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A Galerkin Method on Nonlinear Subsets and

Its Application to a Singular Perturbation Problem

ABSTRACT

In the Ritz-Galerkin method the linear subspace of the trial solutions is extended to a closed
subset. As an example, a class of so-called sublinear approximation and interpolation is developed.
Some results, such as orthogonalization and minimum property of the error function, are obtained.
A second order scheme has been developed for solving the linear singular perturbation elliptic
problem

-eu” +p(x)u’ + q(x)u=1(x), u0)=u(l)=0.
Error estimates are given for a uniform mesh size h:

llo? - ully < €; 115, [P -l < €5 11, (=0,1)

2
ifh < ﬂ ¢, where the constants C, and C__; (i==0,1) all are uniformly bounded for small ¢.
Pl ’

For the same accuracy, the present nonlinear scheme is one order of magnitude more than the
usual method used in the piecewise linear subspace. Numerical results for linear and semi-linear

singular perturbation problems are included.



1. Introduction

The development of finite element methods has been successful in various fields. From a
niathematical point of view, the method is one of extensions of Rayleigh-Ritz-Galerkin technique,
([1], [15], [16], [17]). Usual finite element schemes, choosing piecewise polynomials as trial functions,
are very efficient when there are no steep gradients in the true solution. Otherwise, poor results
might occur. In order to get accurate numerical data, one may use adaptive mesh technique(e.g. [8])
or a higher precision scheme such as h-version and p-version respectively [3]. Beyond usual
polynomials, rational elements(e.g. [24]) and exponential elements [9] have been introduced to enrich
the trial subspace to reduce number of parameters for a given precision. One thing in common
among these techniques is that they are all reduced to a discrete linear system if the original

differential equation is linear.

Nevertheless, our approach is quite different. To find a better discrete approximation o.f ‘weak
solutions with steep gradients, we try to relax the limitation of replacing the continuous variational
problem only by a sequence of finite-dimensional subspaces. Hence, in this paper, we present an
extension of the finite element method from subspace to more general subsets and adopt -tjl;e method
to solve singular perturbation problems (including linear and semi-linear) in one dimension. For
linear problems, our aim is to solve a small semi-linear system instead of a large linear system which

arises by using the usual trial subspace of piecewise polynomials for a given precision.

From a practical point of view, there are, at least, two questions which need to be answered
now. First, how to find a good non-linear approximation of a non-linear functional space which can
be devised especially for singularity problems. Secondly, how to solve the resulting discrete non-
linear system efficiently. This non-linear approximation should include conventional piecewise

polynomial and it is expected to be not too far, in some sense, from linear approximation in order to



meet the theoretical demand (such as convergence and to keep some behaviors of the true solution)

and to satisfy the practical aim.

The approximation used in this paper is called piccewise mapping-polynomial or spline
mapping-polynomial. It means that the approximation is of piecewise, and in each subinterval a
local one to one mapping is applied first, then a polynomial approximation is used in the mapping
plane. The final approxixﬁation is obtained by using the inverse mapping, and the whole
approximation function has some orders of smoothness according to various requirements. In
particular, it reduces the usual polynomial or polynomial-spline approximation if the mapping is

always equal to the identity mapping. _

A large amount of attention has recently been focused on the difficult singular perturbation
boundary value problems. These problems arise from some different fields, for examples, boundary
layer or convective-diffusion type flows in fluid dynamics. Conventional methods applied to such
problem result in unrealistic oscillation and poor approximation unless the mesh length h is
excessively small. Some effects have been dome by various authors using local higher order
polynomial approximation with some parameter, cailed 'Upwinding’ methods, to match the true
solution better at the nodes. The method has been discussed by Christie and Mitchell [6],
Barrett,Morton [4], Heinrich and el. [12], Babyska [2], etc. An "Exponentially fitted method”
developed by de Groen and Hemker [9]. is to add a piecewise expomenmtial term to enrich the

subspace of piecewise polynomial.

In section 2 and 3, we generalize respectively the usual Ritz and the Galerkin method from
linear trial subspaces to subsets, and derive some results such as orthogonalization and error

estimations. A brief discussion about 'sub-linear’ operator and its approximation is given in section



4. In section 5, the semi-linear finite element technique is studied by solving singular perturbation
problems in one-dimension: -eu’'+pu’+qu==Af, u(0)=u(1)=0. The results show an improvement over
one more order precision than the corresponding scheme of using piecewise linear subspace and that
the constraint of mesh size h is relaxed from O(e?) to O(¢). A linear and semi-linear test singular
perturbation problems are given in section 6. Computational result agree with the above theoretical

analysis.

Some research results on the same topic in two-dimensions will be reported separately [22].



2. A Ritz method on subsets for self-adjoint equations
Consider a self-adjoint elliptic linear differential equation
Lu=f (1)
a(u,v) = (Lu,v) is a positive quadratic form in a real Hilbert space H with an inner product (*,*) and
a norm ||*||:
| C, [Ju]]? < a(u,u) <C l[ul[?, for all ueH (2)
where C, and C, are positive constants. It implies that
[a(u,v)| < C; |lu]| ||v]], for all u,veH. (3)
u is defined as a weak solution of (1) if it satisfies
a(u,v) = (f,v) forall veH. - (4)
It is well known that u is a weak solution of (1) if and only if u is the unique minimum solution of a -
‘quadratic functional I, i.e.

I(v) = inf I(v) = inf {av,v) - 26%)) ' -

As a well-known discrezation, H in the variational problem (5) is replaced by a sequence of
finite-dimensional subspaces V! contained in H:

I(uh) = inf I(v

(u) = inf 1(¥)
which is equivalent to the following weak solution

a(u®, vt) = (f, vh), for all vhe Vb, (6)

Now we replace H in (5) by a sequence of closed subsets SP with the same finite-dimensional
parameters. Let T be an one-to-one continuous mapping from an open convex set Vlh of VP onto Sh:
TV,h =sh.

Definition 1: [25] The mapping T: Vlh --> SP is differentiable in the open convex set Vlh,
if for each veV," there is a Jacobian matrix T'(v) such that



lim | 20*en) - TO) _ oy)g|f = o, for each ¢ V2. (7)

a=>0
In particular, T’ = T if T is a linear mapping.

Consider a restricted variational problem on the closed subset sh:

I(u,) = inf I(v) (®)
Since SP is closed, so there exists a solution of (8) in sh. 1f u, minimizes I over Sh, u =Tw, then for
any a>0 and 5 € Vlh

I(u) < (T(w+an)). (9)
Let

T(w+an) = Tw + aTy + «(a)
where T is positive-homogeneous and | —
#(a) = T(w+an) - Tw - aTy
The right side of (9) is
I(w,) + 2afa(u, Tn) - (T0)] + 2la(u, (a)) - (Ec())
+ o%a(Tn,Tn) + 2aa(Tn,x(e)) + a(x(a)x(a)) = K(e)
As a function of the parameter a, the fact that u, minimizes I over S requires G__l;!(!'x I'(e) = 0.
Observing that |

K(0) = 0, £'(0) = (T'(T"u,) - T)n,
and

0= Ia)l,. 50 = 2 { a(u,Tn) - (1T9) + a(u,, K(0) ) - (f, x'0) )}
hence, it yields |

a(u s,T’(’l"'lus)r)) = (f,T’(T'lus)n) for all n ¢ Vlh., (10)

Therefore

Theorem 2: If (i) V* is a subspace of H. (ii) S* is a close subset of H.-(iii) T is an one-



to-one positive homogeneous and di fferentiable mapping from an open convez set V,of 1%

onto Sh: v, = Sh. Then (iv) There ezists a solution u, of (8) and (10) holds.
The above Theorem shows that the nonlinear system (10) has at least a solution which
minimizes the variational problem (8). Usually, it does not mean they are equivalent each other.

