
We introduce a numerical procedure for the construction of interpolation and quadra-

ture formulae on bounded convex regions in the plane. The construction is based on

the behavior of spectra of certain multiplication operators and leads to nodes which

are inside a prescribed convex region in R2. The resulting interpolation schemes are

numerically stable and the quadrature formulae have positive weights and almost (but

not quite) optimal numbers of nodes. The performance of the algorithm is illustrated

by several numerical examples.
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1. Introduction

Numerical integration and interpolation constitute one of oldest areas of numerical

analysis, and find applications in most branches of applied mathematics. In general

outline, the formulation is as follows. Given a region Ω ∈ Rk (usually, with k ≤ 3)

and a collection of functions ϕ1, ϕ2, . . . , ϕn mapping Ω to R1, we would like to find a

collection of points x1, x2, . . . , xm such that for each point x in Ω, there exist coefficients

α1(x), α2(x), . . . , αm(x) such that

(1.1) f(x) =
m∑

j=1

αj f(xj),

for all f : Ω → R1 of the form

(1.2) f(x) =
n∑

i=1

βi ϕi(x);

in other words, the interpolation formula (1.1) is exact for any f that is a linear com-

bination of the functions {ϕi}.
In practice, (1.1) is not sufficient, since if the resulting interpolation formulae are to

be of any practical use, the coefficients {αi} must not be very large, and have to be easy

to evaluate. The following theorem (see [9]) guarantees the existence of numerically

acceptable interpolation coefficients under extremely weak conditions.

Theorem 1.1. Suppose that S is an arbitrary set, n is a positive integer, f1, f2, . . . , fn

are bounded complex-valued functions on S, and ε is a positive real number such that

ε ≤ 1. Then, there exist n points x1, x2, . . . , xn in S and n functions g1, g2, . . . , gn on S

such that

(1.3) |gk(x)| ≤ 1 + ε

for all x in S and k = 1, 2, . . . , n, and

(1.4) f(x) =
n∑

k=1

f(xk)gk(x)

for all x in S and any function f defined on S via the formula

(1.5) f(x) =
n∑

i=1

ci fi(x) ,

for some complex numbers c1, c2, . . . , cn.

Thus, the existence of a stable interpolation formula is never a serious issue; this

paper deals with numerical procedures for constructing such interpolation formulae.

Numerical integration of functions is closely related to their numerical interpolation,

but involves a number of subtleties. Given a region Ω ∈ Rk and a collection of functions
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ϕ1, ϕ2, . . . , ϕn : Ω → R1, one wishes to find points x1, x2, . . . , xm ∈ Ω and coefficients

w1, w2, . . . , wm ∈ R1 such that for each of the functions {ϕi},

(1.6)

∫

Ω

ϕi(x) dx =
m∑

j=1

wj ϕi(xj);

the pair {{xi}, {wi}}, is frequently referred to as a quadrature formula for the functions

{ϕi}, with {xi} the nodes, and {wi} the weights of the quadrature.

Again, (1.6) is not sufficient for the quadrature {{xi}, {wi}} to be of practical use.

Indeed, its numerical stability will be poor if the weights {wi} are large. Obviously,

if all of the weights {wi} are positive, this issue does not arise, and quadratures with

positive weights are generally preferred (though in most cases not absolutely necessary).

Obviously, given an interpolation formula of the form (1.4) for a set of functions

f1, f2, . . . , fn, it is easy to construct a quadrature that is numerically stable; this obser-

vation is formalized in the following corollary to Theorem 1.1 (see [9]).

Corollary 1.1. Suppose that S is a measure space, w is a nonnegative real-valued

integrable function on S (that serves as the weight for integration), n is a positive

integer, f1, f2, . . . , fn are bounded complex-valued integrable functions on S, and ε ≤ 1

is a positive real number.

Then, there exist n complex numbers w1, w2, . . . , wn such that

(1.7) |wk| ≤ (1 + ε)

∫
w(x) dx

for all k = 1, 2, . . . , n, and

(1.8)

∫
f(x)w(x) dx =

n∑

k=1

wkf(xk)

for any function f defined on S via the formula (1.5), where x1, x2, . . . , xn are the n

points in S chosen in Theorem 1.1.

One fundamental difference between interpolation and integration is the fact that

interpolation in an n-dimensional space always requires at least n points (and, according

to Theorem 1.1, n points are always sufficient); on the other hand, a quadrature formula

for integrating n functions often requires fewer than n points. The reader is referred to

Section 2.4 for a somewhat more detailed discussion of this class of issues.

In one dimension, the existing theory of quadrature formulae is quite satisfactory.

Gaussian quadratures (see, for instance, [3]) are optimal for integrating polynomials up

to a fixed degree, while generalized Gaussian quadratures are used for integrating more

general classes of functions including smooth functions and functions with end-point

singularities [8, 12].

In dimensions higher than 1, much less is known regarding optimal numerical integra-

tion formulae. Classical expositions on constructing quadratures for multiple integrals

can be found in [4], [6], [7], and a more recent overview of the development of the theory

is given in [2].

This paper is partly devoted to constructing quadratures on convex regions in two

dimensions exhibiting Gaussian behavior (the number of nodes of the quadrature is
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smaller than the number of functions to be integrated) using a simple scheme, which

is relatively easy to implement. The quadratures respect the symmetry of the region,

have positive weights and all their nodes are interior to the region of integration.

The structure of this paper is as follows. Section 2 introduces numerical preliminaries.

In Section 3 we develop the mathematical apparatus to be used by the algorithm in

Section 4. We summarize the numerical results in Section 5.

2. Numerical Preliminaries

2.1. Singular Value Decomposition. The singular value decomposition (SVD) is a

ubiquitous tool in numerical analysis. In the case of real matrices, the SVD is given by

the following lemma (see, for instance, [5] for more details).

