V y).

For mutually recursive functions, the dependency analysis of the compiler groups
together functions from the same strongly connected component. Thus, each function
of a strongly connected component is analyzed separately and each recursive call to
another function than the one currently analyzed is simply unfolded. Notice that, in
fact, only mutually functions called from outside of the strongly connected component
has to be analyzed.

4 Code Generation using Strictness Properties

After strictness analysis, strictness properties are used by the code generator to shift
a lazy program (FLIC) into a strict one (Scheme). Delays are represented using the
cell model [3]. Each delay contains a flag and either a thunk, before evaluation, or
value after evaluation. Three lisp functions deal directly with delays: force, delay,
and forced-delay. The forced-delay function is used to add the delay wrapper to
an already evaluated object; the delay function does not evaluate its argument until
forced. The force function cannot be applied to an object not created by delay or
forced-delay. The forced-delay function is used instead of delay whenever the
computation being delayed is simpler than the creation of the thunk.

Strictness information is used to determine the representation of each variable.
Strict variables contain no delay cells; lazy variables are always bound to a delay
structure. The code generator inserts the required conversions between strict and
delayed values.

To allow strict arguments to be passed to functions, a dual entry point scheme is
used. Dual entry points are a common optimization for fast calling of known func-
tions [6]. The optimized entry makes use of uncurrying to receive multiple parameters
and strictness analysis to receive evaluated parameters. A second entry point, the
standard entry, is used for higher order calls and is significantly slower.

5 Assessment

In practice, the strictness analyzer represents a remarkably small overhead in the
overall time of compilation. Typically, the strictness analysis phase represents 1% of
the overall compile time. This small overhead is due to the following facts. Symbolic
fixpoint is computed in very few steps. Indeed, recursive calls usually contain very few
variables (that yield simple boolean terms), therefore, few instances will be created.
This can be explained by the fact that Haskell is lexically scoped. Also, as discussed
in [2] regarding relational analysis, recursive calls usually do not shuffle the variables;
in our case this claim is sustained by the strongly typed nature of Haskell: it restricts
the set of possible variables that may occur in a given argument of a function.

The main drawback of this approach is that it is restricted to flat domains; ex-
tensions to our method to handle non-flat domains are currently being investigated.

Finally, note that this symbolic process to compute the fixpoint is very general.
For instance, few modifications are required to perform a binding time analysis. The-
orem 1 is defined for the least element of the binding time domain.

References

[1] S. Abramsky and C. Hankin, editors. Abstract Interpretation of Declarative Lan-
guages. Ellis Horwood, 1987.

[2] A.D. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1986.

[3] A. Bloss, P. Hudak, and J. Young. Code optimizations for lazy evaluation. Lisp
and Symbolic Computation, 1:147-164, 1988.

[4] R. M. Burstall and J. Darlington. A transformational system for developing
recursive programs. Journal of ACM, 24(1):44-67, 1977.

[5] P. Hudak and J. Young. Higher-order strictness analysis in untyped lambda
calculus. In ACM Symposium on Principles of Programming Languages, pages
97-109, 1986. '

[6] S. L. Peyton Jones and Jon Salkild. The spineless tagless G-machine. In FPCA’89,
4 International Conference on Functional Programming Languages and Com-
puter Architecture, pages 184-201, 1989.

[7] P. Wadler and R. J. M. Hughes. Projections for strictness analysis. In FPCA’87,
#h International Conference on Functional Programming Languages and Com-
puter Architecture, 1987.