Because there are no guarantee of unique solution in general case. However, we have the following

conclusion:

Theorem 3: If V, contains uh defined in (6), then for the mapping T which is sufficient
close to a linear mapping, i.c., ||T - T’ || is sufficient small, the nonlinear system (10) has
unique solution which minimizes the variational problem (8).

Proof: In fact, (10) can be rewritten as -

a(u, %) = (£, v") + Q(u,v")

where

Quv) = alu, [T-T(T u)lv) + (1, [T-T(Tw)v") ) -
Since there is unique solution in (6), hence, the above equations system also has unique
solution if ||T - T’|| is sufficient small.

Now we suppose that the generalized coordinates (real parameters) of the subset Sh are Qqse-sQpy

then the first variational equations of I(w) in S* must be vanished

%g'li; = a(w,g':T) g (f,g%' =0, fori=1,.,n. (1)

and the determinant of the second variational matrix at the point of the solution is positive

det( 2L y> 0 (12)
(57, ) > O

Let {Bj} be a basis, then for each weS®
S| + Ow __ Iw’ 1y — . _ 1
w—'I"w+w,B-Ei——Bi+3‘—li—,whereT‘w—2quj,w =w-T" w.

Substituting the above formulas into (11) yields



L a'(Bij)Qj = (f:Bi) + G;(q) (13)
_ awt . aw‘
where G, = (f,ga;-) - a(w ,HE-) -z qja(Bj,aai—).

Hence, the equations of the weak solution in subsets are different from ones in subspaces only by
the last extra term which tends zero when the subset S? tends a subspace. Also, the system (11) can
‘be written as

ow' aw'

a(wB,) = (1B,) + G'{a), where 6", = (f;55-) - a(wzg-) (14)

Hence, for each vth, ignoring the extra terms, we get an approximate equations

a(u,,v) = (f,v) for all vevh (15)

Because W in (14) corresponds to the unique solution of the variational problem (8) for the
positive quadratic form a(u,u) restricted in the subset St being the continuity of solutions with the
system, there also exists a solution u_ of the system (15) in SP_if the distance between VP and Shis
sufficient small. Geometrically, it is obvious. In fact, from (11) and (12), it means that, as a
hypersurface in the n dimension of (ql,:..qn), 1 = 91/dq; is separated by a hyperplane z = 0 and they
have only one intersection point. Moving this hypersurface, there still exists a unique intersection

point if the moving distance is sufficient small.

For practical aim there is another approximation versions of (14): Find uscSh such that
a(u,, u_- vh) = (1, u, - vh), for all Ve VR, (16)
Suppose u_ is the unique solution of (16). From (4), for any vh in VB, a(u,u, - V) = (fu, - vh),
subtracting (16) leads to a(u - u_u_- v1') = 0. Hence

a(u - vP,u - vP) = a(u - u,u-u)+ a(vh - us,vh - )

Using (2), furthermore, for any v in VR,



Cy llu- u ) < afu-uju-u) < afu-vhuvh) <O flu- >

There are similar formulas for the case of (15). Thus, we have proved the following fundamental

theorem of the Ritz method on subsets which is an extension of the Theorem 1.1 in [2] for subspaces.

Theorem 4: Supposc u_ is the unigue solution of (16) or (15) in a closed subset Sk, then
it satis fies the following properties:

(a) Minimum property

a(u-u,u-u)= 'ggli; a(u- vBu-vh), (17)
or

a(u-u,u-u)= v{g’i; a(u-u - vPu - u, - vb), (18)

and

lla-ull <C inf Jlu- al | » ' (19)
or

lla-wll <C jof fju-u,- all (20)
where C 13 a constant. ‘
(b) Orthogonalization

a(u - u,u_ - vP) = 0, for all v in VR, (21)
or ,

a(u - us,vh) = 0, for all v} in VP, . (22)

In practical view, as a system for the weak solution, (15) is more attractive than (16). And the

difference between them could be small if the subset is 'not far’ from a subspace in some sense.
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3. A Galerkin Method on a closed nonlinear subSet

The analysis in section 2 can be extended from the Ritz to the Galerkin method. Suppose that
the operator L in (1) is not self-adjoint in which derivatives of odd order spoil the self-adjointness of
an elliptic equation and the associated quadratic functional I(v) defined in (5) is not positive definite.
The problem now is to find a stational point rather than a minimum of I(v). There are some results
Aon the existence of the weak solution (4), e.g. Babuska and Aziz [1], Strang and Fix [17]. Let us

quote a few results of Galerkin Method first.
Theorem 5: Let H, and H, be two real Hilbert spaces with inner products (*,*), and
1
(* %)y , respectively, (fv) be a continuous linear functional on H, and a(u,v) a bilincar
g :

form with three snequalities

(1) Ja(uv)] < ClIIuHH1 “vHH2 for all u e H; and v ¢ H,, where C; < co.

s |a(u,v)|

(i) inf sup ———— > C,
wy vy lully vl

(iii) sup |a(u,v)] > 0, v#0
‘“H!

Then there ezists one and only one weak solution u, of the functional equation Lu = f

such that

a(u,,v) = (f,v) for all v e H, (23)

and
Iogll, < 05 Ity
A proof of this result can be found in [1], theorem 5.2.1. Galerkin’s method is the natural
discretization of the weak form. In general it involves two families of functions _ _ a subspace St
of the solution space (or trial space) H; and a subspace VE of the test space H,. Then the Galerkin
solution uP is the element of S! which satisfies
a(ul, v) = (f,v?)  for all v0 ¢ VP T (29)

Since both SP and V! are linear subspaces, if {sj} is a basis for SP and {vj} is a basis for Vb, the
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solution u! = qusj satisfies a linear system
Agq=d (25)
where
A= a(si,vj) ), d= (f,vj) | \ (26)

If A’! exists, there is a unique solution bt of (24). Also, there are some error estimations of the
'Galerkin method, say, see Strang, Fix [17] and Aziz [1]. However, if there is an odd-derivative term
of the bilinear form with significant size, the Galerkin method is usually unsatisfactory. The
essential reason is that the approximation in linear functional space is not good emough in this
singular case. Probably, that is one way to overcome the difficulty is to extend the trial solution

space to a nonlinear subset.

Now, suppose that SP which is a closed subset of H, has the same number of freedoms with VP
and that there exists a element uP ¢ S® such that (24) still holds true. Being (23), subtraction yields

the following Lemma.