Lemma 2.1. For any n×m real matrix A, there exist a positive integer p, an n×p real

matrix U with orthonormal columns, an m×p real matrix V with orthonormal columns,

and a p×p real diagonal matrix S = (sij) whose diagonal entries are positive, such that

A = USV ∗ and sii ≥ si+1,i+1 for all i = 1, . . . , p− 1.

The diagonal entries sii of S are the nonzero singular values of A. The columns of U

span the column space of the matrix A and hence provide an orthonormal basis of the

column space of A. This property of the SVD is used in Section 4 for the computation

of orthonormal basis functions.

2.2. The QR Method for finding the spectrum of a matrix. There are several

methods available for determining the spectrum of a complex matrix (see, for example,

[5]). In this paper, the QR method, as described in [10], is used for computing the

eigenvalues of a complex linear operator on a finite-dimensional space.

2.3. Least Squares Newton’s Method. Newton’s method is a well-known numerical

technique for solving equations of the form F (x) = 0, where F : Rm −→ Rn is a

continuously differentiable function of the form

(2.1) F (x) =



f1(x)

...

fn(x)


 ,

and x = (x1, . . . , xm)T . The method uses the Jacobian matrix J of F , which is defined

by the formula

(2.2) J(x) =




∂f1

∂x1
(x) · · · ∂f1

∂xm
(x)

...
...

∂fn

∂x1
(x) · · · ∂fn

∂xm
(x)


 ,

and its pseudoinverse, which is denoted by J†(x). We illustrate the application of the

method in the following theorem, under the constraints relevant to our paper. When

m 6= n, the procedure is referred to as the least squares Newton’s method [11].
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Theorem 2.1. Suppose that F : Rm −→ Rn (m ≥ n) is a continuously differentiable

function and ξ ∈ Rm satisfies the condition

(2.3) F (ξ) = 0 .

Furthermore, suppose that J(x) defined by (2.2) has full row rank for all x in an ε-

neighborhood nε(ξ) = {x : ||x − ξ|| < ε} of ξ. Let (xk)k≥0 be a sequence of vectors

defined by the formula

(2.4) xk+1 = xk − J†(xk)F (xk) ,

and let (hn)n≥0 be the sequence of differences

(2.5) hn = xn − ξ .

Then there exist ε̃ > 0, δ > 0 and a nonnegative integer Nε̃,δ such that, if ||x0− ξ|| < ε̃,

then the inequality

(2.6) ||hn+1|| ≤ δ||hn||2

is true for all k ≥ Nε̃,δ.

2.4. Quadratures. Quadrature rules are expressions of the form

(2.7)
n∑

i=1

wiϕ(xi) ,

where the points xi ∈ Rd and the coefficients wi ∈ R are referred to as the nodes and

weights of the quadrature, respectively. They serve as approximations to integrals of

the form

(2.8)

∫

Ω

ϕ(x)w(x) dx ,

where w is a positive weight function and Ω ⊂ Rd is the region of integration.

Quadratures are typically chosen so that the formula (2.7) is equal to the desired

integral (2.8) for some set of functions, commonly polynomials of some fixed order. A

quadrature which integrates exactly all polynomials of (total) degree at most k and

does not integrate exactly some polynomial of degree k + 1 is said to have order k. For

instance, Gaussian quadrature rules consist of n nodes and have order 2n− 1.

Given a weight function w, an integration region Ω and m functions defined on Ω,

a classical problem in numerical integration is to determine the minimum number of

nodes n needed to integrate exactly all the m functions, and to find quadratures which

achieve that minimum. Such quadratures are called optimal. In one dimension, Gauss-

ian quadratures are known to be optimal rules for integrating polynomials up to a fixed

degree. In higher dimensions, however, the problem has not been solved [2].

Since each node x ∈ Rd is determined by d parameters and one additional parameter

is given by the weight corresponding to the node, an n-point quadrature in Rd is deter-

mined by n(d+ 1) parameters. For this reason, it is natural to expect that an optimal

quadrature in d dimensions which integrates m functions has n = d m
d+1
e nodes, where

dxe denotes the smallest integer greater or equal to x. Based on this observation, the

authors of [11] introduce an efficiency coefficient e to differentiate quadratures which
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integrate the same set of functions and have a different number of nodes. If n is the

number of nodes of the quadrature, m is the number of functions which are integrated

exactly, and d is the dimension of the space, then the coefficient e is defined as

(2.9) e =
m

n(d+ 1)
.

For Gaussian quadratures in one dimension, e is equal to 1. Quadratures having the

coefficient e close to 1 are called efficient.

2.5. Tensor Product Rules. An obvious way of obtaining quadratures in two dimen-

sions is to combine two one-dimensional quadratures in the following way.

Let R be an m-point quadrature over an interval I,

(2.10) R(f) =
m∑

i=1

wif(xi) ≈
∫

I

f(x) dx ,

and S be an n-point quadrature over an interval J ,

(2.11) S(f) =
m∑

j=1

vjf(xj) ≈
∫

J

f(x) dx .

The tensor product of R and S is the mn-point quadrature rule over the rectangle I×J
defined by

(2.12) R× S(f) =
m∑

i=1

n∑
j=1

wivjf(xi, yj) ≈
∫

I×J

f(x, y) dx dy .

The following theorem follows from Fubini’s Theorem; a proof can be found, for instance,

in [4].

Theorem 2.2. Let R be a quadrature rule that integrates f(x) exactly over the interval I

and S be a quadrature rule that integrates g(y) exactly over the interval J . Furthermore,

let h(x, y) = f(x)g(y). Then the tensor product quadrature R × S integrates h(x, y)

exactly over I × J .