Lemma 8: For any subset of H , if there ezists an element uh ¢ S* which satisfies the
relation (24), then with respect to the energy snner product, uP is the projection of u onto

Sh, or, the error u - uP is orthogonal to vk
a(u-ub, V") =0 forall vhe VP (27)
I;et the notation u; denote an interpolation of any u ¢ H; in the subspace Vb, Since for any uj ¢ Sh,
a(u-ub, u- ) =afu-u? u- uj) + afu - ub, uJ-nh)
being (27),
a(u - uh, uJ-uh) =a(u-ut, (uJ-uh}(uruh)l)
or

a(u - ub, uJ-uh) = a(u- uP(u- uP)(u - uh)l) - a(u- b, (u- ugk(u - ug))
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So, from the inequalities of Theorem 5

Cz”“ - “h“2H1 < C]”“ - uhHHI{”u - “1“1{2 + ”(uj"“h)'(uj'“h)]”ﬂz}

Therefore, we proved following error estimations.
Theorem 7: Suppose the conditions in Theorem 5 hold as well as (24), then on the closed
nonlinear set SP the approzimation solution uh of (27), if st exists, has following

estimates
- wblly < <L i [fu - o - w] | 9
u H = went H,
I - wPl, < i (-l + ool

or

|u - “h”Hl S‘Z—: { ”(u'uh) - (u‘“h)]“}{z + ui:ls{ ["“'“1”1-12 + "(“’nj) - (“‘uj)xnnz} (29)

Corollary 1. If the subset SP coincides with the subspace Vb then
h Cl .
- il < 22 it -l @
(30) is just the result of the usual Galerkin method. Hence, (24) above is just a generalization of the

Galerkin met'hod°

Corollary 2. Let uj, be an interpolation of u on the subset St then ‘
My < 22l - upyllg + - Ha - Pyl + + - upHa - g a1
[lu-u Hx"'E; Iu-thlﬂz u-u u-u)[H2 I - uy (u-th)llnz} (31)
The bounds (29) - (31) will play a central role in error analysis . It is clear that the subset SP should
be so chosen as it can tends a denumerable dense set, as h tends zero, in the true solution space H,,
as well as VP in H,. In this case the limiting behaviors of the error in energy norm as h-->0 depends

mainly on the approximation ability of the subset sh,

Now we turn to discuss existence and uniqueness of solution of (24) briefly. It was considered in
section 2 for self-adjoint a(u,v). When a(u,v) is not self-adjoint, in terms of variational principles,

the weak solution (24) is equivalent to find the stationary point for the bilinear a(u,v) on sh x vh
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where SeH, and VeH, are a closed approximation subset and a subspace with same finite parameters
_respectively. Because the existence of the stationary point in the whole space H, is assured by
theorem 5, hence, from geometric intuition, there is a stationary point in the sense of (24) for
sufficient small b, at least. Besides, if there is unique stationary point of (24) when the subspace sh
coincides with the subspace Vh, then, the stationary point still exists if the subset shis 'very close’ to

the subspace VI, In general, we have

Theorem 8: Suppose there ezists a subspace SL* with o basis {s j} in which the linear
system (24) has unique solution and T is a map from the subset S to the subspace SL
such that for a basis {vj} of the test subspace vk

p(A1G)) <1 (32)
where the notation p denotes the spectral radius of ¢ matriz, A defined in (26 ), and J(G)
is the Jacobi Matriz of the vector G defined

G= ( a(uh - Tuh)r vj )r
then the nonlinear system (27) exists unique solutson.
Proof: Let TuP = £ q;5; since a(uh,vj) = a(Tuh,vj) - afuh - Tuh,vi) , from (24), (27)

becomes L a(si,vj) = (f,vj) + Gj, In matrix form it can be written as

Aq=d + G(q). (33)
Using the following ’simple’ iterative procedure
A q(o) == d’

which is a contraction mapping if the condition (32 ) is satisfied. Q.E.D.

Remark: (33) is very useful not only for proving existence of the solution, but also for

computing.

For practical view, hence, the first problem for using the generalized Galerkin method is to

construct an adequate nonlinear approximation subset as sh above.
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4. 'Sub-linear’ approximation and interpolation.

Let T(u) be a real operator of u, where u(x) be a real function defined a given vector space X

and belong to a space S, T(u) belong to S, too.
Definition 9: An operator T(u) is called positive on the set X, if

T(u) > 0 forall u(x) > O0andx eX (35)

Definition 10: An operator T(u) is called sublinear on the set X if it satisfies two
following conditions

(i) Positive-homogeneous

T(au) = aT(u) foralla >0inRandueU,xeX (36)
(1) Subadditive

T(u+v) > T(u) + T(v) foralluveUandxeX

or

T(u+v) < T(u) + T(v) for all u,v e U and x ¢ X. , (37)
Consider interpolation and approximation using sublinear piecewise positive operator. For simplicit‘:y,
let the set X = [0,1], and a partition A be given

A0=x,<x <.<xy=Lh=x-x, ~ (38)

Particularly, the linear positive operator, defined by Korovkin[13] ié sublinear positive.

When

B(x) >0, TB{x)=1,foralxin0]] (39)
then

T(u) = £ u(x;) B(x) - (40)

is positive. As an example, Bj can be chosen as B-spline. Similar, if
B(t,x) > 0, for all t,x in [0,1], and [, B(t,x) dt = 1, for all x in [0,1]. (41)

then
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T(u) = [, u(t) B(t,x) dt (42)

is positive too.

Lemma 11: If u, v, > 0p>1, B](z) is defined by (39), then

{S(u;+v)PB(x)} /P < (S(w;)PB ()} /P +{S(v "B, ()} P. (43)
The inequality direction will be opposite ifp < 1 (p 7% 0 ). In the limit case of p = 0,
(43) becomes

H(uj-i-vj)Bj(") > H(uj)Bi(x) + I'I(vj)Bj("). (44)
In each case the equality holds true if and only if the two sequences (u ) and (v ) are

proportional.
In fact, the above inequality is just the triangular inequality for the lp space with weight. It can be
easily proved using a \classical i‘nequality, e.g., [5]. Hence, the operator
T(u; p) = { & (u)? Biix) }'/P | (45)

is sub-linear positive.

For instance, if we take the basic functions {Bj(x)} as B-spline and u; as an average of u(x) on
some nodes near X;5 then (45) becomes a sublinear positive approximation operator of u(x) on [0,1], it

wll be a generalization of the well-known Schoenberg approximation.

Consider a kind of piecewise interpolations using the above semi-linear positive operator. For

X1 <x S.xj, lett = (x- X1 )/ hj: Uy = u(t)|;=0» u, = u(t)ltsl’ P=P;p and
T(w; p) = { yg® (1-) + u,P t }1/P (p50) 0 <t < 1 | —  (48)
T(u; 0) = u¥ v, (p=0) 0<t<1 (47)

Obviously T(u; p) is piesewise sublinear and positive.
Theorem 12: The interpolatory operator T(u; p) is piecewise sublinear and positive, and

if u eC3l0,1], for z 1 <z <3 then for u(z) > O there is a remainder expression

u(x}T(u;p) = %(x-xj_l)(xj-x)(u”-(l-pj)u’zl u)l, €+O(h3).
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(xj_l <€ X; ) (48)
Furthermore
Max|u(x)}-T(u; p)| < —Maxlu” (1-p; Ju?fu| + O(h3). (49)
and
Max|w(x}T'(u; p)| < BMaxju™(1-p,Ju’?/u| + O(h2). (50)

Proof: Since T(u)=u for t==0 and t==1, using a well-known technique of error estimates in

Lagrange interpolation leads to (48) directly, so

a(x) - T(ws P) = Hooxg Yo W, (55 <E<)
from the Taylor expansion T" = (l-pj)u’z/ u + O(h?). Hence, (49) and (50) follow.