Tensor product quadratures are relatively easy to construct, however, they are not

optimal in terms of efficiency. For example, let us consider two n-point Gaussian quadra-

tures on the interval [−1, 1], each of them of order 2n − 1. Their tensor product is an

n2-point quadrature on the square [−1, 1]× [−1, 1] of order 2n− 1 (all monomials xiyj

of total degree i + j at most 2n− 1 can be expressed as products of monomials in the

variables x and y of degree at most 2n − 1, hence they are integrated exactly by the

tensor product; however, there are polynomials of degree 2n, for instance x2n, which

are not integrated exactly by this quadrature). The number of monomials xiyj of total

degree at most 2n − 1 is n(2n + 1), therefore the efficiency coefficient of the tensor

product of two Gaussian quadratures is

(2.13) e =
n(2n+ 1)

3n2
=

2n+ 1

3n
,

quantity which approaches 2
3

as n increases.
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3. Mathematical Apparatus

The main result of this section is Theorem 3.2, which allows us to discretize bounded

convex regions in the complex plane. It is based on the observation that all the eigen-

values of a certain linear operator on a finite-dimensional subspace of L2(X), where X

is a convex, closed and bounded set in the plane, fall within X. Our proof of Theorem

3.2 involves the geometrical result introduced in the following section.

3.1. A geometrical lemma.

Lemma 3.1. Let X be a convex, closed and bounded subset of the complex plane and

λ ∈ C be a point outside X. Then there exists a point µ ∈ C such that µ lies outside X

and

(3.1) |λ− µ| > |z − µ|
for all z in X.

Proof. Let us denote by d the distance from λ to the set X:

(3.2) d = d(λ,X) = inf
z∈X

|z − λ| .

Since X is closed, the infimum d is attained for some zλ in X, and is positive because

λ is not in X:

(3.3) d = |zλ − λ| > 0 .

Consider the circle C of radius d centered at λ and the tangent l to C at the point

zλ (see Figure 1).

l

C

λ λz
d

X

Figure 1. The tangent l to the circle C centered at λ, at the point zλ.

The point zλ minimizes the distance from λ to the set X.
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The line l determines two half-planes: one containing the point λ and one not contain-

ing the point λ. We observe that X has no points inside the open half-plane determined

by l that contains the point λ.

Let us prove this observation by contradiction. To this end, suppose that there exists

a point z in X which lies in the open half-plane containing λ. Since z and λ lie in the

same half-plane determined by the tangent l, and z is not on the line l, a part of the

segment [zzλ] falls inside the circle C (see Figure 2).

l

X
C

λ λz

z

d

Figure 2. Proof of the observation by contradiction: if a point z in X

lies in the open half-plane determined by the line l which contains the

point λ, then some points of X fall inside the circle C.

However, X is convex and the points z and zλ lie in X, therefore the whole line

segment [zzλ] is contained in X. Consequently, some points of X fall inside the circle

C, at distance less than d to λ, contradicting our choice of zλ. We conclude that the

set X is contained in the closed half-plane determined by l that does not contain λ.

Since X is bounded, we can find a square box L1L2L3L4 that contains X. Moreover,

by the previous observation, we can choose the box such that the points L1, L2 lie on the

line l and the points L3, L4 lie in the half-plane determined by l that does not contain

λ. Finally, we can choose the square box big enough so that the length s of one of its

sides is greater than d (see Figure 3).

Let µ be the point on the the half-line passing through the points λ and zλ with

initial point λ with the following property:

(3.4) |zλ − µ| = s2

d
.

Since, by construction, s > d, multiplying by s
d

we obtain s2

d
> s, hence the point µ

lies outside the square box L1L2L3L4 and therefore outside X (see Figure 4).
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X

λ

l

zλ

L

L

L

L 3

4

2

C

1

d

s

Figure 3. X is enclosed in a square box L1L2L3L4 lying in the half-

plane determined by l that does not contain λ. The length s of a side of

the square is greater than d.

X

λ

l

zλ µ

L

L

L

L 3

4

2

C

1
s

d
s
d

2

Figure 4. We define µ to be the point on the half-line passing through

the points λ and zλ with initial point λ such that µ is at distance s2

d
from

zλ. Since s2

d
> s, µ lies outside the box L1L2L3L4 and therefore outside

X.
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Let us show that µ also satisfies the other condition in the hypothesis, i.e.,

(3.5) |λ− µ| > |z − µ| ,

for all z in X.

Indeed, let z be an arbitrary point in X and let zµ be its projection on the line passing

through the points zλ and µ. The distance from z to µ is the length of the hypotenuse

in the right triangle 4zzµµ (see Figure 5).

λ zλ µzµ

L

L

L

L 3

4

2

C

1
s

d

z

s
d

2

l

X

Figure 5. The distance from a point z in X to µ is the length of the

hypotenuse in the right triangle 4zzµµ, where zµ is the projection of z on

the line passing through the points zλ and µ

Since µ lies outside the square L1L2L3L4, the point zµ lies on the line segment [zλµ],

hence

(3.6) |zµ − µ| ≤ |zλ − µ| .

Note that since X is contained in the square L1L2L3L4 and the line zλµ passing

through the points zλ and µ is perpendicular on the side L1L2, the projection zµ of the

point z in X on zλµ falls inside L1L2L3L4. Since the largest distance between any two

points inside a square is the length of the diagonal, we have

(3.7) |zµ − z| ≤ s
√

2 .

By the Pythagorean Theorem and inequalities (3.6) and (3.7),

(3.8) |z − µ|2 = |zµ − µ|2 + |zµ − z|2 ≤ |zλ − µ|2 + 2s2 .
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On the other hand, by the equation defining µ (3.4) we have the following formula

for the square of the length of the line segment [λµ]:

|λ− µ|2 = (|λ− zλ|+ |zλ − µ|)2 = (d+ |zλ − µ|)2(3.9)

= d2 + 2d|zλ − µ|+ |zλ − µ|2 = d2 + 2d
s2

d
+ |zλ − µ|2(3.10)

= d2 + 2s2 + |zλ − µ|2 .(3.11)

Since d is positive, by formula (3.11) we have

(3.12) |λ− µ|2 = d2 + 2s2 + |zλ − µ|2 > 2s2 + |zλ − µ|2 .
Combining inequalities (3.12) and (3.8) we obtain

(3.13) |λ− µ|2 > |z − µ|2 .
Finally, taking the square root of both sides yields

(3.14) |λ− µ| > |z − µ| .
Since z in X was chosen arbitrarily, inequality (3.14) holds for all z in X, therefore

µ is a point satisfying the conditions in the hypothesis.

¤

3.2. Analytical Theorem. In the beginning of this section, we summarize a few well-

known facts in functional analysis, which are used in the proof of Theorem 3.2.

Let X be a measurable subset of the complex plane. The linear space of square

integrable complex functions on X is generally denoted by L2(X). As is well-known,

L2(X) has the structure of a complex Hilbert space with the inner product defined by

(3.15) (f, g) =

∫∫

X

f(x, y) g(x, y) dx dy .

Let U be an arbitrary finite-dimensional subspace of L2(X). We denote by PU the

orthogonal projection L2(X) −→ U and by TU the operator multiplication by x+ iy on

the space U :

TU : U −→ L2(X) ,(3.16a)

TU(f(x, y)) = (x+ iy) · f(x, y) .(3.16b)

It is easy to see that TU is a linear operator on U , hence the composition PU ◦ TU is a

linear operator on the finite-dimensional space U .

The following theorem lists a few basic properties of the orthogonal projection oper-

ator. A proof can be be found, for instance, in [1].

Theorem 3.1. Let X be a measurable subset of C and U be a nonzero finite-dimensional

subspace of L2(X). The orthogonal projection PU has the following properties:

(1) PU is a linear operator with operator norm equal to 1.

(2) The restriction of PU to the space U is the identity operator on U , i.e., PU(ϕ) =

ϕ for all functions ϕ in U .
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(3) The operator PU is self-adjoint, i.e., for all ϕ, ψ in L2(X),

(3.17) (PU(ϕ), ψ ) = (ϕ, PU(ψ) ) .

The principal tool for the constructions of discretizations and quadratures in this

paper is the following analytical theorem.

Theorem 3.2. Let X be a measurable, convex, closed and bounded subset of C, and U

be a finite-dimensional linear subspace of L2(X). Let TU be the linear operator defined

by (3.16), and PU be the projection onto the space U . Then all the eigenvalues of the

operator PU ◦ TU fall inside X.

Proof. The theorem is proved by contradiction. To this end, suppose that the operator

PU ◦ TU has an eigenvalue λ ∈ C outside X. By Lemma 3.1, there exists µ ∈ C such

that |µ− λ| > |µ− z|, for all z ∈ X, hence

(3.18) |µ− λ| > max
z∈X

|µ− z| .
Since λ is an eigenvalue for PU ◦ TU , there exists a nonzero ϕ ∈ U such that

(3.19) PU(TU(ϕ)) = λϕ

Subtracting µϕ from both sides of (3.19) we obtain

(3.20) PU(TU(ϕ))− µϕ = λϕ− µϕ .

Since ϕ belongs to the subspace U , by Theorem 3.1, we have µϕ = PU(µϕ), therefore

we can rewrite (3.20) as

(3.21) PU(TU(ϕ))− PU(µϕ) = λϕ− µϕ ,

which is equivalent to

(3.22) PU (TU(ϕ)− µϕ) = (λ− µ)ϕ .

The operator norm of the projection PU is 1 by Theorem 3.1, therefore

(3.23) ‖TU(ϕ)− µϕ‖ ≥ ‖PU(TU(ϕ)− µϕ)‖ .
Combining equation (3.22) with inequality (3.23) we obtain

(3.24) ‖TU(ϕ)− µϕ‖ ≥ ‖(λ− µ)ϕ‖ .
Using the formula defining TU (3.16b), inequality (3.24) becomes

(3.25) ‖(x+ iy)ϕ(x, y)− µϕ(x, y)‖ ≥ ‖(λ− µ)ϕ‖ ,
which is equivalent to

(3.26) ‖(x+ iy − µ)ϕ(x, y)‖ ≥ |λ− µ| · ‖ϕ(x, y)‖ .
The complex variable x+ iy takes values only within the set X, therefore

(3.27)

(
max
z∈X

|z − µ|
)
· ‖ϕ(x, y)‖ ≥ ‖(x+ iy − µ)ϕ(x, y)‖ .

12



Inequalities (3.26) and (3.27) together yield

(3.28)

(
max
z∈X

|z − µ|
)
· ‖ϕ(x, y)‖ ≥ |λ− µ| · ‖ϕ(x, y)‖ .

However, ϕ is nonzero, hence we can divide both sides of (3.28) by the positive number

‖ϕ(x, y)‖ and obtain

(3.29) max
z∈X

|z − µ| ≥ |λ− µ| ,
inequality which contradicts our choice of µ (3.18).

¤

3.3. Remarks.

Remark 3.1. The eigenvalues of the operator PU ◦ TU are complex numbers that

fall inside X, hence they give us a discretization of the region X that encapsulates

information about the finite-dimensional space U . Theorem 3.2 provides a method for

generating discretizations of (arbitrary) bounded convex regions in two dimensions. For

a given region, one can vary the choice of the subspace U in order to obtain different

discretizations.