In particular, if p = 1 everywhere, (46) becomes piecewise linear interpolation. Hence, in general
case, now the piecewise linear operator operates on uP instead of on u itself. In another words, (46) is
a generalized means replacing the arithmetic means with weights for the linear case (Jiachang Sun

[19]). Furthermore, if we choose the piecewise constant P; such that

-1 ’
P = F—(-—— - -i—- ) (51)
i 1‘1
the resultmg mterpolatxon (46) will have one more order of precision.

Theorem 13: If u ¢ C4[0,1], then for the piesewise interpolation (46) with (51)

Max|ul) - Ti(u)| < Ch*Max|W(u)] + O(b*Y). i=0,1,2.

[l - T(u)llgz < Ch*Max|W(u)| + O(h*) (52)
where
31/2 1 _ uiz u ”
C='fﬁ'6"c TC —-—C—-mlz,W(u)=h——(;T). (53)

Proof: Set j=1, p=pl. Applying the Taylor expansion yields

uu”

X
pl=-—+(—-%) (—;" + O(h?),
u

Py = R ) (S + o,

(uP luv)n —_ _up-2u,2( _’_)'n + O(h).
u
Using these results, a straightforward computation leads to
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-Xo x 1,y
uP— - + upf T= uP + 4xl-xXx9xo)(uP u')

+ —{xl-x)(x-xo)(x -2x+x0)(up' v')” + O(h?)

=P+ —(xl-x)(x-xo)( - x)uP%u ’2(-)" + O(h%).

and
u,P-u P X+
L0 gl (22 I x)(uPlu') +
ph 2

P (e - ) + (2} + O
W (L e gl 0+ O

Hence
Tp) = (v 2 uo*’; e

h
. ) 2“'2(3;-)”} + O(h4).
u

=u{{l+ —(xl-x)(x-xo)(

Therefore

1 XtXp w2, 4
T(u;p) - u(x) = f;(xl-x)(x-xo)( - x}i-(;,-) + O(h%). (54)

Since the function

Xo 1
- x)| = Tp1-t)[1- 2t|

. / 1 32 1
has maximum value 7'1'6' at t=5 + —(

a1 X,+
h3l(—5(xl~x)(x-?co)( 1

-——) hence we get (52) for i==0. Sxmxlarly

Ti(u(x)p) = - ho{ulp ";"°+u p X p)fp

=uw{l+ 12“(-—)”[(x1-x)2+(x -x)°%- 4(x1-x)(x-xo)] } + O(b%)

and

T (u(x)p) = (1-p)[———+2{u, S ugp e

h
+
=u"{1- ( - x)—(—-)" + O(B*)H{1 +
(x-x)x-xq) - 3
——El—l;lp——(u" wy l(xl-X)u,p+(x-xo)uo"l + O(h%)}.
Hence

Tu(xp) - w6) = B - B )cxg)] + OB) (55)
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X, +X 2 u
T(a()p) - wx) = - (<= - X" + O(B?). (56)
(55) and (56) lead to the bounds (52) for i=1,2, respectively. In order to prove the last
estimate of (52), using (54) we find

h® W o1

IT - ulPpe = [o'[T(u(x) ) - u(x)|?dx < g A3 (1-t)(1-26)d0 = 2 A® 5

Remark: It is interesting that the coefficients C(,C,,C, in (53) are just as same as C,Cy,Cy
respectively in an error estimation which is for the cubic Hermite interpolation in the case of ueC*.

e.g. [23] (theorem 2.21). Hence, it is reasonable to call this kind of piecewise interpolation a quansi-

cubic-hermitian.

Corollary. If ueC3, then the main orders in (52) still keep, howevér, the constants before the

orders are need to change now.

We may extend the intefpolation form (46) further. In geperal, suppose {Fj} is a sequence of
piesewise one-to-one mappings in the sui:interval [xj-l’xj] respectively. For a fixed j, say j = 1, let
F=Fj, we define

T(u;p) = F{tFlu, + (1-t)Fuy} (57)

where the notation

X°Xo

F‘lui = F’lu(x)l i=0,1)t= T

X==X

It means that now the piecewise linear interpolation operator does operate on the map 'of F'lu

instead of on u itself directly. In this sense, (46) is merely an example of (57) where Fu = ul/p,

Since T(u(t);F) = u(t) at two ends t==0 and t==1, it leads to
Lemma 14: Let u, F ¢ C**! (2y z, ), where k=38 or 4, F 14 is any one-to-one mapping,
say %g > 0, then

d%r! ( )
IF1T(a) - Flull,, < Il ll,, + O(k®),



19

d%r!
II—{F”T(u)-F' Wl s—ll ( )H + O(B*).

Theorem 15: Suppose the hypotheses of Lemma 14 hold, then there are remainder

formulas and error estimates

1 d?F(TF lu(x))
u(x) - T(w;p) = 5{x-x; 1 }x;-x)u" - ———T——)I

& $2p1u(x) dF" aF!
) - asp) = Leox, Yo w(€) + w dx';"" i Pld— 3,
(%, < f,n <x) - (58)
5 -1 ( ) dF )
11w~ ully < 51—, B+ o),
d’F! '
14T () u)l,, s-‘gll--af;—(-’i)-llm%g’ls,m + O(Ek1), (59)

Proof: The first remainder is obvious. The second one needs differential formulas in

implicit form

sz(TF‘ u(x))

21
d dTF (dFulx) gp-! 4TF lu(x)
R
and the Mean value theorem

-1 -1 -1
dTF! F'u,-F ,dF u(x)
@R e = B e Dy

Hence, (58) is proved. From Lemma 14,
2 -1 ( )
dx2

Being monotony increase of Fl

2 -1 ( )
T(u) < F{F'u + “‘”—d;“'” + O(h%)}

using the Taylor expansion completes the proof of the theorem.

F1T(u) < Flu + —é—ll Il + O(h¥)

Furthermore
Theorem 16: Let u, F e C* [z z,), if there ezists a § ¢ (z,,2,) such that

d%F lu(x)

o =6 0,
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then
h3 d3Flu(x) dF
(@) - wllyy < 5 5 llos gz lgmpa + OhY. (60)
Besides, if § = (z,+2,)/?, thc coef. ftczcnt '8’ in the dominator of (60) can be :mprovcd by
16",

Coroliory. T(u) = u for all x if and only if
d%Flu(x)

dx2
i.e., u(x) = F(Cy+C,x), where C,C, -- constant.

12

Observing that the above piecewise interpolatory functions (46) and (57) all only belong to CP,
nevertheless, we have also designed a piecewise sublinear positive interpolatory function which

belongs to C! [22].
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5. An application to a singular perturbation boundary value problem
Consider the following boundary value problem
Lu = -¢ u” + p(x) u’ + q(x) u = f(x),
u(0) = u(l) =0 (61)
where ¢ is a small positive parameter and p(x),q(x) and f(x) are so sufficient smooth that their

‘derivatives until second order are uniformly bounded for all x in [0,1] and for all ¢ > 0, besides, p(x)

>p >0,q(x) > max(0, p'(x) ) on [0,1].