Remark 3.2. Let G be the group of symmetries of X, i.e., G consists of all isometries

under which X is invariant. Suppose that the subspace U of L2(X) is invariant under

the action of the group G, i.e.,

(3.30) g(f) ∈ U ,
for all g ∈ G and f ∈ U , where the action of an isometry g in G on a function f in U

is defined by

g(f) = fg ∈ L2(X) ,(3.31)

fg(x, y) = f(g−1(x, y)) , for all (x, y) ∈ X .(3.32)

Then the spectrum of the operator P ◦ T is also invariant under the action of G, i.e., if

λ is an eigenvalue of P ◦ T , then g(λ) is also an eigenvalue of P ◦ T .

We can summarize this remark in the following way. If the subspace U is chosen as to

be invariant under the action of the symmetry group of X, then the discretization given

by Theorem 3.2 will be symmetric (invariant under the symmetry group of X).

Remark 3.3. The nodes of the discretization given by Theorem 3.2, together with

suitably chosen weights, provide a good initial point for Newton’s method, which can

be used to obtain a quadrature rule on X. This application of Theorem 3.2 is illustrated

in Section 4.

Remark 3.4. Let {ϕ1, ϕ2, . . . , ϕn} be an orthonormal basis of U . The matrix A

representing PU ◦ TU in this basis has entries (aij) defined by

(3.33) aij = ( (PU ◦ TU)(ϕj), ϕi ) .

By Theorem 3.1, the orthogonal projection operator is self-adjoint, hence

(3.34) aij = (TU(ϕj), PU(ϕi) ) .
13



Since ϕi belongs to U , by Theorem 3.1, PU(ϕi) = ϕi, for all 1 ≤ i ≤ n. Therefore we

can rewrite equation (3.34) as

(3.35) aij = (TU(ϕj), ϕi ) .

Finally, we can use the definition of TU (3.16b) and of the inner product (3.15) to write

equation (3.35) in the following explicit form:

aij = (TU(ϕj), ϕi )(3.36)

= ( (x+ iy)ϕj(x, y), ϕi(x, y) )(3.37)

=

∫∫

X

(x+ iy) · ϕj(x, y) · ϕi(x, y) dx dy .(3.38)

This explicit formula is used in Stage 3 of the algorithm described in the next section.

4. Numerical Algorithm

This section describes a numerical algorithm for the construction of a class of inter-

polation and quadrature formulae on regular polygons in the plane. The algorithm can

be generalized to arbitrary bounded convex regions in R2.

For simplicity, we assume that the regular polygon is centered at the origin and its

vertices lie on the unit circle. Let s be the number of sides of the polygon (s ≥ 3), and

X be the convex region enclosed by the polygon. For a given positive integer n, we

denote by Pn the space of polynomials on X of total degree at most n:

(4.1) Pn = {P (x, y) : total degree of P ≤ n} ⊂ L2(X) .

One can easily see that the dimension of Pn is given by the formula

(4.2) dim Pn = (n+ 1)(n+ 2)/2 .

The algorithm uses Theorem 3.2 with U = Pn, P : L2(X) −→ U the orthogonal

projection operator, and T the multiplication by (x+iy) operator (as defined by (3.16b)),

in order to discretize the region X. Note that the space Pn is invariant under the action

of the dihedral group Ds, the symmetry group of X. Therefore, by Remark 3.2, the

discretization given by the theorem is symmetric (invariant under the action of Ds).

The nodes of this discretization are used as initial nodes for Newton’s method in order

to construct quadrature rules on the regular polygon X.

The algorithm’s input is

s = the number of sides of the polygon

n = the initial maximum degree of the polynomials

m = the maximum degree of the polynomials to be integrated.

By equation (4.2), the dimensions of Pn and Pm are N = (n + 1)(n + 2)/2 and M =

(m + 1)(m + 2)/2, respectively. The algorithm’s output is a quadrature rule on X
14



consisting of a set of N nodes (x1, y1), (x2, y2), . . . , (xN , yN) and a set of N weights

w1, w2, . . . , wN such that

∫∫

X

ϕ(x, y) dx dy ∼
N∑

j=1

ϕ(xj, yj)wj

for any polynomial ϕ in the M -dimensional space Pm.

The algorithm proceeds in 4 stages.

In the first stage, we find a quadrature of the polygon by dividing it into triangles, and

then constructing a tensor product of Gaussian quadratures on each of the triangles. In

the second stage we construct an orthonormal basis for the space Pn iteratively, using

the SVD. In the third stage we find the eigenvalues of the operator P ◦T . In the fourth

stage we use Newton’s method to modify the position of the eigenvalues and of the

initial weights, found using the Least Squares Method, in order to obtain a quadrature

rule which integrates all polynomials of total degree at most m.

Stage 1: Discretize the polygon.

In this stage we find a quadrature of the regular polygon by performing the following

sequence of steps:

(1) Divide the regular polygon A1A2 . . . An centered at O into n triangles

OA1A2, OA2A3, . . . , OAnA1, where O is the origin of the axes.

(2) Discretize each of the triangles by constructing the tensor product of two one-

dimensional Gaussian quadratures on an interval. The order of the Gaussian

quadratures is chosen sufficiently large so that the tensor product quadrature

integrates all polynomials of total degree at most m exactly.

(3) Assemble all the nodes and weights from all the triangles to obtain a quadrature

of the polygon.

Stage 2: Construct the orthonormal basis.

In this stage, we find an orthonormal basis for the space Pn. The basis is used for

determining the eigenvalues of the operator PPn ◦TPn = P ◦T on the space Pn, therefore

the choice of this basis is not important – any basis yields the same eigenvalues. The

following algorithm for constructing an orthonormal basis is not optimal, however, it is

stable and easy to implement.

(1) Consider the vector corresponding to the constant polynomial 1. Normalize it.

The resulting vector provides an orthonormal basis for P0.