Let H_ be Sobolev space of m-order with the norm
llully = { Jo'S; < (D) dx }1/2

and a(u,v) be the unsymmetric bilinear form

a(u,v) = | ol { ew’v’ + pu'v + quv } dx (62)
With these notations the weak soluﬁon of (61 ) can be written as :: Find u € ﬂ°1[0,l] so that

a(u,v) = (f,v) forall ve H°1[0,1] ) | (63)

where H° [0,1] = { v| v ¢ H,[0,1] and ¥(0) = v(1)=10}

Existence and uniqueness of solutions to (63) follow from Theorem § using the following Lemma:

Lemma 17: [11] There ezists a constant C >0 which is independent of ¢ such that

ja(n,9)] < C [l lIvll, for all v € H°,

Ja(w,v) < C [lully , [I¥lly¢pe for all wy € HO, (64)
and

la(u,w)| > € [lully 2 for all we HO, (65)
where

lhally = {fo" (ew® + u)ax}/? - (66)

lally o1y = (" (ew’® + 2u?)dx} /2 (67)
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Now we apply the generalized Galerkin method described in Section 3. Because the singularity of the
solution u(x) of (61 ) is only near x=1, the width of the boundary layer in which u(x) has large
derivatives is less than k times ¢, where k is a constant no matter how ¢ is small, and on [0,1-ke] u(x)

and its some first derivatives are uniformly bounded.

Let A, denote a partition of the interval [0,1] into N subintervals [xjél’xj]’ i=1,2,..N with
xy==0,xy=1. For convenience, we will consider only the case of uniform mesh : XXy = h,j =
1,2,..,N. Associated with A, we have two subsets with same freedoms of H°[0,1], one is the usual
piecewise linear space P! |, another is called SPlh which is defined by that if nsh(x) € SPlh, then for
X SXLx b= (x - xj_l)/h,

uj‘l(l-t) + ugt if Iuj - uj_ll/h < dl
w0 = { | (69)
(“j-1+°){(“j+°)/(“'-1+°)}t -c Otherwise
where ¢ is a parameter to be such chosen that it mal;es the formula to be well defined and to get

better approximation for the special problem, d1 is a controllable constant.

For a fixed u(x), the interval [0,1] now divides into two subintervals : [0,1] = I+ I, where I
will be be called regular on which the first derivative of u(x) is bounded by a control number, I,

- singular subinterval in which u’(x) could be very large.

Being Theorem 12, for fixed ¢ and dl, SPlh consisted by all admissible elements of (68) is a
sublinear set of H°l, it is differs from the corresponding linear space vh only where the element has

large first derivative.

Let {vj} be the 'roof’ basis of the test function space
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(x- xj_l)/h X XX
vjh(x) = { (j =12,.,N-1) (69)
()‘cj_’_1 -x)/h X <X <Xy
¢t
For the sake of simpliﬁr we first suppose that the coefficients p and q in (61) are constant. In order

to get the integration (62) we need the following Lemma which can be convinced by part integration
Lemma 18: For ab > 0,

— [ 1,1tpt b-a
Io——foa bdt’-'-:m,
T = Jo'al ittt = I, — Bl k=12, (70)

In particular
1 - b-a

I, = {b- }
Log(b/a)  Log(b/a)
There are some inequalities in [21] about I and I, which will be used later:

Lemma 19: Suppose a,b > 0, then

(ab)2 < 1, < 2P,

1 ' +b b+(ab)!/2 ,

E(ab)lfz min(1,a /%Y%) < I, g%—max(l, -%-(})--). (71)
a

with '="iff a = b.

The corresponding integral of linear interpolation to I, is
a + (k+1)b

== 1 all- k TS ce———
LI, = [, [a(1-t)+bt]t*dt T 1)72)

Therefore we have estimates
0 < Ly- 1o < 5 (b1/%a1/2P%,
%(biﬂ-al/?)(bl/?.zal/?) < LI -, s_%(bllz-a‘/z)(2b‘/2-al/2), (b>a>0),
-Lab) < LI -1, < e/ AbV 4 44l 21/ A al b1/ 26%/4), (a>b>0),
sup [Lly- 1| =1, sup [LI-1,| =2 (72)

y
0<3,b<1 2 0<ab<1

Integrating (62) from X;.p t0 X; yields
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a(ush:vj_h) =

1€ I-t o o SFY 1 1-¢ 3
Jo (E+pt)(c+uj-l) (c+uj) Log——dt + hq f, {(°+“j-1) (c+uj) - c}tdt
c+uj_1

= u-u, )+ plc +u, - = } +
p ) ! ] Log((c+uj)/(c+u~_1))

u+c jj-l

hqf- 5 +
LO&((C"*u )/ (c+u. ;) ) (Log((c+y, /ety )))2
Similarly, integrating (62) from X; 60 X,y

au,v, ) =

f 01(- E+p(1-t) )(c+uj)l't(c+u )tLog "'Hdt + hq J’ol{(c+u PY(c+u, _H)t - c}tdt
J

Y17l
Log((c+u +1)/(c+u ))

= dupug,) - plle + ) -

Log((c+u )/(c+ +l) )- (L°g((°+“j+1)'/(c+uj)))2}'

For [x .1 x] ¢ I, a straightforward computation yields

bgit- 3 +

a.(us v by = 5[2 u hLl] + 21)( i1 ’1)+ —q(uj+l+4u o, ) (73)
and for [x._l, x.] €l
a(uvP) = a(u .y, )+ alw v, 5
u - u

] ~B. ;=U0. ’+1 d 1'1
529, J+l)+p{Log((c+u+l)/(c+u)) Log((c+v;)/(c+u ) )}+

1
h {(c+u,)]
ab {(c+v;) Log((c+u;)/(c+y;,,) ) L°E((°+'1 (etu, ) )]

u. - u.
.c- i~ Y+ Y1 (74)

(Log((ct+u; 1)/ (c+y ) (Los((c+u D (cty )))2

or



25

h hy € 1 h

where g is the difference of the right parts between (73) and (74).
J

Denote CE = o, substituting (73 ) and (75 ) into the generalized Galerkin method, i.e.
a(ush, vjh) = (f,vjh) for j = 1,2,...N-1 (76)
leads to

(f,vjh) ifjel

LU ={ (77)
(Fv) - g(U%,,, U, UR ) ifj el

where the left side

L, UP = -(o+ g- :;lq)uhj_l + (20 + -23-hq)U“j - (o 52’-- :':‘I)Uh-ﬂ

which is exactly the same to the scheme from usual piecewise linear subspace.

With matrix form it can be written as the special form as (33).
AU=d+QU) (78)
where A is a tridiagonal matrix A = ( @ )
(e +2-2g) i>]
o ={2e+2q  i=j. (79)
(a-B-Ba) i<
Denote the determinants of the first j and the last N-i principal determinants of A by Dj and Di,N~l’

respectively, set

. D.
__“nl — _jt1,N-1
bi=7 A=
n j,N-1
Due to the recursion formula

B, = {2+ 3 (- - gke + - gd, )
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therefore

Lemma 20: If a =% _,2% +%q, then

3"

B, < {e+ - :—;q}l , forall n < N-1.
Bana & {a + g- %q}“l, for all n < N-1. _ (80)

Meanwhile, we have
Theorem 21: When

omg2prh g

Al = a‘I'- ; ) 16 a good discrete Green function sn the following sense: Al s non-

negative and

al. > ol ifi>j or <a’l

Lj =7 il

i1 ifi<j (82)
Proof: In fact, in this case A1 = (a’li’j)
ol = {(a +2- 29D, Dy | /D, i)

(a-5- :_:q)i-ib.blnl\x_,_j/nN,l ifigj (83)

Since A! exists, (78) can be written as |
U=A'd+QU)) | (84)
Now we look for an estimate of ||A"1J(Q(U) )||, where J(Q) is the Jacobi matrix of Q. The main idea
of the derivation is the same to our another paper [21] in which the scheme based on a second order
semi-linear numerical differentiation formulas has the same form (84) with slight different A and

Q. Thus we only need to explain the outline of proofs which are different here. First, we prove that

the following important 'semi-linearity’ of Q defined in [21]:
Lemma 22: For Q(u) defined by the difference between the linear scheme (78) and the

semilinear scheme (74), there exits the following identities:

{3(QM) Yu+o)}; = {Qu)Y;, if§ < N-L. (85)
Proof: Denote the nonlinear term of third term in the right of (74) by

, i 1 .
Flupupuy) = ¢ + 9 - (ol romeryieru,)) * ogleragiieTy,)) *
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- Y Y- U,

" (Log((0+“l)/(6+uo)))2 (Log((c+ug)/(c+u ¥

oF 1 / (C + u ) ' 1
= -(c+uo) 1 -
u, (Log((c-ug)/(c+u ) (Log((c+ug)/(c+u )

2(ugu,)/ (ctu,,)
(Log((c+ug)/(c+u_)*

oF _ . 1 1
50~ Cogeragyioray) * Togeragliern,)

1/(c + uy) N 1/(c + up)

(el (Log((c+ug)/(c+u ) (Logl(c+ug)/(c+uy)))?

.\ 1 ) 1 :
(Log((c+ug)/(c+u,)))? (Los((c+uo)/(¢+ul)))2

] 2 [ u;-u, ' uyu L
c+ug (Logl(c+u,)/ (c-H!o)))2 (L<>g((6+uo)/(¢+u ME

9F _ e+ 1/(c + uy) 1
uy (Log«c+u,,)/(c+u,»)2 T Logl(ctug)/(ctu)?

) 2(u,-ug)/(c+uy)
Hone (Log((c+uo)/(c+u1»)3'

-5-——( ct+u )+ 3—-(c+u )+ gg-(c+ul) = F(u_,u,u,).
It has been proved in [21] that the second term in the right of (74) satisfies (85), due to the

linearity of the 'semi-linear’ relation we get (85).
Since the singularity is only near x=1 and the width of the boundary layer is less than ke, using the
inequalities (72), (82), (81) and (83), similarly to [21] a straightforward computation yields

J(Q(u) Y(utc) = {0,--40,Q Q0@ N1}
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{A13(Q(u) Ju}; = o; + har;
where
3 h 2 P h 2
-212< (e +%-Eq)oi < g,. 3qke < (a +3- Eq)hqfi < §qke.

Therefore —

Theorem 23: When the mesh size condition (81), i.c.,

2¢
2¢,1 1,2 -~ 2
ES AL RS TRt g (56)
holds as well as
3
ke -<—§?' (87)

q
then the mapping A”1Q(u) is contractive, in the meantime the semi-linear system (78) can

be solved by the followsng convergent ‘ssmple’ steratson
AUO =4
AUM =4 + Qukl) (k=1.2..) (88)

Remark: When ¢ is small,in practice, the mesh condition (88) can be simplified by h < %f-

Now we consider error estimations. Let u be the true solution of (61), there exist a

decomposition [11]
u(x) = H{W(x) + Z(x)}

W(x) = ePDIx)/e _x _ (1-x)eP(1)/e (89)
where v = &l_i::; xl:gll eu'(x)/p(1) is a constant bounded uniformly for all 0<e<1, and

Z()] < C, 12)| < C, |27)| < C{1+1e A0
C is a constant independent of ¢, and 0< ﬂs,p'.

Set ¢ in (89) equal to v which can be found in computing test. We proved in [21] that

Lemma 24: Let u be the true solution of (61), sf h and ¢ are of the same order, then

)] = o), (j=12,.)
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T2
” _ = O(h'l), ”{u” -3 },“00 == O(h.z). (90)

Il c+u

eFullo

where ¢ = lim lim eu’(z)/p(1).

e->03-->1

Being (49) and (50), hence, for the interpolation function th of u(x) in SF’lh we have error
bounds N

lla®; - ull,, = O(h), [lu*}- wl|,, = O(1). (91)
Moreover, since the width of the boundary layer is the same order of ¢, keeping h as the same order
of € too, it leads to

llab - ully = Ok*?), [lu"; - ull, = O3,

lluby - ull, , = O(h), Ila®- ully /= Olh). (92)

Let H, and H, be the Hilbert space with the norm (66) and (67), respectively. Using Lemma

17 and (31) yields

C, . ‘
1
o= wPly < =2l -yl g+ = wPh = 0Pl g+ 0 b= il oy
2
where the subscript I denotes the interpolation in the test space Vb . piecewise linear function

subspace. On the right side of the above inequality, the first term is the major one, others are of

higher power of h. Hence, being (92), we get the main error estimation for the scheme (76)
Theorem 25: If the mesh size condition (86) holds, then

llu,” - ull, = O(h). (93)

where coefficients before powers of h are uniformly bounded for all small € satisfying (87).
Applying the Taylor expansion and using the equation (81) itself and (72), substituting the true

solution u into the scheme (77) yields

h3
Ly, = (f,vjh) + O(h?) + + E{pum + qu’} + ...

if jel, and
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Lyu; = (fvh) + 0(h2) &9, 0;,8;,,) + Tr(u),
Tr, = —{pu(“) - p(— )+ 2qu”} + ..
Using (90) and noting the fact that the width of the boundary layer in only ke, similar to [21] we get
I Tr(x)l|,, = O(h) —  (99)
furthermore
I, - ull, = O(b), [lw’,” - wl|,, = O(1).
Similarly
llog” - ully = O(1"?), [fu.* - ull, = O(1®?).
Summarizing the above results, finally we obtain the following theorem of error estimations
Theorem 28: For small ¢ satisfying (87), when the mesh size condition (86) holds, then
the generalized Galerkin method on the subset (76) has one more order of precision than

its corresponding scheme of piecewsse linear subspace, i.c., in this case we have there exsst

constants C,C,C_ and C’_ which are uniformly bounded for all small ¢ such that

”“sh - “”o < Cohl‘ss “ush - u”1 < Clho’s’
”ush h u”oo -<- thf ”“,sh = u’"m S— C’w’ (95)

In the case of the genmeral variable coefficients p and q, it can be proved that the above

conclusion still holds true for small ¢ if two extra requires are satisfied:

2 1 1
h < ﬁ;” ¢, and E(Qj-1+4Qj+qj+1) ?..E(Pjﬂ-pj_l), i=12,.. (96)
o0

the last one is a discrete form for the elliptic condition of g(x)>p'(x).

As a matter of fact, we only need to point that, being smoothness of p and q, substituting their
piecewise linear interpolations into the integral form (62), (73) becomes
i
a(us Y h) = E[2 “j-1°uj+1] + 3‘[ +1(2p +p]+1)+u (P i1 PJ+1)‘ 1(21’ +p; .,1)] +

230010 )4 FOa )+ (o)) + OP) (67)
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The related tridiagonal matrix A = (a; j) in (79) now is
1 h ..
-le + 5(2p;+p; ) - T3(9+ ;) i=itH]
; 1 h ..
a;; = { 2a - g(Pjy 1P)) + T2(G41+0G+ay), =] (98)
1 h _ ’
-lo - (2P +P;4y) - TGy Ha )] i=0L —
The rest derivation is similar to [21], we omit it in detail.
For higher order schemes based on the interpolation described in section 4, the similar analysis

can be also done.
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6. Numerical Results

In this section, we give two examples to show how well the numerical results match the
conclusions in Theorem 25 and 26. In the following Tables, the notation N = 1/h, SL and L
represent the subset scheme (76) and its corresponding linear scheme, respectively, Ex{Max) is the
maximum error with sign of the discrete solution and it has occupied on the node xM, Er(H 1,eps), A
bEr(HO) and Er(H1) are the approximation values of errors in Hl, oHg and Hy, respectively. CPU - the
CPU time in terms of seconds. The Fortran program was run in double-precision, on a DEC-System

2060 computer. The iterative error for (88) is equal to 10°°.