(2) Suppose we have constructed an orthonormal basis of Pk, consisting of K =

(k + 1)(k + 2)/2 vectors. Multiply each of the vectors in this basis by x and

y, respectively, and put the resulting vectors, together with the vectors in the

basis of Pk, in a matrix having 3K columns. By performing SVD on this matrix

we find an orthonormal basis for its column space, which is also an orthonormal

basis for Pk+1.

(3) Apply iteratively the procedure described in the previous step to obtain an

orthonormal basis for Pn.
15



Stage 3: Find the eigenvalues of P ◦ T .

(1) Compute the entries (aij) of the matrix A representing P ◦ T in the basis

{ϕ1, ϕ2, . . . , ϕN} constructed in Stage 2 using Formula (3.38):

aij =

∫∫

X

(x+ iy)ϕi(x, y)ϕj(x, y) dx dy .

The integrals are evaluated using the quadrature constructed in Stage 1.

(2) Find the eigenvalues λ1, λ2, . . . , λN of the complex matrix A using the QR algo-

rithm described in Section 2.2.

Stage 4: Construct the quadrature.

In this stage, we find a quadrature rule consisting of N nodes and N weights which

integrates all M polynomials of total degree at most m. The algorithm uses Newton’s

method and consists of the following sequence of steps:

(1) Construct an orthonormal basis ϕ1, ϕ2, . . . , ϕM of the space Pm using the pro-

cedure described in Stage 2.

(2) The initial quadrature points (x0
1, y

0
1), (x

0
2, y

0
2), . . . , (x

0
N , y

0
N) for Newton’s method

are given by the eigenvalues:

x0
j + iy0

j = λj , j = 1, 2, . . . , N .

The initial quadrature weights w0
1, w

0
2, . . . , w

0
N are found by solving the following

linear system using Least Squares:

ϕj(x
0
1, y

0
1)w

0
1 + ϕj(x

0
2, y

0
2)w

0
2 + . . .+ ϕj(x

0
N , y

0
N)w0

N = Ij, j = 1, 2, . . . ,M ,

where

Ij =

∫∫

X

ϕj(x, y) dx dy , j = 1, 2, . . . ,M

are the exact values of the integrals of the polynomials in the orthonormal basis

of Pm found in step (1). The integrals Ij, j = 1, 2, . . . ,M are found using the

initial quadrature constructed in Stage 1.

(3) Find a quadrature rule for integrating all polynomials in Pm. This is equivalent

to solving the following nonlinear system with 3N unknowns

(w1, w2, . . . , wN , x1, x2, . . . , xN , y1, y2, . . . , yN)

and M equations:

ϕj(x1, y1)w1 + ϕj(x2, y2)w2 + . . .+ ϕj(xN , yN)wN = Ij, j = 1, 2, . . . ,M .

Finding a solution to this system is equivalent to finding a zero of the smooth

function F : R3N −→ RM defined by

F (w1, . . . , wN , x1, . . . , xN , y1, . . . , yN) :=




N∑
i=1

ϕ1(xi, yi)wi − I1

· · ·
N∑

i=1

ϕM(xi, yi)wi − IM



.
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In order to find a zero of F , we use Least Squares Newton’s method (as described

in Section 2.3) with initial point

(w0
1, w

0
2, . . . , w

0
N , x

0
1, x

0
2, . . . , x

0
N , y

0
1, y

0
2, . . . , y

0
N) .

The weights and nodes given by this zero of F define an N -point quadrature

which integrates all polynomials in the M -dimensional space Pm.

5. Numerical Results

We implemented the procedure described in Section 4 and tested it on a number of ex-

amples. Several of the results are listed below, in order to demonstrate the performance

of the algorithm. The algorithm was implemented in FORTRAN and compiled with the

Lahey-Fujitsu FORTRAN 95 compiler. Computations were performed in double and

extended precision arithmetic.

5.1. Quadratures and interpolation formulae on the triangle. In this section we

describe the quadratures and interpolation formulae on an equilateral triangle generated

by the algorithm. The triangle is centered at the origin and has vertices located at the

points {1, e2π/3, e4π/3} on the unit circle. The following procedure is used.

We begin with an initial polynomial degree n. Using the algorithm described in

Section 4, we find the maximum polynomial degree m for which Least Squares Newton’s

method yields a quadrature having positive weights. The resulting quadratures have

N = (n + 1)(n + 2)/2 nodes and can integrate all the polynomials in the space Pm of

dimension M = (m+ 1)(m+ 2)/2.

Remark 5.1. Given the orthonormal basis ϕ1, ϕ2, . . . , ϕN of the space Pn constructed

in Stage 2 of the algorithm, the N nodes x1, x2, . . . , xN of the quadrature yield an

interpolation formula relative to the functions {ϕi}. The number of nodes for this

interpolation formula equals the number of functions. The formula is stable if the

condition number of the associated interpolation matrix B is small, where B is defined

by the equations

(5.1) B = (bij), bij = ϕi(xj), i, j = 1, 2, . . . , N.

In Tables 1 and 2 we list the quadratures generated by this procedure, together with

the corresponding efficiency coefficients e (as defined by Equation 2.9) and condition

numbers of the interpolation matrices B (as defined by Equation 5.1). The quadratures

of degrees 9, 11, 16, 21, 26, 29 and 31 have rotational symmetry, but not reflection

symmetry, while all the remaining quadratures are fully symmetric — cf. Remark 5.2.

Remark 5.2. In most cases, since the eigenvalues are invariant under the action of the

symmetry group of the triangle, modifying their position by Least Squares Newton’s

method yields quadratures on the triangle which are fully symmetric. In a few instances,

however, relaxing the requirement that the quadratures have full symmetry, and allowing

only rotational symmetry instead, allows us to obtain quadratures for higher orders m.