EXAMPLE 1. A linear singular perturbation problem with constant coefficients
Lu=-eu"+u' + (14+¢ Ju=1(x), in(0,1)
u(0) = u(l) =0
where f(x) = (1+¢ }(a-b)x - ea-b,a =1 + e'(r;’" Ve b - 1 + €'}, with true solution (see. Figure 1)
u(x) = eire)i-x)fe 4 ox_ 5 4 (a-b)x |

In our case, set the constant ¢ = 1 in the scheme (68), see [21].

The results listed in Table 1-4 (or Figure 2-4) show that :

1. The iteration of (88) monotony converges if the ratio hfe < 2 , the results match with
the theoretical analysis above, the SL- scheme is much better than L-scheme with little
more CPU time cost ( about 20% for small ¢ ) for the same mesh size h.

2. When 2 < h/e < 2.25, the iteration seems still convergent, but oscillation is occupied
now, and the error is getting more than the above estimates, CPU time is more, too.

3. If the ratio increases again, the iteration (88) does not converge.

4. For a given level of accuracy, the CPU time costs much less using the SL-scheme than
using the L-scheme, and more small ¢ there is, more advantage the SL-scheme has. For
instance, given an admissible maximum error at knots < 0.005, their CPU time ratio
are about 0.3 : 1.1 and 3 : 15, for ¢ = 0.01 and 0.001, respectively. -

EXAMPLE 2. A semi-linear singular perturbation problem

Lu = - eu” + p(x)u’ + q(x)u = f(x,u), in(0,1)



u(0)=1u(1l)=0

where

c
f(x,uy) =2a-b-(1+ X .o —— },
(0) = 2 (+e e - u+a-(a-b)x-¢* }

a==]1+e(1%€ )/e’ b=l+e'l,c = e2ll+e¢ )(l~x)/e’

p(x) =1, q(x) = 1+e

with the same solution as example 1.

In the semi-linear case, the advantage of SL scheme over L-scheme is more obvious than in
linear case, the results of SL-scheme still match the Theorem 25 and they are much better than L-
scheme with same conditions to obtain higher accuracy and save computer time both (see Table 5-7,

or Figure. 5-7).
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Table 1-1
SL: h/e = 1.5
N = xM : Er(Max) Er(Hl,eps) Er(HO) Er(H1) { CPU
25 | 0.920 | -0.5837D-02 0.3508D-01 0.1740D-02 0.2146D+00] 0.09
50 | o0.960 | -0.6023D-02 0.2079D-01 0.1239D-02 0.1798p+00| 0.16
100 | o0.970 | -0.4562D-02 0.1555D-01 0.7205D-03 0.1902D+00] 0.50
200 | o0.985 | -0.1810D-02 0.8410D-02 0.2019D-03 0.1456p+00] 1.07
400 | 0.993 | -0.1239D-02 0.5495D-02 0.1031D-03 0.1346D+00| 2.17
800 | 0.996 | -0.5259D-03 0.3000D-02 0.3223D-04 0.1039D+00] 4.47
1600 | 0.998 | -0.3363D-03 0.1823D-02 0.1483D-04 0.8928D-01] 8.56
Table 1-2 L: b/e = 1.5
N { =M } Ez(Max) Ex(HL,eps) Ez(H0) Er(HL) : CPU
25 | 0.960 | -0.8199p-01 0.1216D+00 0.1742D-01 _ 0.7371D+00| 0.04
50 | o0.980 | -0.8112D-01 0.1183D+00 0.1223D-01 0.10190+01] 0.06
100 | 0.990 | -0.8070D-01 0.1167D+00 0.8620D-02 0.1425p+01] 0.33
200 | 0.995 | -0.8048D-01 0.1159D+00 0.6084D-02 0.2004D+01] 0.75
400 | 0.998 | -0.8038D-01 0,1155D+00 0.4299D-02 0.2827D+01] 1.53
800 | 0.999 | -0.8033D-01 0.1153D+00 0.3038D-02 0.3992D+01] 3.23
1600 | 0.999 | -0.8030D-01 0.1152D+00 0.2148D-02 0.5641D+01] 6.54
Tgble 2 SL: h/e = 1.75
N ; xM } Er(Max) Er(H1,eps) Er (HO) Er(H1) } CPU
25 |~ 0.920 | -0.1899D-01 0.4066D-01 0.4869D-02 0.2671p+00l  0.11
50| 0.960 | -0.6682D-02 0.2341Dp-01 0.1254D-02 0.2187p+00] 0.25
100 | 0.980 | -0.4199D-02 0.1643D-01 0.6130D-03 0.2171p+00] 0.51
200 0.990 | -0.1913D-02 0.1043D-01 0.2120D-03 0.1950p+00] 1.11
400 | 0.993 | -0.1162D-02 0.6063D-02 0.8863D-04 0.1604p+00] 2.48
800 | 0.996 | -0.7638D-03 0.3817D-02 0.4342D-04 0.1428p+00] 4.93
1600 | 0.998 | -0.3355D-03 0.2080D-02 0.1374D-04 0.1101p+00] 10.03
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Table 3-1
SL: h/e = 2.0
N { M : Er(Max) Er(H1,eps) Er (HO) Er(H1) % CPU
251 0.920 | 0.6469D-02 0.2969D-01 0.1423D-02 0.2097p+00] 0.18
s0 ] o0.960 | -0.7583D-02 0.2592D-01 0.1366D-02 0.2588D+00] 0.36
100 0.970 | 0.3605D-02 0.1359D-01 0.3779D-03 0.1921p+00| 0.66
2001 0.990 | -0.1235D-02 0.1032D-01 0.1033D-03 0.2064D+00] 1.47
400 | 0.990 | 0.1452D-02 0.5153D-02 0.7843D-04 0.1457D+00] 2.93
800 | 0.996 | -0.6512D-03 0.4100D-02 0.3331D-04 0.1640p+00] 5.81
1600 | 0,997 | 0.8136D-03 0.1324D-02 0.3186D-04 0.7485D-01] 12,21
Table 3-2 L: h/e = 2.0
N = ™ i Er(Max) Er(H1,eps) Er (HO) Er(H1) { CPU
251 0.960 | -0.1366D+00 0.1647D+00 0.2753D-01 0.1149p+01] 0.03
50| 0.980 | -0.1360D+00 0.1614D+00 0.1939D-01 0.1602p+01| 0.21
100 | 0.990 | -0.1356D+00 0.1597D+00 0.1369D-01  0.2250D+01] 0.37
200 | 0.995 | -0.1355p+00 0.1589D+00 0.9668D-02 0.3171p+01] 0.77
400 | 0.998 | -0.1354D+00 0.1584D+00 0.6833D-02 0.4477D0+01] 1.55
800 | 0.999 | -0.1354D+00 0.1582D+00 0.4830D-02 0.6326D+01] 3.35
1600 | 0.999 | -0.1354D+00 0.1581D+00 - 0.3415D-02 0.8942D+01] 6.61
Table 4 SL: h/e = 2.25

N } ™ { Er(Max) Er(H1,eps) Er(HO) Er(H1) ; CPU
25| o0.920 | 0.1618p-01 0.2526D-01 0.3461D-02 0.1877p+00] 0.17
50| o0.940 | 0.2635D-01 0.2103D-01 0.5016D-02 0.2167D+00] 0.48
100 0.980 | -0.4804D-02 0.1985D-01 0.5968D-03 0.2976D+00] 0.86
200 | 0.990 | -0.1223p-02 0.1143D-01 0.9819D-04 0.2424D+00] 1.46
400 | 0.985 | 0.1082p-01 0.7342D-02 0.9483D-03 0.2184D+00| 3.86
go0o | 0.988 | 0.2192p-02 0.4271D-02 0.9035D-04 0.1812p+00] 8.98
1600 | 0.997 | 0.4134D-02 0.4955D-02 0.2310D-03 0.2970D+00| 16.28
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Table 5-1
SL: h/e = 1.5

N : M { Er(Max) Er(Hl,eps) Er(HO) Er(H1) : CPU
25 | 0.920 | -0.1930D-01 0.3845D-01 0.4679D-02 0.2337D+00] 0.34
50 | o0.960 | -0.5220p-02 0.1843D-01 0.1040D-02 0.1593p+00] 0.98
100 | 0.970 | -0.4529D-02 0.1436D~01 0.6564D-03 0.1757D+00] 2.42
200 | 0.985 | -0.1742D-02 0.7681D-02 0.1787D-03 0.1330D+00] 5.40
400 | 0.993 | -0.1201D-02 0.5141D-02 0.9504D-04 0.1259Dp+00] 11.58
800 | 0.996 | -0.5050D-03 0.2820D~02 0.2971D-04 0.9767D-01] 23.48
1600 | 0.998 | -0.3337D-03 0.1738D-02 0.1397D-04 0.8515D-01] 47.13

Table 5-2 h/e = 1.5
N : ™ { Er(Max) Er(Hl,eps) Er(HO) Er(H1) = CPU
25 | o0.960'| -0.8244D-01 0.1217D+00 0.1773D-01  0.7377D+00] 2.64
50 | o0.980 | -0.8125D-01 0.1184D+00 0.1231D-01 0.1020D+01] - 9.63
100 | 0.990 | -0.8100D-01 0.1167D+00 0.8685D-02 0.1426D+01] 25.26
200 | 0.995 | -0.8059D-01 0.1159D+00 0.6102D-02 0.2005D+01] 56.46
400 | 0.998 | -0.8043D-01 0.1155D+00 0.4305D-02 0.2827D+01} 11.24
800 | 0.999 | -0.8035D-01 0.1153D+00 0.3041D-02 0.3992D+01] 23.49
1600 | 0.999 | -0,8031D-01 0.1152D+00 0.2149D-02 0.5641D+01] 48.78

Table 6-1 h/e = 1.75
N } M : Er(Max) Er(H1,eps) Er(HO) Er(H1) = CPU
25 | 0.920 | —0.1968D-01 0.3901D-01 0.4724D-02 0.2562D+00] 2.81
50 | o0.960 | -0.6017D-02 0.2080D-01 0.1041D-02 0.1943p+00] 1.14
100 | o0.980 | -0.3879D-02 0.1503D-01 0.5494D~03 0.1986D+00] 3.26
200 | 0.985 | -0.3431D-02 0.1136D-01 0.3500D-03 0.2124p+001 7.61
400 | 0.993 | -0.1143D-02 0.5662D-02 - 0.8080D-04 0.1498p+00] 14.67
800 | 0.996 | -0.7534p-03 0.3625D-02 0.4076D-04 0.1356p+00] 29.78
1600 | 0.998 | -0.3246D-03 0.1988D-02 0.1290D-04 0.1052D+00] 65.90
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0.4715D-02

Table 6-2
L: h/e = 1.75
N } M { Er(Max) Er(H1,eps) Er (HO) Er(H1) { CPU
25 | 0.960 | -0.1163D+00 0.1453D+00 0.2433D-01 0.9480D+00 2.73
50 | 0.980 | -0.1077D+00 0.1411D+00 0.1569D-01 0.1312D+01 10.29
100 | 0.990 | -0.1104D+00 0.1397D+00 0.1145D-01 0.1842D+01 26.24
200 | 0.995 | -0.1076D+00 0.1387D+00. 0.7839D-02 0.2590D+01 56.17
400 | 0.998 | -0.1075D+00 0.1382D+00 0.5538D-02 0.3655D+01 119.92
800 | 0.999 | -0.1073D+00 0.1380D+00 0.3908D-02 0.5163D+01 140.12
1600 | 0.999 | -0.1072D+00 0.1379D+00 0.2760D-02 0.7297D+01 496.64
Table 7-1 SL: h/e = 2.0
N { =M I Er(Max) Er(HL,eps) Ex (HO) Er(H1) : CPU
25 | o0.920 | -0.1928D-01 0.3572D-01 0.4404D-02 0.2507D+00 3.42
50 | o0.960 | -0.7551D-02 0.2358D-01 0.1238D-02 0.2354D+00 10,95
100 | o0.980 | -0.3771D-02 0.1592D-01 0.4465D-03 0.2251D+00 25.85
200 | 0.985 | -0.2508D-02 0.8006D-02 0.2353D-03 0.1601D+00 55.86
400 | 0.993 | -0.1181D-02 0.6546D-02 0.8375D-04 0.1851D+00 116.21
go0 | 0.996 | -0.7179p-03 0.4017D-02 0.3538D-04 0.1607D+00 236.06
Table 7-2 L: h/e = 2.0

N = M : Er(Max) Er(H1,eps) Er (HO) Er(H1) : CPU
25 | 0.960 | -0.1421D+00 0.1653D+00 0.2877D-01 0.1151D+01 3.28
50 | o0.980 | -0.1337D+00 0.1612D+00 0.1907D-01 0.1601D+01 11,33
100 | 0.990 | -0.1255D+00 0.1590D+00 0.1264D-01 0.2242D+01 27.03
200 | 0.995 | -0.1369D+00 0.1590D+00 0.9775D-02 0.3173D+01 58.68
400 | o0.998 | -0.1337D+00 0.1583D+00 0.6743D-02 0.4474D+01 124.43
800 | 0.999 | -0.1323D+00 0.1580D+00 0.6318D+01 248.85
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Figure 2 EXAMPLE 1: % =1.5
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Figure 3

COMPARISBON. EXAMPLE 1. EPS = 0.01
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Figure 4

EXAMPLE 1., H/EPS = 1.75
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Figure §

COMPARISEN EXAMPLE 2, H/EPS = 2
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Figure 6
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Figure 7
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Figure 2 EXAMPLE 1: f =1.5
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Figure 3

COMPARISBN. EXAMPLE 1. EPS = 0.01
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Figure 4

SEMI-LINEAR  EXAMPLE 1, H/EPS = 1.75
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Figure 5§

COMPARISBN EXAMPLE 2, H/EPS = 2
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Figure 6

COMPARISEN. EXAMPLE 2. EPS = 0.001
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Figure 7

CPU CBMPARISON EXAMPLE 2
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