The phenomenon has not been investigated further.
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n 1 2 3 4 5 6 7 8 9 10

m 2 4 5 7 9 11 12 14 16 17

N 3 6 10 15 21 28 36 45 55 66

M 6 15 21 36 55 78 91 120 153 171

e 0.67 0.83 0.70 0.80 0.87 0.93 0.84 0.89 0.93 0.86

CN 1.0 1.0 1.2 1.4 1.6 2.1 1.8 2.3 4.2 5.9

Table 1. Triangle quadratures – part 1. For each initial polynomial

degree n from 1 to 10, we list the corresponding maximum degree m

of a quadrature having positive weights. The number of nodes of the

quadrature is N = (n+1)(n+2)/2 and the number of polynomials which

can be integrated exactly is M = dim Pm = (m + 1)(m + 2)/2. The

efficiency of the quadrature is e = M/(3N). The condition number of the

interpolation matrix (5.1) is listed in the row labeled CN .

n 11 12 13 14 15 16 17 18 19

m 19 21 22 23 26 27 29 31 32

N 78 91 105 120 136 153 171 190 210

M 210 253 276 300 378 406 465 528 561

e 0.90 0.93 0.88 0.83 0.93 0.88 0.91 0.93 0.89

CN 5.0 9.7 6.3 13.1 68.6 144.0 67.8 71.5 56.2

Table 2. Triangle quadratures – part 2. For each initial polynomial

degree n from 11 to 19, we list the corresponding maximum degree m

of a quadrature having positive weights. The number of nodes of the

quadrature is N = (n+1)(n+2)/2 and the number of polynomials which

can be integrated exactly is M = dim Pm = (m + 1)(m + 2)/2. The

efficiency of the quadrature is e = M/(3N). The condition number of the

interpolation matrix (5.1) is listed in the row labeled CN .

In Tables 3 and 4, we list two of the quadrature rules on the triangle obtained using

the procedure described above. Since each of the quadratures has full symmetry, only a

subset of generating nodes and corresponding weights is sufficient for describing each of

the quadratures (see, for example, [11] for more details). The remaining nodes may be

obtained via the action of the symmetry group of the triangle, with the obvious obser-

vation that points belonging to the same orbit have the same weight. The quadratures

were computed in extended precision and are listed with 20 digits.

In Figure 6, we show a picture of the nodes of the fully symmetric quadrature of order

32.

5.2. Quadratures on other polygons. Constructing quadratures on regular poly-

gons having at least 4 sides using the algorithm described in Section 4 is slightly more
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x y Weight

-.16868265317233866793E+00 0.29216692565001003106E+00 0.58935620335540765011E-01

-.15808488336403957216E+00 -.12519480877035419803E-30 0.67452219369552326397E-01

-.35347157488571107334E+00 0.14203631281845219952E+00 0.44503540566573551812E-01

-.47009724117048709338E+00 0.41794071711619191254E-30 0.17897106324896028214E-01

-.36136906345529792533E+00 0.40253738576591622170E+00 0.36144179089957608755E-01

-.47259519998535818893E+00 0.24682585755277199100E+00 0.18293541893943411802E-01

-.47234427519430125315E+00 0.50374523862970667221E+00 0.16917794610623270344E-01

-.35112713454811437607E+00 0.60817003695340733938E+00 0.28921171272990801675E-01

-.47085943420511108264E+00 0.70900463999219136033E+00 0.12279549423359387150E-01

-.47949927002953977850E+00 0.83051709788335153417E+00 0.35293734203249423613E-02

Table 3. A fully symmetric 45-point quadrature of order 14 on the tri-

angle. Only 10 generating nodes are listed; the remaining nodes may be

obtained via the action of the group of symmetries of the triangle.

x y Weight

-.12399257021092653653E+00 0.19374825509442976738E-28 0.41450918407684045121E-01

-.13177700392715291090E+00 0.22824446607103231387E+00 0.38440468676165286217E-01

-.28778371647987152368E+00 0.10998294723245009451E+00 0.31317527185910258616E-01

-.40630672781840910415E+00 -.14456488256121493556E-28 0.14002753888728943368E-01

-.29724898552695112330E+00 0.31498865266126179066E+00 0.26827201883108899153E-01

-.41356124787667862272E+00 0.16719641141490991682E+00 0.19961899945473734702E-01

-.48264071535159024307E+00 0.95221898752783636336E-01 0.86539518883907294556E-02

-.41408886151213149256E+00 0.38336091989130268782E+00 0.20240988214359192248E-01

-.27842964300896413291E+00 0.48225428802479053639E+00 0.23989433658357479662E-01

-.48370152343347647465E+00 0.30142300793320924164E+00 0.87991644027906763838E-02

-.48281402069237875749E+00 0.49942229259718307221E+00 0.78178774263925103734E-02

-.40528714204595318336E+00 0.57394856816236337313E+00 0.18008780871442209707E-01

-.48105533677985120342E+00 0.64968083098649002499E+00 0.60973338938233607918E-02

-.41966365447253047169E+00 0.72687877163645268678E+00 0.10547116649857438346E-01

-.48630312842497788637E+00 0.76255697108968090949E+00 0.34615238341665281813E-02

-.48251983199382645129E+00 0.83574886467290610008E+00 0.22095115197099314446E-02

Table 4. A fully symmetric 78-point quadrature of order 19 on the tri-

angle. Only 16 generating nodes are listed; the remaining nodes may be

obtained via the action of the group of symmetries of the triangle.

involved. In contrast to the triangle case, the operator P ◦ T has sometimes multiple

eigenvalues; in all cases, the only multiple eigenvalue is 0, the center of the polygon.

It is easily seen that, in some cases, 0 is a multiple eigenvalue of the operator P ◦ T
via the following argument.

Observation 5.1. Suppose that the number N of eigenvalues is not divisible by the

number of sides s. By Remark 3.2, the set of eigenvalues is invariant under rotations,

hence we can divide the nonzero eigenvalues into s groups, each corresponding to one

of the sides of the polygon. Consequently, there are s · k nonzero eigenvalues, where k

is a nonnegative integer, and all the remaining N − s · k eigenvalues must be equal to 0.

We used the procedure described in the first three stages of the algorithm in Section

4 to find the number of eigenvalues equal to 0 for all values of s, 3 ≤ s ≤ 20, and all

values of n, 1 ≤ n ≤ 26, where s is the number of sides of the regular polygon and n is
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Figure 6. Symmetric quadrature of order 32 on the triangle.

the maximum degree of the polynomials in the space U = Pn. The results are listed in

Table 5.

We note that the entries in the table seem to follow a certain pattern and, in fact,

they can be described by the following formulae.

Conjecture 5.1. Let s be the number of sides of the regular polygon X centered at 0 and

having all the vertices on the unit circle, and let U = Pn be the space of all polynomials

on X of total degree at most n. We denote by Λ(n, s) the number of eigenvalues equal

to 0 of the operator PU ◦ TU , where the operator PU ◦ TU is defined as in the statement

of Theorem 3.2.

Let us denote by Sp the sum of the first p positive integers:

(5.2) Sp = 1 + 2 + . . .+ p = p(p+ 1)/2 ,

with the convention that S−1 = S0 = 0. Then, according to the parity of the number of

sides s, one of the following formulae holds.

If s = 2k + 1, where k is a positive integer, then

(5.3) Λ(n, s) =





Sn (mod s)+1, if n (mod s) ≤ k − 1

Ss−n (mod s)−2, if n (mod s) ≥ k .

If s = 2k, where k is an integer greater than 1, then

(5.4) Λ(n, s) =





Sn (mod s)+1 + 1
2
(n− n (mod s)), if n (mod s) ≤ k − 1

Ss−n (mod s)−2 + 1
2
(n− n (mod s) + s), if n (mod s) ≥ k .

It can be easily checked that the conjecture holds for all values of Λ(n, s) listed in

Table 5. A proof for the general case is beyond the scope of this paper.
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Constructing quadratures in the cases when the operator P ◦ T has multiple zero

eigenvalues is more involved because the condition number of the interpolation matrix

(5.1) explodes. In several of these cases, Newton’s method fails to find quadratures

having positive weights. We illustrate the situation in Table 6. A dash denotes that

no quadrature having positive weights was found, while a numbered entry denotes that

quadratures having positive weights were found and the numbered entry is the highest

order of such a quadrature.
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3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 0 2 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

3 1 2 0 4 3 10 10 10 10 10 10 10 10 10 10 10 10 10

4 0 3 0 3 1 7 6 15 15 15 15 15 15 15 15 15 15 15

5 0 5 1 3 0 5 3 11 10 21 21 21 21 21 21 21 21 21

6 1 4 3 4 0 4 1 8 6 16 15 28 28 28 28 28 28 28

7 0 4 1 6 1 4 0 6 3 12 10 22 21 36 36 36 36 36

8 0 5 0 9 3 5 0 5 1 9 6 17 15 29 28 45 45 45

9 1 7 0 7 6 7 1 5 0 7 3 13 10 23 21 37 36 55

10 0 6 1 6 3 10 3 6 0 6 1 10 6 18 15 30 28 46

11 0 6 3 6 1 14 6 8 1 6 0 8 3 14 10 24 21 38

12 1 7 1 7 0 11 10 11 3 7 0 7 1 11 6 19 15 31

13 0 9 0 9 0 9 6 15 6 9 1 7 0 9 3 15 10 25

14 0 8 0 12 1 8 3 20 10 12 3 8 0 8 1 12 6 20

15 1 8 1 10 3 8 1 16 15 16 6 10 1 8 0 10 3 16

16 0 9 3 9 6 9 0 13 10 21 10 13 3 9 0 9 1 13

17 0 11 1 9 3 11 0 11 6 27 15 17 6 11 1 9 0 11

18 1 10 0 10 1 14 1 10 3 22 21 22 10 14 3 10 0 10

19 0 10 0 12 0 18 3 10 1 18 15 28 15 18 6 12 1 10

20 0 11 1 15 0 15 6 11 0 15 10 35 21 23 10 15 3 11

21 1 13 3 13 1 13 10 13 0 13 6 29 28 29 15 19 6 13

22 0 12 1 12 3 12 6 16 1 12 3 24 21 36 21 24 10 16

23 0 12 0 12 6 12 3 20 3 12 1 20 15 44 28 30 15 20

24 1 13 0 13 3 13 1 25 6 13 0 17 10 37 36 37 21 25

25 0 15 1 15 1 15 0 21 10 15 0 15 6 31 28 45 28 31

26 0 14 3 18 0 18 0 18 15 18 1 14 3 26 21 54 36 38

Table 5. The number of eigenvalues equal to zero for all the values of the

number of sides from 3 to 20 (listed in the top row) and of the maximum

degree of polynomials from 1 to 26 (listed in the first column).
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3 4 5 6 7 8 9 10

Square 5 5 - 9 - 11 - 13

Pentagon 4 7 6 9 10 12 11

Hexagon - 7 - 7 - - - 11

Heptagon 5 6 8 10 8 12 - -

Octagon - - 6 9 9 13 - -

Nonagon - - 8 10 11 13 14 14

Decagon - - - - 9 11 13 11

Table 6. Quadratures on regular polygons with at least 4 sides. The

top row lists the initial maximum degree of polynomials n. A numbered

entry denotes the maximum polynomial degree m for which a quadrature

having positive weights was found. A dash denotes that no quadrature

having positive weights was found.
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